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MODEL THEORY OF DIVISIBLE ABELIAN CYCLICALLY ORDERED

GROUPS AND MINIMAL C. O. G.

G. LELOUP

Abstract. We make available some results about model theory cyclically ordered groups. We
start with a classification of complete theories of divisible abelian cyclically ordered groups.

Then we look at the cyclically ordered groups where the only parametrically definable subsets

are finite unions of singletons and open intervals, and those where the definable subsets are finite
union of singletons and c-convex subsets, where being c-convex is the analogue of being convex

in the linearly ordered case.

1. Introduction.

Cyclically ordered groups continue to interest mathematicians since they arise naturally in lower-
dimensional topology (see, for example [1]) and in studying groups which act on a circle (e. g. [3]).
In these papers, they are called circularly ordered groups. By studying the topological structure of
the space of circular orders on a group, it was proved that this space is either finite or uncountable
([4]). This generalizes a result of François Lucas which proved that there are 2ℵ0 non isomorphic
cyclic orders on the additive group (Q,+) of rational numbers, by giving a description of these
cyclic orders. In fact Lucas proved that there are 2ℵ0 elementary classes of discrete divisible cyclic
orders on Q (we will generalize this proposition here). This result was part of a paper that he
wanted to publish, however, Lucas died before achieving this task. In this paper he used the spines
of Schmitt of ordered abelian groups to study the model theory divisible abelian cyclically ordered
groups. He also had studied different notions of minimality concerning cyclically ordered groups.
This work may apply to multiplicative groups of fields since the multiplicative group of any field
is cyclically orderable ([14, Proposition 5.8]). We make available these results here. The present
paper is written in order to make clear which results come from Lucas’s preprint. To reach an
uninitiated audience we have added cyclically ordered groups reminders. Section 3 is similar to
the original work of Lucas, however, the proofs have been drafted in detail and gaps have been
filled. Section 4 has been completely overhauled, so that the theorems are written in terms of
the cyclically ordered groups, instead of their unwounds, and without requiring the definitions of
Schmitt ([20], [21]). Furthermore, we obtain a classification of complete theories of divisible abelian
cyclically ordered groups. Section 5 has been revisited, and the proofs have been carefully written.
This led to several errors being corrected. Thus the statements of lemmas have been changed.
However we attribute to Lucas the authorship of these lemmas.

1.1. Cyclically ordered groups. Let G be a group and R be a ternary relation on G. We say
that (G,R) is a cyclically ordered group, or that R is a cyclic order on G, if the following holds.
R is strict: for every g1, g2, g3, R(g1, g2, g3)⇒ g1 6= g2 6= g3 6= g1.
R is cyclic: for every g1, g2, g3, R(g1, g2, g3)⇒ R(g2, g3, g1).
An element g being fixed, R(g, ·, ·) induces a linear order relation on the set G\{g}.
R is compatible: for every g1, g2, g3, h, h′, R(g1, g2, g3)⇒ R(hg1h

′, hg2h
′, hg3h

′) ([17]).

For example, the group of complex numbers of norm 1 is a cyclically ordered group by setting
R(exp(iθ1), exp(iθ2), exp(iθ3)) if and only if either 0 ≤ θ1 < θ2 < θ3 < 2π or 0 ≤ θ2 < θ3 < θ1 < 2π
or 0 ≤ θ3 < θ1 < θ2 < 2π (e. g. [23]). This condition is equivalent to saying that 0 ≤ θσ(1) <
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θσ(2) < θσ(3) < 2π, for some permutation σ in the alternating group A3 of degree 3.
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We denote by U the cyclically ordered group {exp(iθ) : θ ∈ [0, 2π[} of unimodular complex
numbers, and by T (U) its torsion subgroup. Note that every finite cyclically ordered group is cyclic
([27, Theorem 1], [2, Lemma 3.1]), hence it embeds in T (U). We know that, for every positive
integer n, T (U) contains a unique subgroup of n elements, which is the subgroup of n-th roots of
1. We denote it by T (U)n.

The language of cyclically ordered groups is {·, R, e,−1 }, where the first predicate stands for the
group operation, R for the ternary relation, e for the group identity and −1 for the inverse function.
When we consider abelian cyclically ordered groups we will also use the usual symbols +, 0,−. If
necessary, the unit element of G will be denoted by eG (or 0G) in order to avoid any confusion.
For every g0, g1, . . . , gn in G, we will let R(g0, g1, . . . , gn) stand for

∨
0≤i<j<k≤nR(gi, gj , gk). One

can check that this is also equivalent to
∨

0<i<nR(g0, gi, gi+1).

A c-homomorphism from a cyclically ordered group (G,R) to a cyclically ordered group (G′, R′)
is a group homomorphism f such that for every g1, g2, g3 in G, if R(g1, g2, g3) holds and f(g1) 6=
f(g2) 6= f(g3) 6= f(g1), then R′(f(g1), f(g2), f(g3)) holds (e. g. [10]).

A linearly ordered group is cyclically ordered by the relation given by: R(g1, g2, g3) if, and only
if, either g1 < g2 < g3 or g2 < g3 < g1 or g3 < g1 < g2 (e. g. [22], [2]).

The cyclic order defined on a linearly ordered group as above is called a linear cyclic order.
One also says that the group is linearly cyclically ordered. A cyclically ordered group which is not
linearly ordered will be called a nonlinear cyclically ordered group.

A proper subgroup H of a cyclically ordered group is said to be c-convex if it does not contain
a non unit element of order 2 and it satisfies:

∀h ∈ H ∀g ∈ G (R(h−1, e, h) & R(e, g, h))⇒ g ∈ H ([10]).

For every proper normal c-convex subgroup H of a cyclically ordered group G, one can define
canonically a cyclic order on G/H such that the canonical epimorphism is a c-homomorphism.

If (G,R) is a nonlinear cyclically ordered group, then it contains a largest c-convex proper sub-
group l(G) ([10, Corollaries 3.6 and 4.7, Lemmas 4.2 and 4.6], [25]). It is a normal subgroup of G.
The restriction to l(G) of the cyclic order is a linear cyclic order. The subgroup l(G) is called the
linear part of (G,R). We denote by < the linear order induced by R on l(G). If the cyclic order
is linear, then we let l(G) = G

The cyclically ordered group G/l(G) embeds in a unique way in U ([10, Lemma 5.1, Theorem
5.3]). We denote by U(G) the image of G/l(G) in U, and for g ∈ G, U(g) denotes the image of
g ·l(G).

An abelian group G is n-divisible, for some positive integer n, if for each g ∈ G there is some
h ∈ G satisfying nh = g, this h is not always unique. The group G is divisible if it is n-divisible
for each integer n.

An abelian cyclically ordered group (G,R) which is n-divisible and contains a subgroup isomor-
phic to the group of n-th roots of 1 in the field of complex number is said to be c-n-divisible. It is
called c-divisible if it is c-n-divisible for every positive integer n. This equivalent to being divisible
and containing a subgroup c-isomorphic to the group T (U) of torsion elements of U.

