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Quantization of classical spectral curves
via topological recursion

1Bertrand Eynard*', ;Elba Garcia-Failde*# 3Olivier Marchal®, 4Nicolas Orantin?

Abstract

We prove that the topological recursion formalism can be used to quantize any generic
classical spectral curve with smooth ramification points and simply ramified away from poles.
For this purpose, we build both the associated quantum curve, i.e. the differential operator
quantizing the algebraic equation defining the classical spectral curve considered, and a
basis of wave functions, that is to say a basis of solutions of the corresponding differential
equation. We further build a Lax pair representing the resulting quantum curve and thus
present it as a point in an associated space of meromorphic connections on the Riemann
sphere, a first step towards isomonodromic deformations. We finally propose two examples:
the derivation of a 2-parameter family of formal trans-series solutions to Painlevé 2 equation
and the quantization of a degree three spectral curve with pole only at infinity.
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1 Introduction

1.1 Topological recursion and quantum curves

Witten’s conjecture [49], proved by Kontsevich [37], built a bridge between two seemingly differ-
ent areas of mathematics: the theory of integrable systems and enumerative geometry. It states
that a specific generating function of intersection numbers on the moduli space of Riemann sur-
faces is actually a tau function for the integrable KdV hierarchy. More precisely, the generating
series

> 92-2h—n n

ZKomt (1 ¢) := exp Z h2h=2 Z >ty Ta ) [ [(2di = 1) bagi
h=0 n deNn i=1
is a tau function provided that
_ dl n
(le...Tdn>h’n— L Ve
Mh,n

denotes the intersection numbers of the first Chern classes 1; == ¢1(L;) of the cotangent bundle
at the i*" marked point over the moduli space of stable curves of genus h with n smooth marked
points. Through the integrable side of this duality, this conjecture naturally leads to a third
field of mathematics, the theory of differential equations. In order to see it, let us consider the
Airy function Ai(\) solution to the Airy equation

(dd; - A) Ai(\) =

For A positive and real, it admits an asymptotic expansion, as A — oo, of the form

log Ai(\) — So(N) = Sm(A

m=2

where Sp(X) == —2A%, §1(}) == —4 log A — log(2y/7) and

Ym>2, 5=t Y CUY S o r o T4 — 1)1,

n!
h>0,n>0 deNn i=1
2h—2+n=m—1
This means that the asymptotic expansion of the Airy function is itself a generating func-
tion of intersection numbers. We may even keep track of the Euler characteristics of the sur-
faces enumerated by introducing a formal parameter A through a rescaling of A. The function

PRont (X, h) == Ai(h? )\) satisfies

d on!
(fﬂdv A) PRt (N B) =0

and admits an asymptotic expansion of the form

log 6O B) — A S0(A) — S0 = 3 B S ().

m=2



In the spirit of mirror symmetry, this defines a map between a problem of enumerative geometry
and the study of solutions to a differential equation. This same problem of computing Gromov—
Witten invariants of the point can be considered from a last perspective. The intersection
numbers (74, ...7a,); , as well as their generating series ZX°"*(h,t) and ¥X"(\ A) can be
computed by the topblogical recursion [19, 29]. This formalism, originally developed in the
context of matrix models, allows to associate such generating functions to any initial data given,
in particular, by an algebraic curve called spectral curve. When considering the algebraic curve

yz—:v:0

as initial data, the topological recursion gives Z Kont(h, t) and wKont()\, h) as output. From this
point of view, the topological recursion quantizes the classical spectral curve y> — z = 0 into
the differential equation (BQ% — /\) YKont(\ k) = 0, which is often referred to as the associated
quantum curve.

One may naturally wonder if this is a general phenomenon. The topological recursion has
been proved to solve many problems of enumerative geometry ranging from the enumeration
of maps [7, 25, 29, 30] to the computation of Gromov—Witten invariants whenever the ambi-
ent space has a semi-simple cohomology [23]. From its origin in random matrix theory, it is
expected that the topological recursion can be used as a quantization procedure for quantizing
any algebraic curve. In its simplest form, this conjecture can be summarized as follows. Given
an algebraic equation P(\,y) = 0, called the classical spectral curve, the topological recursion
produces a wave function (A, i) which is conjectured to be solution to a differential equation
Py ()\, ha%) Y(A\ k) =0, where Py(\,y) — P(A,y), as h — 0 and the pole structure of P(\,y) is
independent of k. In the present paper, we prove this conjecture for meromorphic Higgs fields
when the base curve is the Riemann sphere P!.

This conjecture has been proved in many particular cases in the literature. Until recently,
the conjecture had been proved only in examples where the classical spectral curve is a genus
zero cover of the Riemann sphere [13, 14, 15, 18, 20, 21, 32, 34, 41, 46, 47, 50]. These works
culminated with the general proof of the conjecture by [6], when the spectral curve has genus 0.
In this simpler setup, the wave function (A, &) is simply a WKB type formal series in h.

When the spectral curve does not have vanishing genus, it is expected that the wave function
cannot be such a simple formal series anymore but rather a formal trans-series in h [24, 28]
involving so-called non-perturbative corrections as explained in Section 6.2. This makes its
study as well as the proof of the existence of a quantum curve annihilating it much more
involved. However understanding this higher genus context is fundamental for some of the most
important applications of this quantization procedure. For example, it is conjectured that the
asymptotics of the wave functions obtained by quantization of the A-polynomial associated to
a knot recover some of its invariants [4, 11, 12, 31, 42, 43]. In general, such an A-polynomial
defines a spectral curve of non-vanishing genus and addressing the issue of its quantization is
absolutely necessary. A first step in this direction has been achieved by K. Iwaki who proved
in [33] that one can quantize an elliptic curve of the form y? = A3 4+ t\ + ¢, obtaining on the
way a two-parameter trans-series solution to the Painlevé 1 equation. This result was then
generalized to any hyper-elliptic curve by the authors in [27, 40], including the computation of
similar two-parameter solutions to the six classical Painlevé equations.

1.2 Main results

The present article aims at proving the quantum curve conjecture for any algebraic
curve. For this purpose, one considers any classical spectral curve defined by an equation of



the type
d

P(Ay) =) (-1)'y"'R(A) =0, with B(}) =1,
=0
where d is an arbitrary positive integer and (F;(A))cp1 4 are arbitrary rational functions subject
to some minor technical admissibility assumptions presented in Definition 2.5. This classical
spectral curve shall always be considered as a cover of P! through the map z : (\,y) — A. From
S
this classical spectral curve, a divisor D = ) a;[p;] on the spectral curve and a choice of cycles
i=1
(Definition 2.10), we build a perturbative wave function

(D, h) == exp <Zzh2h 2+"/ / whn 21y % )_5h05n2(d(zglzdj(gz)))z))’

h>0n>0

where the differential forms {wpn}n>0n>0 are obtained by the topological recursion (Defini-
tion 3.1). Note that these differential forms and thus the perturbative wave functions im-
plicitly depend on the filling fractions e (Definition 2.11) associated to a choice of Torelli
marking. This perturbative wave function is complemented by an additional set of functions
{Y1:(D, h)}1>1,ie,5] in Definition 5.4.

We then prove in Theorem 5.1 that, for an arbitrary divisor D, the previous wave functions
are solutions to a system of differential equations mimicking the Knizhnik—Zamolodchikov (KZ)
equations of conformal field theories,

hdp(D.R) (D, 1) — (D, )
w dr(o) Yera(D,h) - h; o) —2()

2h+n
DRV QJZL(( )i2) (D, h)

h>0n>0

SCROIPE T ()] s

where the differentials Qvg)n and len are defined in Lemma 4.1 and Definition 4.2 respectively.

With the aim of building a solution to a quantum curve, we then specialize the divisor to
a two point divisor D = [z] — [00(®)], where 0o(®) is any point of the classical spectral curve in
the fiber above infinity. Since the (vy,1(D = [2] — [p2], 1))~ have essential singularities when
z(p2) — oo, we regularize them and build regularized functions (¢;°*(D = [2] — [00(¥)], b)) 150
that are solution to a simpler version of the KZ equations stated in Theorem 5.2. We are able
to express some of the terms of the resulting equation in terms of the action of a set of linear
operators to get Theorem 5.3

UiE([2] — [o0)) + U (2] - [00®]) = Lila(2) [68)([2] — [0 @))] ,

( )

where £;(2(z)) are multi-linear operators defined in Section 5.4.
In Definition 6.2, following [24], we introduce the non-perturbative partners of the regularized

perturbative wave functions (7/)??\1(;) (z,h, €, p)) inspired by formal Fourier transforms

S exp ( Z%m) U1°%([2] = [00™), b€ + hm).

nez9

6



Remark that g is the genus of the classical spectral curve considered so that the perturbative
and non-perturbative wave functions coincide when the genus is vanishing. On the other hand,
if g > 0, these non-perturbative wave functions are formal trans-series in A of the form (6-48),
while the perturbative ones are only simple formal WKB series.

These definitions allow to state the main result of this article. In Theorem 7.3, we prove that

the non-perturbative wave functions (wl NP (z, h, €, p))l can be used to define a d x d matrix
>0

U (), ) (Definition 7.2) solution to a linear differential equation

OU(\h) _

h&))\

LA )W(A, h),
where the Lax matrix L(\,A) is a rational function of A with the same pole structure as the
coefficients (FP;())) le[L.d] of the classical spectral curve considered as input. Moreover, each entry

of the first line of W(\, &) is directly connected to the non-perturbative wave functions by
¥ col@) .
U1 (A h) = ogxe (Y (V). b€, p), Vi€ [1,d],

where 2(9)(\) denotes the preimage of A € P! on the classical spectral curve such that z()()\) —
00l) as A\ — oco. These entries are thus solution to a “quantum curve” (Definition 7.1):

[(ﬁ(g)d + g bi(A, h) <hd‘i>d_l] (A k) = 0.

We then prove in Theorem 7.1 that the coefficients (b;(A, h)) _, of this quantum curve have
the same pole structure as the coefficients (—1)!P;()\) of classical spectral curve in addition
to apparent singularities. Moreover, we prove in Theorem 7.2 that these coefficients b;(\, k)
have a well defined & — 0 limit that coincide with (—1)!P;()), hence justifying the terminology
“quantum curve”. These coefficients can be computed explicitly through the asymptotics of the

wave functions (%Of\;;) (z,h, €, p)) around its singularities.
) 1>0

We finally apply this quantization procedure to two genus 1 classical spectral curves of
respective degrees 2 and 3. In particular, we recover in the first case a two-parameters solution
of Painlevé 2 equation and show how one can compute the coefficients of the quantum curve
explicitly.

1.3 Organization of the article
This paper is organized as follows.
e In Section 1.4, we introduce a few notations used throughout the paper.

e In Section 2, we define the set of classical spectral curves we shall consider in this paper as
initial data for the topological recursion. We introduce very few admissibility conditions
making the rest of the presentation less technical and easier to read. We introduce local
coordinates on this classical spectral curve and associated spectral times that may be
considered as deformation parameters of the classical spectral curve. This leads to the
definition of admissible initial data for the topological recursion in Definition 2.10.

e In Section 3, we remind the reader of the definition of the topological recursion as well as
a few properties that are used in the paper.



e In Section 4, we derive a set of loop equations satisfied by the output of the topological
recursion. These loop equations are one of the main ingredients to derive the quantum
curve.

e Section 5 is devoted to the derivation of a set of equations playing the role of Knizhnik—
Zamolodchikov (KZ) equations in the context of two dimensional conformal field theories.
For this purpose, we first define a set of perturbative wave functions for a generic divisor
in Section 5.1 and then prove that they satisfy a set of KZ equations in Section 5.2. In
Section 5.3, we derive these KZ equations for a two point divisor based at infinity after a
necessary regularization of the wave functions. In Section 5.4, we introduce a set of linear
operators acting on the wave functions in order to write the KZ equations under a simpler
form. In many cases, this leads to an expression of the KZ equations as PDE’s involving
evolutions with respect to the parameters defining the classical spectral curve. Section 5.5
presents the monodromy properties of the regularized perturbative wave functions.

e In Section 6, we define the non-perturbative partners to our wave functions and prove
that they satisfy an ODE by regrouping them to define a d x d matrix that is solution
to a linear differential equation with rational functions as coefficients. We first define the
non-perturbative wave functions making use of symbolic theta functions in Section 6.1,
provided the heuristic motivation that they correspond to formal Fourier transforms of the
perturbative ones after exchanging two summations. We further study their properties as
trans-series in A in Section 6.2. In Section 6.3, we use these properties in order to show that
we can express the result of the action of the linear operator introduced in the preceding
section in terms of derivatives with respect to a point in the base curve only. Theorem 6.2
thus shows that the non-perturbative wave functions are solutions to a system of ODE’s
with coefficients that are rational functions. We linearize this system in Section 6.4 and
introduce a compatible system including the action of the linear operators introduced
above. The compatibility of this system allows us to prove the non-existence of poles at
ramification points of this system in Section 6.6.

e In Section 7, we study the compatible Lax system. We first derive an associated quantum
curve before emphasizing the possible existence of apparent singularities. After character-
izing the properties of the quantum curve in Theorem 7.1, we apply a gauge transformation
in order to obtain another linear Lax system without any apparent singularities and with
poles only at the singularities of the initial classical spectral curve. We finally study the
characteristic polynomial of this system and present it as a deformation of the classical
spectral curve, allowing to interpret our result as a h-family of connections on the base
curve P

e Section 8 presents two examples of respective degrees 2 and 3. In particular, the degree
2 example gives rise to a 2-parameters solution of the Painlevé 2 equation. We use these
examples to show how one can compute the coefficients of the quantum curve in practice.

e Section 9 is a general conclusion presenting some of the possible generalizations of the
present article that could lead to future works.

1.4 General notations

In this short section, we review some general notations that will be used in the article.



N = {0,1,...} is the set of all non-negative integers. N* is the set of positive integers:
N*={1,2,...}.

e For any set A, we denote by |A| the cardinality of A. In particular || = 0.

e For any k£ € N and two sets A and B: A C B means that A is a subset of B of cardinality
k
|A| = k.

e We denote by P! the Riemann sphere.

e For any set A, we denote S(A) the set of partitions of A. We shall denote the length
(i.e. the number of blocks) of a partition u € S(A) as I(u) in order to avoid confusion
with |A].

e For any integer n > 1, we denote &,, the symmetric group of [1,n].

e For any Riemann surface ¥, let Mo(X) and M;(X) be the C-vector spaces of meromorphic
functions and 1-forms on ¥. Let My (X*) be the C-vector space of meromorphic differ-

entials on the k-fold product of the curve. We denote M(X) := @ My (X¥) the induced
k>0

graded algebra. For w; € M,,(£") and wp € M,,,(£™), we will often denote their product

by simply wiws = w1 K ws € My, (") to lighten notation.

e For any matrix A, we shall denote A? its transpose.

2 Admissible spectral curves

In this section, we recall the concept of spectral curve as initial data for the topological recursion
that we will recall in the next section. We assume some admissibility conditions that make
the curve generic enough in order to proceed to a less technical quantization procedure. We
introduce local coordinates on the space of curves that can be seen as deformation parameters
of the spectral curve.

2.1 Classical spectral curves

Let N € N be a given non-negative integer.

Definition 2.1 (Classical spectral curves). Let Aj,..., Ay be N distinct points on P!\ {co0}
and let Hq(A1,. .., AN, 00) be the Hurwitz space of covers z: ¥ — P! of degree d defined as the
Riemann surface

2= {(\y) | P(\y) =0},
where z(A,y) := X and

P(Ay) =Y (-D)'y"'A() =0, (2-1)
=0

with each coefficient (P);c[1,4qy being a rational function with possible poles at A € P =
{Az}zjil U {OO} and PO =1.

We define a classical spectral curve as the data of the Riemann surface ¥ and its realization
as a Hurwitz cover of P! and we shall denote it (X, ). *



In this article, we wish to consider classical spectral curves where the rational functions P;(\)
have a fixed pole structure. For this purpose, let us define a subspace of this Hurwitz space

obtained by fixing the degree of the rational functions P; at their poles.
Definition 2.2 (Classical spectral curves with fixed pole structure). For [ € [1,d], let r{) and

r/(\lz, i € [1, N], be some non-negative integers. We consider the subspace

Ha (A, A (s (101 (00, D) ) € Ha(Ass -y Ay, o)

of covers x such that the rational functions (F});ef1,q) are of the form

PN =Y > PR (N7, forle [1,d], (2-2)
PEP jcgh
where we have defined
vie[LN] : 8¢ =[1r{] and  SY=[0,+Y], (2-3)
and the local coordinates {{p(\)} pep around P € P are defined by
Vie [1,N] : éA,(N) = (A= A;)  and  Exo(N) = A"L (2-4)
*

In the rest of the article, we fix the tuples (rglo))fl:l and (7’58)?:1 of degrees once and for all

and only consider classical spectral curves in

Ha (A0, D) (A 00, (00, (DI ).

Let us remark that these spaces have a very complicated topology. However, we shall consider
only a formal neighborhood of a point in such a space so that we can avoid discussing its topology.

Definition 2.3 (Curve punctured at the poles). We define the classical spectral curve ¥ with
poles removed as

Yp =X\ (P). (2-5)

Definition 2.4 (Ramification points and critical values). We denote by R the set of all rami-
fication points of the cover x, and by R the set of all ramification points that are not poles (i.e.
not in z=1(P)),

Ro = {p € X |1+ order,ds # £1}, (2-6)
Ri={peX|de(p) =0, a(p)¢P}=Ro\a"'(P). (2-7)
We shall refer to their images x(R) as the critical values of x. *

In general, the topological recursion could be applied to any classical spectral curve presented
above. However, in this article we shall restrict to a simpler, yet very large, class of classical
spectral curves. These are technical assumptions to avoid curves that are not generic enough.
We believe that these additional assumptions can be lifted without changing the main structure
of the upcoming proofs but would make computations more technical and eventually make the
present article harder to read. Thus, we leave such non-generic cases for future works.
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Definition 2.5 (Admissible classical spectral curves). We say that a classical spectral curve
(X, x) is admissible if it satisfies the following conditions.

e The Riemann surface ¥ defined by P()\,y) = 0 is an irreducible algebraic curve, i.e. P(\,y)
does not factorize.

All ramification points a € R are simple, i.e. dz has only a simple zero at a € R.

Critical values are distinct: for any (a;,a;) € R x R such that a; # a; then x(a;) # z(a;).

Smooth ramification points: for any a € R, dy(a) # 0 (i.e. the tangent vector
(dz(a),dy(a)) to the immersed curve {(\,y) | P(\,y) = 0} is not vanishing at a).

e For any pole p € z71(P) ramified, the 1-form ydx has a pole of degree r, > 3 at p, and
the corresponding spectral times (defined below) satisfy ,,, 2 # 0.

2.2 Local coordinates, spectral times and admissible initial data

We may consider z and y as two meromorphic functions ¥ — P!'. From this perspective, x
has poles only in the fiber 27! (c0) while the meromorphic one form ydx has poles in z=1 (P).
Thanks to the covering = : ¥ — P!, we can define canonical coordinates on X.

2.2.1 Canonical local coordinates

Definition 2.6 (Canonical local coordinates). Let P € P! and p € 27 1(P). We first define a
sign ep by canonical coordinates on P! near P by,

if P#00, ep:=1 and if P=oo, ep:=—1. (2-8)
Then, we define the canonical local coordinate near any p € = (P) as

Go(2) = Ep((2))% , dy = ordery(¢p). (2-9)

The set {d}}pc,—1(p) is called the ramification profile of P. We have

dy, = d. (2-10)
pEx~!(P)
We call
lp = |271(P)| (2-11)
the length of the ramification profile of P. Generic unramified points P € P! have the ramifica-
d d—2
. % . . . . . . *
tion profile {1,1,...,1}. Generic critical points have a ramification profile {2,1,1,...,1}. *

Let us look at the canonical coordinates for poles P € P. For P = oo, we denote its
preimages

1
-1 = (a) = — -
27! (o0) {OO }aewmﬂ b= (2-12)

1

Coolor = @ | d_ ) = deg, () (2-13)
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For i € [1, N], we denote the preimages of A; as

-1 N (a) AL 3
x (AZ)_{Zi }aeWAiﬂ, Er, = — Ai, (2-14)

1

d_(a)
Cpr =(@—Ng) %, d

7o = orderZi(a) (x — Ay). (2-15)

The labeling of the points in each fiber can be defined independently for each pole in P and can
be chosen arbitrarily once and for all.

2.2.2 Spectral times

Using these local coordinates, we may write the expansion of the 1-form ydx around any pole
-1

pex (P).

Definition 2.7 (Spectral times).

rp—1

ydr = Z tp,kgp’kfldg“p + analytic at p. (2-16)
k=0

Our assumption of admissible classical spectral curves requires that
Vpexz ' (P), 1,>3, and tp,,_2#0. (2-17)

In the rest of the article, we shall refer to the coefficients (tp1k)p€x_1 (P kel0,ry—1]> B spectral
times (also called KP-times (Kadomtsev—Petiashvili) in the literature, cf. [26]). *

Definition 2.8 (Local potentials). It is convenient to define the negative part of the Laurent
series expansion of ydx at its poles, and integrate it. We thus define, in punctured neighborhoods
of every pole p € 7 (P),

rp—1

AV =Yty G, (2-18)
k=0

so that the singular part of ydz at p € 27! (P) is given by dV,. We define an anti-derivative in
the universal cover of ¥\ z=1(P)

rp—1
_ tok ._
Vpea'(P), V==Y 2 &+ tp0log(Gp)- (2-19)
k=1

Remark that because of the log, V,, is defined only on a universal cover of a neighborhood of p.
*

Note that the coefficients of the expansion of the function y around different points in the
same fiber 271()\) are not independent and are constrained by

vie[lLd : rN)= > J]v). (2-20)

BCz~1(N) z€B
1

In particular, this implies that VI € [1, d],
~ O]
Vie[L,N] :ry, < ﬂgrznal)((Ai)<er>,
l
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r) < max (Z(rp—z)). (2-21)

ﬂ%x’l(w) veB

These upper bounds are far from optimal but sufficient for our purpose. We shall see in the
examples of Section 8 how they can be improved case by case. An optimal bound can be written
in general by referring to the Newton polytope of our polynomial P(),y), but this would require
the introduction of cumbersome notations that we choose to avoid in the present work.

2.2.3 Bergman kernel

A last crucial ingredient for the definition of the topological recursion is a differential form often
referred to as a “Bergman kernel”!, or also fundamental second kind differential.

Definition 2.9 (Bergman kernel). Let (3, x) be an admissible classical spectral curve of genus
g. For any symplectic basis (A;, B;)Y_; of Hi(X,Z), let

BABILL € HO(S?, KE2(20))% € My(5?)

be the unique symmetric (1 X 1)-form on X2 with a unique double pole on the diagonal A,
without residue, bi-residue equal to 1 and normalized on the A-cycles by

Vie[lg], BUABILL (2 29) = 0. (2-22)
Z1E€EA;

*

With the definitions above, we may finally define a set of initial data for the topological
recursion.

Definition 2.10 (Admissible initial data). We call admissible initial data ((X,z), (A, Bi)7_;)
a pair consisting of (X,z) an admissible classical spectral curve of genus g in the sense of
Definition 2.5, and a set of cycles, that must be chosen as follows.

e Let o be a generic smooth point of X\ 271 (P).
e For each p € z71(P), let C, be a small circle around p.

e We choose a set of homology chains C,—,;, of boundary dC,—, = [p] — [0], which do not
intersect each other, and such that

Cpy NCosp = Oppr- (2-23)

e A basis of H(X\z~!(P),Z), obtained by completing the set of {Cp},e,—1(p) With 2g cycles
denoted {A;, B;}Y_,, satistying

Vpea N (P), Vie[l,g]l, AiNCosp=0=DBiNCosp,

e The projection Hy(X \ 271(P),Z) — Hi(X,Z) sends {A;, B;}Y_, to a symplectic basis of
Hy(%,Z), which we shall call also {A;, B;}Y_; by abuse of language. A symplectic basis of
Hy(3,7) is called a Torelli marking of X.

!This Bergman kernel mostly studied by Bergman and Schiffer [3] should not be confused with the Bergman
kernel classically used in operator theory.
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*

Remark 2.1. Admissible initial data consists of three different parts. The first part, an admissible
classical spectral curve, allows in particular to define a set of ramification points together with a one
form ydz. But it does not allow to define a Bergman kernel unambiguously. This is the reason why it
has to be supplemented by a Torelli marking, i.e. a symplectic basis (A;, B;)7_; of H1(%,Z), allowing to
define BMA-B)-1 without ambiguity. In our process of quantizing the classical spectral curve, this choice
of Torelli marking can be thought of as a choice of polarization from a geometric quantization point
of view. The last part consisting in {C,,Co—,} leaves the (wh»”)h>0,n>0 generated by the topological
recursion invariant except for wp ¢ fixing the normalization ambiguity in the definition of so-called wave
functions giving rise to a solution of the quantum curve as we shall see later.In order to avoid cumbersome
notations, we shall note ((X,z), (A4;, B;)?_,) some admissible initial data, implicitly keeping in mind that
they also come with a choice of contours {Cp, Co—p}-

The choice of a Torelli marking provides natural coordinates to describe the holomorphic
part of the meromorphic form ydz (the polar parts of ydz being described by the spectral times
in Definition 2.7).

Definition 2.11 (Filling fractions). Let ((2,z), (A;, B;)7_;) be some admissible initial data.
We define € := (¢;)7_; the tuple of filling fractions by

1
211

(This is well defined because ydz is holomorphic on ¥\ z=(P), and A; € H1 (X \ 2z~ 1(P),Z).) *

Remark 2.2. In many cases, the set of spectral times (in fact a subset of independent spectral times not
constrained by relations) together with filling fractions: {t, 1 }pea—1(p) kefo,r,—1] U{€i}{=; can be used to
define local coordinates on the space of classical spectral curves seen as a Hurwitz space equipped with a
Frobenius manifold structure (see [16]). In particular, this allows to consider families of classical spectral
curves with fixed pole structure and deformations relatively to these coordinates. Such point of view
goes beyond the purpose of the present article in which we only consider some given and fixed admissible
initial data. However, it would provide a natural framework to make the connection with isomonodromic
deformations and integrable systems.

Vie[l,g], e:= ydz.
A;

3 Topological recursion

In this section we recall the topological recursion construction of a family of differentials as-
sociated to some admissible initial data and give the properties that will be relevant for our
purpose.

3.1 Definition

Definition 3.1 (Topological Recursion). For any admissible initial data ((3, z), (A;, B;)Y_,), let
us define the family of differential forms {wp n}n>0n>0 using the topological recursion [29]
wo,1 = ydx, wo,2 = B(Ai’B")gﬁ,
and, for (h,n) € N x N* such that 2h —2 4+ n > 0, we define wy,, € HO(E",Kgn(—(Gh -6+
4n)R,))®" € M, (¥")? inductively by
Z

wo2(20,7) ~
(2) W\ (2,04(2);2), (3-1)

Res -
Wh,n+1 ZO’ Z z—a 2 wo,1 ) - 0;&)0,1(2)

2For i € [1,n], let p; : ¥™ — X be the natural projection on the i'" factor. We shall then denote R, =
O p; HR).

1

1=
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where o, is the Galois involution permuting the two sheets of the cover X meeting at a simple
ramification point a and

VNV;(L?T)LH(Z, 2z) = wpo1nq0(2, 2, 2) + Z w87|A|+1(z, A) wh_s7|B|+1(z’, B),
AUB=12z,s¢€[0,h]
(s,A4]) ¢ {(0,0), (h,n)}

with z :== (21,...,2,) € X"
Finally, we define

1 X g
woo = Z tpoUp — Res V,(2)y(z)dz(z) + 2617{ ydz | ,

pez—1(P) R i1 /B
. 1 12
wio = —5rlog (re(zR)? [[ Y(a) ],
1 acER
Vh=2:wn = 5o ;2 Res wp1(2)®(2),

where ®(z) is any anti-derivative of wp1(2), i.e. d®(2) = wp1(2) 3, while

VaeR : Y(a) = lim M,
z=a fx(z) — x(a)

7p is the Bergman 7-function [36] only depending on the critical values (X, = z(a)),cr defined
by

otp BB (2, 54(2))
VaeR: 5%, = Res dr(2) !
and
. rp—1 " .
U(2) = V(o) — tpolog(G) = — 3 ik,
k=1

and eventually for any generic base point o € ¥*, and op an arbitrary point in a small disc
neighborhood of p in which is defined the local coordinate ¢,

D Op
Vpea Y P): v, = / (ydx — dV,) — Vp(op) +/ ydz,
op o
where the integral o — o0, is given by the homology chain C,_,;, chosen in admissible data. Note
that v, is independent of o,. See [29, 26] for details. *

Remark 3.1. To uniformize notations and names, we shall refer to the (wp,0)p>0 as O-forms (indeed
they are not differentials but rather complex numbers).

Remark 3.2. There exists a generalization [5] of the topological recursion that allows for ramification
points of higher orders. However, since we chose to consider only admissible classical spectral curves in
the present article, we do not need it in the present setup.