Proposition 1.1. ([14, Proposition 2.26]) Let n ∈ N\{0}. An abelian cyclically ordered group
(G,R) is c-n-divisible if, and only if, uw(G) is n-divisible.
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We say that an abelian cyclically ordered group (G,R) is discrete if there exists g 6= 0 such that
for all h in G we have ¬R(0, h, g). This element will be denoted by 1G. We say that (G,R) is
dense if it is not discrete.

1.2. Outline of the content. Section 2 is dedicated to cyclically ordered groups reminders and
to properties that we will use in the former sections.

One easily sees that the theory of divisible abelian cyclically ordered groups is not complete,
the cyclic order does not need to be linear and the group can have torsion elements ([9, Corollary
6.13]). In Section 3 we prove the following theorem.

Theorem 1. (Lucas) The theory TcD of c-divisible abelian cyclically ordered groups:

(1) is complete and model-complete
(2) has the amalgamation property
(3) admits the quantifiers elimination
(4) has a prime model T (U)
(5) is the model completion of the theory of abelian cyclically ordered groups (we prove that

each abelian cyclically ordered group admits a c-divisible hull).

In Section 4 we get a characterization of elementary equivalence of divisible abelian cyclically
ordered groups by mean of the following family of c-convex subgroups. Let (G,R) be a divisible
abelian cyclically ordered group. For every prime p such that G is not c-p-divisible, we let Hp be
the greatest p-divisible convex subgroup of the ordered group l(G). Overwise, we let Hp = G.

Proposition 1.2. (Lucas) Let (G,R) be a divisible nonlinear abelian cyclically ordered group, and
p be a prime such that the cyclically ordered quotient group G/Hp is discrete. Then Hp ( l(G) and
for every r ∈ N\{0} there exists an integer k ∈ {1, . . . , pr − 1} which satisfies: for every g ∈ l(G),

h ∈ G such that g+Hp = 1G/Hp and g = prh, we have U(h) = e
2ikπ
pr . The integer k is determined

by the first-order theory of (G,R).

The integer k defined above is denoted fG,p(r).

Let (G,R) be a divisible abelian cyclically ordered group. We denote by CD(G) the family
{{0G}, G, Hp : p prime}. It is equipped with the linear preorder relation ⊆.

Theorem 2. Let (G,R) and (G′, R′) be divisible nonlinear abelian cyclically ordered groups.

• If, for every prime p, G/Hp is dense, then (G,R) ≡ (G′, R′) if, and only if, the mapping
Hp 7→ H ′p induces an isomorphism from CD(G) onto CD(G′).

• If, for some prime p, G/Hp is discrete, then (G,R) ≡ (G′, R′) if, and only if, the following
holds:
the mapping Hp 7→ H ′p induces an isomorphism from CD(G) onto CD(G′),
for every prime p, G/Hp is discrete if, and only if, G′/H ′p is discrete, and if this holds,
then the mappings fG,p and fG′,p are equal.

Following Lucas, the proof of this theorem is based on the works of Schmitt ([20], [21]).
Then we describe the cyclic orders on the additive group Q (Proposition 4.18). This gives rise

to a description of the functions fG,p (Proposition 4.28) and the following theorem.

Theorem 3. Let Γ be a divisible abelian group.

(1) It is cyclically orderable if, and only if, its torsion subgroup T (Γ) is isomorphic to a divisible
subgroup of T (U).

(2) If Γ is isomorphic to a divisible subgroup of T (U), then it admits uncountably many cyclic
orders, but they are pairwise c-isomorphic.

(3) If Γ contains non-torsion elements, and its torsion subgroup is not trivial, then it admits
uncountably many pairwise non-c-isomorphic cyclic orders. If T (Γ) is isomorphic to T (U),
then all of them are pairwise elementarily equivalent.

(4) If Γ is torsion-free, then there are uncountably many pairwise non elementarily equivalent
cyclic orders on Γ.
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Next, we prove that there is a one-to-one correspondence between the set of partitions of the set
of prime numbers, equipped with an arbitrary linear order, and the set of families CD(G), where
G is a divisible abelian cyclically ordered group.

Finally, the minimality is studied in Section 5. We start with definitions.

Definitions 1.3. Let (G,R) be a cyclically ordered group. If I is a subset of G, then I is an open
interval if there are g 6= g′ in G such that I = {h ∈ G : R(g, h, g′)}. We denote this open interval
by I(g, g′).
A subset J is c-convex if either it has only one point, or, for each g 6= g′ in J , either I(g, g′) ⊆ J
or I(g′, g) ⊆ J .

Remark 1.4. • A c-convex proper subgroup of a cyclically ordered group is a proper subgroup
which is a c-convex subset.
• A c-convex subset is not necessarily a singleton or an open interval: the linear part of a

cyclically ordered group is a c-convex subset and if it is nontrivial, then it is not an open
interval. Indeed, if g /∈ l(G), then any open interval bounded by g contains an element g′

such that U(g′) = U(g), hence g′ /∈ l(G). If g ∈ l(G), then g doesn’t belong to the open
intervals bounded by itself.
• The bounded open intervals of (l(G), <) are open intervals of (G,R), since for h and g < g′

in l(G) we have g < h < g′ ⇔ R(g, h, g′).

Definitions 1.5. Let (G,R) be an infinite cyclically ordered group. We say that (G,R) is:

(1) cyclically minimal if each definable subset of G is a finite union of singletons and open
intervals.

(2) strongly cyclically minimal if for each (G′, R′) which is elementary equivalent to (G,R),
(G′, R′) is cyclically minimal.

(3) weakly cyclically minimal if each definable subset of G is a finite union of c-convex subsets.

These notions correspond respectively to the notions of o-minimal, strongly o-minimal and
weakly o-minimal in the linearly ordered case. In the linearly ordered case the three notions coincide
and are satisfied in (G,R) if, and only if, (G,R) is abelian and divisible. For the equivalence between
o-minimal and strongly o-minimal see [12] and [16]. The equivalence with weakly o-minimal follows
from [7] corollary 1.3.

Clearly if (G,R) is strongly cyclically minimal, then it is cyclically minimal, and if it is cyclically
minimal, then it is weakly cyclically minimal.

Note that in a finite structure every subset is a finite union of singletons.

Theorem 4. ([15, Theorem 5.1]) A cyclically ordered group is cyclically minimal if, and only if,
it is abelian and c-divisible.

Corollary 1.6. (Lucas) A cyclically ordered group is strongly cyclically minimal if, and only if, it
is cyclically minimal.

Proof. Indeed, the theory of c-divisible abelian cyclically ordered groups is complete. �

The characterization of weakly cyclically minimal cyclically ordered groups requires to define
the construction of cyclically ordered groups by mean of the lexicographic product ([22]).

Let (G,R) be a cyclically ordered group and Γ be a linearly ordered group. One can define a
cyclic order on G× Γ as follows: R′((g1, x1), (g2, x2), (g3, x3)) holds if, and only if,

• either g1 = g2 = g3 and xσ(1) < xσ(2) < xσ(3) for some σ in the alternating group A3 of
degree 3

• or gσ(1) = gσ(2) 6= gσ(3) and xσ(1) < xσ(2) for some σ ∈ A3

• or R(g1, g2, g3).