3Note that (Wh,0)r>2, are independent of the choice of anti-derivative.
“Note that wo,o is independent of this base point.
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3.2 Properties of differentials produced by the topological recursion

The differentials (wp, ,,)n n>0 satisfy many properties [29]. Let us review a few of them that are
useful for the content of the article.

e For h > 0,n > 2, the differentials wy,,, are invariant under permutations of their n ar-
guments, i.e. they are differentials on the n-fold symmetric product of the curve ¥ in

Mo (5.

e wo,1(21) may only have poles at 7 H(P). wo,2(#1, 22) may only have poles at z; = 2. For
(h,n) € NxN*\{(0,1),(0,2)}, wpn(21,...,2,) may only have pole at z; € R, for i € [1,n].

o The differentials (wh n)nn>0 may also be considered as functions of the parameters defining
the admissible classical spectral curve, namely as functions on the corresponding Hurwitz
space (see [22, 26] for example for a more detailed explanation). In particular, one may
consider locally the space of classical spectral curves obtained by varying the values of
periods {¢;}?_,. To some extent, for any (h,n) € N2, w41 can be understood as a
generating series for the derivatives of wy, , with respect to these parameters and one has
the following result

0
Y (h,n) € N2 Vie [1,4g] : a—wh,n(zl, ceeyZp) = j{ Whnt1(2, 2150, 2n). (3-2)
z€B;

€;

3.2.1 Ramification points at poles

In the definition of topological recursion, we take residues at a € R, i.e. only at ramification
points that are zeros of dz and that are not in ~1(P). However the points of P could also be
ramified (and this is the case for many interesting examples of spectral curves, for instance the
Airy curve y? = z). In [6] it was noticed that to derive the quantum curve, one should also
include residues at all ramification points, including those in =!(P). However, thanks to our
hypothesis on admissible spectral curve, and thanks to the following lemma, including or not
such residues makes no difference.

Lemma 3.1 (Ramified points at poles). Let (wy, ,,)h.n>0 be the topological recursion differential
forms defined by taking residues at all a € Ry 7(?:.6. all ramification points, so including a €
z(P)). If, for all ramification points p € x~'(P), we have r, > 3 and tp,,—2 # 0, then
Wy, = Whn for all (h,n) € N2, Moreover, wp, with (h,n) # (0,1),(0,2) have poles only at
R =7Ro \ .’B71<'P>.

Proof. In Appendix A.4. The proof relies on the fact that there is a denominator with ydz in
the residue formula, and if the pole of ydx is of degree > 3, it cannot be compensated by other
factors, and the residue vanishes because the integrand has no pole. O

4 Loop equations

lth

As explained in equation (2-20), the rational functions (Fi(A))ep 4 are the elementary

symmetric polynomials of the wg1(z) for 2 € 271(\). There exist other symmetric algebraic
combinations of the differentials (wpn)nn>0 taken at all preimages x~1(\) that give rise to
interesting rational functions. This fundamental result is commonly referred to as a set of loop
equations to recall its origin from the study of Hermitian random matrices. This section is
devoted to the derivation of a specific set of d loop equations.
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4.1 Definitions

In order to write down the loop equations, let us introduce a few convenient notations following
the ones of [6].

Definition 4.1. Given admissible initial data and the corresponding {wp,  }n,n>0 defined by the
topological recursion, let us define, for any tuple of integers (h,n,l) € N3,

Q). (Nz) = Shodno,
W)
ZESRNANCTRESED DD DD DENEED DI | | IR HEI o]
ﬁCm L) nes(B) L(w W) i=1
Ji=z 3 gi=h+1l(u)—1
i=1 i=1
where \ is a point in P! and z := (21, ..., 2,) a vector of n points in ¥. We remind the reader

that S(B) denotes the set of partitions of the set 5 while (1) denotes the number of blocks of
the partition p € S(B). The expression QEZZHl()\;z) is a differential in A\ and (2;);e[1,n], With
possible poles at A € PUz(R), z; € R and when z; € z71()). *

Remark 4.1. Observe that by definition, we have for all (h,n) € N2,
th+1( z) =0, forl >d+1. (4-1)

Remark 4.2. Observe that since we take a sum over all subsets of [ preimages 3 C z~1()), this is
1

clearly a symmetric function of the preimages, and thus is obviously a rational fraction of A\ multiplied

by (d\).

Definition 4.2. In the same way, given admissible initial data and the corresponding
{Wh.n}hn>o defined by the topological recursion, let us define, for any tuple (h,n,l) € N3,

Qi1(2:2) = Gnodug,
Up)
Vi>1: th+1( z) = Z Z Z Z ngz‘,|m\+|Ji|(Mi’Ji) ’
/3%(90*1(I(2))\{Z})#€5(5) l(LIH) D) i=1

Ji=z 3 gi=h+l(u)~1
=1

=

where one only considers points in the fiber above z(z) that are different from the point z on X.
The possible poles of these differential forms are at z such that x(z) € x(R) and z € z71(P),
and at z; € RU (27! (z(2)) \ {2}). *

Remark 4.3. Remark that we also have by definition that
Qh n+1( z) =0, forl > d. (4-2)

Remark 4.4. In the previous definitions, note that, even if u; and .J; are sets, the evaluation

W il +17:| (1, Ji) is well-defined because the differentials (wh n)nn>0 are symmetric in their n argu-
ments.

Notice that, with respect to their first variable, Qg)n +1(2;2) is a differential on 3 while

Qh " _H()\; z) is a differential on the base curve P!. Let us finally define the generating functions

. . . 1)
of the previous differentials { ( } { } .
P @1 (hnd)eNs Qh "] (hnens
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Definition 4.3. Given admissible initial data, we define, for any (h,n) € N2,

Qnmi1(Nyiz) = > (1) ZM:Z(_l)lyd—lM
1>1 (dX) . )
1, d— lthJrl(zaZ)

d .
Qh,n-l—l(zvy; z) = Z(*l) Yy W = Z(*l) Y }deiz))l (4-3)

>1

4.2 Examples

In order to better understand the origin of these definitions, let us write down explicitly the
expression of Q;Ll)n for some low values of h, n or [.

e For (h,n) = (0,0), we recover the coefficients of the polynomial equation defining the
classical spectral curve,

vi>1, Q= 3 JJwoi(z) =P\ (@A) (4-4)

BCa—1(N) z€B
!

(P)ien,q) are the elementary symmetric functions of the roots of the algebraic equation
P()\,y) =0 in y. Note that for all > 1, Q((){)l(A) may only have poles at A € P.

e For (h,n) = (0,1), we obtain

VlZ ,Q )\21 Z ZCU(]QZZl Hw01 (4—5)

BCxz—1(X) 2€8 zep
l Z#z
Note that for all I > 1, Q((){)Q()\; z1) may only have poles at A € P (because of the factors
involving wp 1) and when z; € x71(\) (because of the factors involving wp 2).

e For [ =1 and (h,n) € N, we obtain

Qh n+1 (X z) Z Wh n+1(2,2) (4-6)

zex—1(

4.3 Loop equations

Definition 4.1 and the properties of the {wpn}nn>0 allow to prove one of the fundamental
properties of the objects built by topological recursion: the loop equations.

Theorem 4.1 (Loop equations [6]). For any (h,n,l) € N® and any z € (X \ R)", the function

PR Qi (Ni2)

(@ has no poles at critical values.

Proof. The proof of this theorem was already given in [6] for the case when ¥ has genus 0.
However, the proof does not use the vanishing genus assumption and can be directly transposed
to the higher genus case. For the sake of completeness, we reproduce in Appendix A the main
steps of this proof for the general case at hand. O
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These loop equations take a particularly simple form for | = 1, as we saw in equation (4-6).
As a consequence of Theorem 4.1, they read

dhdz(z
Z Wh’n+1(2, Z) = 5n706h70P1()\)d)\ + 5n,15h’00\_1.é1)))2 s (4—7)
z€x~1(N) !
and provide interesting properties for the {wp n}r>0n>1-
Q)i (Mi2)

Let us emphasize that, for any (h,n,l) € N? x N*, (D) is a rational function of \.

From this perspective, it can be expressed through its partial fraction decomposition. We shall

now describe its pole structure as a first step. A priori, from its definition, it could have poles
n

at A € (R), A€ Por A € (J{z(z)}. The loop equations allow us to rule out the possibility
i=1

of having any pole at A € z(R). Let us now study the behavior of this rational function as

A = x(z;), for i € [1,n]. It is governed by the following lemma.

Lemma 4.1 ([6]). For all (h,n,1) € N?, and z == (21,...,2,) € X" such that x(2;) # x(2;) for
any © # j, the functions

QESZLH()‘; z) = QELOLH()" ) = 01,0000,
A(l-1)
) N 1 n \%j,%Z Z5
Vi>1: Qg,)n+1()\;z) Qh +1 E d., Qh, (z5;2\ {%}) (4-8)

—a(z)  (do(z)!

n
are rational functions of X that have no poles at critical values and no poles at A € |J{z(z)}.
i=1

Proof. Let us rewrite here the proof of [6]. The proof is obvious for I = 0. Let us now consider

~ O] .z
[ > 1. ngv)l +1(A;z) is obviously a rational function of A. From Theorem 4.1, 49}”(;7/\1)() has no
pole at critical values A € z(R). Let us now study its behavior as A — z(z;), for some j € [1,n].
If z; is generic, A — z(z;) implies that exactly one of the preimages 2~ }(\) = {20, 2}

of A tends to zj, let us say it is 2() — z;. In all the terms in (4.1), the only term that can have
a pole at 2() — 2 is a factor wo2(21, 2;). In particular notice that w2(2(%), z;) with i # 1 has
no pole at 2V — zj. The only singular term at PSR zj in the sum of equation (4.1) defining

Qh n+1(>\§ 21y ..., 2pn) i thus

Qo @W)izm) o QEVEM {5))
= Wy 2(2’( ) Z4 )
(d)! S <dA>

+O(1). (4-9)

Let us write it as

2l s) (dN)!
ddz(z) Qnn, (2i2\ {z}) ) Dda(zy) \ OV (052 {2))
—x(z:))? j + WOQ(Z ’Zj)_ s ’ l
- ) dw(iﬁ)) Q' ( s V) E 1 T Ry
(A —x(z5))? (@)1 (1)
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- oo (et ) o
- i - Q;(f,;”((z‘;;lzl\ {z}) Qﬁf,;:;i?;l\fzj}) Lo
i (st B ) o,
This proves that @}, ,(X;2) = O(1), i.e. has no pole at A = (z;). 0

For future reference, let us notice that for all (h,n,1) € N3, @g)n +1(A;2) is a rational function
of A\, and a differential 1-form in z; for all i € [1,n].

5 Perturbative wave functions and KZ equations

In this section we encode all the topological recursion differentials into objects called perturbative
wave functions and we use the loop equations from the previous section to build a system of
operators that annihilate these wave functions. These operators can often be considered as
derivatives with respect to the moduli (spectral times and filling fractions) and hence provide a
system of PDE’s. However, in the present article we deal with the general case, for which this
interpretation cannot be made straightforward without dealing with the issue of studying the
geometry of the space of classical spectral curves. To avoid this technical difficulty, we prove that
these general operators can be interpreted as integrals over generalized cycles of the classical
spectral curve.

5.1 Perturbative wave functions and partition function

Let ((2,z), (A, B;)7_,) be some admissible initial data.

5.1.1 Divisors and universal cover

The perturbative wave functions that will be defined in this section will not be defined as
functions of a point on ¥, but rather of a point on the universal cover of ¥p = X\ 27! (P), and
in fact, of a set of such points, encoded in a divisor. The differential forms that we will integrate
are the TR differentials (wh n)nn>0, that are known to have vanishing residues at every pole
p ¢ x71(P). More concretely, wp,1 only has poles at P, wp2 has a pole with vanishing residue
and all the other (wp)nn>0 have poles only at ramification points, with vanishing residues [29)].

Definition 5.1 (Universal cover). Let Sp be the universal cover of $p = S\ 271 (P), i.e. the set
of homotopy classes of Jordan arcs from a generic basepoint o to z € Xp. There is a projection
m: Xp — Xp. Every differential form w on ¥ has a pullback 7*w on the universal cover, and
local coordinates on 3 can be used as local coordinates on the universal cover. Therefore, in the
purpose of lightening the notations of this article, and as long as there is no possible ambiguity,
which will be mentioned if needed, we shall use the same notation p for a point of the universal
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cover and its projection 7(p) on X, and we shall use the same notation w for a form on ¥ and

its pullback 7*w on the universal cover. *

Definition 5.2 (Divisors). Let ¥ be a Riemann surface. A divisor D on X is a tuple of pairs
S

((p1,01),...,(ps,as)) € (X x C)*, for some s € N, and is denoted D = > «;[p;]. We call o; the

i=1
charge of the point p;. The degree of a divisor is defined as the sum of its charges

deg D = Zs:ai.
i=1

The set of points p;’s for which «; # 0 is called the support of the divisor. A divisor is said
generic if all points are pairwise distinct: p; # p;, for all ¢ # j. *

Definition 5.3. Let D be a divisor of s points on the universal cover (p1,...,ps) € f;;s, of
degree 0. If w is a meromorphic 1-form on ¥ with possible poles at P, the integration on the

divisor D is defined as
d Di
/ w(z) ::Zai/ w(z
D i=1 o

where o is the basepoint used for the universal cover. Since the degree of the divisor is zero, the
integral does not depend on the choice of the base point o. *

5.1.2 Perturbative wave functions

Definition 5.4 (Perturbative wave functions). Let ((X,z), (A;, B;)7_;) be some admissible ini-

S
tial data and D = Za,[ ;] a generic divisor on Zp We define the perturbative wave functions
=1
associated to D by

e (S [ - )

h>0n>0

(5-1)

It is defined as a formal power series times exponential terms of the form e~hFw, Namely,
e w00~ ooy (D) k) € C[[A)]. (5-2)

More generally, for any [ > 1,
Vie[l,s] : Yoi(D,h) = ¢(D,h),
h2h+n Q n pw :
Vie[ls],i>1: ¢u(Dh) = [ZZ / / 45 ]¢(D,h). (5-3)
h>0n>0
These are also formal power series in the same space of formal series

e w00 pwoy, (D) h) € C[[h)). (5-4)
*
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To make notations lighter, we will often omit the divisor D and the formal parameter A as
arguments of the perturbative wave functions in expressions where the dependence does not play
any significant role.

The first few orders are

W(D, k) = el Pwo0twio ShT [pwon g <E0(f((£z):];7()p]))) " (1+0O(h)), (5-5)

where E is the prime form on ¥ and Ej is the prime form on the base P!,

x—a
Vdxdx! '

Remark 5.1. For book-keeping, let us explain where the exponent of i comes from. First, the TR
differentials are homogeneous under the rescaling wp1 — Awo,1 (i.e. all spectral times ¢, — ht,, and
filling fractions €; — he;); they change to

Whon — BTG, (5-7)

This explains the power A2"~2+" in the definition of ¥ (D, h).
Our goal is then to find an ODE satisfied by (D, k), and the purpose of v ;(D, i) is to play a role

similar to (hdp,i)l@b, i.e. it is a differential of ¢ multiplied by the power A'. Qg)n 41 is made from the

EO(:E71',) = (5-6)

1
product of I TR differentials, whose total homogeneity weight is > (2h; — 2 + |p;| + |J;]) = 2h +n — L.
=1
Multiplying by k! gives an order A2"*+" in (5-3).
It will also be useful to introduce an element which is fundamental in the theory of topological
recursion: the partition function, which is independent of any divisor.

Definition 5.5 (Perturbative partition function). Let ((X,z), (A;, B;)7_;) be some admissible
initial data. We define the perturbative partition function as the perturbative wave function of
the empty divisor Z(h) = (D = (), i), namely

Z(h) == exp (th’l—%m). (5-8)
h>0

Its behavior in A is such that ,
e~ w0 z () e C[[A)). (5-9)

*

While the wave functions are meant to be solutions to a differential equation, the partition
function is expected to play the role of an associated tau function from the point of view of
isomonodromic or integrable systems.

5.2 KZ equations for generic divisors

The infinite set of loop equations (Theorem 4.1) involving all values of (h,n,l) € N3 can be
combined into a generating series to form a system of d x s differential equations satisfied by
the wave functions. When interpreting the topological recursion from a conformal field theory
perspective [26, 38], these equations play the role of Knizhnik—Zamolodchikov equations in this
context. Hence, we refer to them as KZ equations in the rest or the paper.

Using Definition 5.4 we deduce the following lemma. For completeness, and since this is a
key step to get the KZ equations, we include below the idea of the proof, although it already
appeared in [6].
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Lemma 5.1. For any z € £\ (RUz"1(P)) andz € [\ (RUz"1(z(2)))]", we have, for all
(h,n,l) € N3,

th+1( z(2);2) = th+1(z Z)+Qh 1n+2 z2,2) + Z Z th |A|+1 z; A)wp, Bl+1(2, B).

AUB=z h1+ha=
(5-10)

Proof. The LHS is defined as a sum over 8 C 7 !(x(2)) in Definition 4.1. This sum can be split
into three subsets giving rise to the three terms in the RHS as follows.

e The terms with z ¢ (3 give rise to the first term Q&)@H(z; z) in the RHS.

e The terms with z € 3 such that the block p; of the set partition u € S(B) with z € u; does

not have cardinality equal to 1, |u;| # 1, contribute to the second term Qhk 117)1 1o(252,2)

of the RHS.

e The terms with z € § such that the block p; containing z has cardinality 1 give rise to the
last terms.

O
This lemma allows to prove the main property satisfied by the perturbative wave functions.

Theorem 5.1 (General KZ equations). Let ((X, ), (A, Bi){_,) be some admissible initial data
S
and D = > «;[p;i] a generic divisor. Fori € [1,s] and 1 € [0,d — 1], we have
i=1

h dyi(D, h) Y1i(D,h) — (D, h)
T N - 3 D,h —h 1
o dx(pi) Vir1a(D, B) ge[u;]]\{ }a] z(pi) — z(pj)
h2h+n
D)Ly QJ?;L( (01):2) (D, )

h>0n>0

+ (; B O”) Lh%gw e / b d2(pi) ( %nT(I;;Z')ﬂ $(D.h).

Note that if o; = £1, this reduces to

B diby (D, h (D, R) — by (D, h
w¢cll’x((p~) ) —Pipa(Dh) —h Y o L (:L,(p; — fé;() )
! ! jeLsI\{s} ’ /
h2h+n ~(14+1)
> — Qi w)iz) w0, ).
h>0n>0 #1€D Zn€

(5-11)
Proof. See Appendix B.1. O
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5.3 KZ equations for D = [z] — [0o(®)]

For some special choices of divisor D, one can recombine these equations in order to obtain
interesting PDE’s satisfied by the perturbative wave function ¥ (D, k). For a generic divisor
D, these PDE’s include differential operators % with k& > d (generically up to d?). These
equations are interesting on their own and discussed in [6] for a genus 0 curve and in [26] for
arbitrary genus. However, our aim here is to build a quantum curve. For this purpose, one
is looking for divisors such that the PDE obtained involves only a;k with k < d. There exist
different ways to obtain such a divisor D°®. In the present paper, we shall consider a divisor of
the type D = [z] — [00(®)], with a € [1,d]. However, a divisor D = [z] — [00(®] with a € [1,d]
is not generic because co(® € 2~ 1(P), and the purpose of this section is to prove how we may
extend the previous generic results to this specific case by considering the limit of generic divisors
D = [2] — [pa], when py — 0o(®).

Let z € Sp be a generic point. Let a € [1,4s]. When D = [z] — [pa], the definition of
(D = [z] — [pa], h) involves an essential singularity as py — 0o(®. One thus needs to regularize
it by the procedure introduced in [29]. We remind the reader of the functions introduced in
equation (2-19) with p = co(®),

' (a)_l
X too<o‘) k .
Vew(@) == > . (o () + i@ 0108(Cooen (2). (5-12)
k=1

The definition is such that the singular part of ydz at co® is precisely given by dV . In
order to remove the essential singularity of (D = [z] — [p2], h) when py — 00(®, we multiply
(D = [z] — [p2], k) by exp (h( o (2 fm (a))) before considering the limit po — co(®).
This motivates the following deﬁnltlon

Definition 5.6 (Regularization of the perturbative wave functions [29]). For any a € [1, 4],

let us define

‘ ehilvoo(o‘) (p2) dx(pg)
re =[] — OO(Q) — 1m = |Z| —
Pr8(D = [z] — | I, h) pQLooW) (D =[] [p2]’h)x(p2) —z(2) \| d¢_) (p2)’

which is worth

Pr8(D = [z] — [oo(a)],h) = exp (hl (Vm<a)(z) + /Z(a) (ydx — dVOO<a))>>

1
E(z,oo(a))\/dx (2)dC (o) (00(®)

( )
h2h 24+n z z
P (Z 2 / (@ m/oom) wh’”)’

h>0 n>36h 0

where FE is the prime form on Y. Similarly, for [ > 0, we define

eh_lvoo(a) (p2) dz(ps)
z(p2) — 2(2) \| d( @) (p2)

®See for example [40] for a choice of divisor with two points in the fiber above a common X in the case d = 2.

YED =[] = [0 W] h) = lim (D =[]~ [p2], h

p2—>00
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= Z Z p2h+n /Z /z Qh,n+1(2’§217-~-,zn)
h20n230h,0 e Joote co(@) dz(z)!
2;Z)lfeg(l) = [Z] _ [oo(o‘)], h),

where the integrals of Q are convergent because the (z;);>1’s that are integrated from py — ool®)
never belong to a factor wp 1. *

These objects are defined as functions of z on the universal cover of ¥\ x71(P), and are
WKB formal series of the formal parameter i but we will often omit them in the notations in
order to make the reading easier.

These regularized functions are solutions to a simpler version of the system of KZ equations
given by equation (5-11).

Theorem 5.2 (KZ equations for regularized wave functions). For any a € [1,4], the regqular-
ized wave functions satisfy, for alll € [0,d — 1] ,

7wreg( = [e] = [00 @], 1) + (D = [2] = [00\¥)], 1)

d(z) !
SRR NDS

h>07n>0 n PEP peslitD

h2h+n

_ _ (1+1)
z21=2 2n==% Q ( )
—k k—1 Chnt LN E) e ]~ Tao (@)

p(a2)* Res e agp () [ [T I (D = (2] o)),
(5-13)

where the sets <S(Z)> are defined in equation (2-3).

P ) pepien

Proof. See Appendix B.2. O

5.4 Rewriting KZ equations with linear operators

It was noticed from the beginning of TR in [7, 29] that TR differentials have the properties that
their derivatives with respect to the moduli of the classical spectral curve are integrals similar to
(3-2). In other words we can trade derivatives with respect to moduli, for integrals on ¥. Here,
the right hand side of KZ equations (5-13) contains an integral (a residue), and very often this
can be reformulated as a derivative with respect to moduli of the classical spectral curve. This
route would allow to turn the K7 equation into a PDE involving derivatives with respect to the
moduli which are familiar in the world of integrable systems. Such a PDE could be interesting
by itself, however, our goal is to get a quantum curve, i.e. an ODE. Hence, our aim is to get rid
of the derivatives with respect to moduli or, in our case, to be able to remove the integrals of
the RHS of the KZ equations.

Let us develop here integral operators that mimic the role of derivatives with respect to
moduli. This is based on the theory of generalized cycles introduced in [26] but here we present
a standalone shortened version which is only of notational nature. In the present context,
we could avoid the introduction of these generalized cycles but this would lead to very long
expressions which we believe would be harder to read.

25



5.4.1 Generalized integrals

Let us now study the RHS of the KZ equations (5-13) for regularized perturbative wave func-
tions. For this purpose, observe that the residue in (5-13) extracts the Laurent coefficient of
Qi () (1+1)
G hontl
algebraic expression of the wy, ,,, the Laurent expansion coefficients of Qg;_li_l()\; z) are algebraic
combinations of the Taylor expansion coefficients of the wy, ;. The Taylor expansion coefficients
of the wp, »,, can themselves be obtained as residues. Let us introduce a few notations in order
to define a set of useful residues following [26].

¢p(A\)7F in the expansion of the function around A — P, and since ) (X\;z) is an

Definition 5.7 (Generalized cycles). Let o be a reference point in the universal cover of ¥, we
define the set of generalized cycles as

&= {C vk}pEZ kEZ U {Cp}pGE U {A“ B }’L 1 (5_14)

where the integration of a meromorphic form w along such cycles is defined as follows.

e VpeX andV k € Z, one defines

/ : wr Res P w. (5-15)
C p

P,k

e Let v be a Jordan arc from a point o € ¥ to a point p € 3. The integration

/Cg : wH/yw (5-16)

is ill defined on forms w that have poles in y. One extends the definition to such forms as
follows.
— If w has no pole along 7, we define fCop w= fvw.

— If w has poles along ~, since a meromorphic 1-form can have only discrete poles, we
decompose v as a sum of arcs such that the poles of w are at the extremities of the

subarcs, in other words we only need to define the action when p is a pole of w. For
deg, w
k € [0,1 + deg,w], we define t,; = Res(jj‘lw ,and V, = — Z pk( k and we
p

define J
/pr_/ <w av, — ty f”) ~Vp(0) — tpoln (o), (5-17)
p

where we choose the branch of the logarithm such that the cut is in the direction
opposite to the Jordan arc at o.

— The result is independent of how « is decomposed into subarcs.

— This definition is additive under concatenation of Jordan arcs.

e If v is a closed Jordan arc on ¥, we define the integral of w on v by writing v as a sum of
open arcs. The result is independent of how we decompose it into open arcs.
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Remark 5.2. Following [26], one can consider the generalized cycles as elements of the algebraic dual
of the infinite dimensional space of meromorphic forms on Y. From this perspective, we sometimes use
the following notation

VO €€, (Cw) "o / w. (5-18)
c

Our purpose is to use generalized cycles acting only on a small subspace of meromorphic
forms, those generated by the (whn)nn>0- In the following we shall need to consider only
generalized cycles of type Cpx, where p € 271(P), open Jordan arcs ending at p € 2~ (P), and
closed non-contractible Jordan arcs (thus homologically equivalent to combinations of A; and B;
cycles). We remark the following: let w = wp, n11(2, 21, ..., 2,) be a TR differential. Considering
its dependence on the first variable w = wp n41(:, 21, .., 2p), it has poles only at z € 7 1(P)
if (h,n) = (0,0) or at z; if (h,n) = (0,1) with vanishing residue, or at R if 2h +n > 1, with
vanishing residues at R.

Due to vanishing residues, integrals over Jordan arcs ~

(rw) = [ w (5-19)
Y

actually depend only on the homotopy class of v on ¥\ 7(P). On this subspace we may thus
consider that cycles A; or B; in H1(X \ 27!(P),Z) define generalized cycles.
In practice, for p € 7 '(P) and k € Z, [, , w extracts the coefficient of (¢)*1 in the
D,
Laurent expansion of w at p. Another important remark is that only wg ; has poles in 7 1(P)
and behaves as

1
A= Y e, G +0(),  around 2
e Z (5-20)
x déu:(la) = kz—o Loo(e) & C;ﬁ;l +0(1), around oo(®),

so that, for all (h,n) € N2,

Vie LN, Yae [Ld], Yk <~ :/c hmsr(n7) = 0,

Z.("‘>,k
1

Vie[1,N],Vae[l,d],Vke [[—Tzzga) +1,0] : /c wh,nﬂ(-,z) = 6h’05”70tzi(“>,—k:’

zz.(‘”,k
Vae[l,d],Vk<—r ) : / Whnt1(2) = 0,
Cool@)
Va e [[1, d]] s Vk e [[—Too(a) + 1, 0]] : / wh,n+1(-, Z) = 5h,05n,0too(0‘>,—k .
Col@) 1

(5-21)

5.4.2 Definition of the linear operators acting on TR differentials

The purpose of this section is to rewrite the operators acting on the RHS of the KZ equations
5.2 using the generalized integrals defined in the previous section. In order to be consistent, we
need to define the action of the operators only on a subset of differentials forms that includes
the TR differentials but also linear combinations, products, exponentials, inverses, etc. of such
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quantities. To do so, we first introduce a formal algebra of symbols generated by the TR
differentials and explain how the operators act in this algebra. Then we extend the definitions
of the action similarly to what we would expect for the action of a derivation operator with
respect to spectral times for quantities like exponentials, inverses, etc. that we shall require in
the rest of the article. The main advantage of the symbols formalism is to avoid the definition
of the operators on the whole set of meromorphic differentials that would be challenging.

Definition 5.8 (Algebra of generalized integrals). We define the graded commutative algebra
W over C, as the algebra freely generated by a set of symbols consisting of a pair (h,n) and a
symbol [ -+ [ , labeled by generalized cycles C; € £, which we denote

/C - / n, (5-22)

and quotiented by the linearity relations for cycles falcl+a202 Whp = a1 fCl Whn + az fc2 Whn
and distributed in the product

{/ / whm} / (cycles linearity relations). (5-23)
1 n h,n>0

We define a linear map, called evaluation map, that associates to a symbol its value in C
following Definition 5.7,

W=C

ev : W — C
fCl...anwhm —> 21601'“fznecnwhﬂ(zl"”’Zn)’
where the order of integration is from the rightmost to leftmost. *

Let us make some remarks.
e Notice that for all h > 0: wy, o is a symbol but is not an element of C.

e The algebra is commutative with respect to addition and multiplication, but the integrals
themselves are not assumed commutative, i.e. fCl f02 #* sz fC1'

e Since a generalized cycle C' might depend on a point z on the universal cover of the
classical spectral curve, the result of the evaluation map can be considered as a, possibly
multi-valued, function on X.

Definition 5.9 (Formal algebra). We define the graded ring of formal Laurent power series,
denoted W((h)), whose elements are sequences of elements of W:

W(h)=qw= > huy, wy €W, kmin €7 . (5-24)
k:kmin
The degree of w € W((h)) is defined as the smallest non-zero power of f,

oo
w = Z IFwy with ki #0 = degw = kmin. (5-25)
k=kmin

We define the evaluation by acting term-wise, which results in formal power series of multilinear
differential forms. *
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Definition 5.10 (Exponential symbols). We enlarge our algebra with exponential symbols
e, with w € W[h™1], (5-26)
(i.e. only negative or zero powers of /), and we quotient by relations eW1 W2 = eWieW2,
W = W((h)) {ew}wew[h_l]] /(W1 = gwrewa), (5-27)

The evaluation map is defined by acting term-wise. *

Remark 5.3. Observe that in particular 0 € W[h~'],s0 €’ € W, which we can call the identify element
1,5, = € of the product in W. For every w € W, we identify w® = 1;,.