Definition 1.7. Let (G,R) be a cyclically ordered group and Γ be a linearly ordered group. We

let G
−→×Γ denote the cyclically ordered group defined above. It is called the lexicographic product

of (G,R) and (Γ,≤).
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Theorem 5. (Lucas) A cyclically ordered group (G,R) is weakly cyclically minimal if, and only
if, either (G,R) is abelian and c-divisible, or l(G) is infinite, abelian and divisible and there exist

a positive integer n such that G ' T (U)n
−→× l(G), where T (U)n is the subgroup of n-th roots of 1 in

T (U).

The author thanks Viktor Verbosvskiy and Melissa Nalbandiyan for their comments.

2. Properties of cyclically ordered groups.

Before to list properties of cyclically ordered groups, we point out that in [24] an equivalent
definition of cyclically ordered groups by mean of a mapping from G×G×G to {−1, 0, 1} appears.
Later, the conditions of this definition are made simpler and the cyclic orderings are called circular
orderings. A compatible circular order on G is a mapping c from G × G × G to {−1, 0, 1} which
is a cocycle, that is for all g1, g2, g3, g4 in G we have c(g2, g3, g4) − c(g1, g3, g4) + c(g1, g2, g4) −
c(g1, g2, g3) = 0 (e. g. [11]). Now, one can check that R is a compatible cyclic order on G if,
and only if, the mapping c defined by c(g1, g2, g3) = 1 if R(g1, g2, g3) holds, c(g1, g2, g3) = −1 if
R(g3, g2, g1) holds, and c(g1, g2, g3) = 0 if g1 = g2 or g2 = g3 or g3 = g1, is a compatible circular
order on G. The reader can find a similar proof in [2, Lemma 2.3]. Many papers about circularly
ordered groups do not refer to the classical ones about cyclically ordered groups (except [4] for
example), and several results are re-proved.

2.1. Wound-round cyclically ordered groups. If (Γ,≤) is a linearly ordered group and z ∈ Γ,
z > e, is a central and cofinal element of Γ, then the quotient group Γ/〈z〉 can be cyclically ordered
by setting R(x1 ·〈z〉, x2 ·〈z〉, x3 ·〈z〉) if, and only if, there are x′1, x

′
2, x

′
3 such that

x1 ·〈z〉 = x′1 ·〈z〉, x2 ·〈z〉 = x′2 ·〈z〉, x3 ·〈z〉 = x′3 ·〈z〉 and
either e ≤ x′1 < x′2 < x′3 < z or e ≤ x′2 < x′3 < x′1 < z or e ≤ x′3 < x′1 < x′2 < z.
With this cyclic order, Γ/〈z〉 is called the wound-round cyclically ordered group associated to Γ

and z.
If Γ = Z and n is a positive integer, then we get a natural cyclic order on the group Z/nZ.

This cyclically ordered group is c-isomorphic to the the subgroup T (U)n of n-th roots of 1 in the
cyclically ordered group T (U).

Assume that Γ is a lexicographic product of linearly ordered groups Z−→×Γ1, and z = (1, e). For
any x ∈ Γ1 and n ∈ Z, we have (0, e) < (n, x) < (1, e) = z ⇔ n = 0 and x > e or n = 1 and
x < e. So, one can check that the cyclically ordered group Γ/〈z〉 is linearly cyclically ordered, and
isomorphic to the ordered group Γ1.

A theorem of Rieger ([17], [8, Theorem 21 p. 64]) states that for every cyclically ordered group
(G,R) there exists a linearly ordered group (uw(G),≤R) and a positive element zG ∈ uw(G) which
is central and cofinal such that (G,R) is c-isomorphic to the cyclically ordered group uw(G)/〈zG〉.
The structure (uw(G),≤R, zG) is uniquely defined, up to isomorphism. The group (uw(G),≤R) is
called the unwound of (G,R).

For example, the unwound of U is R, the unwound of (G,R) is isomorphic to Z if, and only if,
G is finite.

For further purposes, we give the definition of the order relation and of the group operation on
uw(G).

The underlying set of uw(G) is Z×G.
The relation ≤R is defined by (n, g) ≤R (n′, g′) if, and only if, either n < n′ or [n = n′ and

(g = e or R(e, g, g′) or g = g′)].
Turning to the group operation, (n, g)·(n′, g′) is equal to (n + n′, gg′) if either g = e or g′ = e

or R(e, g, gg′) holds, and it is equal to (n+ n′ + 1, gg′) if g 6= e and gg′ = e or R(e, gg′, g) holds.
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Furthermore, zG = (1, e).
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For x ∈ uw(G), we denote by x̄ its image in uw(G)/〈zG〉 ' G.
There is a set embedding of G in {0}×G such that for any g, g′ in G\{e}, (uw(G),≤R) satisfies

(0, g) <R (0, g′) if, and only if, (G,R) satisfies R(e, g, g′).

We end this subsection with a lemma which will be useful in the proof of Proposition 2.11 and
in subsection 4.3. For every abelian group Γ and every prime p, we denote by [p]Γ the number
of classes modulo p in Γ (without distinguishing between infinites). Note that Γ being divisible is
equivalent to [p]Γ = 1 for every prime p.

Lemma 2.1. ([14, Lemma 4.16]) Let (G,R) be an abelian cyclically ordered group. If G contains
a p-torsion element, then [p]uw(G) = [p]G. Otherwise, [p]uw(G) = p[p]G.

2.2. Linear part of a cyclically ordered group. Recall that if (G,R) is a nonlinear cyclically
ordered group, then its linear part l(G) is its largest c-convex proper subgroup and if the cyclic
order is linear, then we let l(G) = G.

Let (G,R) be a cyclically ordered group. An element g is said to be positive if R(e, g, g2) holds.
This condition is equivalent to R(e, g, g−1). We denote by P the union of {e} and of the set of
positive elements of (G,R) ([24]). We say that P is the positive cone of (G,R). Both of P and
P−1 are c-convex subsets of G, and g ∈ P ∪ P−1 if, and only if, either g = e or g2 6= e. The set
P ∩ l(G) is the positive cone of the linear order on l(G) ([25, p. 547]).

One can prove that the map fromG in uw(G) defined by f(g) = (0, g) if g ∈ P and f(g) = (−1, g)
if not, when restricted to a c-convex proper subgroup H, is a group homomorphism and an order
isomorphism between H and f(H). Furthermore, f(H) is a convex subgroup of uw(G).

Notation 2.2. Let (G,R) be a cyclically ordered group. We set Guw = uw(G), and if H is a
c-convex proper subgroup of G, then set Huw = f(H).

The epimorphism from uw(G) to uw(G)/〈zG〉 ' G, when restricted to Huw, is the inverse
of the isomorphism f from H onto Huw. It follows that the set of c-convex proper subgroups
of (G,R) is linearly ordered by inclusion and when R is nonlinear we have an order isomorphism
between the inclusion-ordered set of c-convex proper subgroups of (G,R) and the inclusion-ordered
set of proper convex subgroups of (uw(G),≤R). Therefore, the set of c-convex proper subgroups
is closed under arbitrary unions and intersections. For each g ∈ G there is a smallest c-convex
proper subgroup of (G,R) containing g. Note that l(G)uw is the largest proper convex subgroup
of (uw(G),≤R)), since it is the largest convex subgroup which doesn’t contain the cofinal element
zG. Hence uw(G)/l(G)uw embeds in R.