Remark 5.4. Note that if w = Z hFwy,, with strictly positive kmyin > 0, then the exponential
k=FKmin
Z —w" € Wl € W(() [{e" b (5-28)

is already defined in W((R))[{e® bwewin 1]] and satisfies the quotient relation. That is why we defined
new symbols only for negative powers of h.

While W is large enough to define a symbolic version of the perturbative wave functions, it
does not allow for the definition of the inverse of an element. The existence of the latter is useful
for having a shorter presentation of the derivation of the quantum curve and thus we extend W
by defining inverses of its elements.

Definition 5.11 (Inverse symbols). For any symbol w € W\ {0}, we define a symbol 1 (also
denoted w~!) modding out by the relation

Vw e W {0}, w% — 1 (5-29)

Finally, we denote

C [{fcl“'fcn ‘*’hm}h >07{%}weW\{0} ((h))[{ew}wemwﬂ

W=
(cycle linearity relations, w - = 1,3, e¥1 %2 = eWie2)

(5-30)

*

Let us emphasize that the inverse of an element in W is understood from the perspective of
WKB series in h. This means that, for w € W[h™!] and wy € W), for k > kuyin, one has

l

I+1
1 —w gk 1 ko
— h min _1 h min . 5—31
ev S by, ¢ Z( ) (wk _ ) Z Wk (5-31)
kzkmin 120 i k>kmin

Definition 5.12 (Operators (Z¢)qce acting in W). For a generalized cycle C' € £, we define
the linear operator Z¢ : W — W by its action on the symbols,

Lo f e [ [ [ (532
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Notice that fC is the rightmost. We extend the action of the operator to any element of W by
linearity and by the Leibniz rules for products of symbols,

Z¢ [symbol 1 x symbol 2] = (Z¢ [symbol 1]) x symbol 2 + symbol 1 x (Z¢ [symbol 2]). (5-33)
For exponentials, we define for any v € W[h~!] and any operator Z¢, with C' € &,

Zo [exp(v)] = (Zolv]) exp(v), (5-34)

It is easy to check that these operators are compatible with quotients and that they satisfy, for
any w € W,

1
2

a{;]:—ﬂmdw (5-35)

*

It is worth noticing the action of these operators on some specific elements of WW. Some
simple computations lead to the following results.

Lemma 5.2 (Action on spectral times). Let the symbolic spectral times be defined by

¥peaH(P), VkeN, £ = / Wo.1, (5-36)

Cpﬁk

where we use the same notation as the spectral time, thanks to
Vpea ' (P),VkeN, ev.t ™ =1, (5-37)
We have

YV (p,p) € (z71(P))?, V(k, k') € N?, ev. (Ic,k, Sym‘”l / / wo.2 = Ky Oppr. (5-38)
p —k C/k/

symbol

From now on we shall drop the superscript stnce the evaluation indeed gives the spectral

times.

Remark 5 5. This lemma could give the impression that the operator Z¢, , acts as the differential
% is ill-defined because the
spectral tlmes are not independent. The operator Z¢ , acting in W however is well defined, and is all
that we shall need. But it may be helpful for the reader to keep in mind that the operators Zo mimic
some differential operators with respect to moduli.

operator k57—, but as we already mentioned, the differential operator
P

For k > 1, we can express our canonical local coordinates as evaluations of symbols.

Z/,,_o(a) z—>oo(a)< (a)( Zwoa(?, 2" <Z/ / o, ) (5-39)

Inz(z ( / /Coo(od 0,2>, (5-40)

o(@)
where {0, ..., 0¥} = £=1(0). Similarly, for any i € [1, N],

d
In(z(z) — A;) "' = ev. < - /C /m(a) ww) , (5-41)
a=1 Oc(a) Z.(a>
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VE>1, (2(z) — (Z / / o > (5-42)

This allows to define these as symbols, and define a symbolic potential.
Keeping in mind that the Zg should mimic derivatives, we have the important lemma that
canonical coordinates are “constant”.

Lemma 5.3. One has, for k > 1,

symbol

ev. Zp (a:(z)k) =ev. Iclnz(z) =0, (5-43)

and
Vi€ [1,N], ev. To ((a(2) - Ai)—’f)symbo1 — ev. Zoln (z(2) — Ay) = 0. (5-44)

Proof. Let us consider k > 0, and write

Ic (a:( ) )symbd = —Z/ /c . /Cwo,:a, (5-45)

whose evaluation vanishes thanks to the linear loop equation from Theorem 4.1. The proof is
similar for the other cases. O

Further straightforward computations lead to the following properties.
Lemma 5.4 (Operator acting on potentials). Define the symbolic local potentials for o € [1, o]

d

V;i/(T)bOl(z) = Z / wo,1 /z / ) wp,2 — Z/ wo,1 /z / W
B=1 \"Cosle o Copy VC&° k>17C0(0) Coa) "Cos® i
(5-46)
and fori € [1,N] and a € [1,44,],
V;¥$b°1(z) = Z / wo,1 /z /Z(m wo,2 — Z/ wo,1 /z / w
i B=1 CZZ(a) (B k>1 ¢ (a)’_k Coo(ﬂ) czgﬂ),k
(5-47)
We have, for any p € x=1(P),
ev.VVmPol(2) =V, (2), (5-48)
fork>1,
ev. (Te, Vir™@(2)) = 0y Gol(2) 7" (5-49)
and, for k=0
ev. (T dV™) = 6,06 (2) 7" (5-50)

Proposition 5.1 (Commutation of the operators). For anyn > 2, for any permutation o € &,
and any element (C1,...,Cy) € (E)", one has for any (h,m) € N2 (C1,...,Cp) € ()™,

evZo Ie, ... Ic, / . / Whn = VL, L0, 0y - - - LCym / . / Wh,m, (5-51)
C1 m Cq m
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if2h —24+n+m #0. When 2h —2+n+m =0, this implies h =0, n =2, m =0, and we
have the following commutators

Vpea '(P),Vk>1: ev. [T, Tc, Jwoo = kK,
\V/p € x_l(P) , + €V. [Icgach,o] wo,0 = 17
vi=1,...,7g, : ev. [IBZ.,IA].] woo = 2mi 6i,j' (5—52)

Let us now define the symbolic partner to the prime form.

S
Definition 5.13 (Symbolic prime form). Let D = Zai [pi] be a divisor of degree 0 on the
i=1
universal cover. We define in W

Embol(Dy = exp ( - ;/D /Dwoz) (5-53)

and the base prime form Ey(D) as

s—1 s
EY™(D) = exp( aia; / / wo 2>, (5-54)
;J:M Z D+p”)-Ipi]
Where we choose d Jordan arcs [p; (@) ]—[pi] starting at p; and ending at all preimages ! (z(p;)) =
{pi v D) )}. Their evaluations are linked to the usual prime forms as follows.
E(D) = eV.ESymbOI H H E pupy iy Hdgpl p’L % s (5—55)
=1 j=i+1

with E the prime form on X, and

s—1 s
Eo(D) = ev.BY™ (D) =[] TI (@) — z(pj))

i=1 j=i+1
= H H Eo((pi), x(p;)) ™4 de pi)2 %, (5-56)
=1 j=i+1
where Eg(z,2') = (x — 2')/v/dxdx’ is the prime form on P!, *

Notice that ev.ICE(S)ymbOI(D) = 0, i.e. the base prime form is “constant”, while the prime
form on ¥ is not: ev.Zo E™P°l(D) # 0. From now on, we shall use the same notation for the
base prime form and its evaluation, and treat it as a scalar in W.

5.4.3 Action on regularized wave functions and rewriting of the KZ equations

In order to act with the operators Z¢ on the wave functions, one needs to define a symbolic
version of the latter.

S
Definition 5.14 (Symbolic perturbative wave function). If D = Zai [pi] is a divisor on the

i=1
universal cover, we define

2h—2+n sl s
YLD B = exp Zzh / /whn H H ((pi) — x(py))~ "% €W.

h>0n>0 i=1 j=i+1
(5-57)
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Equivalently we have,

symbol th 2n symbol 1
(0 (D,h) = exp N ) whn E; (D)Esymbol(D) eW.

(5-58)
In the case D = [z] — [p2], and if we want to set py = 00(®), we define the regularized wave
function by just removing the Ey symbol (the only one that is ill-defined at x(p2) = 00)

reg symbo. (0% Symbo 1
ores symb 1([2] _ [oo( )],h) — [¢ ymb 1([2] — [p2], h) bl ] ) (5-59)
Eg ([ = [p2D) | st
Its evaluation is
h2h72+n z z
eV.q/)reg symbol([z] _ [oo(a)]’ ﬁ) = exp Z ' / .. / Whn
n: col@) cola)
(h,n)#(0,1),(0,2)
exp (h1 <Voo(a)(z) +/ ( )(w071 — dVOO(a))))
1 e.)
E(z,oo(a))\/das(z)dgoo(a)(oo("‘))
= ¢"%([2] — [00!¥)], h). (5-60)
Let us finally define the symbols, for all > 0,
1 l
reg symbol a reg sym o
GET] @y = YT g | T Zes, | 9PNl — (o) B (5-61)
B%(ﬂc*l(w(z»\{z}) J=1
*

Notice that Z¢ acts on the coordinates, and thus on Fjy as if they were scalar. Hence acting
with Zo, C € £, we get

Te [preg symbol (D — [2] — [00(@)] } (Z Zh2h 2+n [/Z(a> ... /z(a) wh,n] )

h>0n=>0
wreg symbol(D _ [Z] _ [Oo(a)], h). (5-62)

Remark 5.6. Note that in terms of formal expansions in A, we get that
ev. (IZo [ (D = (2] - ool ) )
remains of the same form as the initial perturbative wave functions, i.e. a WKB series expansion in A of

the form exp (hfzf_g + ﬁflf_1) 3 fruhk.
£=0

It is also important to notice that the symbolic wave functions ¢, symbol([2] _ [o0o@)], )
depend on a point z on the universal cover of ¥ because it involves symbols of the form [~ . w.
The latter can be interpreted locally around any point zy through their series expansion

/ e Z Cao (2)F Wi 4+ 1I(Cop (2)) wWin, (5-63)

k=—o00
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where the coefficients (wg)rez and wy, are symbols of the form fc W In particular, this
ZO,

allows to consider the action of Z) on such symbols acting only on the coefficients CZO(z)k of
this expansion. Since these local coordinates are constants with respect to the action of the
operators Z¢, the action of Zg on such a Laurent series expansion is interpreted as the action
on the coeflicients wy,.

Using the previous definitions, we may use the operators {Z¢}ceg, to write the regularized
KZ equations (5.2) in a simpler form.

Theorem 5.3. For any « € [1,0], the regularized wave functions satisfy the KZ equations for
all 1 € [0,d — 1],

18 (2] — [oo(@]) + 9N ([2] — [o0@)) = Bifa(2) [0 ™ (2] — [oo))]
(5-64)

L(x( Z Z ep((2)) * Lk (5-65)

PEP e g+

d()

where

are the multi-linear operators with Ep’k’l defined by

1+1 Tp) 1 __m
Lpr, = €t lﬁp(:E(Z))_(ZH)GPZ Z H< Z tpmm Pm)

Aoy
0=0 VCpl,d] jEV = P
g// h2R( ) //

2. > I

0<er< Bt pres@([Ld\y) =1 P
1(v")=2"

)d W)

m

0o 9p@)

2 P

> OEY% o)

v C [Ld]\(v'Uv") jev m=1 PV k
I+1—¢/—2¢"

fH_l —(I41)€oo (2N tooli) m d"zj)
BB |l DS H( ) b )

oo(@) =0 v ce,[u d]]\{a} e N\ om0 oo
e//

2. 2 o

0<€,,<z+1 o res(2) ([[1 d]]\(u u{a})) =1
1) =t"

R )d ')

;& 5;“(])
> I1 <h > dmfcoom,m) : (5-66)
v  C  [Ld\(w"Uu{a}) JjE€V m=1 —k
1—o/ 20
where we have denoted S?(A) C S(A) the set of partitions of a set A where all blocks have
size 2 and the sets (Sé“) are defined in equation (2-3). For every v = {my,7m_} a

PeP,le[L,l]
pair of distinct indices w4 # w_ € [1,d], we defined

T+—T—
(m4)
R(P)(r, 7y = O piny) plr_) L ——— (5-67)
(1=0e)
P\T+
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and p, s a root of unity
pp=re%. (5-68)

—k

The subscript [-]_r means keeping only the powers of {p(x(z))™F in the sum, which implies that
oo

the sums > are in fact reduced to finite sums, since
m=1

<—k+(+Dep+ D> (=1 (5-69)

d
PG) pEa— 1(P)

After evaluation, these KZ equations read

d ~

ho B (2] = [00!)) + 4y ([2] = [00')) = ev. Li(x(2)) [wreg wvmbol([2] — [00(“)])} - (5-70)
x(z

Proof. In Appendix B.3. The proof is based on the idea that the residue in Theorem 5.2

extracts Taylor series coefficients, which can themselves be written as generalized cycle integrals,

i.e. actions of operators Zc. The Taylor coefficients of wp 1 and wp2 require special treatments

and give the spectral times and the R(P) factors. O

5.5 Monodromies of the perturbative solutions

Some important properties of the regularized perturbative wave functions 1, ([z] — [00(®)], h)
are given by their behavior when z goes around a cycle v € m1(X \ 271(P)). Remember that
(D, h) is defined for a divisor on the universal cover, i.e. D is a Jordan arc, starting at oo(@)
and ending at z € ¥\ P. If ~ is a closed Jordan arc, starting at z and ending at z, D+ denotes
another Jordan arc, obtained by concatenation, also starting at co(® and ending at z.

We remind that admissible data consists of the classical spectral curve together with a choice
of a basis of Hy(X \ z7(P),Z), made of small circles C, around the poles p € z71(P) (they are
equivalent to the generalized cycles 2miCp ), and completed by 2g Jordan loops (A;, B;)Y_;, such
that on X these 2g Jordan loops are representative of the homology basis cycles (A;, B;)7_;. We
have the following monodromies of the perturbative wave functions along the elements of this
basis.

Lemma 5.5. Let « € [1,d]. One has, for anyl € [0,d — 1],

7rzt

Vpea T (P) : ullz +Cpl — [0 @] ) = (1)’ m e R gy (2] — [00)], ), (5-71)

27riej

= i([z] = [oo ], h) (5-72)

w<D+Baﬁ>=eXp< > / / / /whn+m> (5-73)

(h,n,m)eN3

Viell,g] : vi([z+ A — [0 ¥], h) =e

and

Proof. Let z € ¥\ 2~ Y(P), D = [2] — [00(®] and let {z,2? ... 2D} = 271 (x(z)). Using that

[Icz(ij) 17ZD] =0, we have

l l
¢l,1(za Da h) = Z H dgz(ij) (Z(ZJ)) HICz(ij) L QJZ)(D’ h) (5_74)
J=1 7

2<iy <<y <d j=1
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Notice also that [ICZ(,-J.) 1,17] =0, for vy = A;, v = B; or v = Cp. In other words we need to
prove the lemma only for [ = 0.

For v = A;, we have DN A; =0, so we get

W(D+ Aj h) = eXp( Z thn?;T+m/ / /l /th n+m> (5-75)

(h,n,m)eN3

Notice that if v = A;, we have f7 wp2(%, -) = 0, which implies (general property of TR invariants
n [29]) that fv Whn(21, ..y 2n—1,-) = 0, for all (h,n) # (0,1). For (h,n) = (0,1), we have by
definition

/ wOJ = 27i €;. (5-76)
This implies that the sum over m has only 2 non vanishing terms: m = 0 and m = 1, which
gives

(D + A B) = & a0y (D p) = 2mh (D, R, (5-77)
The proof for v = C, is similar, the only difference being that
1
C,ND = %5%00(&), (5-78)
so that ' -
WD+ Cpy ) = €™ Ppeel® 2T oy (D 1), (5-79)
leading to the result.
For v = B;, we have D N B; = 0, so we get the result. O

Let us now recall that the B; period of wy, ;41 is equal to the variation of wy, , with respect
to €; thanks to (3-2). Hence, one can formally interpret (5-73) as

}2h—2+n / / Zm' ( ae) ww) (5-80)

V(D + B;, h) = exp (
(h,n)EN? m>0

o
where we recognize the action of the shift operator ¢/'o leading to the notation

[z + Bj] = [00!¥], 1) = &5 (2] = [0 ], h) = (2] — [0\ V], B e — €+ h),  (5-81)

for all j € [1, g], where the last equation is to be understood from the point of view of WKB
series.

Remark 5.7. Remark that the KZ equation itself does not depend on z as a point in the universal
cover of ¥ but only on its image x(z). This simple observation implies that, for any v € Hy1(Xp,Z),

Y[z +7] — [00'Y], 1) (5-82)

is a solution of the same KZ equation as 1;°%([2] — [00(¥)], ), for every I € [0,d] .
More generally, any linear combination of perturbative wave functions shifted by closed cycles obey
the same K7 equation. For any finite family of c,, the following finite sum satisfies the KZ equations

(2] = [0 @], B, {ey}) = > ey i([2] + 7 = [0o ], ). (5-83)

yem (Z\z~(P))
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6 Non-Perturbative KZ equations and Lax system

We have proved that the topological recursion allows to reconstruct solutions of the associated
KZ type equations. We now wish to build solutions to the same equations but having better
monodromy properties along the (5;)7_; cycles. For this purpose, let us consider the non-
perturbative partners, introduced in [24, 28], to the above perturbative wave functions.

6.1 Definitions and properties
6.1.1 Heuristic motivation

So far, the perturbative wave functions are defined on the universal cover of ¥\ z~!(P), and have
non-trivial monodromies. In order to find the quantum curve, we need to find a wave function
with “trivial” monodromies given by a simple phase along any element of 7 (X \ z7(P)).
Naively, this could be achieved by considering discrete Fourier transform of the perturbative
wave functions.

We have noticed that any linear combination

Yi([2] = [0 ], b {ey}) = Yo e tllE =) (6-1)

vem (E\e~1(P))

satisfies the KZ equations. After a monodromy along 7/, it is worth

D[]+ = 100! ] B {ey}) = du([2] = [00 ), B ey }). (6-2)

It has a trivial monodromy along +' if ¢,_./ is proportional to ¢, for example if there exists p
in the dual of Hy (X \ 271(P),Z), such that

27i

Cy = e h 1P, (6-3)
We thus would like to define

o = 3 e (] 4y - [l ). (6-4)
YEH1(X\z~1(P),Z)

Shifts by cycles A; or C, are already trivial in the sense that they consist in the multiplication

g

by a simple phase factor. Thus we only need to take the sum over v = > n;5;, which amounts
i=1

to €, — €; + h. We see that formally, this wave function would be a sort of Fourier transform

of the perturbative wave function, i.e. if the perturbative wave function were a function of
€ = (e1,...,€4), we would write

27i g
2o ping
Jj=1

z/Jzoo(a)(z,h; €,p) = Z e di([2] — [0 )], b, € + hm). (6-5)

nez9
Remark 6.1 (Limitations of the Heuristic definition). We recall that

o The filling fraction € = (e1,...,€;) is not a global coordinate on the space of classical
spectral curves with fixed spectral times, it is only a local coordinate. Hence the set of
classical spectral curves with filling fractions € + AZ is not well defined for finite A. It
makes sense only from a formal WKB series point of view.
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e The sum over v € Hy(X \ 271(P),Z), is not a finite sum, it is not necessarily defined in

W.

e All this implies that we shall have to enlarge W to contain such sums. We need to consider
trans-series in A of the form

g9
2> g,
Z ZFn,,ﬂhre g=1 , (6-6)

nez9 r>0

using the usual ordering of trans-monomials which can be seen from the fact that the sum
over 1 is performed first.

Unfortunately, working with trans-series of the form (6-6) would not allow to derive the
quantum curve directly and we shall consider another ordering of the trans-monomials by first
summing over n € Z9 and considering series of the form

9
R
DY Faghle = (6-7)
r>0nezI
h Z njv . . . .
In our case, the partial sums ) Fp,e 7=t will give rise to Theta functions through conver-

nez9
gent series in the spirit of the trans-asymptotics of [9].

6.1.2 Shifts of the divisors and action on w; g and wa

Before going further, let us study how the shifts of the divisor act on the WKB series defining
the perturbative wave functions. As a formal series in powers of %, with D = [z] — [00(®] we
have

2h—24n
h
n! f'y+D”’f'y+D Wh,n

P8([2] + v — [0 @], h) = erz0nz0
eh72w0,0+w1,0€h71 I wO,leéfD Jpwo,2

M wones L o wozes o fywozes J, S v (1 + rC[[A]]) . (6-8)

The admissible data fixes a basis of Hy (X \ #71(P),Z) in which one can decompose 7 as
g g
v = Z mpCp + Z m;A; + Z n;B;. (6—9)
pEz*l(’P) =1 i=1

We have

/wm =om | Y mptp0+zmzez +Zm/ wo,1, (6-10)
.

pex—1(P)

;//WOQ anm]+ZZnZlenj ) (6-11)
v Jy

i=1 j=1
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where 7 is the Riemann matrix of periods of ¥ and

1 O 1 :
2/ /WO,Q =i anuj(D) =3 // wo,2 + TiM(a), (6-12)
D J~y j=1 vJD

where u;(D) = [, w; with (w]) , forming a basis of holomorphic differentials on 3 normalized
1

by ﬁfAi wj = 0y ;.

6.1.3 Definitions

As explained above, only the (B;)7_; cycles give interesting contributions. We shall thus only

consider shifted wave functions of the form

k
R ([pwoi+ X §g. wo,1)
—2 DWO,1T 2. P, WO,
¢regsymbol(D+Bil+.“+Bik’h) — eﬁ w0,0+w1,0 o j=1""1%
k

2mi Zuz (D) mi Tij,i-/

e =1 e =1 77
Esymbol <1+Zhr (i1, D)> €W,
(6-13)

where the coefficients of the % expansion can be explicitly computed. As symbols, a simple
computation shows that they read as follow.

Lemma 6.1. Letr > 0 and k > 0. For any tuple (i1, ..
the following symbols in W.

i) €1, 9] (empty if k =0) we define

e Forr =0, we define

Gg?l),...,ik)(D) = 0k,0- (6-14)

e Forr > 1, we define

(r) _ 1
G(i1,i2,...,ik)(D) - E Z 5<T =k+ Z 2h -2+ n])

=1 (hlvnl)v 7(]’1/[771@) ]:1
N
y4 1 ’ < N
<IBi1 tet IBik H <TL' / e whj,nj>> ) (6'15)
Jj=1 J b D stable

where the subscript “stable” means that after acting with the operators Ig, with

Leibniz rules, we exclude from the final sum all symbols that contain a factor
n; m;

————

/// / Wh; nj+m; Such that 2h; — 2+ nj +m; <0.
D D JB B

Qoo OlnLj
One has, for any (i1, ...,i) € [1,9]%,

k
Rt (fpwont X #s, wo1)
-2 D B 4 Bi- )
wreg symbol(D + Bil NI Bika h) — eh w0,0+w1,oe j=1""1%
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k
27r12u1 (D) m > Tijyi-/
Goil=

J
ef1

Esymbol (1 + Z WG 21, i D)) EW.

(6-16)

Remark 6.2. Notice that GE;) ip(D) is a finite sum and GE;) in)
¢

want to satisfy stability we must have r = >~ (2h; — 2+ n; +m;) with m; +--- 4+ my = k and each term
j=1

(D) =0, if k > 3r. Indeed if we

¢
is > 1, therefore r > ¢. Inr — k = ZZhj — 24 nj, each term is > —2, therefore r — k > —2¢, which
j=1
implies k < r +2¢ < 3r.

These coefficients GE“) i )(D) are easily computed. Let us present the first few ones.

Gén(D):/wn+ ///wog, G&))(D):/ wia b o /// w0 (617)
Z1
&)722 // / wo,3 GEMJN?’ / / / wo,3 (6-18)

1
G(2) (D) = / wll/ w11
( 5 b b
1112) 2 Bil Bi2
1 1
+— w11 wo,3 + = w11 wo,3
2 Bil D JD Bi2 2 Big DJD Bil
1
5 Sy Jo Jo o oy o, ene
DJD JB;, D JD JB,,
1
+/// / o (6-19)
2JpJpJB,, /B,

In the following, we use the same notation Ggl) i (D) for these coefficients both as symbols

and after evaluation, when the context makes clear which one is considered.

Then the method of [24, 28] consists in exchanging the formal summation of powers of i with
the summation over cycles. Remarking that the exponential part with negative powers of A is at
most quadratic in the cycles, and the positive powers of i can be expanded as polynomials outside
of the exponentials, our heuristic motivation would involve the definition of theta functions. Let

and

us now introduce them as symbols.

Definition 6.1 (Theta symbols). We enlarge the symbol algebra W to an algebra w by intro-
ducing the following new symbols. Let k£ > 0 and 7 the g x g matrix of symbols with entries
defined by

W) ol g =g [ (6-20)

For any tuple (i1,...,i) € [1,g]* (empty if k£ = 0), and any vector v = (v1,...,v,) € Wo[[R]]Y,
we introduce the following symbol

. . 27 anvl i Z niTi jNj
@(hw,lk)(vﬂ-) - Z e i=1 i,5=1 S Hmr_ (6—21)

(n1y...,ng)ELI
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If k = 0, we just write it ©%(v,7) = ©(v,7). We define the degree of the symbol © to be zero.
We shall quotient by the following relations. For j € [1,¢],

Vjiel,g], ©W—)(vite;r)=00(y 1) (6-22)
where
o) (/ / Woa / / ww) € WollHl)e. (6-23)
A; J By Aj; JBy
For j € [1, 4],
kq ko kg k;
/ N — . k.l
1,...,12,...,2,..9,...,9 = — —v; ,—TiTj _1\ym J*
0 ) = e S
m=0
k1 ko kj—m kg
———N— — A
@(1, 202 g Gy ,g)(vﬂ_)7
(6-24)
where

& — (/ /Blw”’” //wa)ewo[hn (6-25)

We denote this graded ring X
W =Wwi[e] /=, (6-26)

where the grading is the power of & (we recall that deg @) = 0).
We define the evaluation of ©® symbols below in Section 6.2.1. *

The operators Z¢ act on elements of W term by term through their action on elements of
W by using linearity and Leibniz rules. In particular, they act on the symbol © as follows:

g g
Ic [Q(il"“’ik)(v,T)} = 27i Z(IC-Ui) Ot in) (v 1) — 72 Z (Zc.mi5) ObiLsik) (v 7).
i=1 ij=1

(6-27)
With these definitions, one can define the non-perturbative partner to the wave functions.

Definition 6.2 (Non perturbative wave function). Let p = (p1,...,py) be a constant formal
element of W9 and D = [z] — [00(®]. We define the symbolic non-perturbative wave function

symbol 2w w w el (r) A
POl (Dep, p) = el wo0twio ht [pwon Esymbol Zh eW, (6-28)
where
¢™)(D; p) Z o ey, Gl (D) (6-29)
i1,..,0E€[1,g]k
and where v = (v1,...,vy) is the vector in WY,
pj + o7 a

j = + 1 (2), (6-30)
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where

1 a
b = i b wo,1 and ME’ =5 / ]{ wp,2- (6-31)
J
For [ > 0, we define
l
(@) symbol 1 mbol
Urxp Tz h, p) = > i H Co,n | UREVU(D: B, p). (6-32)
6%(32*1(96(2))\{2'}) =t
We use them to define a d x d matrix
= symbol . 0o symbol
TR p) = [ OO )] (6-33)

where z(#)(\) denotes the ™ preimage by x of A.
The non-perturbative wave function

Unp(Dih,p) = eva R (D;h, p)
_ oo i o _ L NT prat)(p. A
— 0,0+w1,0 I 01E(D ZﬁG (D;p) €W (6-34)

denotes the result of the evaluation map on the symbolic non-perturbative wave function. Sim-
ilarly, one defines

co(@) oo( @) symbo = ocol@)
Uik (2.1 0) = vy ™ (2,5, p) and Inp(A 1 p) = [0 N (= (), 1, )|

1<1,8<d

(6-35)

We define the non-perturbative partition function by

o0
ZRE" () = 0 S GO (0 ), (6-36)

as well as its evaluated version

Zxp(h, p) = ev.Z3p" (h, p). (6-37)
*

Remark 6.3. Heuristically, the non-perturbative partition function is the Fourier transform of the
perturbative one

nez9

formal 211 g
Znp(h,€,p) = Z exp (thjpj) Z(h, e+ hn). (6-38)
j=1

We shall argue below in the examples that Znp (k, p) is formally a Tau-function of some integrable system.
The inverse Fourier transform of Zyp (A, p), which is the perturbative partition function, can be seen as
the “Witham averaging” of Znp (i, p), formally replacing all the © by 1, i.e. erasing the oscillations.

As we shall see in the examples of Section 8, this non-perturbative partition function is
expected to play the role of isomonodromic tau function of the system built by quantization
of the classical spectral curve. In order to understand this point of view, let us remark that
Znp (B, p) follows from the expansion of @bgﬁ\(fg (2, h, p) around z — 0o(®. Indeed, one has

Vae [L,d] : vgp (2, hp) = " Vol @) Zyp(h, p) (14 O(z(2) ) (6-39)

when z — 00(®)| since the divisor D = [z] — [00(®)] gives vanishing integration constants when
z — 00l@),
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6.2 Trans-series and properties

In this section, we collect a few properties of the elements of W which will be useful for the
derivation of the quantum curve.