Recall that for every proper normal c-convex subgroup H of a cyclically ordered group G,
one can define canonically a cyclic order on G/H such that the canonical epimorphism is a c-
homomorphism. The linear part of G/H is isomorphic to l(G)/H, and its unwound is isomorphic
to uw(G)/Huw.

A cyclically ordered group (G,R) is said to be c-archimedean if for every g and every h there is
an integer n such that R(e, gn, h) is not satisfied ([23], [2, Section 3.3]).

Fact 2.3. (1) (G,R) is c-archimedean if, and only if, it can be embedded in U. This in turn
holds if, and only if, R is not linear and G has no nontrivial c-convex proper subgroup ([22,
p. 162]).

(2) (G,R) is nonlinearly cyclically ordered and is c-archimedean if, and only if, its unwound
(uw(G),≤R) is archimedean. This follows from (1) and the order isomorphism between
the inclusion-ordered set of c-convex proper subgroups of (G,R) and the inclusion-ordered
set of convex subgroups of (uw(G),≤R), in the nonlinear case.

Let g, h be elements of a cyclically ordered group (G,R). If 1 6= U(g) 6= U(h) 6= 1, then
R(e, g, h) holds in (G,R) if, and only if, R(1, U(g), U(h)) holds in U(G). Now, if U(g) = 1 6= U(h)
(so g ∈ l(G)), then R(e, g, h) holds if, and only if, g > e in l(G), and R(e, h, g) holds if, and only
if, g < e in l(G) ([9, Remark 5.6]).
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2.3. Dense, discrete, divisible abelian cyclically ordered groups. One can prove that an
abelian cyclically ordered group (G,R) is dense if, and only if,

∀(g1, g2) ∈ G×G g1 6= g2 ⇒ (∃h ∈ G R(g1, h, g2)).

Let (G,R) and (G′, R′) be two abelian cyclically ordered groups such that (G′, R′) is a sub-
structure of (G,R). We say that (G′, R′) is dense in (G,R) if

∀(g1, g2) ∈ G×G (∃h ∈ G R(g1, h, g2))⇒ (∃h′ ∈ G′ R(g1, h
′, g2)).

The group U is dense, a subgroup of U is dense if, and only if, it is infinite (this is also equivalent
to saying that it is dense in U). In particular, each divisible subgroup of U is dense.

For every positive integer n, T (U)n is discrete, and 1T (U)n = e2iπ/n. We give the proof of the
following lemma for completeness.

Lemma 2.4. The abelian cyclically ordered group (G,R) is discrete if, and only if, its unwound
(uw(G),≤R) is a discrete linearly ordered group. More generally, let H be a c-convex subgroup of
(G,R). Then the cyclically ordered group G/H is discrete if, and only if, the linearly ordered group
uw(G)/Huw is discrete.

Proof. If l(G) is nontrivial, then one can see that (G,R) is discrete if, and only if, l(G) is a discrete
linearly ordered group. If this holds, then 1G is the smallest positive element of l(G). Since
l(G) embeds in a convex subgroup of (uw(G),≤R), it follows that (G,R) is discrete if, and only
if, (uw(G),≤R) is discrete. If l(G) is trivial, then, by Fact 2.3, (G,R) embeds in U. Now, the
unwound of U is R and the unwound of (G,R) is isomorphic to Z if, and only if, G is finite. It
follows that (G,R) is discrete if, and only if, its unwound is a discrete linearly ordered group.

Now, let H be a c-convex subgroup of G. We saw before Fact 2.3 that the unwound of G/H is
uw(G)/Huw. Therefore G/H is discrete if, and only if, uw(G)/Huw is discrete. �

Remark 2.5. • A divisible abelian cyclically ordered group is not necessarily dense, as shows
the following example of Lucas. Let G be the wound-round (Q−→×Z)/〈(α, 1)〉 with α posi-

tive, where
−→× denotes the lexicographic product. The ordered group Q−→×Z is discrete with

smallest positive element (0, 1). By Lemma 2.4, (G,R) is discrete. Let n ∈ N\{0} and

(x,m) ∈ Q−→×Z. We have:

n

(
x+ (n−m)α

n
, 1

)
= (x+ (n−m)α, n) = (x,m) + (n−m)(α, 1).

Hence (x,m) is n-divisible modulo (α, 1). So (G,R) is divisible.
• It can happen that (G,R) is divisible and uw(G) is not. This holds in the previous example.

One can also take Γ = Q + Zπ in R and G = Γ/〈π〉.
• If (G,R) is divisible, then so is U(G) (since hn = g ⇒ U(h)n = U(g)). Therefore, if

(G,R) c-archimedean and divisible, then G ' U(G) is either dense or trivial. Hence it is
not discrete.

Lemma 2.6. (Lucas) Let n ∈ N\{0, 1}. An abelian cyclically ordered group (G,R) has an element
of finite order n if, and only if, zG is n-divisible within uw(G).

Proof. Assume that there is x ∈ uw(G) such that nx = zG. Then in G we have nx̄ = 0G. Now,
for every n′ ∈ {1, . . . , n − 1} we have 0uw(G) < n′x < zG, hence n′x̄ 6= 0G. Conversely, assume
that there is x ∈ uw(G) such the order of x̄ is n, i.e. nx̄ = 0G and, for every n′ ∈ {1, . . . , n − 1},
n′x̄ 6= 0G. So there is k ∈ Z such that nx = kzG. Let d be the gcd of n and k, and say, n = dn′,
k = dk′. Therefore, we have n′x = k′zG, so n′x̄ = 0G. By minimality of n, we have n′ = n,
so d = 1. Therefore, there exist u, v in Z such that uk + vn = 1. Hence zG = ukzG + vnzG =
unx+ vnzG = n(ux+ vzG). Consequently, zG is n divisible. �

Lemma 2.7. (Lucas) If a divisible abelian cyclically ordered group has an element whose order is
finite, then it is dense.

Proof. Let (G,R) a divisible abelian cyclically ordered group and p be a prime such that G contains
an element g of torsion p. If G is c-archimedean, then it is infinite so it is dense. Let G > 0 in
l(G) and h such that ph = g. By [27, Proposition 3], T (G) c-embeds in T (U), hence it contains a
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subgroup isomorphic to T (U)p. Therefore, by multiplying h by a p-torsion element we can assume
that h ∈ l(G). So we have 0 < h < g in l(G). Hence (G,R) is dense. �

Corollary 2.8. A discrete divisible abelian cyclically ordered group is torsion-free.

2.4. C-regular cyclically ordered groups. We start with the definition of regular linear groups.
They were introduced in [19], [26], but later equivalent definitions were given ([5], [6]). Let n be a
positive integer. An abelian linearly ordered group is n-regular if it satisfies ∀x1, . . . ,∀xn 0 < x1 <
· · · < xn ⇒ ∃y (x1 ≤ ny ≤ xn).