6.2.1 Evaluation of Theta symbol

Remark that the evaluation ev.7 is the Riemann matrix of periods of ¥ with the Torelli marking,
and it is a well known theorem that it is a Siegel matrix, i.e. symmetric 7; ; = 7;; and Im 7 is
positive definite,

=1, Im 7> 0. (6-40)

For any Siegel matrix 7, the following sum (called Riemann Theta function)

@Riemann(VaT) = Z €2m (v:n) eﬂi (n,7n) (6—41)

nez9

is absolutely convergent (uniformly in v in any ball) and is an analytic function of v € CY.
It has the quasi-periodicity properties:

VneZ! 5 eRiemann(V + n, 7—) = @Riemann(V7 T) (6—42)

and
Vn €79, Oriemann(V + ™0, 7) = 6_27ri((n’v)'%(n’T“))@Riemann(v, 7). (6-43)

The evaluation map applied to the Theta symbol recovers the Riemann Theta function

k
1 : : 1
ev.O(v,T) = ORiemamn (%vn') and ev_@(zl,...,zk)(v,r) = le_[l ai] ev.O(v, 7).
(6-44)
In other words
g

2mi Znivi i Z NiTi, i
ev.@ k) (v ) = Z e i=1 ¢ (W)E[Lg]? H i (6-45)

(1,..mg)EZI j=1

6.2.2 Equalities for trans-series

The non-perturbative wave functions and partition functions are elements of YW where the ar-
gument v involves A by taking the form v = h~'¢ + p. With this particular evaluation of the
argument of the function Theta, elements of W take the form of trans-series in A

g
o 1Y nids
Y>> et Fpn, (6-46)

r=0 n€Z9I

where F., € W. The equalities that we shall write down from now on must be understood
as equalities between trans-series, namely the trans-series above is vanishing if and only if the
coefficient F) 5, of each trans-monomial is vanishing for any (r,n).
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An important remark is that the order of trans-monomial does not affect such an equality,

l.e.
g g

o 1Y ni; o B st
N> We It Fa=0s ) Y We il Fn,=0, (6-47)

r=0 neZ9I neZ9 r=0
g g
o0 1Y e Y
but it does not mean that Z Z hre J=1 F, n and Z Zh’”e J=1 F, n are equal as they
r=0 neZ9I nez9 r=0

are two very different types of formal trans-series.
6.2.3 Action of the operators Zo and / grading

As functions of A, these non-perturbative objects are of very different nature compared to their
perturbative counterparts whose logarithms admit a formal series expansion in k. Let us em-
phasize some important properties of these trans-series.

We have observed that the symbolic non-perturbative wave function takes the form

oo
wgi\({’l‘:’),symbol(27 h,p) = eh*2wo,o+h*15_1(2)+SO(Z) (1 + th E’Sgoa)(z7 h, ,D)), (6-48)
m=1
where Ef;? ”‘)(z, h,p) are combinations of derivatives of theta functions of the form
o"O(v,T)

T , whose coefficients are functions of z independent of A. Note that the
O |y

dependence of such functions on A only appears from the evaluation of the argument of the theta
function at v = % + pl)(2).

In order to prepare the proof of the main theorem, let us see how differential operators act
on this type of trans-series. One has two types of very different behaviors.

e The operator hd,(,) acts naively by increasing the order in % by one

9 |: 00 00 8~(ooa)( B p)
™ Egﬁo“) z,h,p } = prt1 ZEm 5 P) 6-49
2) mzzzl ( ) mZ:l 0x(2) ( )

e On the other hand, the operators Z¢ act both through the explicit dependence of the theta
functions but also through its action on the elements (gf)j)?:l. One has

hIc[i M =00 (2 1, p) ] Z Rt To 5000 (2, B, p)(

‘ & fixed
m=

o= ) (z,h, p)
+ZIC e Z R 3—% (6-50)

_ 1
=55 fgj wo,1

6.2.4 KZ equations

One of the two important properties of the non-perturbative wave functions is that they satisfy
the same KZ equations as their perturbative partners.

44



Theorem 6.1. The symbolic non-perturbative wave functions satisfy the KZ equations

(@) symbol
dwﬁ\lp ' (z, h, p) (@) bol
e e (5 ) =
(a)
S G [Zervie ™ e m )] (6-51)
PEP e g(t+D)
After evaluation, this implies
(a)
dwlo?\IP( ) 1, P ) (o) mbol
S ERRa  CUIOED DD DI T Jev. |Zena i ™ (2 5. p)]
PEP gl

(6-52)

Proof. The proof consists in first showing that another trans-series is solution to these KZ
equations.
From the previous sections, for any n € Z9,

g g
( T G+ 3 ngBy) = o) + U (e D Byl = [0 )
— st
g
= Lu(x(2)) § *E O [z 4 Y nBy] — [0 ]) b (6-53)
j=1
This implies that the Fourier transforms
221 " g, g
Yoo T EImON Y nyB) — o)) (6-54)
nez9I j=1

are solutions to the KZ equations as trans-series.

Let us remark that from the definition of the non-perturbative wave functions theses Fourier
transforms are the trans-series obtained by exchanging the sum over n € Z9 and the WKB series
in the non-perturbative wave functions. Thanks to the equivalence (6-47), this implies that the
non-perturbative wave functions are solutions to the same KZ equations. O

6.2.5 Monodromies

The second important property of the non-perturbative wave functions is their simple mon-
odromy properties.

Lemma 6.2. For j € [1, g], we have

NS 00(@)
(NS (Z+¢4Jvh,l’)—€ R wlNP (2,1, p), (6-55)
oo (@) 2 ““ oo(@)
inp (24 Bj,hp) =e "7 Xp (2,1, p) (6-56)
and ¥V p € z71(P)
oo(@) § (o) 2P0 (a)
Ue (24 Cp i p) = (—1)"r@ e 2 ¥R (2,1, p). (6-57)
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Proof. The proof follows from the same strategy as the one for proving the KZ equations. We
first prove these monodromy properties for the Fourier transforms and then use (6-47) to obtain
the same result for the non-perturbative wave functions.

The properties (6-55) and (6-57) directly follow from the same properties for the perturbative
wave functions which are the coefficients of the Fourier transform. The last property (6-56) for
the Fourier transform directly comes from the definition. O

This last property, which states that the non-perturbative wave functions have good mon-
odromies both on the A and B cycles is the reason why we had to introduce the formal Fourier
transform and had to pay the price of working with trans-series. This turns out to be funda-
mental for deriving a quantum curve as we shall see in the next sections.

Remark 6.4. In the following, we will consider not only series of the form (6-48) but products, deriva-
tives, inverse and logarithms of such series. We should always keep in mind that these operations have
to be understood from the point of view of series in /i whose coefficients are oscillating terms. For exam-
ple, the inverse of such a series is itself a series in i whose coefficients are products of oscillatory terms
obtained by acting as if one were working with formal series in .

6.3 From linear operators to rational functions
Pep kesHh) in the RHS of the KZ
equations by derivatives with respect to x(z) in order to derive a quantum curve. First of all,

let us remark that the action of Y 37 €5F(2(2))Lprs on (Whp)haso in log S0 (2, b, p)
PP et

For any [ € [0,d — 1], we wish to replace the operators (Ep,k,l)

gives terms of order O(h) except for the result of the action on wp o, which gives the coefficient
P 1(x(2)) of the classical spectral curve (2-1).

For this purpose, for each P € P, [ € [0,d — 1] and k € SI(JHU, one defines
~ l
Loy = Lpra—PorY, (6-58)

where the second term is understood as a multiplication operator by a symbol.
Let us define

K3 O B p) =

YRR (2D (M), B, p) YT (L@ (N, B, p)
LoeRB™ GO he)| [ LaeRE D), hp)|
| . (6-59)
I [(ﬁp,k,l)d_li/);ylgnbd(z(l)()\)a71 P)] [(ﬁp,k,l)d_l%svygbd(z(d)()\)a57 P)} |
and .
CHR O hyp) = B KR ke p) - (BRE™ O 1 p)) (6-60)

-1
where (\Ills\?’;l b\, )) is defined as a symbol from the adjoint matrix to WZF*N(\, A, p)

and the inverse of det(UX"'(\, i, p)) as a symbol,

-1 1
‘I/symbol )\ h _ _ Adj symbol )\ ﬁ 6-61
(5010 det (V5" (A 1, ) [FE 0] .
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Fpr all A such that \T/Np(/\, h,p) is invertible, i.e. for A such that the Wronskian
det(Unp (A, A, p)) is non vanishing, we can define the evaluated version of these objects by

Kpri(Ah,p) =
[ ¢NP(Z(1)(A)7h7p) ¢NP( d ( )7h7p) 1
ev. [LopfB GO0 )| ev [LertSE D), b )]
| ov [(Lop) ORE O )| v [ (Lrr) LR O (), o) |
(6-62)
and _
Crii(\hp) =h ' Kpgi(\h,p) - (:I\/NP()‘» A, P)) : (6-63)

In the following, to shorten the notations, we shall most of the time omit the dependence
of the functions considered in € and p. However, we should keep in mind that the elements of
the matrices denoted by Cpy (A, h) are functions of . More precisely, as the non-perturbative
wave functions, they are trans-series in A

Crua(N 1) = S 1"CH) (6-64)
n>0

)

whose coefficients Cg?k,l()‘vh) are combinations of products of derivatives of theta func-
tions. Remark that, contrary to the wave function which had an h-dependent pre-factor
eh_Q‘*’O’O(EHh_lS*(Z’E)JFSO(Z’E), the elements of Cpy (A, k) do not involve any h-dependent pre-
factor.

One fundamental point is to wunderstand the properties of these matrices
(Crri(A, h))leﬂo,d—l]],PeP,keSSH) as functions of A. This is summed up in the following

theorem.

Theorem 6.2. For any | € [0,d — 1], P € P and any k € S](DZH), Cpri(A h) is a rational
function of A with possible poles at X € P, A € z(R) and X in the set of zeros of the Wronskian
det Wnp (A, k). This means that, as a function of h, Cpy (A, h) is a formal trans-series of the
form

Crm\h) =Y mC) (6-65)
n>0

where Cl(;?lz,l()‘v h) are rational functions of A.

Proof. Let us first show that Cpy (A, k) is a mono-valued function of A € P'. One important
point is to understand how the non-perturbative wave functions behave as functions on the base
curve P, For this purpose, let us describe how 71 (P! \ 2(R)) acts on these wave functions.
When X goes around v € 7 (P! \ #(R)), a point z € z71()\) follows the composition of a non-
contractible path I' € H1(X,Z) and a path going from z to a, possibly distinct, point 2’ in the
fiber above A. This means that, for any j € [1,d],

3 (nly, 5], m[y,]) € Z*, 3B € [1,d] such that

Me

(n[y.dlacatmy.ilapa) ()
! Ugxe (2P (V) b, p). (6-66)

27
h

o, (i
LNP DN +7),hp)=e " d
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This implies that there exists a monodromy matrix M. (h) which has the shape of a permutation

27\'1
E(n[w]aeﬁm[ Jlapa)
matrix with entries of the form e = «=1 instead of 1’s such that

Unp(A+7, 1) = Unp(A\, B)My(R)  and  Kpri(A+7,h) = Kpgri(\, B)M,(h).  (6-67)
Since M., (h) is invertible, this implies that
CP,k,l(A +, h) = Cp’k’l()\, h) (6—68)

It is easy to see that the essential singularities of @Np()\, h) compensate with the ones on
the other side so that Cpy (A, h) is a rational function of A.

By definition, it is easy to see that it might have poles at A € PUx(R) from the singularities
of \IINP()\ h) but it can also have singularities at points A where \I/Np(/\ h) is not invertible,
i.e. when the Wronskian vanishes.

The behavior in 7 follows from the definition of the operators Lpy,;, where one always has a
product of h?Z¢ acting on terms of the form th_z‘*”wh,n, with 2h — 2 +n > —1. We collected
the order O(1) terms in P;(\) so that the resulting terms are of order O(h). Since Cpy (A, h) is
of order h~! compared to Lpy, it is of order O(1). O

Remark 6.5. A priori, the coefficients C}(Jf,z)l()\, h) involve theta functions whose argument depends of
the different pre-images of A in the classical spectral curve. We have seen that these are actually rational

functions of A\. However, these rational functions of A can still depend on A through derivatives of theta

. 9" ORiemann (V,
functions of the form Re—a(v‘r)
Oviy ...0v;, :d>

One can use the elements of the matrices (Cpy (A, h)) @+1) in order to write

l€[0,d—1],PeP kS
the KZ equations simply as differential equations in A. For any [ € [0,d — 1] and j € [1,d]:

dwf’%(?( JALD)

N + Y3 Np (2 )()\),h) = P1(A )%NP( (])()\) h)
d—1
+13° 3 G (Crii W),y v b (29 (M), ). (6-69)
PEP et m=0

6.4 Lax system

Under this form, the KZ equations can be translated into a linear differential equation in A

compatible with the actions of the linear operators (£ .
p p ( P’k’l>le[[0,d—1]],P€7>,k€S§3l+l)

Theorem 6.3 (ODE and Lax system). One has

dUnp (A, I ~
hNZﬁ\) - |: +hz ng APk )‘ h) \IINP()\ah)7 (6-70)
PeP keN
where ) ]
~P(\) 10 ... 0
—P(A) 01 ... 0
PO = S R (6-71)
—P;1(A) 0 0 1
—Py(\) 0 0 0 ]




and for any P € P and k € N

[Crro\ M)y - [Crro(N Ry,
. [Cpr1(Ah)] oo [CrE1(AR)]
Aps(\h) = Y o (6-72)
[CPra-1(NRA)]yy oo [Crrda-1(A M)y,
where Cpy (A h) =0 for k ¢ ST,
For any P P, k€N, [ € [0,d— 1], one has the auziliary systems
hlev.Lp g U (N h) = Apgi(A\ B)Unp (M, B), (6-73)
with the constraints R
Oty = |Apsi W )], Vg € [Ld], (6-74)

so that the entries of ARk(A, h) are composed of elements of A\p’hl()\,h). The elements of
EPJ@Z()\, h) are h-trans-series functions that are rational functions of A similarly to the elements
of Cpii(\ h).

One has similar equations at the symbolic level before evaluation but we shall not write them
down as they are obtained simply by adding an exponent symbol whenever needed by defining

agmeoun = (Lo [T 00m)]) (T 000) (675

6.5 A first gauge transformation to recover the classical spectral curve

Let us now prove that the matrices A pk(-, h) do not have any pole on the ramification locus
x(R) so that (6-70) produces a quantum curve. For this purpose, it is easier to work in a different
basis in which the leading order in 7 of the Lax matrix is companion-like (and thus recovers the
classical spectral curve) and study the associated linear systems. Let us define the matrix

1 0 0 . 0 0
Pi(\) 1 0 ... 0 0
G| PV TR 0 : 676)
Py o(N) —Py3(N) Pga(N) ... (—1)42 0
| Pii(\) —Pao(A\) Pas(A) ... (“D)*2R(N) (1) ]

whose non-zero entries are G;; = (—1)771P_;(\) for 1 < j < i < d and G;; = (1)1 for
i € [1,d]. It can easily be checked that P(\) G(\) = —G(A\)P(X), where

0 1 0 0
0 1 .0
P(A) = : : s SR (6-77)
0 0 0 1
L CDTTPN) ()PP () ()P Pa(N) Pi(A) |
so that B R
PO = (GO (=PO)) GOV, (6-78)



Note that the characteristic polynomial of P()\) is precisely the classical spectral curve (2-1):
det(ylgy — P(\)) = P(\,y). We use this matrix G to define a gauge transformation by

T\ ) = (GN) " Unp(\ B), (6-79)

which is solution to the differential equation

dU(\ h
hé/\) LA\, B)U(\, R), (6-80)
with
L(\) = [ )+ YD PN ApRNB) |, (6-81)
PeP keN
where
Bpainh) = —h(G) ™ 29 1 (G)) 1 Bpar mEW. (6-82)

O\

Remark 6.6. Let us note that one can define a symbol GY™P°!()\) by considering the rational functions
P;(X) as symbols. This allows to define a symbol

{I}symbol(/\’ h) — (GSymbOl()\))_liffls\?;,nbOI(/\ h), (6-83)

where (Gsymb‘)l()\))f1 is defined using its adjoint and the symbolic inverse of its determinant. We can as
well define a symbolic Lax matrix

- 6ijsymbol()\ h) . -1
symbol — ’ symbol .
Lovmbol(\, h) 1= hoe (\IJ O, h)) : (6-84)
where ) )
(Tl m)) = Ad (TR )] (6-85)

det Wsymbol () 1)

using the symbolic inverse.
For any P € P, 1 € [0,d — 1], k € SI(JHI), one also has the auxiliary systems
B lev.Lp g U™ N B) = Ap (A, B)T(X, B), (6-86)

where

ApgpiOh) = (GO) ™ <ev. ( [Gsymbol(A), B L, | Tovmbel ), h)) > (N h)~!
+(GN) " Apri(X B)G(N) (6-87)

is a rational function of A with the same poles as EPJ@Z()\, h).

6.6 Behavior of the auxiliary matrices at the ramification points

Let us now state one of the main properties of the auxiliary matrices

(Z Pt h))

PeP,le[0,d—1],kest T

Theorem 6.4. For any P € P, 1 € [0,d—1], k € Sgﬂ), the matriz Xp’k’l()\, h) does not have
any pole at the critical values u € x(R). This implies that for any P € P and k € N, the
matrices Apk()\ h) and Apk()\ h) are regular at the ramification points.
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Proof. This is proved by induction in Appendix C. O
This allows us to obtain the following important property.

Corollary 6.1. The wave functions matrix (I\’Np()\, h) is solution to a linear differential equation

dUnp (N, b
A NP( )

Y L(A\, k) Uxp (A, ), (6-88)

where the rational function

L\ h) = { NA+EY S G NARKA B (6-89)

PeP keN

has poles at A\ € P and at zeros of the Wronskian det {I}Np()\, h), the latter being apparent
singularities of the system.

Let us emphasize again that this differential equation has to be understood as an equality
order by order in & in the trans-series as explained in Section 6.2.2.

We have thus built a linear differential system of size d x d whose formal fundamental
solution can be computed by topological recursion. This system has poles at the poles of the
leading WKB term, namely at poles of the function y but it may also have poles at apparent
singularities. We now wish to continue our study of this system and understand better these
apparent singularities, find a gauge equivalent system without apparent singularities and write
down the associated quantum curve. This is what we are doing in the next section, based on
the observation that the position of the apparent singularities can be computed thanks to the
KZ equations.

7 Gauge transformations and quantum curve

In this section, we deduce quantum curves from the Lax system presented in the previous
section, which may feature apparent singularities. We also apply a gauge transformation in order
to obtain another linear Lax system without any apparent singularities and whose only poles
are at the singularities of the initial classical spectral curve. We finally study the characteristic
polynomial of this system and present it as a deformation of the classical spectral curve, allowing
to interpret our result as an A-family of connections on the base curve P!.

7.1 Companion-like system associated to the quantum curve

We have shown that the topological recursion allowed us to build a fundamental solution to the
size d linear differential system (Equation (6-70)). This implies that each element of the matrix
\f/Np(/\, h) is itself a solution to a degree d differential equation. In particular, considering the
elements of the first line, this implies that these elements are solution to a degree d ODE which
we can consider as a quantization of the classical spectral curve.

Definition 7.1 (Quantum Curve). For all j € [1,d], let us define

YD R) = ggn (2D (), h). (7-1)
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Then, for all j € [1,d], ¥U)(\, h) is solution to a degree d ODE of the form

d o k )
Vielldl : Y bar(\h) <ha)\> YW\ h) =0, (7-2)
k=0

for some coefficients (b;(A, 1));cpo,gp With bo(A,h) = 1. This ODE is known as the “quantum
curve” associated to the admissible classical spectral curve (2.1). *

Remark 7.1. Observe that the quantum curve depends on the choice of «, but we decided not to
indicate this dependence to make notations lighter.

In order to understand better how this procedure is a good quantization of the classical
spectral curve, we need to study the properties and singularities of the coefficients (b;(A, h)) 1€[0,d]
of the quantum curve.

In order to simplify the exposition in this section, we rewrite the quantum curve in a
companion-like matrix form.

Definition 7.2 (Matrix form of the quantum curve). We define the d x d matrix

O \i—1 .
U\ ) = [ h— @W)()\,h)} (7-3)
(35) e
and the d x d companion-like matrix
[0 1 0 0 ]
0 0 1
L\ h) = : . . . 0 (7-4)
0 0 0 0 1
| —ba(A\R)  —bg_1(Ah)  —bg_a(AR) ... —bi(\ D) |
so that (7-2) is equivalent to
0
ha\li(/\, h) = L(A\, h)W(A, h). (7-5)
*

This matrix L(\, i) can be obtained by a rational gauge transformation from E()\, h) so that
the coefficients (b;(A, h))?zo are rational functions of A. From Theorem 6.4, W(\, k) can have
singularities only at A € P so that the functions (b;(A, FL))?:O can have poles at A € P. They
may as well have simple poles at apparent singularities of the system. It is a classical result,
which can be adapted in the present trans-series setup, that these apparent singularities are
exactly the values of A which annihilate the Wronskian of this new system det W(\, /). Let us
also emphasize that, even if it is implicit in the notations, they are formal series in A of the

same type as the elements of the matrices (Cpy (A, h))Pep le[0,d—1] kST namely they are
’ P B P

series in h whose coefficients are rational functions of A with coefficients given by combinations
of derivatives of theta functions.

In the next section, we will study more carefully the properties of these rational functions
(by(\, R)) le[o,q] @ well as the apparent singularities of this system and how to remove them.
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7.1.1 Wronskian and apparent singularities

Let us first study the apparent singularities of our system.

For this purpose, we wish to identify the structure of the Wronskian W (A, i) = det ¥(\, h).
In order to achieve this aim, let us first study its singularity structure. Thanks to Theorem 6.4,

it might have singularities only when A — P € P. Let us first remark that one has

d
W (A, h) = det ¥ (X, h) = det [S(\, B)] [T w9 (A, h),

7j=1
where S(A, i) is the d x d matrix defined by

V(i,5) € [Ld]? : [S(\ ), = (%/)(j)(A» h))_l (ha%

Let us now recall that the non-perturbative wave function reads

)OO n).

77/)8?]&70‘1;(2’ ﬁ) _ eh*2w0,0(€)+ﬁ*15_1(z,e)-i—So(z,e) (1 + th Eggoa)(z, FL)),
m=1

where, for any m > 0, E$,‘;°(°‘>)(z) is holomorphic at z € z71(P) and

S_1(z,€) = /z ydx + O(1)

OO(O‘>

and

z z dx(z1) dz(z
9609 = [ [ 22003 = e oW

for = = p € z71(P).
Let us recall as well that

woa (21, 22) — (dl’(zl)dl’(@)Q _ Z

o)~ #(22) vl

z€x~1(22)\{22}

to emphasize the fact that this does not have any pole on the diagonal. Hence,

h%woo(€) + 7 1S _1(z,€) + So(z,€) = h~! / ydx + holomorphic,

oo(a)

as z = p € x71(P).
On the other hand, one has

det [S(\, h)] = det [(y(z(j)()\))y_l} + sub-leading terms.

This finally gives the asymptotics as A = P € P,

A
det U(\, i) = kpexp [hl/ Pl(A)d)\} Ep(N)EP 1+0(Ep(N)],

o0

where

Vie [1,N] : Gy, SB max_ <er>,

(7-6)

(7-7)

(7-10)

(7-11)

(7-12)

(7-13)



Co < =~ max ( > - 2), (7-14)

and kp is independent of A and hA.
This allows to obtain an expression for the Wronskian.

Corollary 7.1 (Expression of the Wronskian). The Wronskian takes the form

G
(A —qi(h)

! eXp( /P1 dA) (7-15)

(A — Aq)©

det U\, B) = h =t

:lz

Il
—

7

where k 1is independent of A and G = > Gp.
PeP
Proof. The proof is similar to the proof of Theorem 6.2.

Let us consider the ratio det \PfA’h) . By studying its possible singularities and mon-
exp(hrl I Pl(A)dA)

odromies, one sees that it is a rational function of A\ with poles in P.
More precisely, it implies that

det W(\, ) NS (0 ) (7-16)
exp (A1 [ P(V)dA) mzo o
where
Wm()\’ h) — M, (7'17)
.l;ll(A_Ai)GA

with Pol,, (A, k) a polynomial in A of degree at most G whose coefficients can depend on A
through theta functions and their derivatives so that

S WMPoly (A, h)

det W(A, h —
€ )(\ b ) — m;\? , (7—18)
exXp (h_l fO Pl()\)d)\) H ()\ _ Ai)GA
i=1
leading to the result with

G 00

k][O = a(R) = B™Poly(A, h). (7-19)
i=1 m=0

oo
The zeros ¢;(h) are obtained by solving the equation with > A"Pol,,(q;(h), k) order by order
m=0
in A by considering solutions of the form

=3 g™ (), (7-20)
m=0

where the coefficients qgm)(h) depend on & only through oscillatory integrals of the form

8719Ricmann (V,T)
Ov;, ...0v;, v=2tp

. This equation is solved order by order in & so that the number of solutions
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is fixed by the number of solutions of the leading order equation in & which has G distinct solu-
tions from the admissibility assumption (Definition 2.5) of the classical spectral curve. Hence,

qi(h) # q;(h), for i # j. O

Let us remark that for generic values of the spectral times (¢ k) pes—1(P) kef0,r,~1] the number
of zeros of the Wronskian is expected to be equal to the genus g of the classical spectral curve
(see Examples 8). The zeros (g;(h))$, are trans-series in i that can be computed through the
asymptotics of W at its poles. The latter may be computed by expanding the KZ equations
around the poles P € P. We shall see this procedure in the examples of Section 8.

7.1.2 Behavior of the quantum curve at poles

We now know that the coefficients (b;(A, 7)), e[1,4) have simple poles at A € {¢:}%, and possibly
higher order poles at A € P. From a quantization perspective, one expects the leading order of
b;j(A, i) to behave as its classical limit Pj(A) at any pole in P. Let us check this and be more
precise in our description of b;(A, k).

The coefficients (b; (A, h))?zl of the Lax matrix L(\, i) are solutions to a system of d equations

S bW RO 1ot (r21)

for j € [1,d]. Away from the zeros A = ¢;(h) of the Wronskian, this equation has a unique
solution in (b;(A, h));l:l. Let us study this solution as A — P € P. We shall first evaluate the
behavior of the coefficients of this equation.

Lemma 7.1. One has

. Lo rotO ) Oy(z0) ()
Vje[l,d], Vk>1, 0] o —y(z(J)(/\))k+O<a)\ . (7-22)

when \ — P € P.

Proof. We shall proceed by induction. For & = 1, this is obviously valid. Let us assume that
the proposition is valid for k — 1, let us prove it for k. A simple computation shows that, for all
k> 2,

1 BRO*p ) (2(2))
D((z)  0a(2)F
ho 1 RE=19R 14 0) (2(2)) 1 Fiap D) ((2)) 1 RE=19R14p () (2(2))
02() |90 (a()  Oa(z) ! V0@()  0a(z) PO((z) DRt

which implies the lemma. O

= (7-23)

Using the behavior of the function y at its poles, this implies that, around a pole P € P,
one has, for all j € [1,d]

1 REFOkyU) (X)
PI(N) ONk

VE>1, =y +0 (G W T TR0 ) (7.0

where pl9) denotes the pre-image of P in the j™ sheet of the cover.
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On the other hand, one knows that the rational functions (Pl()\)) _, satisfy the classical
spectral curve equation, i.e.

d—1

vielld s Y (-0 P O] = - 0] (7-25)

k=0

Hence, the leading order terms of by(\,h) as A — P € P match those of (—1)¥¥P;_r(\)
and thus are A-independent. The exact number of terms independent of i can be computed on
a case by case basis.”

7.2 Pole structure of the quantum curve

Since coefficients (b; (A, h))ie[[l d] of the quantum curve might only have simple poles at apparent
singularities, we may regroup the observation above together with results of Sections 7.1.1 and
7.1.2 to obtain the following expression.

Theorem 7.1. The coefficients of the quantum curve read

Vie[l,d : =5 3 BY,(n)e -+§:A (7-26)

- Qz
PeP kGSl(gl>

)

for some trans-series pgl)(h) and ng(h) of the same nature as the singularities g;(h).
Moreover, for any l € [1,d], some of the leading coefficients Bgsg)(h) of the singular part

of bi(\, k) around any P € P do not depend on h since they are equal to the leading coefficient
of (~1)'B(X).

In addition to the behavior of the coefficients of the quantum curve around its poles, it is
possible to study how the later behaves as h — 0. For this purpose, let us recall that the non-
perturbative wave functions are obtained as evaluations of theta-symbols. From this perspective,

w“% o ﬁkagﬁ\(,: >()‘), for k € N, admits a well defined 7 — 0 limit as

1 RRORO ()
lim —
h—0 1/}(3)()\) ONF

any expression of the form

= (D)~ (7-27)

Let us remark that the coefficients (b;(A, 1)),y 4 can be expressed through

OV (A, h)
O\
From this perspective, any b;(\, h) can be expressed in terms of combinations of expressions

1 EEOR(N)
P@(A)  OAk
derivative of the Wronskian

L\K) =h W(\ h)?

of the form

. For example, the coefficient b (A, k) is given by the logarithmic

1 oW\ k)
W(NR) oA

This implies that b;(\, h) admits a well defined limit as A — 0 as a trans-series built out of
theta-symbols.