A useful criterion is the following. A linearly ordered abelian group (Γ,≤) is n-regular if, and
only if, for each proper convex subgroup C, the quotient group Γ/C is n-divisible ([5]). The group
(Γ,≤) being n-regular is also equivalent to: for each prime number p dividing n, (Γ,≤) is p-regular
([19], [26]). We say that the group (Γ,≤) is regular if it is n-regular for each n. If (Γ,≤) is divisible
or archimedean, then it is regular.
If (uw(G),≤R) is regular, then we say that (G,R) is c-regular. This is also equivalent to: for every
c-convex proper subgroup C, G/C is divisible and to: either G is c-archimedean or l(G) is regular
and U(G) is divisible and contains a subgroup isomorphix to T (U) ([14, Theorem 3.5]).

Let (G,R) be a divisible abelian cyclically ordered group. If (G,R) is linearly cyclically ordered,
then it is a regular linearly ordered group, since it is divisible. By [14, Corollary 3.15], if (G,R) is
nontrivial and linearly ordered, then it is not c-regular. It follows that (G,R) is linearly ordered if,
and only if, it is regular (as linearly ordered group) and not c-regular. This is first-order definable.
If this holds, then it is elementarily equivalent to the linearly ordered group Q ([18, Theorem
4.3.2]).

A dense divisible nonlinear abelian cyclically ordered group is not necessarily c-regular, as
shows the following example of Lucas. Let (G,R) be the wound-round ((Q + πZ)

−→×Q)/〈(π, 0)〉.
It is divisible. We have uw(G) = (Q + πZ)

−→×Q. Now, ((Q + πZ)
−→×Q)/({0}−→×Q) is isomorphic to

Q + πZ, so it is not divisible. Hence uw(G) is not regular, therefore, (G,R) is not c-regular.
Note that a c-divisible cyclically ordered group is dense and c-regular, since uw(G) is divisible.
Now, the next theorem shows that the theory of c-divisible abelian cyclically ordered groups is

complete.

Theorem 2.9. Two dense c-regular divisible abelian cyclically ordered groups are elementarily
equivalent if, and only if, they have c-isomorphic torsion subgroups.

Proof. This is a consequence of [14, Theorem 1.9], which states that any two dense c-regular abelian
cyclically ordered groups are elementarily equivalent if, and only if, they have c-isomorphic torsion
subgroups and, for every prime p, the same number of classes of congruence modulo p. �

Our Theorem 2 involves dense and discrete divisible abelian cyclically ordered groups. However,
the discrete case also follows from [14]. We turn to this case in the remainder of this subsection.

Lemma 2.10. Let (G,R) be a discrete abelian nonlinear cyclically ordered group. Then either G
is finite, or U(1G) = 1.

Proof. If U(G) is infinite, then it is a dense cyclically ordered group. Therefore, if l(G) = {0G},
then (G,R) is discrete if, and only if, it is finite. If l(G) is infinite, then 1G ∈ l(G) (see proof of
Lemma 2.4). Hence U(1G) = 1. �

Proposition 2.11. (Lucas) Each discrete divisible abelian cyclically ordered group is c-regular.

Proof. Let (G,R) be a discrete divisible abelian cyclically ordered group and n ∈ N\{0}. The
cyclic order is not linear, since every linearly ordered divisible abelian group is dense. Since G is
torsion-free (Corollary 2.8), and divisible, by Lemma 2.1 we have [p]uw(G) = p. Since (0, 1G) is the
smallest positive element of (uw(G),≤R), the classes (0, 0G), (0, 1G), (0, 2·1G), . . . , (0, (p−1)·1G) are
pairwise distinct. Therefore, the classes of uw(G) modulo p are the classes of (0, 0G), (0, 1G), (0, 2·
1G), . . . , (0, (p−1)·1G). Consequently, uw(G)/〈(0, 1G)〉 is p-divisible. Since 〈(0, 1G)〉 is the smallest
convex subgroup of (uw(G),≤R), it follows that the quotient of uw(G) by any proper convex
subgroup is p-divisible, and that (uw(G),≤R) is p-regular. Consequently (G,R) is c-regular. �
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The classification of complete theories of discrete c-regular abelian cyclically ordered groups
follows from [14, Theorem 4.33 and Corollary 4.34]. If (G,R) is a c-regular discrete abelian
cyclically ordered group, then for every p and n there exists a unique k such that the formula
∃g R(0G, g, 2g, . . . , (p

n − 1)g) & png = k1G holds. The element g in this formula is such that the
jg’s where 1 ≤ j ≤ pn − 1 “do not turn full the circle”, but png “turns full the circle”, and it is
equal to 1G. Let us denote this k by ϕG,p(n).

For every c-regular discrete abelian cyclically ordered group (G,R) and every prime p there
exists a unique mapping ϕp from N\{0} to {0, . . . , p−1} such that for every n ∈ N\{0}, ϕG,p(n) =
ϕp(1) + pϕp(2) + · · ·+ pn−1ϕp(n) ([14, Lemma 4.29]). The sequence of the ϕp’s is called the cha-
racteristic sequence of (G,R).

For every sequence of ϕp’s there exists a discrete c-regular abelian cyclically ordered group
(G,R) such that this sequence is the characteristic sequence of (G,R) ([14, Proposition 4.36]).

Finally, (G,R) is divisible if, and only if, for every p we have ϕp(1) 6= 0 ([14, Proposition 4.36]).

Theorem 2.12. ([14, Corollary 4.34]) Any two discrete divisible abelian cyclically ordered groups
are elementarily equivalent if, and only if, they have the same characteristic sequences.

Since there are 2ℵ0 distinct characteristic sequences of discrete divisible abelian cyclically ordered
groups, there are 2ℵ0 elementary classes of discrete divisible abelian cyclically ordered groups. This
was originally proved by Lucas, using constructions of cyclic orders on Q.

Note that if ϕp(1) 6= 0, then p does not divide ϕG,p(n), hence ϕG,p(n) has an inverse modulo
pn. We see that the function fG,p satisfies a similar property. In order to keep the consistency of
the paper, we start by proving the existence of fG,p(n).

Lemma 2.13. Let (G,R) be a dense divisible abelian cyclically ordered group. Assume that there
is a prime p such that G/Hp is discrete.

(1) We have Hp ( l(G), and for every n ∈ N\{0} there exists an integer fG,p(n) ∈ {1, . . . , pn−
1} which satisfies: for every g ∈ l(G), h ∈ G such that g + Hp = 1G/Hp and g = pnh, we

have U(h) = e
2ifG,p(n)π

pn .
(2) For every positive integers m, n, fG,p(n) is the remainder of the euclidean division of

fG,p(m+ n) by pn. It follows that p and fG,p(n) are coprime.

Proof. Note that if G/Hp is discrete, then Hp 6= G, so G is not c-p-divisible. In particular, G does
not contain p-torsion elements. Therefore, for every g ∈ G, and every positive integer n, there is
a unique h such that g = pnh.

(1) By the definition of Hp we have Hp ⊆ l(G). Now, G/l(G) ' U(G), which is dense since it
is divisible and nontrivial. Hence if G/Hp is discrete, then Hp 6= l(G) (if (G,R) is discrete, then
l(G) is nontrivial (Remark 2.5) and Hp = {0G}).