One can thus consider the A — 0 limit of the quantum curve which is nothing but the classical
spectral curve thanks to (7-27). One thus obtains our second main result motivating the name
“quantum curve” in Definition 7.1.

bi(A ) = —

5These terms generically correspond to the Casimirs obtained by studying the associated isospectral system.
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Theorem 7.2. One has

h—0

Vie[1,d] : b\ h) "= (=1)'P(N). (7-28)

Let us emphasize that the position of the apparent singularities as ¢;(%), the corresponding

residues p(»l)

;. (h) as well as the coefficients Bg)k(h) can be computed explicitly in terms of the
coefficients of the expansion of the non-perturbative wave functions around its singularities
p € P. They can thus be expressed in terms of quantities computed by the topological recursion
procedure. In examples presented in Section 8, we alternatively write these coefficients in terms
of the spectral times (tpvk)perl(P), ke[o,r,—1] and g Hamiltonians (H;)?_, whose expressions are
explicit in terms of the Darboux coordinates (g;, pi)le and spectral times. These results are
similar to the ones obtained for hyper-elliptic curves in [40] and we believe that they should hold

in the general framework. We leave this conjecture for future works.

7.3 Gauge transformation to remove apparent singularities

We have built a differential equation (Definition (7.1)) with the expected singularities as A — P.
However, equation (7-2) involves singularities away from P as well. Since the solution W(\, k)
is regular at these points (qi(h))iG:I, these are apparent singularities, meaning that they are at
most simple poles of the coefficients (by(),7))% ;. In addition, one knows that there exists a
gauge transformation transforming this system into a system without apparent singularities.
Let us exhibit this gauge transformation.

7.3.1 Expression of the gauge transformation removing apparent singularities

Definition 7.3 (Gauge transformation). We define the following gauge transformation matrix,

1 0 0 0
1 0 0
T R) = 0 0 1 0
Qd(Avh) Qd—l(AJi) QQ(AJi) Ql (Avh)
G G G G
_1;[1()‘*%'(’74)) 1;[ (A—qi(R)) _1;[1(/\7612'(?1)) _1;[1(/\*(]1‘(}1))

where the coefficients (Q;(), k)%, are defined by interpolation by the constraints
e for j € [1,d]], Q;(A, h) is a polynomial of degree at most G — 1;

e for j € [1,d] we have

i(q; ’h _ B .
vie[l,G] : — Qilasth)h) e g bi(\ ) dA = —h ' pP(h).  (7-29)
H (qx(h) _ Ak)GAk A—q;(h)
k=1
*
In particular, since by (A, k) = —h%&qj(’\’h), one has
vie[l,G] : Qualh:h) 1 g bi(\, R) dA = 1, (7-30)

N ]
H (Qz(h) o Ak)GAk A—q;(h)
k=1
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so that

N
Q1A h) = [T (A = Ap)
k=1
does not depend on A.
This implies that
N
TT (A = Ag)“as
det J(\, h) = "= .
IO - ai(h)

1

-
Il

This gauge transformation finally allows us to obtain our final system of ODEs.

Theorem 7.3. The matriz
\P()\, h) = J(\ h)¥(\ R)

is solution to the linear differential equation

OW(\, 1)

h@)\

= L\ h)¥(\ h),

where the Lax matrix
OJ (A, h)

LR = J\ BRI R)JNR) " + 1 )

J(\ h)~1

(7-31)

(7-32)

(7-33)

(7-34)

(7-35)

is a rational function of A with poles only at A € P whose expression is given in the following

Proposition 7.1.

Proof. Let us first study the possible singularities of W(\,4). It inherits the singularities at
A € P from ¥(A, k) but could now have simple poles at A = ¢;(h) for any ¢ € [1,G], from the
poles of J(\, h). Let us rule out this possibility. For this purpose, we can compute the expansion

of J(A, h) around X\ = ¢;. It reads

0 0 ... 0 0
0 0 .. 0 0
JOVE) = : 3 :
0 0 - 0 0
Resbg(\, ) d\  Resbg_i(A, h)dA ... Resby(\ h)d\ Resby(\ h)dA
L A= A= A= A—=q; |
N
T (ai(h) = ) 1
=1
X + O(1). 7-36
T @ -0 0—gm OV (750)
j€L.d]\{i}
The residue of (), 1) at the simple pole A = ¢;(%) is thus proportional to
Res W(\, h)d\ =
)\%qi(h)
v [0 0 ... 0 0
IT (qi(R) — Ag)S 0 0 .0 0
k=1
Res 3 3 S W(\, h) dA,
I (a(h) —gqi(h) r»am ' ' ' '
jelld)\{i} ! 0 0 . 0 0
| ba(A,h) bg—1(A\R) . ba(A,h)  bi(\ k)
(7-37)
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Hence
Vie[l,d=1],Vme[1,d] : Res [¥(X\ )], dX=0, (7-38)

/\—>q1‘

while, for j € [1,d], we have

N
[T (gi(R) — Ag)“2 d—1 &
Res [F(\h)], . dr= "2 Res " bg_p(A, h) <ha) YU (A, B)dA.
A=q;(h) g [I  (q(h) = q;(h) rsa(m = 2
jelLd\{i}
(7-39)
From (7-2), this is equal to
i () — Ag) G0
kﬂl(qz() k) 2\
Res [T\ A)], d\=——F= Res [ h— DN, R)dN, 7-40
Hqi(m[ 1 (¢i(h) — q;()) A—>qi(ﬁ)< m) vrR) (7-40)
jelLd\{i}

which is vanishing since 1)(7)(), i) does not have any singularity at A\ = ¢;(%). Hence, ¥(\, h)
does not have any pole at A = ¢;(h) and only has singularities at A € P.

This means that, apart from A € P, L(\, h) might have only apparent singularities. Let us
recall that these apparent singularities can only appear as zeros of the Wronskian of this system
det U(\, R).

One can easily compute

A
det U(\, 1) = det(J(\, h)) det(¥(\, k) = & exp (h_l/ Pl()\)d/\> , (7-41)
0
which is not vanishing away from A € P. Thus L(), i) does not have any apparent singularity.
O]

Let us now compute explicitly L(\, ). A straightforward computation gives the following
proposition.

Proposition 7.1 (Expression of L). The entries of the matriz L(\, k) are
Vie[l,d-2],Vme[l,d] : [L(\Nh)], = 6m1,

Vme[L,d=1] : [LAB)], ., = - gd—m+1(A,h) |
1100

—aQ
—
>
|
&
oy
=

. i—1
[L()"h)]d—l,d - jN ’
TT (A= Ag) 5
k=1
a< QuA)(R) ) N
T (A—a A — Ay)Cr
1 (A—q;(R) kﬂl( k
~ Jj=1 —
L], = h 5 —ba(A h)=5
Hl(A —q;(R)
J:
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and for m € [1,d —1]:

o[ Lazm+1(Ah) N
. < i (qu<h>>> T (A — Ag)% o AR
[L()\’ h)]d,m = h = EN - bd—m-i—l()\a h)k:Gl— - Pl ()\)Gd—rn#
[T = 5() I1(A = 0,(m)

@O QuntiO) | Qumia(h)
G N G
T —q(m) TTA— A T~ g(h)

j=1 k=1 J=1

and finally Oa(0 1)
2\

~ :
IT (A = Ap) %2
k=1

(L) 0= PN +

Let us remind the reader that the polynomials (Q;(, h));lzl are defined by interpolation in
Definition 7.3.

7.3.2 h-Deformed spectral curve

The h-deformed spectral curve associated to the differential system (7-34) is defined by det(y —
L(\ h)). It reads

d—1
det(y - L()‘a h)) = yd + Z yklv)d—k()‘a h)v (7_42)
k=0
where for all j € [1,d], we have
G

. (A h 1 h 0Q; (AR
bj(A,h) = bj(A, h) + h— QA1) ZA_ RS Qja(A ). (7-43)

[T\ = Ag)Cne =1 "~ TT (A — Ap)Cn

k=1 k=1
Remark in particular that §

bi(A h) = —P1(}) (7-44)
is independent of A, while the other coefficients read, for all j € [2,d],
- S Qi(\h) -
bR = 30 30 BeakeW Y s s [ ()
PP jesy) S | (O WL
k=1
h 0Q; (N, h)
_ -4
[T (A= Ag)™
k=1

whose poles at (g;(h))%_, cancel due to the conditions on the polynomials (Q;)¢_, following
Definition 7.3.
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In [39], following [1], it was observed that the zeros of the Wronskian could be used to define
Darboux coordinates describing our Lax matrix as a point in a coadjoint orbit. In order to
prepare future work explaining our result from the point of view of isomonodromic systems, let
us observe that we have obtained a very similar structure in this more general context. This is
summarized by the following result.

Theorem 7.4. For any i € [1,G], the pair (qi,Pl(qi) — h_lpZ@) defines a point on the h-
deformed classical spectral curve, i.e.
12 -
det(Py(q;) — h'p{P (k) — L(gs, b)) = 0. (7-46)
Proof. The theorem follows from the observation that the last column of the matrix y — L(g;, i)
has only one non-vanishing element given by

Q2(>‘v h) )
(A — Ag) %

[y - L(Qia h)] dd Y- PI(A) - (7_47)

=k

1

Hence, its determinant is proportional to this element that vanishes for y = P;(g;) — h*1p§2)(h).
L]

Remark 7.2. We note that the quantum curve of Definition 7.1 and its parametrization using

(qi,pi = Pi(q;) — h_1p§2)>1<<0 recover results of Dubrovin and Mazzocco [17] in the case of
7

Fuchsian singularities. Indeed, the parametrization is the same in both setups since the (gi)y <i<G
are the apparent singularities (i.e. zeros of the Wronskian as observed in Corollary 7.1) while
from (7-29) we have

Vie[1,G] : p® = Res by()) (7-48)
A—)qi

as used by Dubrovin and Mazzocco (See page 5 of [17]). The main difference is that we obtain a
formal family of quantum curves parametrized by the parameter A that could be inserted in [17]
by a simple rescaling of the spectral parameter, the position of the poles and their monodromies
and of the wave matrix. Up to this trivial rescaling, the quantum curves (eq. 1.8 of [17]) are
the same because they have the same pole structure in both setups.

7.4 Summary of the different interesting gauges

From Section 6.4 up to Section 7.3, we used 4 different gauges. Each of them has advantages
and limitations that we detail here. Note that none of the gauge transformations modify the
first line of the wave functions matrix so that it remains the same in the 4 different gauges (and
is used to define the quantum curve in Definition 7.1).

e Gauge U: This is the natural gauge coming from KZ equations and it provides compatible

auxiliary systems (EP’k’l)PG’P le[0.d—1] keSUTD- The main limitations are that the corre-
k2 b b P

sponding Lax matrix L is not companion-like and that even its order A° is not companion-
like. This means that both the classical and quantum spectral curves are not directly
readable from the Lax matrix. This gauge may also contain apparent singularities.

e Gauge U: This gauge shares many properties of the previous one and it is obtained from it
through an A° gauge transformation (6-79). The main difference is that the leading order
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in hof L is companion-like so that the classical spectral curve is directly recovered from
its last line. However, this does not hold for any order in A so that the quantum curve is
not directly readable in this gauge. This gauge may also contains apparent singularities.

e Gauge ¥: This is a gauge in which the corresponding Lax matrix L is companion-like at all
orders in A. This means that both the quantum and classical curves are directly read from
the last line of L and its A — 0 limit. This gauge may contain apparent singularities but it
provides a natural framework for Darboux coordinates and isomonodromic deformations.

e Gauge ¥: This gauge is obtained from the previous one with an explicit matrix given
in Definition 7.3. In this gauge, the Lax matrix L has no apparent singularities. This
allows to interpret L(\,h)d\ as an A-familly of Higgs fields giving rise to a flow in the
corresponding Hitchin system. However in this gauge, L is no longer companion-like (last
two lines are non-trivial) so it is less adapted to directly read the classical and quantum
curves. This gauge should also provide Lax systems generalizing Jimbo-Miwa Lax pairs
for the Painlevé cases [35].

7.5 Practical computations

In this section, we have built a quantum curve (7-2) and some associated linear systems L(\, h)
(given by equation (7-4) and Theorem 7.1) and L(\, i) (given by Proposition 7.1). Both systems
are expressed in terms of the apparent singularities (¢;(h))% ;. As we shall see in the examples,

the position of these apparent singularities can be expressed in terms of the action of the linear
()

operators Z¢ on the non-perturbative wave functions 1/}1(\105 . In practice, here is the procedure

one should follow to quantize a classical spectral curve.

1. Write down the KZ equations (6-51) satisfied by the non-perturbative wave function.

2. Expand these KZ equations around each pole A — P € P in order to obtain an expression
a))

(
of the coefficients of the asymptotic expansion of wéof\}P
operators Z¢.

in terms of the action of the

3. Use the latter expressions to compute the Wronskian of the system thanks to its expan-
sion around its poles. This allows to compute the position of the apparent singularities

(Qi(h))gzl-

4. Finally write down the linear system obtained, as well as the associated quantum curve,
and use the compatibility of the system to recover its properties.

8 Examples

In this section we present the details of the quantization procedure applied to two particular
cases, of degree 2 and 3 respectively.

8.1 Painlevé 2 example

In this section, we consider the simplest example of degree 2 where the classical spectral curve
has genus 1 and a unique pole located at infinity. This type of curve was already quantized
in [39] in a slightly different context by imposing an additional symmetry corresponding to
Pi(\) = 0. Moreover, in [39], the authors considered a divisor of the form D = [z] — [04(2)]
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and not D = [2] — [00(®] as in the present paper. However, in both cases, one manages to
find a quantum curve and recovers a 2-parameter solution of the Painlevé 2 equation from the
associated isomonodromic system.

We consider the case when d =2, N =0, rc(;,) =2 and rg) = 4. We consider I, = 2 so that

there are two points above infinity denoted by oo™ and co®) respectively with dooy = d2) = 1.
8.1.1 Classical spectral curve
Let us consider a two-sheeted cover of the sphere defined by the equation
v’ = Pi(N)y + Poy(A) = 0, (8-1)
where
Pi(\) = P2+ PO+ P (8-2)
and
P(\) = PO+ PO 4+ PO 4 PO+ PO (8-3)
The function y admits the following expansions around the two poles (oo(i))?zl,
1 Owop _ ;
y(z) = —ti’3$(2)2 —tiow(z) —ti1 —tipz(2) T 81‘,"1 x(2) 2410 (x(z) 3) , as z — oo(l), (8-4)
1,
where we used the general theory of topological recursion to express the order z(z)~! term.
In terms of these spectral times (tivj)1§i§2,1§j§3’ one has
1 1
PéO)Q = —tl13—t23, Péi,)l = —t12—ta2, Péo)o = —t1,1 —t21, 0= —t1,0—1t20, (85)
as well as
2 2 2
Po(o?4 = t13t23, P(EO,)?, = t12t23 +t13t22, Péo,)g =tiat22 +t13t21 + t1,1l23 (8-6)
and
2 2 _ awao 8&;0,0
Py =tigtaottiotezttiatoi+t1t22, Py =tiataottiot22+t1,1t2,1 4113 Bl +i2.3 Bty
| (8°7)

where (wWhn)}, >0 corresponds to the differential forms computed by the topological recursion
applied on the classical spectral curve (8-1).

8.1.2 KZ equations

For this example, we choose to consider the divisor D = [z] — [co(1)]. The choice of 00(? would
lead to similar results.
The non-perturbative wave functions satisfy the KZ equations

o(1)
0N p(2:h) o) oo
h ONéD) + 9 p(2, 1) = Pr(a(2)0fyp (2, ),

(8-8)
19] z,h oo sym
h%%ﬂ)) = Pa(x(2)Uenp(2, h) + hev.Licz(x(2)) [ S, h)} :

where
EKz()\) = htlygz(;w&) ) + th’g.'Zcoo(D . t273)\ — t272. (8—9)
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8.1.3 Asymptotics

The asymptotics of the non-perturbative wave functions when A — oo being given by the ones
of the perturbative ones, let us study the asymptotic behavior of ¢ °&([2() (] — [co(V], ) for
i € {1,2} when A — oo. From the general theory, one has

B (D] = [0, B) = exp [ (Vg (D) + 0| (€1 +007T)) (8-10)
and
FE(ZA )] = [0, ) = exp | [ (Ve (2P () + 01D ATHCa + O, (811)

for non-vanishing constants (C;)2_;.
This leads to a (non-perturbative) Wronskian of the form

reg (1.(2)(\)] — oo(D)
Wi = a0 ) — e )

RO = oD e ) o)

- /ﬁexp{ /P1 d)\] A—q). (8-12)

Let us now compute the asymptotics of the action of the operator £ on the perturbative wave
function. From the regularized KZ equations, one has

eV.EKZwreg symbol(z(l) (A))

Yred(z(D(N)) —2ht23A +O(1) (8-13)
and ) 1( (2)( :
ev.Lgzpree ymbol (22 (\))
wreg(z(2)()\)) _h(t273 + t1’3)>\ + 0(1)7 (8-14)
as A — oo.

This implies that

ev-Liz[ne™™ (2D W) (=D V)] - ev-Liz ™™ (=D Ao [¢nH (= (V)]
W(A)
p

= h(t13 + 2t23)\ + H(h) — pp (8-15)

where H and p are independent of .

This imposes the form of the Lax system presented in the next section. As we shall see,
the coefficient 7i(t1 3 + 2t23) can be recovered from the compatibility of the Lax system. We
derived it here directly from the action of the operator L7z only as a consistency check of our
formulation.

8.1.4 Lax pair formulation

The general theory developed in this article implies that the wave functions satisfy a quantum
curve that is equivalent to a differential system. The non-perturbative wave function

ARSI CIPY N O BT (2)(>\),h) )
\P(A’h)_(hé‘wﬁé& DO, B) B (z A (), h)
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is solution to

0 1

ONT(AR) = <_p2(x) +hP{(A) + H — 52+ haX Pi(A) + 5

) U(A\ h) = LA\ h)U(A ),

(8-16)
where o = 1 3+ 2t2 3 thanks to (8-15). We shall see later that the value of a could alternatively
be recovered by the asymptotics of the wave functions. It is complemented by

ev. L z(V)[WYMPN B)] = Agz(\, B)T(), h), (8-17)
where the first line of Axz(\, i) is constrained by the KZ equations to be

—aX— 4+ h()\p ) —3e
A ANh) = v UA—g -4 . 818
KZOD = sl 0 [Akzlay (W B) (8-18)

Because Liz(\) depends on A, 9 \Lxz(A) is non-vanishing. In order to get rid of this compli-
cation, let us define a new operator

L= ﬁKZ(/\) + t273)\ + 129 = htl,gz'coo(z) ) + ﬁt2732c00 (8—19)

ORY

The compatible system now reads

m (—a+tag)A+too — 4+l —=
Ll < )A2 1(A R) v A Q?Aqh) Rk
(1) H_  _p 1
_ ([ Peprtte2 = 5+ anog A=q_ | WA R) = A\, R)T(N, R).
Az1 (A, h) Az2(A 1)

(8-20)

In order to ease the notations, we shall replace the operator ev.L acting on symbols by an
operator L acting on W(\, i) so that (8-20) is replaced by

LITONB)] = AN BTN, B). (8-21)

The operator £ acts on any function w built out of generalized integrals of differentials wy, y,
through the map w — w®™P°! which replaces a generalized cycle by its symbolic partner. It
can be easily checked that any function on which £ acts later on has a unique symbolic partner
through this map on which ev.L has a well defined action.

The compatibility of the system reads

LIL(A, )] = hoxA(X, h) + [A(A\, h), L(A, h)] . (8-22)

The first line of the previous compatibility equations (whose Lh.s. is null) determines the last
line of A(A, k). Straightforward computations show that

AQ,I()\, ﬁ) = ALQ()\, h)LQ’l()\, ﬁ) + ha)\ALl()\, h),
AQQ()\, h) = A171()\, h) + ALQ()\, h)L272(>\7 h) + ha)\Al,g()\, h) (8—23)

Using the complete knowledge of the matrix A(\, i), one may now look at the last line of the
compatibility equation (8-22). We get, for the entry (2,2),

[,[LQQ()\, h)] = ha)\TI‘A()\, ﬁ) (8—24)
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The 1.h.s. of the previous equation reads

E[LQ’Q()\, h)] = ﬁ[Pl](/\, h) + o (8—25)
(A—q)
while the r.h.s. reads
hoATrA(M, ) = W WP, + 21, (8-26)
—q
Thus, we end up with
lPLy) = £PE] = 0, £IPSy) = —hPL, + 20P0y = —h(t 5+ t2)
& LIP1](N) = —Rh(t13 + t2,3) (8-27)
and »
Llg) = Pi(q) — 2. (8-28)

h

The same computation may be applied to the entry (2,1) of the compatibility equation (8-22),
and it is equivalent to

LRy =

(2
[’[Poo,3] -

2
Py = —2mPd, +n Pl
cP?) = —aP?, +npd PY),
P2 - clH] = 2hP(2) 24 pp@y — pl) Lo+ hPL P,
L[p] ~Pilg 9)p + hPj(q )+h o
H = 55— Pia); +Pslq) — hPi(q) + H(PLh —tas)g.  (8:29)

In particular, combining (8-28) and (8-29) we get that the evolution of (g, p) satisfies the Hamil-
tonian system

0Hy 8H0
= —h—— _
cla = -2, cp] = n5 (5:30)
with the Hamiltonian
P’ P (1)
Ho(p,q,h) = 7z Pl(‘])ﬁ + Py(q) — hP{(q) + hq(2P, %5 — t2,3)
2
+ (Pcff,llq“ + P( L + P(z) 24 P<2)1q + P+ 2nPha) | (8-31)
so that
H = Ho(p,q,h) + h(t1,3 + t2,3)q. (8-32)

We may use the connection between coefficients (P(j )

i and the spectral times (¢; ;)’s
given by (8-5),(8-6),(8-7) to obtain

>1§i§4, 1<5<2

Llt13) = Lta 3] = L[t12] = L[t1,0] = L]t2o) =0, L[t1,1] = htas, Lta1] = Ity 3, (8-33)
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indicating that the operator £ corresponds to the following differential operator
L= ht2,36t1,1 + ht1,38t2,1. (8—34)

In particular, since oo = 1 3 + 22 3, we obtain that L]ja] = 0 .We may also rewrite the action of

L in terms of the spectral times

= £[PZ)
Wt} 5 +153) E[Péf?l] = h(ta,3t2,2 + t1,3t1,2)
LIPS =0, LIPLY) = ~h(ti s+ t23)

] J=0
]
]
LIPZ) — LIH] = 2kt 5t250% + B(tatas + taot13)q + (tis + tas)p + Rty + to)(ts + to3)
]
]

—2% — (t13+t23)q° — (t12 +t22)q —t11 —taq

= (2(t13+ t2,3)q + t1,2 + ta2)p + 4ht13t2,3¢° + 3h(t13ta2 + ta3t12)q”
+2h(t1 3ta1 + ta st +t12t22)g
+h(tiatar +tiatos — (t13 — tas)tio) — hi*tas. (8-35)

Combining the last two equations, we may obtain the following equation for g,

L] = 2(ti3—t23)%q” +3(t13 —ta3)(ti2 — t22)q”
+ ((t12 — t22)? +2(t13 — to3)(t11 —t21)) ¢
+(t1,2 —to,2)(t11 — to1) + (2t10 — B)(t1,3 — t23) - (8-36)

Remark 8.1 (Normalization of the non-perturbative wave functions and coefficient «). The
value of the coefficient o = 13 + 2t23 comes from the choice of normalization of the wave
functions. Indeed, the Lax pair (8-16) and (8-21) is consistent for any value of a. However, this
value is imposed by the choice of normalization of the wave functions at infinity,

nv,; = _hj)\3_t17’2/\2_t1771)\_t1’01n)\+5 _,_iL
b 3h 2h h h PO (- AT
123,35 t22.0 t21 2,0 > Sa k
In¥ = — 22X - 22N - 2 - =InA—-In)+ S — . (837
nEL2 3h 2h h R AT 2’“2@:—1)%—1 (8-37)
Indeed, this formal expansion and the fact that tog = —t10 and t13 — ta3 # 0 imply that
o h2 32\11171 oV 2 oV 1 82\11172 : . :
Lyi(A\ h) = WO \"ax Tax T on o has a formal expansion at infinity,
Loi(M\h) = —tigtagA* — (t1atan + tast12)N\® — (tait1s + t1atas + taots 2)A?
—(t1,3t2,0 + t10t2,3 + t1,2t21 + t1,182,2 + htLg)/\ + O(l), (8—38)

where the Wronskian W (), h) is given by (8-12) with s = (t13 — ta3)e>107520. Thus Lo (), h)
only matches the formula given by (8-16),

Loa(Ah) = —PO X = PO — P2 — (P2 —2nP), — ha)r + O(1), (8-39)

o0

for t13 = —2]3(&)2 —a, le o=t 3+ 2t3.
Note also that S19 = In Znp (R, p) because of (6-39).

Remark 8.2. In agreement with the general theory developed in this article, the formal expan-
sion of the wave functions (8-37) as well as the condition on the Wronskian (8-12) completely
determine the Lax pair matrices using L = h(0,¥)¥~! and A = L[¥] ¥~L.
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Using Remark 8.1, we may look at the terms O ( L ) in entry Aj;2(A\ k) as A — oco. The

a2
coefficient is given by —¢ in the Lax pair formulation while it corresponds to 5[52'0]_fl[§i2]2tt1’2_t2‘2

using (8-37). Similarly, we may look at coefficient O(1) when A — oo of the entry A 1(\,h).
We get t1,3L[S2,0]—t2,3L[S1,0]4+1t2,3t1,2—11,3t2,2

= —% + t2.2. The last two equations are equivalent to

t1,3—t2,3
H H

E[SLQ] =t13q9 — n +ti12+t22, ﬁ[Sg()] =1t23q — n + 275272. (8—40)

In particular, since St = In Znp(h, p), we end up with

H H

LnZxp] = tizqg— T +ti2+tao= *?0 —ta3q+tia+t22
1 2

= -3 % - Pl(‘])% + Py(q) — hP{(q)| — 2P(§01,)2q +tip+t22. (8-41)

This relation connects the non-perturbative partition function with the Hamiltonian of the
system. This relation shall be useful to relate the non-perturbative partition function with the
isomonodromic tau-function associated to the Lax system. We let this perspective for future
works where we hope to prove that such relations hold for all cases presented in this article.

8.1.5 Gauge transformation to remove the apparent singularity

We may also perform a gauge transformation to remove the apparent singularity of the Lax
system (8-16) and (8-21). The general theory indicates that we should define

U(\, k) = J(\, R)T(\ h) with J(\ h) = ( h(ip : E) (8-42)

so that we obtain a new Lax system for W(\, ) given by

with
P _
L\ R) ( g ) S )
—(()\ + q)(tl,g + t273) + o2 + t1,2)ﬁ + Qg()\, h) -5+ Pl()\)
< —(t13+t23))\—£+t22 —1
AN\ h) = 7 ’ h ’ 8-44
(A7) < (t13 +t23) 8+ Q2(AN 1)  (ti3+1t23)g+t1o+2t20 — % ’ ( )
where
Q3(A\,h) = —P£?4)\3 - (ch,)4q + P£?3))\2 - (Po(g,)4q2 + Péoz,):&q + Pg,)ﬁ)\
+(PLg® + POy + PLyq + PO+ ity ),
Q20 h) = PO +2PPgn+ PO+ 3PL, % +2PP g + P2)).
(8-45)
The deformed classical spectral curve is given by det(yIy — L(\, h)) = 0. It reads
Pacto(Ay) = y° — PL(N)y + Pa(X) — hP{(X) — h(t13 + 2ta3)A — H = 0. (8-46)
In particular, we observe that
p pr— -
Pdefo (q; h) =0. (8 47)
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8.1.6 Recovering the Painlevé 2 equation

From the previous section, we know that the operator £ corresponds to £ = h(t2,30s, ; +11304, ).
This suggests that there exists a natural change of variables from (¢1,1,2,1) to (7,7) such that
L corresponds to Ad, while 7 should satisfy 9,7 = 0. We define

L o —ty), 7 L (hstis — tastar)
T = — ({21 —t11) , T=—"—7— (1311 —t23ta1
t1,3 —t23 t1,3 —t23
& t171 = t2737'+7~', tg}l = t1737'+7~'. (8—48)
This gives
Oy, = — Or + : Oz and Oy, , = ——— 0, — —2— 0. 8-49
b ti3—tag | tiz—tlag MU tig—taz | tig—taz | ( )

In particular £ = h0-, hd;7 = 0, 0;7 = 0 and L[7] = 0. Observe also that t;; — to1 =
—(t1,3 — t2,3)7. Equation (8-36) reads

R20%q = 2(t13—t23)°¢° +3(t13 — tas)(ti2 — t22)q”
+ ((t12 — t22)® +2(t1,3 — to3)(t11 — t21)) @
+(ti2 —t22)(t1g —t21) + (2t10 — A)(t1,3 — t2,3)
_ 2 3 2
= 2(t13—t23)7¢° +3(t13 —ta3)(t12 — t22)q
+ ((t12 — t22)? — 2(t1,3 — t2,3)°7) q
—(t1,2 —t2.2)(t1,3 — t23)7 + (2t10 — ) (t1,3 — t2,3). (8-50)

In particular it does not depend on 7. The last differential equation is equivalent to the Painlevé
2 equation after a proper rescaling (¢, 7) <> (¢,t). Indeed, let us define

1 1
T_<—1>3t_wandq_( 2 )35_%24272@
2(t1,3 — t2,3)? A(t1,3 —t2,3)? t13 — to3 2(t1,3 — t2,3)

1
1 (t1o —t2.2)? N —(t13 —t23)\ 3 t12 — 122
t=(=2(t1 2 —t 2\3 \The  "4e) d =22 "%/ e TEE )
( ( 1,3 273) ) <7— + 4(t173 — t273)2 ana ¢q 92 q+ 2(t1’3 — t2’3)

(8-51)
Then we obtain that ¢ satisfies the following Painlevé 2 equation
202 ~ 3 = h
h 8t2q =2¢°+tq— | ti0— 5 ) (8—52)

Note that the final rescaling (8-51) greatly simplifies when ¢; 2 = to2 and 13 —t23 = —1.

8.2 A Gl; example

In this section, we consider a degree 3 example where the classical spectral curve has genus 1
and a single singularity at infinity. In particular, we show how to derive the quantum curve in
this context using the general results obtained above. For this purpose, let us consider a classical
spectral curve defined by an algebraic equation of the form

y* = (PUA+ PO + (PO + PO+ PE )y — PO — PO - POA - P =0,

0o 00, 00,0 T
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where the coefficients (P(j )

i are generic in such a way that the curve has genus 1

>0§i§2,1§j§3
and that there are three distinct points (00!, 00(?), 00(®)) in the fiber ' (c0) above infinity.
This corresponds to the case N =0 and 7 ;) = 3 for j € [1,3]. We define

PN = PO+ P,
P = PO+ PO+ P,

o o0,
P\ = PO+ PO+ PPN+ PP (8-53)
The coefficients <P(g)i) are connected to the spectral times (ti7j)1<i<3’0<j<2 by the
) 0<i<3,1<5<3 <i<3,0<5<
relations
1 1
Péo?l - Ztm ) Péo,)o = Zti,l , 0= Z tio, (8-54)
as well as
2
P(Eo’)Q = Z tiotjo = t12t29 +112l32 + 122032,
1<i<j<3
3
2
Pch’)1 = Z Z ti1tjo = t11t22 + 111832 + 121812 + 121832 + 131812 +13182,2,
i=1 j#i
3
2
P = SNttt Yt
i=1 ji 1<i<j<3
= t1ot22 +1t10t32 +1to0t12 +L20t32 +t30t12 +E30t22 +t11t21 +E11831 +t21831
(8-55)
and
3
Po(o,)?) = —t12ta2l32,
3
cho,)2 = —t11t22t32 — t12t21t32 — t1,2t22t3.1,
3
Po(o,)l = - Z 1k P2,ko 13 ks
k1+ko+kz=4
= —t10to2t32 —t11t21t32 — t1,1t22t31 — t12t22t30 — t12t2,113.1 — t1,2t20t3,2,
3
Péo,)O = — D titaklak
k1+ko+k3=3

= —t1ol2,1t32 — t10l2,2t31 — t1,1t2,1t3,1 — t1,1t2,2%3,0
—t1,1t2,0t3,2 — t1,2t21t30 — t1,2t20t31 -
(8-56)

The computations being rather long, we provide the detailed example in Appendix D and we
shall only present the important result there.

The quantum curve corresponds to the Lax pair L(\, k) =

0 1 0
0 0 1 ,
P3(A) — hP3(A) + h(Pif,)g +ioatso)h — H+ 2L —Py(A) — htip + 2, Pi(A) + 32
(8-57)
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with the associated auxiliary matrix L[W(A, k)] = A(A, h)W(A, ) of the form

(2) H 1
PopA =5 T g woeg The 3

X
A\ h) = Az Az Azs (8-58)
A3,1 A3,2 A3,3
Compatibility of this system provides the following equations
['[tl,O] = ,C[tQ,o] = ,C[tgvg] = E[tgg] = [,[tzyg] = ,C[tl,g] =0
Llt11] = —h(tiata2 +t12t32 + taotz2)
Lltz1] = —h(tigtsa +taotss +1t55)
Llts1] = —h(tigtaz +taotss +135)
2
p1 = % + Pi(g2)p2 + hPa(q) + hPt1 9
1) 2 2 (1)
H = —Holq,p2.h) + (tra + P ps — nPLhq — nPE) — nP it s
2
Ll = =322 —4Pi(q)% — Pa(a) = Pi(a)? — h(PLh +202)
2
p
Llps] = 2PCL52 + (Pia) + 2P (a)Pi(q))p2 — hP3(q) + hPa(q)Pi(q) + hP3() Pi ()
+h2(Po(ol’)1t172 - t272t372) . (8—59)
In particular, the system is Hamiltonian with Hy(q, p2, ) given by
P P3 (1) P2
Ho(q,p2,h) = h% + 2P1(Q)h% + (Pa(q) + Pi(q)* + h(Py)y + 2t1,2))% — P3(q) + Pi(q) P2(q)
Hh(Ph s — taats)g, (8-60)
satisfying
haszO(q7p27 FL) = _ﬁ[Q] and haqHU(q7p27 h) = £[p ] . (8_61)

Combining these relations, we show that ¢ satisfies a PDE of the form

aolq; ML g) + a1 (g; )L [a) Lla) + az(g; 1) (Lg))? + asla; 1) L2[g] + aalg; B)L[g) + as(q; ) =0,
(8-62)
with polynomial coefficients (a;(g; h))1<i<s in ¢ and i whose expressions are given in (D-36)
(quantities involved in (D-36) are defined in (D-30)).
Finally, we get that

L = —h(t1gtop + t12t32 +t22t32)0 , — h(t12t32 +t22t32 + t%72)8t2’1_
R(ti2too + tootz o + tg,g)atg,p (8-63)

and prove that the change of variables

1 ti1 ti1 ] —(tiotao +tiotz o +taotzn) 1 ti12\ /7

| =Bt ]| & [ta| =B [n]|= —(t1,2t3,2 + toatz 2 + t%,z) L ta2 T2

T3 31 31 73 —(t1,2t2,2 + to otz 2 + tag) 1 132 T3
(8-64)

is such that £ = ho;,.
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9 Conclusion and outlooks

In this paper, we have been able to quantize any admissible spectral curve by building a for-
mal solution to the associated quantum curve using the topological recursion. A first natural
question which should be addressed is the generalization of this procedure to other classical
spectral curves. First of all, we expect that it is possible to drop the admissibility conditions we
introduced without changing the structure of the proof. It should also be possible to consider
any classical spectral curve given by a Higgs field on a higher genus base curve and allow for
more complicated singularities such as logarithmic ones. This step would in particular give ac-
cess to curves over C* appearing in the study of Gromov—Witten invariants of Toric Calabi—Yau
three-folds by mirror symmetry. Considering the structure of the proofs presented in this article
we expect that such a large generalization is possible.

We have observed in the first example of Section 8 that the non-perturbative partition
function plays the role of isomonodromic tau function of the system. We expect this observation
to be a general phenomenon. Namely, we conjecture that the non-perturbative partition function
is an isomonodromic tau function for the Lax system built by topological recursion. In order to
prove it, we plan to express the coefficients of the deformed spectral curve in terms of variations
of the logarithm of the partition function with respect to the spectral times. At the same time,
this would allow to describe the A evolution of the connection built in this paper as a flow in
the associated moduli space of connections, making the link with Hitchin systems.

In this paper we have considered formal A trans-series solutions to the quantum curve.
However, these trans-series are in no way convergent when £ is a small parameter. One important
question thus remains: how is it related to asymptotics of actual convergent solutions of the
quantum curve equation when A — 07 In order to answer this question, we would like to
be able to trade off the formal Fourier transform considered in this paper against a proper
Fourier transform. However, it is not clear in which context this can be safely performed since
the two orderings of the infinite sums involved lead to different ordering of trans-monomials
considered for defining the formal trans-series. This issue already appeared in the context of
trans-asymptotics developed by Costin [8, 9, 10], who proved that, in a particular setting, formal
trans-series of the form considered in this paper give good asymptotics to proper solutions of a
differential equation. We hope to be able to adapt this procedure to the present set-up and make
the link with the result on resurgence analysis encountered in a similar context [2, 48]. Very
recently, N. Nikolaev [44, 45] obtained tremendous results promoting formal WKB expansion
in A to some analytic objects defined in some Stokes sectors in the gl, case. It would be very
interesting to see how these results help in the understanding of the formal setup developed in
this article. Upgrading formal quantities to analytic objects would in particular allow to study
the asymptotics of bi-orthogonal polynomials arising in hermitian random matrix models and
make rigorous some saddle-point approximations in that context. Since our partition functions
and wave functions have 2g parameters (€, p), we expect to get a general isomonodromic tau
function in this way and should be able to study the Riemann—Hilbert problems they solve. We
wish to map these free parameters to coordinates in the associated moduli space and study their
map to Stokes data.

Finally, our results can be interpreted from a geometric quantization perspective. Indeed,
the initial data considered is an algebraic curve on the one hand and a choice of Torelli marking
on the other hand. This second ingredient is similar to a choice of real polarization for the
quantization of our algebraic curve. It would be very interesting to translate our procedure
into the language of geometric quantization and study the effect of a choice of polarization. In
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particular, it would be important to derive Hitchin’s equations governing a change in the choice
of polarization.
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A Proof of the loop equations and ramification points at poles
In this section, we prove Theorem 4.1 and Lemma 3.1.

A.1 Case (h,n)=(0,0)
This follows directly from the expression (4-4).

A.2 Case (h,n)=(0,1)

From the definition, an elementary computation gives

0
02(A21) wo,2(2, 21)
(dNE SUEDY dX

z€x—1(N)

-1
Zalku)y(zﬁ] . (A-1)

k=0

It is a meromorphic function of A on the base, i.e. a rational fraction of A. Since there is the
denominator d\ it seems that it could have a pole at a, a zero of d), i.e. a ramification point.
Let ¢, = /X — x(a) be a local coordinate near a, then d\ vanishes to the first order (from our
assumption of simple ramification points), and all the other terms are finite at the ramification

points. Therefore
0\ 2) _ O< 1 >
(dN)! A —z(a)/)
Since a rational fraction can have poles only with integer powers, this implies that

OGS
T oW

i.e. there is no pole at a.
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A.3 Stable cases
In this section, we deal with the stable cases corresponding to (h,n) ¢ {(0,0), (0,1)}.

Step 1: Rewriting the topological recursion

The proof is more easily obtained by using the general formalism of global topological recur-
sion developed in [5] where authors prove that recursion (3-1) defining the forms wp,, can be
traded for a more global formulation which reads

whn-l—l(ZO, = 5_(?2 Z Z (—1)k+1 % fa WO,Q(ZO,') hkr:rll( ﬁa ) 5
acR k= 1,8%37 Ha(2)\{=} Zl;Il I:LL)O,]_(Z) —w071(ﬁi)]
(A-2)
with o 01) )
GAREEED VD DREED SR | | CRRPITNE] S
HES(B) (1) =1

1(p)
U Ji=z 32 gi=h+l(n)—k
i=1

=1
0 (0,1)
where the symbol > means that one considers only terms with (g;, |ui| + |Ji|) ¢ {(0,1)}
and a € ¥ is an arbitrary reference point.
In [6], Cauchy formula on ¥ allowed to prove that this version of the topological recursion
can be equivalently written as

# dx(z
0= Res | [ enaCeo,)] gptatsay Qs (2 0(2)52), (A-4)
aeR o — oy

where we abusively use the notation

OP(z(2),y(z") _ OP(\.y)

Oy T Oy |a=u(2)
y=y(z')

(A-5)

and Qnn+1(x(2),y(2);2) is given by Definition 4.3.

Step 2: Proving that WQh n+1(x(2),y(2);z) is holomorphic at the ramifi-

cation points

To prove this second step, let us assume that %Qh n+1(x(2),y(2);z) has a pole at
dy

z = a € R. Hence, in any local coordinate, it reads

dz(z) () u(2): Z) — Shn+1(2)
ey 2 S g

for some m > 1 and Sp n+1(2) # 0. On the other hand, the expansion of wy 2 in the same local
coordinate takes the form

(1+0(z —a)), (A-6)

o0

/ woa(z0,) = (2 = a)* fak(0), (A-7)
@ k=0
where f, 1(20) is a 1-form behaving as
dZ(]
fak(20) = (o — a)ft (14 O(20 — a)), (A-8)
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as z9 — a. The evaluation above shows that the leading order of (A-4) in (29 — a) implies that
Sh.n+1(z) = 0, leading to a contradiction.
Q$L+ﬂ )

Step 3: Proving that To()F

Let us recall that

is holomorphic at the ramification points.

k
k r—k Q§L727,+1 (/\ﬂ Z)

I
M=

Qh,n+1()\ay;z) (—1> Y W’ (A‘9)
k=1
so that
d
Q) (a(2):2)
Qs ((2),y(=):2) = D2 (~1)fy(a) -t LI (A-10)
— dx(z)k
Q1 @(2)32)
We shall now use an interpolation formula to extract the coefficients % out of
@nn+1(2(2),y(2); 2).
For this purpose, let us write
P(a(2).y) _
= B G5 Ve AL ) (A-11)
y-yz) =
where l
U9z = > Tlvo. (A-12)
5%1“1 (@(2)\{z} =1
The evaluation at y = y(z) gives
d—1
oP 1
FCORTOIED SO RO} (A-13)
1=0
while the evaluation at y = y(z') with z(z) = z(2’) but z # 2’ implies that
d—1
Ve er Na(z) \ {2}, 0=> (-D)y?)"uW(z). (A-14)
1=0
One can use these two relations to compute
Qnni1(2(2), y(2'); 2) OP
) yZ) = - s 6z 5!
Qoo plhn) = 30 S TS (). 4()
z'ex—1(z(2)) Y
d 1
_ Z Qnnt1(2(2),y(2'); 2 )10 (7,
S ai(x(Z),y(Z’) —
Zex(z(z)) Oy 170
(A-15)
Exchanging the summations and shifting the index [ by 1, one gets
d /
ni1(x(2),y(2); 2 _
Qhoni1(z(2) Z Z Qh,g;l( (2),y(2") )U(l 1)(2/). (A-16)

=1 Sy A CLORICO)
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Comparing with (A-10), one obtains

Qora(@(zh2) Qun1((2),4(z):2) 1),
o de(mF T z/@;ﬂz» Pau) A

Since we have proved that Q”’g}i 1(2(2).y(=)i2)

is hol hic at th ificati int d
5 (a(2) (=) is holomorphic at the ramification points an

Q) 1 (x(2):2)

Ao () does not have any pole at z = a € R.

U= (2") obviously is, one can conclude that

A.4 Ramification points at poles

The points of ~(P) play an important role in this article. A large part of our derivations rely
on the fact that wp,(21,...,2,) for (h,n) # (0,1) have no poles at any z; € x~}(P). Let us
consider some subclass of spectral curves for which this holds.

Let us write the ramification profile over P € P as

e~} (P)={pPW,. . . pUr}, (A-18)

dp) = degp(a) . (A-19)
Let us denote ¢, the canonical local coordinate near P(® and let us denote

27i

Ppiey = €"P (A-20)

the root of unity.
The meromorphic function y has a Taylor—Laurent expansion given by the spectral times

T pla)~1
ydz = Z tplao g ¢ F1d¢, + analytic at P, (A-21)
k=0

Lemma A.1. If for all p € 7' (P) we have rp >3 and tp,, o # 0, then wy, for (k,n) # (0,1)
are analytic at x=1(P).

Proof. The proof proceeds by recursion on 2h — 2 + n. It is clearly true for 2h —2+n =0, i.e.
for wo 2.

Let us assume that it holds up to 2h — 2 4+ n and prove it for wy 41 using eq (A-2). Let
p €z (P).

By recursion hypothesis, the factor U b Jrl( ,B;2) has no pole at z = p nor ; = p, but it
may have poles at z = f3; or 8; = 3; if they appear in wp 2. Remark that

Bj
Pp —2 32
wO,Q(ﬁia/Bj) = ) ; Cp dea (A_22)
(i = p')?
i.e. it has a double pole (notice that pp’ — pp’ 7& 0 because (; and f; are in [0, d,]).
The maximum number of factors wp 2 is ki which means that the degree of the pole is at

most £+ 1.
Let us now study the behavior of the denominator with ydz. We have

yda(=) = yda(By) = tpr,1(1 = )G Ay + 2L = ol )G TG + 0 (G5 ) dG.
(A-23)
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If r,8; is not multiple of dp, this quantity is of order O (Cz; ® ), and if r,8; is multiple of d,,

then (7, —1)3; can’t be multiple of d,, and thus in both cases this quantity has a pole of degree
at least (r, —1).
n (A-2), there are k factors m, therefore the integrand is of order at least
—(k+1)+k(rp—1)
0 (G ).

If r, > 3, the integrand behaves as O( Z'f_l), which has no pole because & > 1. Therefore,
the residue vanishes.

This proves that residues coming from a = p vanish, and hence wy, ,, is the same as if we had
taken residues only at a € R, which have no pole at z € 27 1(P). O

Remark A.1. This condition is sufficient, but it might not be necessary.

B Proof of the KZ equations

In this section we prove the KZ equations for a generic divisor D, then we regularize them for
a particular divisor D = [z] — [00(®] and finally, we re-write them making use of cycles.
B.1 Proof for a generic divisor

In this section we give the proof of Theorem 5.1. Let us compute the differential hd,, 1y ;(D, h).
It reads

hdpi’(ﬁlﬂ'(D, h) _ hde [ h2h+n / / Qh n+1 pla : ] w(D,h)

€N2 dx pl
h2h+n Q n pla :
- / / . ] hdy, (¥(D, 1))
GNQ dCC pz
B [ h2h+n+1/‘ / (th+1 Di; ))] H(D. )
(h,n)eN? da(p;))' 7
Lo, p2htntl / / Qh “Chn+1\Pi> Pis*) pl7p’b7 ) w(D ﬁ)
’ (h EN2 ’I’l - 1 d(L’ pz ’
h2h+n Q n pla :
" / [ Sl b oD (B
€N2 dx pl

The first of the last three terms is obtained by action of the differential operator inside the
integrals while the second one comes from the action on any of the n integrals themselves.

Let us now compute the different terms. One has

hd,, ((D, h)) = a; h% Hn/ / [whnpz,‘ 5ho<5n2(dx(p’)dx()guw(llh),

(pi) = ()

[ h>0n >1
(B-2)
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so that the sum of the second and third terms reads

2h+n+1 Q n (pispiy)
Qi ) >0 2on>1 hn ] / / h(dzl(p) (D, h)

T Z h2h1+2hg+n+ng Qgi n1+1(p“ (B-3)
1 ni 'TZQ' dz(pl

h1, h2>0 ni,n2>0

/ s (06 ) = G a1 B ] (D1,

which can be re-organized as

O‘ZZ Zh2h+n [ / / QP 1d,;+; (Pispiy)

h>0n>0

Qh n +1(pu B—4
* Z Z nl'm'/ / 1clml(zm >y

h1+h2 hni+nz=n

N dz(pi)dz(-
/DA) |:Wh2,n2+1(p2) ) 5h2,06n2,1 @(ps)—z())2

Using Lemma 5.1 and Definition 5.4, this reads

}] (D, h).

=

h2h+n

- O‘zwl-i—l ’L(D h)daj pl + azz Z

h>0n>0
(1+1) (

/ / [Qh n+1
z1€D 2n€D dCU pz

Plugging the definition given by (4-8), this reads

i l,)n pu z \ {ZJ}) dfC(Pz)dx(ZJ)

st p) (@) —x(z))

]¢(D, h). (B-5)

2h+n x(p;
_aiwl+1,i(Dvh)dx(pi)+aizzh+ncf(p)/ thZ-li,-l( (pi);2)Y(D, h)

h>0n>0 ’ z1€D 2n€D
QD a\z)) 0P (piz\(z))

. aiz Zh2h+n /ZlED /ZHED Zdzj [dx(%)( dar;(zj)ll - 4 dx(p;)! )] W(D,B).

(B-6)

One can evaluate the last term by integration along the divisor D and, taking into account that

78



it has degree 0, one gets

wl,z‘(Dv h) - wl,j(Dv h)
z(pi) — z(pj)

— ait1,(D, B)da(ps) — hasda(ps) >«
Jelt,sI\{i}

., h2h+n+1 (Qh ) p“.)> o
" [(h e / / d(p:))’ v

2h+n
TR ) il /ZleD / G, (w(pi); 2)(D, ).

h>0n>0
(B-7)
Plugging this into (B-1), this gives
J(D,R) — by (D, B
fidp, 1(D, h) = —airr,i(D, h)de(p;) — houda(ps) Y ajwl’ ( .) w“( )
. ) z(pi) — :C(p])
JelLs]\{i}
h2h+n+1 n pl7
+<1—a?>[ / / ( A ))] (D, h)
(h,n)EN? d.?? pz )
ﬁ2h+”dx
T ) P / / Q) (a(pi)s 20 (D, B).
h>07n>0 ! €D
(B-8)

B.2 Proof for the special divisor

In this section we prove Theorem 5.2 corresponding to the special choice of divisor: D =
[2] = [00(®)], with z ¢ = (P) Uz~ (x(R)) a generic point in a small neighborhood of oo(®).

For a two point divisor D = [z] — [pa], the first KZ equation of Theorem 5.1 reads

=[z]— , D=[z]— Jh)— D=[z]—[p2],h
hdw’l(Dda:[(z]) [p2],h)  _ —t11(D = 2] — [p2], h) + hT/Jl,l( [2] [P;](z))ﬂzﬁ(lz;zg [2]—[p2],1)
I,h n l
H[S S L Lo @21 | 04D = ] - )
h>0n>0
Multiplying this equation by e Voo (P2) _1 de(p2) , one gets

z(p2) \/ dC__ (o) (P2)

Wi e U U P :
8 [ St

2(2) — z(p2) h>0 n>0

where we denote for simplicity:

(P2) . 7V (o) (p2) 1 dz(p2) (D =[2] — I
w € :E(pg) dCOO(a)(pz)wl’Z( [Z] [pQ]v )7

for i € {1,2} and [ € [0,d — 1]. They are defined in such a way that

(5D = [2] — [0 @], h) = lim o, forall I € [0,d— 1.

pg—)oo(o‘
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By definition, 1(112) is holomorphic as ps — 00(®), so that one can separate the singular and

regular terms in this limit by writing

w(p2 77b(pQ)
d(z) m
w(p X ph (I+1) (
= —hi . : p2)
z(2) LZN)T;) n! /zleD 2n€D Qh nH( #(=);2) Yo

The LHS admits a limit as ps — c0o(® and reads

P9 (D = [2] — [0'], 1)
dz(z)

+ U5 (D = [o] = [0 ¥)], ).

This implies that the RHS admits a limit as ps — c0(® as well. In order to study this limit, let
us write this RHS as

L W59 \] o
/z1ED /anD (th+1 #lz)iz) = h(m(z)—x(pz))(dx(pg))l> Yoi . (B-9)

where we have used that wopg) = (pQ) because ¢ 2(D, k) = 1o 1(D, h) = ¢ (D, h) for any divisor
D. The factor ¢0,1 satisfies

[h>0 n>0

Y2 = (D = [2] — [0 @] ), as py — 00(@),

h2h+n (1+1)
oo Ly (B

~

5 th+1(p27 ) )]

so that the RHS tends to

(2] = [oo'™], ) - lim

pa—roo(®)

[h>0 n>0

(x(2) = z(p2)) (dz(p2))’

Let A € PL\ P, and A # x(2), we have

(1 (I+1)
[y Y R / QL fax'
z1€D zn €D Z1€D Zn€
1)
el DQ<uzvm<>
zZ1€ Zn—1€

QY (po;2)/da(pa)" .
—SL‘pg /z1€D /zn 1€D h, )/ ( )

(B-10)
The third term exactly cancels when we sum over n, and the first 2 terms do have a limit as
pa — 0ol Indeed if [ > 1, in the definition of th:il()\;zl, ..., 2n), there is no wp1(z;) for

any ¢ € [1,n], and there is no wp 2(2;, zj). Thus the integrals z; € D are convergent in the limit
p2 — 00
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This implies that the RHS tends to

h2h+n (1+1) .
wreg([z] — [oo(a) - lim / .. / <Q . (A\;z)/dA +
A—=x(z) hz>07;) n! z1€[2]—[00(®)] 2n€l2]—[o0(®)] h,n+1

Q)1 (22)
M) <dx<z>)l> |

Let us write the limit as a residue at A — z(z) as

(I+1
Res lzzh2h+n / / (th”r)l( z)
A—a(z) == !l ez~ ool ) AN+

The integrand is a rational fraction of A\, with singularities at x(z) and at A € P, therefore
moving the integration contour we get

(141)
g DA lz S Y <@<A>
o AP A —z( ronso 21€[2]— Oo(a)] 2n €[2]—[00()] A\

Q;i)nJrl(zQ Z)
) <d:r<z>>l> |
1
A—x(z

The last term in O=2())2 yields no residues at P. For the other term, let us Taylor expand the

Aii(z) at \ > P as

o~ — el e (N () (B-11)
k=0

This gives

> D &p(a() ™" Res £p(N) " dgp(N)

PeP k=0 oh

+n
Zzh / / Qpnh (i) /AT, (B-12)
h>0n>0 z1€[2]— oo<°‘>] 2 €[2]—[00()]

This leads to the KZ equation
dwreg([ ] [oo(a)L h) reg (o)
B S U (e - (L)

[Z Z h2h+n

h>0n>0

D> pla(=) " Resép(N)f T dep(N)

PeP kGS(l+l)

z 2 (1+1) .
/ = (a)‘ . / —oola) Cgh(g;;l(—i-l)] ¢reg([z] - [OO(a)],h) (B_13)
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B.3 Rewriting the KZ equations with cycles

For every pole P € P, let us write its preimages =~ (P) = {p(1), ..., p¢P)} keeping track of their
multiplicities as follows

1) d (2) d (ep)

P= (P(l), - ,P(d)) = (p(l), o pD @ @ ) ,p(ep)). (B-14)

, k—1 k
For j € [1,d], we will say that PU) corresponds to p¥) if 1 4 Yo dyn <3 < Y dyr. We also
r=1 r=1

denote d,) by dp), for every PU) that corresponds to p(*). Note that there are d,k) different

j’s that give PU)’s corresponding to the same p*).
Let us introduce roots of unity

27i

ppu) =€"PO) (B-15)
In a neighborhood of A — P, we denote the preimages
xil()\) = {Q17 ceey qcl}a

labeled in such a way that when A — P, we have ¢; — PU)_and the local coordinates are

1

Cpn (47) = (ppw))! (Ep(N) PO (B-16)

In particular, if PU) = PU")| the local coordinates are proportional by a root of unity
Cpor = () 7 Cpi- (B-17)
Then let us Taylor expand thz_lH( z) in its first variable in the limit A — P. For (h,n + 1+

1) # (0, 2), the Taylor series of wh7n+l+1(qi1, eo oy @iy #1, - - - Zn), has its coefficients obtained by
residues, i.e. by generalized cycle integrals

+1

Wh,n—&-l—f—l(élip s Qi Rl ZTL) = Z H CP (Zz] v_ldCP(’ij) (qu)

ki,...kip1=—rp j=1

/ tee / (,(.)h7n+l+1(', ceeyty Z). (B—18)
CP(il),kl Cp(ilﬂ),k“r1

Non strictly positive values of k;s can occur only for wp ;. We denote the lower bound rp =
man:L”.d (TP(]') — 1).

We can also write the Taylor expansion for the integrals with z1,...,2z, on D:
/ / whn—‘rl—i-l Qlla"'7Q1l+1> geees R )
Z1 ED Zn€
l+1

= Z 1T ¢pn (@))% d¢ iy (as;)
ki,...kip1=—rpj=1
/ /whn+l+1 (B-19)

for )

As in the last expression, for simplicity, we omit the variables that we integrate over when there
is no possible confusion. Notice that the | p integrals are rightmost, they are performed before

P gy p(ll+1
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the C, j integrals, i.e. before taking the Taylor expansion coefficients, and (B-19) is not the
integral of (B-18) in general. However the only case where the order of integration does not
commute is for wp 2, as we saw in Proposition 5.1, and in that case

o0
/ wo2(gins21) = Y Cpen (gi)™ T dCpan) qn/ /w02
z1€D

k:1 0 (H)k
= 6P(l1)oo(a)<P(l1)(q“) YdCpin (a,)

+ Z CP(h)(qn dgp(n qiq / / . (B_20)

ki1=1 Cplin) k1

From the definition of th:il

evaluated at g;; # ¢, However, we can expand them around ¢;; — Pl 4 e {1,2}, with

(A\;z), the wo2(qi;,¢i,) that can appear there will always be

P(@) = P(2) The Taylor expansion of w2 is

ng(li) (%'1 )dCP@Q) (Qiz)
w0,2(Qiy > Qin) — O piiy) pli
02(Gin: di2) = Optn pta) T 0 N )

= Z Cptin) (@)™ 1 dC i) (i) ) pin) (@15)™ 1 dC pia) (i)

ki ska=1
7{ 7{ dCpin) (21)dCpiz (23) )
Zec Zhec (Cpain (21) = Cpuin) (23))?