Now, we assume that G/Hp is discrete. Let g ∈ G be such that g +Hp = 1G/Hp , and h be the
unique element of G such that g = pnh. Note that 1G/Hp belongs to the positive cone of G/Hp,
hence g belongs to the positive cone of G. Since Hp ( l(G), the cyclically ordered group G/Hp

is not c-archimedean, and its linear part is isomorphic to l(G)/Hp. Since 1G/Hp belongs to its
linear part, we have g ∈ l(G), and g > 0G in l(G). Since pnh ∈ l(G), we have U(pnh) = 1. Hence
U(h) is a pn-th root of 1 in U. Assume that h ∈ l(G). Since Hp is a convex subgroup of l(G) and
pnh /∈ Hp, we have h /∈ Hp. By properties of linearly ordered groups we have 0G < h < g. This
contradicts the minimality of g+Hp. Hence h /∈ l(G), that is U(h) 6= 1. It follows that there exists

k ∈ {1, . . . , pn − 1} such that U(h) = e
2ikπ
pn .

Let g′ ∈ G be such that g′ + Hp = 1G/Hp , and h′ be the unique element of G such that
g′ = pnh′. Then g − g′ ∈ Hp, and pn(h − h′) = g − g′. Since Hp is p-divisible and h − h′ is the
unique element of G such that pn(h− h′) = g− g′, h− h′ belongs to Hp. Therefore U(h− h′) = 1,
hence U(h′) = U(h+ h′ − h) = U(h) + U(h′ − h) = U(h). It follows that k doesn’t depend of the
choice of g. We let fG,p(n) = k.

(2) Let g ∈ G such that g+Hp = 1G/Hp , m, n in N\{0} and h, h′ be the elements of G such that

g = pnh = pm+nh′. Then h = pmh′. It follows that U(h) = U(pmh′), so
2fG,p(n)π

pn is congruent to
pm2fG,p(m+n)π

pm+n modulo 2π. This in turn is equivalent to saying that fG,p(m+n)− fG,p(n) belongs
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to pnZ. Say, fG,p(m + n) = apn + fG,p(n). Since fG,p(n) < pn and fG,p(m + n) > 0, we have
a > 0. Hence fG,p(n) is the remainder of the euclidean division of fG,p(m+ n) by pn.

By Proposition 1.2, fG,p(n) ≥ 1, hence, since fG,p(1) ∈ {1, . . . , p−1}, p and fG,p(1) are coprime.
If n ≥ 2, then pn−1 divides fG,p(n)− fG,p(1). Therefore, p does not divide fG,p(n). �

If (G,R) is a discrete divisible abelian cyclically ordered group, then for every prime p we have
Hp = {0G}. Hence G/Hp ' G. The the proof of [14, Proposition 4.36], shows that for every p, n
the integer ϕG,p(n) is the inverse of fG,p(n) modulo pn. Now, Theorem 2.12 can be reformulated
in the following way.

Theorem 2.14. Let (G,R) and (G′, R′) be two discrete divisible abelian cyclically ordered groups.
Then they are elementarily equivalent if, and only if, for every prime p the functions fG,p and fG′,p
are equal.

3. C-divisible abelian cyclically ordered groups.

Recall that an abelian cyclically ordered group is c-divisible if it is divisible and its torsion
subgroup is c-isomorphic to (T (U), ·). This is also equivalent to uw(G) being divisible.

Proof of Theorem 1. (1) The fact that TcD is complete follows from Theorem 2.9. Now, Let
(G1, R1) and (G2, R2) be two c-divisible abelian cyclically ordered groups such that G1 is a sub-
group of G2. Recall that by Lemma 2.7 a c-divisible abelian cyclically ordered group is dense. By
[14, Theorem 1.8], (G1, R1) is an elementary subextension of (G2, R2) if, and only if, G1 is pure
in G2 and, for every prime p, [p]G1 = [p]G2. Now, if (G1, R1) and (G2, R2) are c-divisible, then
G1 is pure in G2, and for every prime p we have [p]G1 = [p]G2 = 1. It follows that (G1, R1) is an
elementary substructure of (G2, R2). So, TcD is model complete.

(2) Let (G,R) be a c-divisible abelian cyclically ordered group (so it is dense). We already
saw that the ordered group uw(G)/l(G)uw embeds in R. Since uw(G) is abelian torsion-free and
divisible, it is a Q-vector space. Hence there is a subspace A of uw(G) such that the restriction
to A of the canonical epimorphism x 7→ x + l(G)uw is one-to-one, and so uw(G) = A ⊕ l(G)uw.
Note that A is also a divisible abelian subgroup. The canonical epimorphism is order preserving
because l(G)uw is a convex subgroup of uw(G). Hence its restriction to A is order preserving, and
every positive element of A is greater than l(G)uw. It follows that the ordered group uw(G) is

isomorphic to the lexicographic products A
−→× l(G)uw and (uw(G)/l(G)uw)

−→× l(G)uw. Let (G1, R1)
and (G2, R2) be two c-divisible abelian cyclically ordered groups, ϕ1 be a c-embedding of (G,R)
in (G1, R1) and ϕ2 be a c-embedding of (G,R) in (G2, R2). These c-embeddings induce embed-
dings ϕ1uw of (uw(G),≤R) in (uw(G1),≤R1) and ϕ2uw of (uw(G),≤R) in (uw(G2),≤R2), where
ϕ1uw(zG) = zG1

and ϕ2uw(zG) = zG2
. The restriction of ϕ1uw (resp. ϕ2uw) to l(G) is an embedding

of l(G) in l(G1) (resp. l(G2)). Since the theory of divisible abelian linearly ordered groups has
the amalgamation property, there are an abelian linearly ordered group L and embeddings Φ1 of
l(G1) in L and Φ2 of l(G2) in L such that the restrictions of Φ1 ◦ ϕ1uw and Φ2 ◦ ϕ2uw are equal.
Now, since uw(G1)/l(G1)uw and uw(G2)/l(G2)uw are archimedean, there is a unique embedding
Ψ1 (resp. Ψ2) of uw(G1)/l(G1)uw (resp. uw(G2)/l(G2)uw) in R such that Ψ1(zG1

+ l(G1)uw) = 1
(resp. Ψ2(zG2

+ l(G1)uw) = 1). Hence we get embeddings of (uw(G1),≤R1
) and (uwG2,≤R2

) in

R−→×L such that zG1 and zG2 has the same image Z, which is positive and cofinal. These embed-

dings induce c-embeddings ϕ′1 of (G1, R1) in (R−→×L)/〈Z〉 and ϕ′2 of (G2, R1) in (R−→×L)/〈Z〉 such
that ϕ′1 ◦ ϕ1 = ϕ′2 ◦ ϕ2.

(3) Since TcD is model-complete and has the amalgamation property, it admits the quantifiers
elimination.

(4) Let (G,R) be a c-divisible abelian cyclically ordered group. Then its torsion subgroup is
c-isomorphic to T (U). Hence T (U) embeds in (G,R), and this embedding is elementary, since TcD
is model complete.