= Z Cp(h) (qil )kl_ldCP(ﬁ) (qil )CP(iQ) (qi2)k2_1d<}3(i2) (qu)

o
(w0,2(zl7 22) - 5P(i1),P(12)

pli1) gy P(i2) Ky

k1 k=1
f/ (— Spiin) pliz) kaCpin (21) "2 dCpan (21) + j{/ W0,2(2172§)>
ZlecP(h),kl ZQGCP(iQ),kQ
o]
= Cpan (@) T A piin) (00)Cpiin (002) ™ dC piiay (ais)
Ky k=1
7{ }{ wo.2(21, 25)- (B-21)
ziecP(iﬁ,kl Z2ECP('L2>,I€2
Then, notice that if P(1) = pli2), EPE”; = pg(sz is a root of unity. This implies
plt2
dCpiin) (di1))ACpi (i) P
pip) \diq pliz) iy o pli1) C -1 -1
= i (@) dCpain) (63 )Cpin) (¢ia) ™ dCpiin) (¢i)-
(Cpan (4)) = Cpan (@:2)? (1= piagizyz >0 P AR P
(B-22)
In other words
p’Ll 'LQ
(i1) _ _
w2 (dirs 4is) = Opii) plia) =g Cpn (i) dCpain) (i) Cptin (diz) ™ dCpiiny (diz)
oo
+ Y e (@) T piin) (9) S (4i2))™2 T A pis) (4i2))
k1 ka=1
7{ wo,2- (B-23)
Cplin) i, Y Cplin) g,
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In some sense this is as if we extended the sum in the second line to include the cases k1 = 0

and ks = 0 by defining;:
% f wo,2 = (P)i1,i27 (B_24)

Cplin) 0 Cpliz) 0
where we defined the d x d matrix R(P) to be

i1 —i2

, o P pti1)
Vi S [[1, dﬂ R(P)z,z = 0, W 11 75 19 ]‘?J(]D)ihi2 = 6P(i1),P<i2> Pizllzgg (B—25)
(- pP(m)

With this definition at hand, we can now write the RHS of the KZ equation (B-13), after

expanding the thj;il( z) around A — P, as
h2h+n
2 X el
h,n>0 ' PEP eg(i+h)
6[%1$*1()\) IJES( ) Jil-- LlJl(l,) z l%)hz_h+l( ) 1]{31'1]':1—7“})(1,1.,],)
=1
v) |vil
@, i—1
Res £p(A)*1dép (V) HHcpamdcpwi,ﬁ/dA
i=1j=1
I(v) |vil | Ji
IT( (11 H / o1l | |9 (L] = o), h). (B-26)
i=1 \ \j=17Cpi),  j=1"[1" [oo(e)]

Notice that only the elements of J; are integrated from co(® to z, and since |v;| > 0, it can
never be an integral of wy 1, i.e. the integrand never has poles at 00(® and thus these integrals
are well defined.

Note that only wq 1 factors can bring some k; ; < 0 and only wp; and wp 2 factors can bring
some k; ; = 0.

Let us now compute the residues at A — P. We have,

o If P = A; is a finite pole, we denote ep = 1, and its multiplicity dp) = orderpyz > 0.
The canonical base local coordinate is £p = A — A;, dép = dA, and writing the preimages
of P with multiplicities as {P(l), e P(d)}, we have

1
Cpt) = Pm and  d(pg) =

1
dpy)

dpl(j) -1
er dep. (B-27)

The residue at A = P thus selects

) |vil

_ :_z_1+zz (B-28)

i=1 j=1 P(””)

e If P = oo is an infinite pole, we denote ep = —1, and its multiplicity dp¢) = —orderpx >
0. We have {p = %, d\ = —§;2df p, and writing the preimages of P with multiplicities as
(PO ..., P@} we have

1
Cpi) = Pm and  d(p() =

1
dpi)

dpl(j) -1
e dep. (B-29)
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The residue at A = P thus selects

) vil

—k_l+1+227. (B-30)

i=1 j=1 dpiwi;)

In both cases
) |vi

D

|
i=1 j=1 dP(””)

Z

l —|— 1)€p — k. (B—31)

Some of the k; js can be negative and with lower bound k;; > =7, )-
sum over the k; ; must in fact be a finite sum, with an upper bound.
We have that the RHS of (B-13) reads

This implies that the

h2h+n
D ) DD DRI
h,n>0 pep kGSEDH_l)
o0
B S N VES(H) hiig)y=z 1) kig=1=7 (i ;)
hi=h-+1(v)—~1-1 P
El (v)—
() |vil . W(v) v
17
O{D D=+ Dep—k HH
i=1 j=1 P w151 Gptis)
I(v) |vi] | i

1 H/[z}—[oow] Oy fal+1i] | |92 = [0, 1), (B-32)

pi) g, 5 J=1

where we use the Kronecker  to encode the constraint on the £; js. In this sum there are terms
with k; ; < 0 that may only come from w1, there are terms with k; ; = 0 that may only come
from wp; and wp 2, and there are the strictly positive k; ; > 0.

Let us separate the negative and vanishing £; js from the strictly positive.

We shall decompose the partition v into 3 pieces:

e A piece that we re-call v for the strictly positive k; ;s:

v= |_| {Vi,lv"'ayi,\zzi|}7 (B-33)

i€[1,£]

with all indices (4, 7), j € [1, |v|], distinct, corresponding to elements in 1, d], and giving
an order to the sets. To it we associate the sequence of exponents

((kl,la cee k17‘l,1|), (/6271, cee k27|,/2|), cee (k&l, cee k&\w\))v (B-34)
with all k@j > 0.

o A piece that we call v/ for the negative or vanishing k; ;s corresponding to integrals of wp ;.
All its parts must be of size 1, and instead of encoding it as a set partition, we can just
denote it as a set of indices v/ = {v1,..., v}, with v} € [1,d] \ v. To it we associate the
exponents

K, with k. € [0, T o)) —1]. (B-35)
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The integrals associated to it give the spectral times

f (A)O’]_ = tP“’D,k; (B—36)

P(V'D,fkg

e A piece that we call v’ for the zero values corresponding to the pseudo-integrals of wo 2
which are worth R(p);, ;,. All its parts must be of size 2 and its indices are taken v/’ L €

[1,d]\ (vuUv'):
= { A v Y i v )Y € SON([L,d] N\ (vUY)),

where we denoted S@)([1,d] \ (v Uv')) the set of set partitions where all the parts have
size 2. To it we shall associate zero exponents .. ’. =0, and the factor

(3

C g = %C; f R(p)l/{,+,1/”_ = R(p)l/" (B_37)
( // // >

Y=o

Finally, one could have a factor of the form

/ / wo,2,
c [2]~[o0()]

P Viﬂ'),kl-’ j
with Pii) = 0o(® and k; ; = 0 giving a contribution equal to -1. In this case, one has the same
contributions as above for v U v/ Uv" not containing o and |v U v UV"| =1.
In the end we get the RHS of the KZ equation divided by 1*8([z] — [0o(®)], k) as

r -1
p2htn +1 P
P aD DED DR C OIS DD DOEDS
h,n>0 PEP pcgU+D) U=0 v'Cyld] k=0 o<pr<ttl=tl eS@)([1,d]\v')
P l(V”) =y
o |
> > > > I
o _ ML Ty
g C  [LAN'U) veS(B) 1w kij=1 mit-tme)=n
I+1—0 —20"" > hi=hAl(v)—|v|—€" =1, SU(v)
=1 J=1 |yl
l(v) |vil v 4 1%
k» k’/ €Ep 1
(3 = ner ke X T T
i=1 j=1 P<”m‘) = Dped ) iz dped iy e dpen
i l(v) |vil ni
HHd [T [T A 1 e
i=1j=1"P¥ii) j=q i=1 Jj=1 CP(Viaj),kij j=17 el =[oot]
l r (1//.)71
h2h+n b ¢
- nlD JICSC OIS DEEED DR DD >
h,n>0 kes(ty =0 v'Cy([1.d\{a}) k=0 o<er<izt! u”es<2>([[1 d]]\z/ u{a})
Iw")=¢"
o0
g < [Ld\(vu'U{a}) vesS(B) ) kij=1
1—e/ 20 > hi=h+i(v)—|v|-¢" =7 SUv)
i=1 j=1

el
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lw) |vil 4

> '7 ZZ l—i—l)eoo—k—I-Z ki

ni..
ni+- +nl(,,)+1*n 1 i=1 j=1 oo(iss) i=1 oo
el 4//
= HH =]l giF
OO(C“) i=1j= 1 (sz) i= 1 l/ (u” (“ )
4 l('/) |Vz|

ku ree H/

[#]~[oo()]

Now all cycle integrals are with generalized cycles with k; ; > 0, and these commute with
all other integrals present in this expression; in particular with integrals f[z]_[oom)}, so the order
of integrations doesn’t matter anymore. Moreover, we have a formal power series of h, whose
coefficients are rational fractions of x(z) with poles at P, and whose coefficients are algebraic
combinations of generalized cycle integrals of the wy, ;,,4|,,|, therefore it can be written as the
evaluation of an element of our symbolic algebra W.

So let us rewrite the last expression in W as

(Uz j)

-1

I+1 "o
I+1 —k
LD IE D R CIRD DD DEED DEDD >
PeP kesg“) =0 v'Cp[1,d] k=0 0<€//<l+1 o u”eS(2)(ﬂ1 d]\v")

( ) e//

2 > —

C 1,d 1 S
/8l+17[’72£”[[ Ny vesis) H H dP(V”) H dP(y/) H d (y//+>d )

i=17j=1
I(v) |v; o
oo CYZ ,

(z+1)6p—k+zdk Hh 1tp(u/)k/ HR

ki ;=1 i=1 j=1 " PWij) poh | i
i=1,..,l(v)
J=1,...,|vil

I(v) n; \u,|
R2hi —24n;+|v;| T

Z H/ / Whi,lvi|+ni

hi,eshyy niteedngey=n =1 j=1 [z]— 00(0‘>
l RN
W S el 3 DS
o0
kesEht U=0 vCulld\{a} k=0 o<er<lst v eSO ([Ld)\v'U{a))

( ) e//

1
> > :
Bl e’gz [haleravrtal) ves Oo(a)HHd (V”)Hd <'/’z)l_IdooO/”ffJr 0o ;L)
i=1

i=1j5=1
00 W(v) |vi k‘ e k/ v 2
2 A\ X2 g =t ek ) o | LI e TR0,
ki j=1 i=1 j=1 OO(””') o) ) =1 =1
i=1,...,l(v)
=1, v

|vil

p2hi—2+ni+|v;| M
2 H jnl/[z1—[oo<a>1H

hl?'“vhl(u) TL1++TLZ(D)+1:’H =1

/ Why,|vil+n; | - (B-39)
c L ,
ij

Zj)

The following lemma will help recognize this expression as an operator acting on .
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Lemma B.1. Let | > 0 and let Cq,...,C; € € be some generalized cycles of strictly positive
type (i.e. C; = Cp, 1, with k; >0). Let D be a divisor of degree 0. We have

reg symbo p2htn
W' Zo, .. Topree ™ 1(D7ﬁ):[ > o > > 2.
h,n>0 VES([[l 1) nit4n)=n hit-+hy)=h—I+1(v)
] reg symbol
l(V) H/ H/ wh7,7|1/7,|+nz :|¢ 85y (‘D h)
H Z =1 JEV;
(B-40)
and
bol h2h+n—2l
reg symbo .
evZe, ... Tob (D, h)= {Z > Z — /D / N
hn20 8Cz=1(\) vES(8 ze #n€
Jiu-- LlJl(u) {21, ,zn} hi+- +hl(u) h—l+l(V)
l(V
H/ Why v |+ J;] Vqu))] Y (D, h).
=1 jey;
(B-41)

Proof. Let us start by proving (B-40) by recursion on (. It is true for [ = 1 by our definition of
applying Z¢, to an exponential (5-62):

2 reg symbol h2h+n symbol
Loy pr s ™% (D, h) = ., 1+n YYD, h). (B-42)
h n>0

Then, assuming it is true up to [ — 1, let us prove it for [. We have by induction hypothesis

h2h+n
21 reg symbol 32
W Te, . TourE <D,h>—hzcl<[ D DR DENEDS
h,n>0 veS([1,l-1]) nit+nip)y=n hit--+hy,
=h—I+1+1(v)
z(u) H H / 11 / Wh i 4+ ]Wegsymb‘ﬂ(l? h))
Z 1=1 jEV;
(B-43)
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Then we apply Leibniz rule

h2h+n

thI(jl g T8 symb01(Da h) = |: Z n! Z Z Z
’ S([1,

h,;n>0 —1]) Pt AN ) =N a4 A-hy ) =h =14+ 141(v)

H/ H/ Wh,|vi|+n; :|hIC ¢regsymbol(D h)

Hz Zzl J=1 JEV;

h2h+2+n
Y= X ¥ >

h,n>0 VES([[l 1—1]) nit+-+ny=n h1+"'+hl(u)=hfl+l(1/)

n! . .
T ( H/ H/ Wh ;| +ns ﬂd)egsy bol D, h).
[[i=q ni! i=1 jev;

(B—44)

The first term can be written using (B-42) as sum over partitions of [1,l] the form v =
(V1,5 V), 1), i.e. a partition obtained from v by adding one more block of size 1, hence
I(7) = I(v) + 1 and || = |v| + 1. Then we have that the new genus is h = h + hy(), giving
hi+ -+ Iyey = h—1+1+1(v)=h—1+1(#). We also have & = n + ny)- In the second
term, Z¢, acts by Leibniz rule on the product, by acting on one of the factors, which amounts to
adding the index [ to a block of v in all possible ways. This gives R2ht2+n with a new h = h+1
and 7 € S([1,1]), s0 h1 + - + Iy =h—1+1(p), with [(7) =l(v) and h— 1l = h —1+1, as
before. Eventually these two terms together give the sum over all partitions of the set [1,],
i.e. the formula (B-40) at rank [.

To prove (B-41), we just recognize that the factor

Hig nil )

is the number of ways of writing
{21, sz} = iU U Uy, (B-46)
This ends the proof of the lemma. O

We define the operator

; s RO Ty Ok —k/d;
Li(x(2)) = ) lzjllﬁp(w(z))_(lﬂ)e”z > H( 3 clljmk . pm)

PeP 0=0 v'Cpl,d] jev k=0
L BR(P),y

2 >l

o<t v es@ ([Ld]\v) =1
l( ) 6//

d G d I
Pl )

k/d

g p()
S (R )]

v C  [LA\@w) jev k=1

11—t/ —20

Tl ™ 1 .
i eyt s g7 s )

d
=0 v'Cy[Ld\fa} jev' N k=0 ooV

<0
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' R2R(00),r
> > i

o<er < esCI([, A\ ('U{a})) =1

Ww")=¢"

)& gl;fdoom
> H(h > i Icw(j),k>] : (B-47)

v  C  [Ld\(vw"U{a}) JEV k=1 <0
-/ 20"

d v Cl !
A W)

o)

where the notation [-]<o means we keep only the terms that give {p(z(2))™™, with m € Sp
Then (B-40) implies that the RHS of the KZ equation is

hdxcgz) ;o] = oo ) + (2] - (00 @]) = ev.Ly(z(2)) |08 ™0 ([2] — [00(®])| . (B-48)

This ends the proof of Theorem 5.3.

C Proof of Theorem 6.4: No pole at ramification points

C.1 General idea of the proof
For any triple J = (P, k,1) pep kene[o,d—1]» L£Pk, is a linear combination of operators of the
m

form H (hQch) with generalized cycles of the form C; = Cp, x, with x(p;) = P, k; > 1 and
j=1
m < [. Let us note that the coefficients of this linear combination are independent of A.
For any set of generalized cycles (Cj);”:l of this form, one can define the symbolic matrix

m
~ -1
Az}imb(()jlm — h—l H h2I ‘ljsymbol (‘I,symbol) (C—l)
and its evaluation
T “symbol
Aclv“'ﬂcm = eV'Az};rvr-l-w%m' (0_2)

It is defined in such a way that the systems

dysymbol () T symbo Jsymbo
hwd,\ = = L¥ bl()\)‘l’y bl()\)v
s i~ bol o~ (C-3)
H h2Ic psymbol ()\) _ Az}iin 7(():m ()\) \Ijsymbol()\)
and _
dU () TN
ns = LOY¥),
e ~ ~ ~ (C-4)
ev. H (R*Ze,) | U™\ | = Ae, e, (N)T(N)
are compatible. All these matrices are trans-series of the form
=Y "WLW(\R),  LYmlN) = pLEhmbel () p) (C-5)

p=>0 p>0
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and

oo a0 = XA o 0, A )= S RASSE O, (o)
p>0 p>0

The proof is done by induction on h > 0 regarding the following proposition.

“Ym>1,VPEP,V(P1,...,pm) € (X (P)™, V(k1,..., kn) € (N)™
Ph AP (AN =0(1), when X —=u foral uexz(R).”

cpl,/q 3++:Cprm ke

(C-7)

For every h > 0, we thus assume by induction that for all a € [0,h — 1], P, is satisfied. Note
that this assumption is empty for the initialization case h = 0. We now want to prove that Pp,
holds. N
First of all, by the definition (6-81) of L(), %), the possible poles of L(®)()\) at A = u come
A(m)

from the poles of some A} -, with m < a. Hence, the previous assumption implies that
Va e [0,h], L'\ = 0O(1), when A\ = u, forall uez(R). (C-8)

Hence proving Py, for any h € N proves the theorem.

For proving Py, we shall begin by proving it for m > 2 by using an induction formula for
A(h)
Acplﬁkl’“"cpmykm (A)

We then prove it for m = 1 by using the compatibility of the system (C-3).

C.2 Proof of P, for m > 2

One can compute the matrices Acl ¢, (A) by induction on m through the formula

-----

Ym >2, AT (N) =BT, A0 (A) 4+ RAZ™Y (AT, (C-9)

After evaluation, this reads

Vm>2, Ag, e, (\) = KPev.Ie, AZ™Y () + hAc,, . ¢, (M Ac, (V). (C-10)

77777

A(a)

To order h in the A expansion as trans-series, the RHS involves only terms of the form AC1 C
with a < h which do not have not have any pole as A — v € R thanks to the induction property
Pa, a < h — 1. Hence it is regular and one has

vm>2, A% . (\)=0(1) (C-11)

1y--5bm

when \ — u.

C.3 Preparation of the proof of P, for m =1

In this section, we collect a few properties which will prove to be useful for the proof in the case
m = 1.
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C.3.1 Leading order of the Lax matrix L()\)

One of the main ingredients of our proof is the form of the leading order LOY(\) of the Lax
matrix L(\).
For A ¢ z (R) U P, since L(¥()\) is a companion matrix with distinct eigenvalues,

0 1 0 0
0 0 1 0
LO) = ; ; : | (C2)
0 0 0
| (CDIP) ()RR (A) ()P Ps(N) .. POV

It is diagonalized by a Vandermonde matrix V (),

VENLO MWV (N =Y (N, (C-13)
where
Y (A) = diag(y1(A), y2(A), - - -, wa(N)), (C-14)
with y;(\) being the value of y(z(? (X)), with {2 (\)}%; = 271(\) chosen such that
y1(u) = y2(u) (C-15)

and V() is the Vandermonde matrix with entries [V/(A)],; = yi(\)EL, for all (k,1) € [1,d]>.

Remark C.1. Since the spectral curve is admissible, we have that V (k,1) € [3,d]? : yr(u) # y1(u) an.
yr(u) # yi(u). Moreover, yb(u) = —yi(u), with ¥} (u) # y5(u). In particular, we also have y1(u) # 0 an

ys(u) # 0.
C.3.2 Action of 7o on trans-series

Let us remind the reader how our linear operators act on the trans-series considered. From
(6-50), which we recall here for convenience,

Me | 3 HEE e p) | = 3K Lo ZE e hep)|
m=1 m=1
=( )
0= (z,h, €, p)
DRITPLEESC o
j=1 093 95=5ri i, <01

hZc raises the h order by one except when acting on the (¢;)7_; dependence of our trans-series.
In particular, when acting on the Vandermonde matrix V' (), its inverse or the rational functions
¢p(A), hZc raises the order of i by one.

C.3.3 Relation between the Lax and auxiliary matrices

Let £k € N and P € P. The entries of ﬁp,k()\) defined from (6-80) and (6-82) are expressed

in terms of the entries of the auxiliary matrices Apj(A). For later use, let us remind it here.
From the definition, one has

19G(A)
oA

Apir(N) = —h(G(N)~ +(GO)TARE (NG, (C-17)
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|:3P,]€()\):|TS = [EP,k,rAL : (C-18)

i 58

and

Appa ) = (GO ev. (|Gl (), m Lpy| T 1)) B(A, B) 7!
+(GO)) ™ Apki(A GO, (C-19)

One can combine these two equations in order to get an expression of A pi(A) in terms of the

A pr - At the end of the proof, we shall use only the leading order expansion of this equation
around the branch points.

C.4 Proof of P, for m =1

In order to prove that Pj is true for m = 1, let us consider an arbitrary generalized cycle
C == Cpy, for p € 71 (P) and k > 1. We shall prove that Aéh)()\) =0(l)as A > ueR.
The compatibility of the system (C-3) reads

8Zéymbol ( )\)

h O

= T L™ (\) + | L¥mPel(X), AF™ (V)] (C-20)

Let us now consider a given u € z (R) for the rest of the proof. We shall denote s¢ € N the

order of the pole of géh)()\) at A — u. Note that we may have s¢ = 0 if géh)(k) is regular at

A — u. We then define s = max (sc,,). If s =0, then Pj, holds. Let us thus assume by
(pk)ex—L(P)xN*"

reductio ad absurdum that s > 0 and consider T = {(p, k) € z7!(P) x N* such that s¢,, = s}
the subset of indices for which the poles are of maximum order. By assumption T # ().

For any Cy = C,;, with (p, k) € T, the expansion of ggg)()\) around A = u reads

~(h),\y _ ac be —st2 :
Ap/(N) = 0 _Ou)s + oo J)s—l + O ((A—w)~*?), with ac, #0, (C-21)

for some d x d matrices ac, and b¢, .

At order A" and A"*!, the compatibility condition takes the form, for any Cy € T,

~(h ~(m o aﬂh*l)()\) S (h)
[Aéo)()\),L(O)(/\)] == Z<h 1 {Aéo)()\),L(h )()\)} + T (hev.ICOL ymb 1()\)> ,
T(m o A ~ (h=+1)
z [Aéo )()\)7 L(h7m+1)()\)] — B/C\O _ (h eV-ICOLSymbOI()\)> ’

0<m<h+1

(C-22)

where we remind the reader that the notation (F()))® means extracting the coefficient of order
RP in the trans-series F'()).

C.4.1 Expansion of the Vandermonde matrix and its inverse when \ — u

The expansions of the Vandermonde matrix V()\) and its inverse V"1()\) at A — u read

(A =w?).

V) = Vo+ViA—uw)z + Va(A—u)
24+ 0((A—u). (C-23)

+
Vi) = ()\f?)JrBlJrBQ(A u)z +
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It is straightforward computations from the identity V~1(A\)V()\) = I; around A = u (providing
BoVo = 0, BiVo + BoVi = 14, BaVo + BiVi + BoVz = 0 and B3V + BaVi + BiVa + BoVs = 0
and so on) and our knowledge of V() to show that the matrices (Bj)r>0 are given by

M(By) = F, < Bp=(Fp)' (M), Vk>0, (C-24)
where the matrix M does not depend on k and is given by
1 ya(u) .. yo(u)d=t
1 y3(u) .. y3(u)?1
M= | : z . (C25)
1 Ya(u) . ya(u)*!
0 (Wh(uw) —wa(u) - (1(u) — yh(w)(d — D)ya(u)>
while matrices (F})r>0 are given by
0O 00 0
mo| i i A (C-26)
0O 00 ... 0
1 -1 0 0
.o 51'1'—(B0V1)'i+1 ifi<d-—1
Y (i,5) € [1,d)*, (F1)ij =< 4% b ’ C-27
( ]) H ]] ( 1) 2J { (BOVQ)]‘,Q _ (BOV2)],71’ ifi =d, ( )
and for all k > 2,
k—1
- Z (Bmvk—m)j,i-i-h ifi1<d-— 17
Y (i,§) € [L,d]*, (Fy)i; = i k-1
( Z BkaJrlm) - < Z Bka+1m) ’ if i =d.
m=0 7,2 m=0 7,1
(C-28)
Note that M is invertible since its determinant is
d
det M = (—=1)*(1 (u) — vh(w) | [Tw2(w) —w;u)® | T (wi(w) —y;(w)), (C-29)
j=3 3<i<j<d
which is non-vanishing due to Remark C.1.
Remark also that By and V) have a peculiar form and read
(Bo)1a -+ (Bo)id
—(Bo)ig .- —(Bo)id
By = 0 A 0 ,
0 . 0
1 1 1
Ya2(U Yy2(u ys3(u Yalu
Ol I
y2 ()™ ya(w)h ys(w)®! ya(u)™!
In particular, we get that, for any d x d matrix K, we always have
0 = (BOK‘/())i,ja Vi Z 3 and j 2 1,
0 = (BoKVo)1; + (BoKVo)a, Vj =1,
0 = (BoKVp)igx — (BoKVp)i2, Vi>1. (C-31)
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C.4.2 Expansion of the compatibility conditions

For any Cyp = C, with (p,k) € T, let us now write down the expansion of the compatibility
conditions around A = u. Remark that, by the induction hypothesis, the RHS of (C-22) behave
at worst as (A — u)~° while the LHS behaves as (A — u)~*~!. Hence, after conjugation for
diagonalizing the leading order of L()\), the coefficients of ()\—u)_s_%, (A—u)~*% and ()\—u)_s+%
of the first line of (C-22) respectively read, for any (k,1) € [1,d]?,

[BOaCoVb]k,l (yx(u) — yi(u)) =0,
[Boac, Vol g [ (w) — yy(w)] + [Boac, Vi + Biac, Vol (yk(u) — yi(u)) =0,

[Boacy Vol 54 4 [Byac, Vi + Brac, Vol (v (u) — yj(u))+
+[Boac, V2 + Biac, Vi + Baac, Vo + Bobe, Voly, ; (yk(u) — yi(w)) = [BoRe, Vol ; 05,14

(C-32)
where
_ ALV () - h)
T1: L (h) h—m C, symbol
Rey = lim(A—u)¥ | 7 [—ACO (), LI )|+ = (ﬁev.IcoLy (A))
0<m<h—1
(C-33)

Remark that the RHS of the last line of (C-32) is vanishing except if we have a simple pole (i.e.
if s = 1) since we have proved that the induction hypothesis implies that L") ()\) = O(1) as
A= u.

Let us now write the second line of (C-22) as

945 (V) Fsymbol () *TY) F(m) h—m+1
W = (hevZe, L) T+ Y (AR, LTI

0<m<h—1

HAD (), LO] + [ALD (), LOO)]. (C-34)

After conjugation with the Vandermonde matrix, L(®) ()) is diagonalized and the commutator

involving Aggﬂ) has a vanishing diagonal. The LHS behaves as (A — u)f“”*%, while the RHS

behaves at most as (A — u)_s_% on the diagonal. Thus, on the diagonal, the expansion around
A = u reads, for any k € [[1,d],

[Boac, Vol . = 0,
[BOGCOVI + Blacovo]k,k =0, (C-35)
—s[Boac,Va + Baag, Vo + Biac, Vil — (s — 1) [Bobe, Vol . = [Bo Keo Voly i, »

where
)" Lo). cso)

A—u 0

Ke, = lim (A — u)® ((h ev.Ze, L™ ())

We shall come back to a more precise expression for this quantity later in the proof.

C.4.3 Computation of a¢, in terms of its (1,d) entry

Let Cy = Cp i, with (p,k) € T. The first line of (C-32), together with the first line of (C-35),
implies that [Boyac, Vo], ; is vanishing for any (k,1) ¢ {(1,2),(2,1)}. The evaluation of the second
line of (C-32) for (k,l),e {(1,2),(2,1)} implies that [Boac,Vol; 5 = [Boac,Voly; = 0. One thus
has 7 7

Boae, Vo = 0. (C-37)

95



Using the second equation of (C-31), the same considerations applied to the second and third
line of (C-32) and the second line of (C-35) lead to

Byac,Vi + Biac,Vo = 0. (C-38)
Equations (C-37) and (C-38) imply the following lemma.
Lemma C.1. For any Cy = Cp 1, with (p,k) € T, the matriz ac, satisfies
Bpac, =0 and ac,Vo =0. (C-39)

Proof. Let us recall the non-overdetermined linear system determining By in terms of V[, and
Vi. It reads
=0,VI>1,
(Bng)kJ =0 s VkZ?)andlZI,
(BoVi)ka — (BoVi)k2 =0k1 — k2, VE> 1.
Equations (C-37) and (C-38) show that the matrix C' := Byag, satisfies the system C'Vjp =0
and (CV1)g1—(CVi)g2 =0, for all £ > 1. This corresponds to the same linear system as the one
determining By, except that the RHS is null. Hence, we get that C' = 0(M ~!)! = 0. Therefore,
we get C =0, i.e. Bpac, = 0.
In the same way, let us define C' == ag, V. It satisfies from (C-37) and (C-38)

Boé =0 and Blé =0.

(BoVo)1,
(C-40)

(C-41)

Let us introduce C' = C*(M~"). Since By = F{(M~") and By, = F}(M~")!, we get that the
previous equations are equivalent to

CFy=0and CF, = 0. (C-42)
Since
(Fi)ip 1—=(Fi)11 O
0 00 0 (Fi)2n0 —(F1)20 1 0
: : : 0o . :
F = ° s F = B C‘43
0 0 00 . 1 0 (C-43)
1 -1 0 0 : : 1
(F1)ag  —(F1)aq1 O
we get that CF; = 0 implies that, for all (i,7) € [1,d] x [1,d — 1], C;; = 0. Indeed,
d
Vie [[Ldﬂ J € [[37d]] 0 = (CFl)Z,j = Zcz,k(Fl)k,j = Ci,jfly
k=1
A~ A~ d ~ ~
Vie[l,d : 0 = (CF)ix+ (CR)i2a=Y Cix(F)r1+ (F)r2) = Cir.
k=1
(C-44)
Eventually, CFy = 0 leads to
d
Vie[Ld] : 0= (CF)i1=>_ Cix(Fo)r1 = Cia, (C-45)
k=1
so that €' = 0, i.e. ac,Vo = 0. ]

96



Lemma C.1 gives us the first two equations for ac,. The coefficient of (A — u)™**1 of the
first line of (C-22) (which would be the fourth line of (C-32), but we did not write it down),
together with the last equation of (C-31), gives the third equation for ac,.

BOQCO = 07
ac, Vo =0, (C-46)
(BracyV1)ig — (BiagyVi)ip =0, Vi > 3.

We define ac, = (ac,)tM ! (i.e. ac, = M*(ac,)?). The last set of equations is equivalent to
ac, Fo =0,
(acy)'Vo =0, (C-47)
(M)fac, 1), ; — (M) ac, Fi),; =0, Vi>3.

Since (Fb)ij = (i j)=(d,1) — O(ij)=(d,2), equation ac, Fp = 0 is equivalent to (only entries
(Gc, Fo)i1, with 4 > 1, are sufficient)

(acy); , =0, Yie[l,d], (C-48)

i.e. the last column of ac, is vanishing. For j € [1,d], let us define the vector ac,; =
((dCO)l,j,-~-7(&Co)d,j)t corresponding to the j™ column of ag,. For j,k > 2, equations
((ZLCO)tVO)j’k =0 and ((V1)" ac, Fl)ule — (1)t ag, F1)2’j+1 = 0 are equivalent to

d

0 =Y yr(u) ! (5@07j)T , Vi, ke [2,d],
r=1 J (C-49)
0 = (yi(u) - yé(u))gz(r — Dys 2 (u) (8cy,5), » Vi € [2,d].

These equations are equivalent to saying that, for all j > 2, Ma¢, ; = 0, i.e. a¢, ; = 0, since M is
invertible. Note that in order to obtain the last equation of (C-49), we have used (F1)s j+1 = 0 ;
for j > 2 and s < d — 1, and the fact that (ac,).q4 = 0, for all 7 > 1, so that (F1)g 41 does not
contribute.

In terms of the initial matrix ac, = M?'(ac,)?, this is equivalent to saying that, for all
(k,1) € [1, dJ?,

d
(aco)g = D Mulaco)in = Mi(aco)in = y2(w)* " (@co)ua- (C-50)
n=1
In other words, it means that the (" column of ac, is (ac,)i1 (1, y2(w), .- -, yg(u)d_l)t.

So far, only the first column of ac, remains. Using ((dCo)tVb)Lk =0 for all k > 2, we get
that

Loya(u) - y2(u) (acy)1,1

: : : : =0. (C-51)

d—1

1 ga(w) ... ya(w) (dcy)a

We may eventually use (C-51) to get the following proposition.

97



Proposition C.1 (Expression of ac, in terms of its (1,d) entry). For any Cy = C,j with
(p, k) € T, the matriz ac, is equal to

(=)' Ea1(y2(u), .. ya(w) -+ —Ei(ya(u), ..., ya(w))

yo(u) (=) Eg_1(ya(u), ... ya(w) - —y2(u)Ei(y2(u),. .. ya(u)  y2(u)
(aco)ld . . )

y2(w) N (1) Ega (y2(u), - ya(w) =y (@) Br(ye(u), .-, ya(w) yz(u)®!
where ¥Yj € [1,d] : Ej(Aa,..., \q) = > Aiy -+ Aij- (In particular, E1(Az, ..., ) =
9<iy <m<i;<d

Ao+ -+ Ag andEd_l()\g,...,)\d) :)\2...)\d).
Note that Proposition C.1 implies that, for any Co = Cp, ), with (p,k) € T,

[aCO,L(O)(A)} ~0 (C-52)

and that we only need one remaining independent equation to get the complete expression of
ac,- Moreover, we have, for all (k,1) € [1,d]?,

[Brac,Vilky = (F1) (M1 ac, Vi)ka = (F1)" (ac,)' Vi)ia
Z (F1)m,k(aco)nm(Vi)n,

;
= 3" (F)1.4(cy ) (Vi)

/ u) / u) d
- Y2 u 516 1+ y/ 7 (U) 5]6»2) (Z(n - l)y;(U) yl( )n 2(CLCO) ) .
(CC53)

C.4.4 Proving that (ac,), ; = 0.

Let us finally prove that the last remaining unknown coefficient of ac, is vanishing for any
Co € T. For this purpose, we shall consider two different cases depending on the degree s of the

pole at A — u of ﬁgg)()\)
Higher order pole: s > 2

If s > 2, the RHS of the last line of (C-32), as well as the RHS of the following order in the
expansion around A = u, vanish. This allows to conclude that,

Yk e [2,d], Vie [1,d] : [Biag,Vi + Bobe,Voly, = 0. (C-54)

Using the last line of (C-31) and subtracting cases [ = 1 and [ = 2 in the previous equation we
get that
Vk € [2,d] : [Biac,Vily 1 — [Biac,Vily o = 0. (C-55)

In particular for k£ = 2, we end up with

[Blacovl]Q,l - [Blacovl]Q,Q =0, (C-56)
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which, using (C-53), and the fact that y;(u) = ya(u) implies

d
y1(u) <Z(n —1) yQ(U)”Q(dco)nJ) =0. (C-57)
n=2
Together with (C-51), we get the linear system
1 yo(u) yg(u)2 . yg(u)d’1 (aco)11
Lo : : © | =0, (C-58)
Uoyau)  yaw)® ... ya(u)?! :
0 () 2wl .. (@) \ (G ),
whose determinant is similar to the one of M and reads
d
(D) [ [ we@) —ysu)® | T @ilw) —y5(u). (C-59)
j=3 3<i<j<d

From Remark C.1, this determinant is not vanishing so that the linear system has a unique
trivial solution

Vke[l,d] : (acy)r1 = 0. (C-60)
Thus, from Proposition C.1, we end up with ac, = 0, i.e. ac, = 0 for all Cy = C,, ;, with (p,k) € T,
which is a contradiction with (C-21).
Simple pole s =1

The derivation of the same result of s = 1 requires to be more precise since the RHS of the
last line of (C-32) does not vanish.

The last line of (C-35) reads
— [Brac, Vil = [Bo Keo Vol » Yk € [1,d]. (C-61)

Let us now prove that the RHS is vanishing using our knowledge on K¢,. We remind the reader
of its definition from (C-36):

~ (h+1)
Ke, = lim (A — u) [(hev.ICOLsymb"l()\))

A—u

+ AL (), LOW)] - (C-62)

Since, for any Cy, Boac, = ac,Vo = 0, the commutator [ggg), L] satisfies

_ Boac,R1Vo — BoRiac, Vo
= 3 +
(-}

Vi [gg;x L<1>] VN O(A=u)) =0 (A—u)l), (C-63)

where we have denoted L) ()) A2Y R+ o(1).
Thus, for any Cy = Cp, with (p.k) € T, [gg;),L(l)} does not provide any contribution to
Ke,. _
Following the discussion of Section C.3.2 , the only contribution from [hev.Z¢, LSY™P°Y(\)];.,

)

at order A" in the trans-series expansion is
XN (h+1
e 9[A5],,,
DD G  evie, [0 5o : (C-64)
j=1 !

PeP KeN

1
=57 fsj wo,1
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Note that the sum over K € N is finite since {Ap (A\)} x>0 contains only a finite number
of non-zero elements. B

Using (C-17), the leading order of [heV.ICOLSymbOI()\)]E?:l) in the expansion around A = u
reads

[hev.l'co Zsymbol ( )] (h+1)

_ J (0 d 1 d (Gl14 0 [aP,K,Tfl]Lm
> D G T Il Y6, > . +0(1),
- T (A=) 9¢; .
PeP KeN j=1 r=1 =1 =507 fBj wo,1
(C-65)
where apjy; is defined as the leading order of Zg%(l(A) when A — u, i.e.
~(h apK,
AR (V) = +0(1), (C-66)

A—u

as A — u. Since we proved the part of the proposition P}, corresponding to m > 2, the matrices
ap r, are linear combinations of matrices ac with coefficients independent of ¢;,

Y(PK,1)€PxNx[Ld], apxi= Y. o¥ilac, .. (C-67)
(po,ko)€T

where a?f’[?ol € C is independent of ¢;.

Hence, for any Co := Cpyr, With (po, ko) € T and k € [1,d], the RHS of equation (C-61)

reduces to

SH

PeP KeN r=1

g9
[Bo Ko Volg i = Z Z 5P ZICO (5] Z BOG_I(U)]k,r
7j=1

i Gy 9larkr—1]y,, Vol

= A —u) 99; $i=5r7 $5, w01
g d
=3 Y G @Y1 6] Y [BGT W),
PeP KeN j=1 r=1

d 0 ([a _ w)m1
[G]l,l ([ P,K,r 1]l,m yk( ) )
2 D) a6, . (C-68)

=1 1
$i =2 $5; wo.1

Since ap i, is a linear combination of matrices ac, , for (P, K,l) € PxNx[L,d] the expres-
sion of of [ap ]y <; <y 0 terms of [ap ], ,; is the same as the expression of ((ac,)im)i<; mey
in terms of (ac,)1,4 given by Proposition C.1 and one has

d
V(P,K,r) € P x Nx [L,d],¥(m,n) € [1,d]* : Y (apxr1)imye(uw)™ " =0. (C-69)
m=1
Thus, equation (C-68) simplifies into

implying from (C-61) the following lemma.
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Lemma C.2. For all Co = Cp, i, with (po, ko) € T, the matriz ac, satisfies
Vkel[l,d] : [Blacovl]k’k = 0. (C-11)

Plugging (C-53) into (C-71) and using the fact (see Remark C.1) that y}(u) # v5(u) and
yi (w)yh(u) # 0, one gets, for k = 2,

d
(Z(n — Dy (u) yz(U)"2(@co)n,1> =0. (C-72)
n=2
As in the previous case, together with (C-51), this leads to the linear system
1oya(u)  yo(u)? .. y2(u) ! (acy)11
o : : -0, (C-73)
U oya(u)  ya(w)? .. ya(u)™! :
0 s 2hWys(w) .. (@ Dyhr@™2) \ (G,
whose determinant reads
d
(D" 'yo(u) [ [T —y)* | T @iw) —yj(w). (C-74)
j=3 3<i<j<d

From Remark C.1, this determinant is not vanishing so that the linear system has a unique
trivial solution

Vke[1,d] : (a1 = 0. (C-75)

Thus, from Proposition C.1, we end up with ac, = 0, i.e. ac, = 0 for any Cy = Cp, r, With
(po, ko) € T, which is a contradiction with (C-21).

D Detailed computations for the Gl; example

In this appendix, we present the detailed computation of the example presented in Section 8.2.

D.1 Classical spectral curve

Let us consider a three-sheeted cover of the sphere defined by an equation of the form
yg— (P£?1A+P£?O)y2-|-(PCEi)Q)\Z+P£?1A+P£?O)y—P£?3A3 _PSRQ)‘Z _chi)l)‘_PS,)O =0. (D-1)

)

where the coefficients chi are generic in such a way that the curve has genus 1 and that there
are three distinct points (00!, 00(?), 00(®)) in the fiber z~!(c0) above infinity. This corresponds
to the case N = 0 and r_ ) = 3 for j = 1,2,3. We recall that the general notations of the

article correspond to:

P = PO+ P,

P = PO+ PPt P,
P\ = PO+ PON 4 PPN+ P (D-2)
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Around the three points (00!, 00, 00(3)), the function y(z) admits the expansion

Vi€ {1,2,3}, y(2) = —tigx(z) —ti1 — tipr(z) "1+ 0O (:zj(z)_Q) , as z — ool (D-3)
where we used the notation ¢;j = ¢, ; in order to simplify the reading. These coefficients
satisfy

3 3 3
1
= - Ztm ) Péo,)o =- Ztm ;o 0= Zti,o, (D-4)
i=1 i=1 i=1
as well as
2
Péo,)g = Z tiotj2 = t1oto o + t1 232 + t22t3 2
1<i<j<3
3
2
Péo?l = Z Z tintjo = t11to2 +111t32 +t21t12 +t21t32 + t31t1,2 + t31f22
i=1 jAi
3
2
P(Eo,)() = Y D tiotia+ Y tiatja
i=1 j£i 1<i<j<3
= t10t2,2 +t10t3,2 +t20t1,2 + T2,0t32 + t30t1,2 + €30t2,2 + t1,1821 + t1,163,1 + 21131
(D-5)
3
cho?g = —t19t22t32
3
Po(o,)g = —t11l22t32 — t12l21t32 — t1 282231
3
cho,)l = = Z b1,k t2,ko 3 ks
k1+ko+kz=4
= —t1olo2t32 —t11l21t32 — t1,1t22t3.1 — 1,282 2830 — t1,2t2.183,1 — t1,282,0l3,2
3
PCEO,)O = — ) timtoktsk
k1+ko+k3z=3
= —ty0t2,1t32 — t10t2,2t31 — 11821831 — 1,182,283
— t1,1t2,0t3,2 — t1,2t2,1t3,0 — t1,2t2,0%3,1-
(D-6)

D.2 KZ equations

Let us now write the KZ equations satisfied by the wave functions. They read

P 4 (2) = 2(2) L0 1 (2) + L0 (2)
W s (2) = ()LL) (2) + () L3 0(2) + L (=) (D-7)
W) = a2 LD g0 (2) + 2(2)2LE0(2) + () L8 0(2) + LE g (2).

Hence, the KZ equations read
e + 1 (z) = P (2)
ﬁawl(z Pa(2) = [P2(N) — litg g — hit3 2] Y(2) (D-8)
haaf((zz) = P3s(\)Y(2) + hLxz(2),

where

Lxz(X) =h [tl,ztz,ﬂcww) , TtiotsoTe o) +isptanTe ) |+ hiaptzpd 4+ ta1ts2 +taot3.
(D-9)
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D.3 Expansion around oo and apparent singularities

In this example, we consider the divisor D = [z] — [co")]. The perturbative wave functions have
the following asymptotics as A — co.

reg (1.0 _ [ e [P (Vew (A )+0<1))] (Ci+0(1), if i=1,
™ (000~ Be) = { G T (000 O] 01 £ OO, it 71

- (D-10)
This allows to compute the Wronskian of the system
WO = wNP(Zu)(A»hawNpg:;ﬂ(A)) hza%N%(Azf)(A))

N wNP(Z@)(A))hawNpg;‘ (M) 12 82wNpa<A2< (V)

+¢Np(z(3)(/\))hawNP(aZ; (A) 2 82¢Np(2( (A)

—np (20 (A ))ha¢NP(aZ; (N) 2 82le39&; (\)

e (PR awNpg . ") 2 82le:9&2< (V)

—np (2B A 8¢NP(@ : ') 8271)N1>a()\2( )
(D-11)

which takes the form

W(\ h) = kexp <h—1 /0A Pl()\)d)\> (X —q(h)). (D-12)

D.4 Quantum curve

Let us now compute the quantum curve of this system. For this purpose, we should compute
the entries [Coo (A, )]y, with i € {1,2,3}, of the matrix

Coo (A ) =
Unp (2 (), ) Unp (22 (), ) Une (2 (N), h)
1Lev. [Lzufi™ GO0 0] evLiz [oxe(zAN),1)]  ev. [Cxzbne (OO, D] |- (@yp(r, )"
ev. [ L2 OO, )] ev. [LUREPIEA ), 1) ev. [RGB
(D-13)
as a rational function of A with poles at co and at the zero g(h) of W (A, ). Since it is a rational

function in A, one only needs its expansion around its poles and it takes the form of E)O (q)) where

Pol(A) is a polynomial which we can compute through the asymptotic expansion of Cy (A, h)
around infinity. To compute these polynomials, we shall use the expression of (¥Unp(A, h))_l in
terms of the matrix of Unxp(A, /) and its determinant W (A, k).

One obtains expressions of the form

[Coo (A, h)]z 1=h ( ( )2 + t22l3 2) (D-14)

A—q

[CooAs M)y g = I (Pcﬁj,}l Figg+ t372> n Ap_? - (D-15)
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and
[Coc(A, )]y 53 = /\h_q (D-16)

This leads to a Lax matrix of the form given in the next section.

D.5 Lax pair and Hamiltonian system

From the previous results, the Lax pair corresponding to this example is given by L(\, k) =

0 1 0
0 0 1 ’
P3(X) = hPY(N) + A(PL), + tonts o)A — H + £ —Py(A) — fitio + £ Pi(A) + 5%
(D-17)
with the associated auxiliary matrix
(2 H
(Pooa tt22t32)A — 3 + ;,,(f\?iq) h(f\JZ_q) + 11,2 >\ 7

Argz(\h) = Ag Ago Ags |- (D-18)

Az As 2 Az

The coefficients of the Lax pair correspond to the normalization of the non-perturbative
wave functions at A = oo,

t12,9 t11 11,0 — S1k
Ui\ h) = A= == —
171( 9 ) eXp( 2h h FL ) — (k_ 1)Ak—1>7
122 t21 12,0 = S2.k
\P — _ 9 _ ) _ 9 _1 o Te
1,2(A\ R) exp< oF - 5 nA+ S0+ E = 1))\’“—1>’
Ui h) = exp| — B2y _faiy 130 1n)\+530+§:7
3 2h h h k— D)Ak—T

(D-19)

from which one may recover the general form of L(A, h) and A(\, h) at infinity using L(\, k) =
R(O\NP)U~L AN h) = (L£[¥])P~! and the form of the Wronskian (D-12) with k = —(t32 —
t12)(t32 — ta)(tan — t19)e 10+ 520+50 Note in particular that the first entry does not have
the —In A term in its formal expansion around A = oo contrary to all other entries.

In order to obtain an operator commuting with 9y we shall define £ acting directly on
U(A, h) out of the operator Lxz — taastso as in the degree 2 example so that LU(\ h) =
ev. [[, ez Usymbol ()] h)] Hence, the compatible system is

LY (N R) = AN Rh)U(A R), (D-20)
with (2)
1
Papd =ity whep the 3
A()\, h) = A271 A2’2 A2’3 (D_Ql)
Az Az Az
We may now use the compatibility relation
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The L.h.s. of the first two lines is null so that we obtain the expression of the last two lines of
A(A, k). The expressions being rather long, we omit them here. Eventually, the third line of the
compatibility relation provides the following equations by identification of the singular parts at
A=gqand at A = oo,

[Pl =
['[Pg)o] = h ((ch,)ﬁQ + Pg,)2 + t1,2p<g,)1)
LlP2) = o
P2 = n(-3P%, + 3P PP, 1 2t,,P2))
cP?) = wP2PY, P<3> + POPE, 4 POty — Lt o))
P = o
c[P)) = w(POPY, + (PD,)? + 311 ,PY,)
E[PS o= h(—Péol,)oPS,):a P(Eo,)lpéo,)Q + P(2) P(2)1 + 2t PS,)Q
—2153,25[?52,2] — t22L]t32])
o= % + Pl(q2)p2 + hiPy(q) + 2t
Ll = —3% —4P(@)2  Pala) — Pila)* — P, + 2012)
Ll = 2P 4 (PYa) + 2P Pu(a))p2 — WP}(a) + hPa@) Ph(a) + hPY(0)Pi(a)
+h%(P éo)lﬁ 9 — t29l32)
H = —Hy(q.p2h) + (tia+ PO)ps — nPLhq — nPE) — nP it s,
(D-23)
where the Hamiltonian Hy(q, p2, i) is given by
3 2
Ho(g.p2,h) = 33 +2Pi(a) 3 + (Pal@) + Pi(a) + B(PS) +20.2) 5 = Py(@) + Pi(@) Pa(o)
+h(P, éo)lh 9 — ta9t32)q (D-24)
and satisfies
hOp, Ho(q, p2, h) = —L[q] and hd,Ho(q, p2,h) = Lpa] . (D-25)

One may use the relations between spectral times and coefficients (ch’)i)igg,jgg given by
(D-4), (D-5) and (D-6) to rewrite (D-23) as

Ltio] = Lltao] = Ltso] = L[ts 2] = Lt22] = L[t12] =0
Llt11] = —h(tiata2 +t12t32 + taots2)
Lltan] = —h(tiatsz+taatza+135)
[,[t371] = —h(t172t272 + toot39 + t;z)’Q) . (D-26)
Thus, we get that
L = —h(tiatop +t12t32 +t22t32)0 , — h(t1 2tz +t22t32 + t%,z)atg,l
—h(t172t2’2 + to9t32 + t§,2)6t3’1 . (D-27)

Note that we may now obtain L[P (])] for (i,7) € [0,2] x [1,3] in terms of of the spectral times
(ti;)i<2,j<3 using (D-4), (D-5), (D- 6) and (D-26). The results being long and not particularly
enlightening, we omit them here.
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We may now write the evolution equation for q. We first observe that

2
gl = (2P{(@)Pi(a) - 3P5(0)) 73
(6P3<>—2P1<>2<q>—6P2<> () + 4P{(q) Po(a)? = h(4PL,
+2P 2 — 6taats)) 52 + (Pala) + Pula)*)(Ph(a) + 2P ()P (@)
+4P,(q)(P}(q) ~ P{(q)Palq) - <>P2< ) = (2

—t32)(t12 — t22)(2t12 + t32 + t22)q
+(t1,2 — t32)(t1,2 — ta2) (31 + 2t11 +t2,1)) .

(D-28)
In particular, we get that
L%[q] + %(QP{(C])Pl(Q) — 3Py(q))Llq) = Ro(g: )2 = 2 + Rs(q) + hR1(q), (D-29)
where
Ro(Ash) = 6P3(\) — 2P, (\)P{(A) — 2P3(\) Pi(A) + gpl()\)QP{(/\)
+2h(t12 — ta2)(t12 — t32)
Rs(A) = (P2(\)+ Pl( )*)(P3(A) + 2P1()\)P1(>\))
+%P1( )(P3(N) = P{(A)Pa(A) = PL(N) Py(N))
—§(2P1()\)P1()\) + 3P5(N)(P2(N) + PL(N)?)
- (2135(» ¥ ;lPl’()\)Pl(/\)> (Pa(X) + PL(V)?)
+4P (N (P3(\) — PI(A) P2(N) — PL (M) Py (V)
Ri(N) = —((tiz2 —ts2)(t12 —t22)(2t12 + 32 + t22)A
+(t12 — t32)(t1,2 — t2,2)(t31 + 2t11 +t21))
S CPIOVPI() ~ 3PN (P + 261). (D-30)
We also have
322 L oPl(g)Ll] = ~@Pi@)Pile) ~ 3P@) 2 — 3P}(a) + Po(a)Pl(a) + 3P}(@)Pa(a)
—2P|(q)Pi(q)* — h(Q(P(l) )? + p )1751 9 + 3taat32) . (D-31)
Applying £ to (D-29) leads to
53[ ]+ 3(2P1( q9)P1(q) — 3P5(q))L?[q)
+§(2P1(Q) — 3P (q))(L[q)* + é(ﬁ[zplpi — 3P5)(q))Llq]
= (Rh(a: P)Cla] + £0Ro)(a: 1)) 22 + Roas 1) 22
+(R3(q) + R (q))Llq] + (L[R3](q) + hL[R1](q))- (D-32)

106



We now use (D-31) to remove L[ps],

3L%(q) + (2P{(q) P1(q) — 3P3(q))L%[q] + (2P1(q)* — 3P3 (a))(Ld])? + (L[2P1 P] — 3P;3)(q))L[d]
= (8Rj(q; W)Llq] + 3L[Rol(: i) — Rog: 1) (2P () Pa(q) — 3P5(0))) =2
— 2Ro(g; 1) P1(q)L]g] — Ro(g; 1)(3P3(q) — P2(q)Pi(q) — 3P5(q) P1(q) + 2Pi(q) P1(q)?)
— hRo(g; B)(2(PLY)? + Pt o + Bt ot )
+3(R3(q) + hR1(9))Lla] + 3(L[Rs](q) + hL[R1](q)) -
(D-33)
Then we use Equation (D-29) to remove pa. Thus we get
3Ro(q; 1) L7[q) + Ro(q; B) (2P (a)P1(q) — 3P3(9))L%[q] + Ro(g; 1)(2P1(9)* — 3P5(a))(L[g])?
+ Ro(g; ) (L[2P1 P — 3P2)(q))L[q]
= (3Ro(g; ﬁ)ﬁ[ ]+ 3L[Ro(q; i) — Ro(g; 1)(2P{(q) P1(q) — 3P5(q)))

( *lg) + L 2Pl(q >P1<>—3P5<q>>£[q]—Rg<q>—hR1<q>)

]+
— 2Ro(q; h)*P{(q)L]q) — Ro(g; )*(3P3(q) — Pa(q)Pi(q) — 3P5(q)P1(q) + 2P} (q) P1(q)?)
— hRo(g; )2 (2(PLL)? + POt o + 3t ats )
+ 3Ro(q; h)(R3(q) + hR1(q))Llg] + 3Ro(g; ) (L[Rs](q) + hL[R1](q)) -

(D-34)
It corresponds to an evolution equation of the form

ao(q; ) L%[q] + aa(q: ) L[q)Lla] + o2 (g; B)(L[g))* + us(q; B)LP[q) + aulg; B)Llg] + os(q; h) =0,

(D-35)
with
ao(q;h) = 3Ro(q;h)
oa1(q;h) = —3Ry(q; h)
as(g:h) = 2Ro(q; h)(PL))? — 3PL)) — Ri(g; 1)(2P] () Pr(q) — 3P3(q))
as(¢;h) = 2Ro(q; h)(2P}(q)Pi(q) — 3P(q)) — 3L[Ro](q; h)
aulgh) = Rol(q . 1)(L12PLP] — 3Py](q)) + 3R)(g; h) (R3(q) + hR:1(q))
5 (2P{(a)Pi(a) — 3P5(a))(3L[Ro)(4: 1) — Ro(a: 1)(2P{(a) Pi () — 3P3(0)))

+2Ro<q h)*P}(q) — 3Ro(g; h><R3< ) + AR (q))
as(g:h) = (3L[Ro)(¢; k) — Rolg; h><2P1<> (@) — 3P}(a)))( 3q>+th< ))

* Folg: (3P ) — Pal@)Pl(a) — 3PY(a) Pr(@) = 2PL(0) Pr(0)?)

+hRy(q; h )2(2(P£) )2+ P! ?1t1 2 + 3tat32)
—3Ro(q; h)(L[Rs](q) + hL[R1](q)) - (D-36)

One may easily obtain L[Ry], L[R1], L[R3] and L[2P,P] — 3P»] from (D-23) and (D-26).

The Lax pair is compatible with formal series expansion given by (D-19). In particular, we
have S10 = In Zxp. Inserting these expansions into the last line of L(A, k) and the first line of
A(\, h) provides

H
L[S10] = 2¢ —t1 2% -5 +t11t12
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H
L[S0] = 1359 — tz,z% = T t21(2t22 —t1o)
H
L[S50] = t§,2q - t3,2p75 T +131(2t32 — t1,2). (D-37)
Thus we get
H
L[ln Zxp] = tizq - 751,2% 7 +11,1t1,2, (D-38)

giving an explicit relation between the partition function and the Darboux coordinates.

Finally, we may perform a linear change of variables (¢ 1,t21,t31) > (71,72, 73) so that £
identifies to h0;,. Let us define

m t1,1 t11 Gl
| = t271 = t271 = B_1 |, (D—39)
T3 t31 t31 T3

where B is a 3 x 3 matrix with coefficients expressed in terms of spectral times different from
(ti1)1<i<3. The chain rule implies that

87’1 87’2 873
0 O
ati@ T 8ti,1 2t 8751',1

Viée [[1,3]] : ati,l = (97—3 = bljiaﬁ + 527187—2 + b3,i67—3. (D—40)

In other words,

aIf171 871
Oy | =B' |0, | - (D-41)
at3,1 873
Since
a7f1,1 87'1
L= (Llt11], Llt21], L[t31]) | O | = (L[t11], Lt2,1], Llts 1)) B | 0n, | (D-42)
ats,l a7'3
L = hoy, if and only if
L[t11] h L[t 1] h
(ﬁ[tLl],ﬁ[tzl],ﬁ[tg,ﬂ)Bt = (h,0,0) & B[ Lita1] | = |0 | © [ Llt21] | = B0
Llts1] 0 Llt31] 0
(D-43)
In other words
E[tl,l] c
5 €12 €13
B~ = % c22 C23 |- (D-44)
C[t371]

3 €32 €33

We choose coefficients (Ci,j)lgi,§3,2§j§3 so that det(B_l) = —(t372 — t172)(t372 — t2’2)(t272 — t1,2)
which corresponds to the prefactor of the Wronskian. Indeed, we want the change of variables
to remain invertible except when the Wronskian vanishes. We find that

—(t12t22 +t1ot32 +t22t32) 1 tio
Bl = —(t12t3,2 + t2ot32 + t%,z) L tap (D-45)
—(t1oto +toptso +15,) 1 t32
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is such that det(B™!) = —(t32 — t1.2)(t32 — t22)(t22 — t12). It is equivalent to

— (t32 —t12)(t32 — t22)(t22 —t12)B =
132 — 122 —(t32 —t12) t22 =112
75172(75:23,2 - t%,z) —t2,2(t§,2 - t%,2) t3,2(t%,2 - t%a) ) (D-46)
(t32 —ta2)(t32 +tao —ti2) —t3a(tso —ti2) toa(tas —ti2)

which provides a suitable change of variables for which £ = ho,,.
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