(5) Clearly, every model of TcD is an abelian cyclically ordered group. Since TcD is model-
complete, to prove that it is the model completion of the theory of abelian cyclically ordered groups,
it remains to prove that every abelian cyclically ordered group embeds in a unique way in a minimal
c-divisible one. Let (G,R) be an abelian cyclically ordered group, and uw(G) be the divisible hull
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of uw(G). Then (G,R) ' uw(G)/〈zG〉 c-embeds in the c-divisible abelian cyclically ordered group

uw(G)/〈zG〉. Now, if (G,R) c-embeds in a c-divisible abelian cyclically ordered group (G′, R′), then

(uw(G),≤R) embeds in the divisible linearly ordered group (uw(G′),≤R′). Hence uw(G) embeds

in uw(G′). Therefore uw(G)/〈zG〉 c-embeds in uw(G′)/〈zG′〉 ' G′. It follows that uw(G)/〈zG〉 is
the c-divisible hull of (G,R). �

4. General case.

By [18, Theorem 4.3.2], every linearly ordered divisible abelian group is elementarily equivalent
to the ordered group (Q,+). Therefore, if (G,R) is a torsion-free divisible abelian linearly cyclically
ordered group, then it is elementarily equivalent to the linearly cyclically ordered group (Q,+). In
this section we look at the nonlinear cyclically ordered case.

4.1. The preordered family CD(G). We recall that if (G,R) is a divisible abelian nonlinear
cyclically ordered group, then for every prime p such that G is not c-p-divisible, Hp denotes either
the greatest p-divisible convex subgroup of l(G). If G is c-p-divisible, then Hp = G. The family
{{0G}, G, Hp : p prime} is denoted by CD(G).

Remark 4.1. (1) The group Hp is a p-divisible c-convex proper subgroup of (G,R), and the
ordered convex subgroup Hp of l(G) is isomorphic to the proper convex subgroup (Hp)uw
of uw(G).

(2) The subgroup (Hp)uw is the greatest p-divisible convex subgroup of uw(G), since if Hp 6= G,
then zG is not divisible by any integer within uw(G) (Lemma 2.6).

(3) The quotient cyclically ordered group G/Hp is dense (resp. discrete) if, and only if,
uw(G)/(Hp)uw is a dense (resp. discrete) ordered group (this follows from Lemma 2.4).

We now prove a lemma which will also be crucial in the study of weakly cyclically minimal
cyclically ordered groups, for replacing a lemma of Lucas that was false (it brought a contradiction).
For g in a cyclically ordered group, we let θ(g) be the element of [0, 2π[ such that U(g) = exp(iθ(g)).

Lemma 4.2. Let (G,R) be a divisible abelian nonlinear cyclically ordered group and p be a prime
such that G does not contain any p-torsion element. Then the sets

{U(g) : g ∈ G, ∃h ∈ G, (R(0G, h, g,−g) or R(−g, g, h, 0G)) and ph = g}
and {U(g) : g ∈ G, ∀h ∈ G, (R(0G, h, g,−g) or R(−g, g, h, 0G))⇒ ph 6= g}

are both dense in U.

Proof. By Remark 2.5, U(G) is divisible, hence it is dense in U. Let A = {h ∈ G : 0 < θ(h) <
π
p }. Then U(A) is dense in the the subset

{
eiθ : 0 < θ < π

p

}
of U, hence U(pA) is dense in{

eiθ : 0 < θ < π
}

. Let h ∈ A and g = ph. Since 0 < θ(h) < pθ(h) = θ(g) < π, both of g
and h belong to the positive cone of (G,R), and g satisfies ∃h ∈ G, R(0G, h, g,−g) and ph =
g (recall that R(0G, h, g,−g) stands for R(0G, h, g) and R(0G, g,−g), see Subsection 1.1). In
the same way, U(p(−A)) is dense in

{
eiθ : π < θ < 2π

}
and every g ∈ p(−A) satisfies ∃h ∈

G, R(−g, g, h, 0G) and ph = g. Hence {U(g) : g ∈ G, ∃h ∈ G, (R(0G, h, g,−g) orR(−g, g, h, 0G))
and ph = g} is dense in U.

Let A′ = {h ∈ G : 2π − 2π
p < θ(h) < 2π − π

p }. Then U(A′) is dense in the the set{
eiθ
′

: 2(p−1)π
p < θ < (2p−1)π

p

}
. Now, 2(p−1)π is congruent to 0 modulo 2π, and (2p−1)π is con-

gruent to π. Hence U(pA′) is dense in
{
eiθ : 0 < θ < π

}
. Let g ∈ pA′ and h ∈ A′ be such that g =

ph. Since g belongs to the positive cone of G, and h does not, we have R(0, g,−g), and R(0, g, h).
Since G does not contain p-torsion elements, this element h such that g = ph is unique. Hence g
belongs to the set {U(g) : g ∈ G, ∀h ∈ G, (R(0G, h, g,−g) or R(−g, g, h, 0G))⇒ ph 6= g}. In the
same way, U(p(−A′)) is a subset of {U(g) : g ∈ G, ∀h ∈ G, (R(0G, h, g,−g) or R(−g, g, h, 0G))⇒
ph 6= g}, and U(p(−A′)) is dense in

{
eiθ : π < θ < 2π

}
. Hence {U(g) : g ∈ G, ∀h ∈

G, (R(0G, h, g,−g) or R(−g, g, h, 0G))⇒ ph 6= g} is dense in U. �

In order to show that the family CD(G) depends on the first-order theory of G, we start with a
lemma and we prove Proposition 1.2.
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Lemma 4.3. Let (G,R) be a divisible abelian nonlinear cyclically ordered group.

(1) Let p be a prime such that G is not c-p-divisible. The subgroup Hp is definable by the
formula g = 0G

or (R(0G, g,−g) and ∀g′ ∈ G (g′ = g or R(0G, g
′, g))⇒ ∃h′ R(0G, h

′, g′) and g′ = ph′)

or (R(−g, g, 0G) and ∀g′ ∈ G (g′ = g or R(g, g′, 0G))⇒ ∃h′ R(g′, h′, 0G) and g′ = ph′).

(2) The inclusion Hp ⊆ Hq depends on the first-order theory of (G,R).
(3) The cyclically ordered group G/Hp being discrete is determined by the first-order theory of

(G,R).

Proof. (1) Since G is not c-p-divisible, it does not contain p-torsion element. Hence for every g in
G there is only one h in G such that ph = g. The formula of this statement can be reformulated
as g = 0G or (*) g belongs to the positive cone P of (G,R) and every g′ in I(0G, g) is p-divisible
within I(0G, g

′), or (**) g ∈ −P and every g′ in I(g, 0G) is p-divisible within I(g′, 0G). Let H
be the set of elements which satisfy this formula. For g 6= 0G in H, we have either g ∈ P and
I(0G, g) ⊆ H, or g ∈ −P and I(g, 0G) ⊆ H, and clearly, g ∈ H ⇔ −g ∈ H. Therefore, H is equal
to the union of the c-convex subsets {−g} ∪ I(−g, g) ∪ {g} where g ∈ (P ∩ H)\{0G}. It follows
that H is a c-convex subset of G.

We assume that G does not contain p torsion elements, and we prove that H ⊆ l(G). It follows
that, for every g in G there is only one h in G such that ph = g.

Let g /∈ l(G), then U(g) 6= 1. By Lemma 4.2, the set U(G\H) is dense in U(G). Hence there
exist h, h′ in G\H such that R(1, U(h), U(g), U(h′)) holds in U. Therefore, we have R(0G, h, g, h

′).
So I(0G, g) * H and I(g, 0G) * H, which proves that g /∈ H. Therefore H ⊆ l(G).

Now, it follows from (*) and (**) that H is the greatest p-divisible c-convex subset of l(G). In
particular, Hp ⊆ H. Therefore, in order to prove that H = Hp, it is sufficient to prove that H is
a subgroup of l(G). The set H is nonempty since it contains 0G. Assume that 0G < g ∈ l(G) and
every h ∈ l(G) such that 0G < h ≤ g is p-divisible within l(G). Then every h ∈ l(G) such that
−g < h < 0G also is p-divisible within l(G), so −g ∈ H. In the same way, if 0G > g ∈ l(G), then
−g ∈ l(G). Let g, g′ in H. If g′ < 0G < g, then g′ < g + g′ < g, so g + g′ ∈ H, since H is convex.
If 0G < g′ < g, then every h ∈ l(G) such that g < h < g + g′ can be written as h = g′ + (h− g′),
where h − g′ is p-divisible within l(G) since 0G < h − g′ < g. Therefore, h is p-divisible within
l(G), which proves that g + g′ ∈ H. In the same way, if g < g′ < 0G, then g + g′ ∈ H. So, we
proved that H is a subgroup of l(G). Consequently, H = Hp.

(2) Since Hp and Hq are definable, the inclusion Hp ⊆ Hq also is definable.
(3) The quotient group G/Hp being discrete is definable by the formula ∃g ∈ G R(0G, g,−g) g /∈

Hp and ∀h ∈ G R(0G, h, g)⇒ (h ∈ Hp or g − h ∈ Hp). �

For each positive integer n, the formula:

argboundn(g) = R(0G, g, 2g, . . . , ng) & ¬R(0G, g, 2g, . . . , 2ng, (n+ 1)g)

is satisfied in (G,R) exactly by those elements g such that either θ(g) =
2π

n+ 1
& 0G < (n+ 1)g (in

l(G)), or
2π

n+ 1
< θ(g) <

2π

n
, or θ(g) =

2π

n
& 0G > ng (in l(G)) (see [9, Lemmas 6.9 and 6.10]).

Proof of Proposition 1.2. The first part of this proposition has been proved in (1) of Lemma 2.13.
It remains to prove that the function fG,p is determined by the first-order theory of (G,R). By
Proposition 4.3, the quotient group G/Hp being discrete is definable.

If p = 2 and r = 1, then fG,2(1) = 1. In the following, we assume that p > 2, or p = 2 and r > 1.
By (2) of Lemma 2.13, p and fG,p(r) are coprime. Hence fG,p(r) has a unique inverse modulo pr

in {1, . . . , pr − 1}. Now, the first-order theory of (G,R) determines fG,p(r) if, and only if, it
determines its inverse modulo pr. Let l in {1, . . . , pr − 1}. Note that l being the inverse of fG,p(r)

modulo pr is equivalent to U(lh) = e
2iπ
pr . We prove that this holds if, and only if, argboundpr−1(lh)

holds. With above notations, argboundpr−1(lh) holds if, and only if,

either θ(lh) =
2π

pr
& 0G < prlh (in l(G)), or

2π

pr
< θ(lh) <

2π

pr − 1
,
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or θ(lh) =
2π

pr − 1
& 0G > (pr − 1)lh (in l(G)).

Now, θ(lh) belongs to the set
{

0, 2π
pr , . . . ,

2(pr−1)π
pr

}
, and since p > 2 we have 4π

pr >
2π
pr−1 . Hence

if argboundpr−1(lh) holds, then θ(lh) =
2π

pr
& 0G < prlh. Conversely, assume that θ(lh) =

2π

pr
.

Then 2π divides θ(prlh), so prlh belongs to l(G), and prlh = lg > 0G. Hence prlh is positive in
l(G), so argboundpr−1(lh) holds. �

Proposition 4.4. Let (G,R) and (G′, R′) be divisible abelian cyclically ordered groups such that
(G′, R′) ≡ (G,R). Then the mapping Hp 7→ H ′p defines an isomorphism from CD(G) onto CD(G′),
for every prime p the cyclically ordered group G/Hp is discrete if, and only if, G′/H ′p is discrete,
and if this holds, then fG,p = fG′,p.

Proof. This follows from Lemma 4.3 and Proposition 1.2. �

The converse of this proposition will be proved in Subsection 4.4. First we turn to reminders
about model theory of linearly ordered abelian groups.

4.2. The spine of Schmitt of a linearly ordered abelian group. By [9, Theorem 4.1], any
two abelian cyclically ordered groups (G,R) and (G′, R′) are elementary equivalent if, and only if,
their Rieger unwounds (uw(G),≤R, zG) and (uw(G′),≤R′ , zG′) are elementarily equivalent in the
language of ordered groups together with a specified element interpreted by zG:

(G,R) ≡ (G′, R′) if, and only if, (uw(G),≤R, zG) ≡ (uw(G′),≤R′ , zG′).
So, determining the first-order theory of (G,R) is equivalent to determined the first-order theory

of (uw(G), zG). Lucas based its study of the first-order theory of divisible abelian cyclically ordered
groups on Schmitt papers about model theory of linearly ordered groups (cf. [20, p. 15 and the
following ones]).

We let (Γ,≤) be a linearly ordered abelian group.
For every positive integer n, the n-spine of (Γ,≤) is a family of convex subgroups of Γ:

Spn(Γ) = {An(x) : x ∈ Γ\{0Γ}} ∪ {Fn(x) : x ∈ Γ\nΓ},
where the convex subgroups An(x) and Fn(x) are defined as follows.

For every x ∈ Γ, Fn(x) is the greatest convex subgroup of (Γ,≤) such that Fn(x)∩ (x+nΓ) = ∅
if any, otherwise Fn(x) = ∅. By [20, Lemma 2.8, p. 25], Fn(x) = ∅ is equivalent to x ∈ nΓ.

We define An(0Γ) = ∅. For x ∈ Γ\{0Γ} we denote by A(x) the greatest convex subgroup of
Γ which doesn’t contain x, and by B(x) the convex subgroup generated by x. We know that
B(x)/A(x) is an archimedean linearly ordered abelian group, so it is regular (regular ordered
groups have been defined in Subsection 2.4).

For n ∈ N\{0} we let An(x) be the smallest convex subgroup of (Γ,≤) such that B(x)/An(x) is
n-regular.

For x, y in Γ, An(y) ( An(x) is definable by the first-order formula

|y| < |x| & ∃u (|y| ≤ u ≤ n|x|) & ∀v(|v| < n|y| ⇒ v − u /∈ nΓ) ([20, Lemma 2.6, p. 21]).

(Here, |y| ≤ u stands for: 0Γ ≤ y ≤ u or 0Γ < −y ≤ u.)
For x ∈ Γ\{0Γ} we also define Bn(x) to be the greatest convex subgroup of Γ such that

Bn(x)/An(x) is n-regular, and Cn(x) = Bn(x)/An(x) (so, Cn(x) is n-regular).

The language of Spn(Γ) consists in a binary predicate <S and unary predicates A, F , Dk,
{βp,m : p prime, m ∈ N}, {αp,k,m : p prime, k ∈ N, m ∈ N}. These predicates are interpreted
as follows.
<S : C1 <S C2 ⇔ C2 ( C1.
A(C): ∃x ∈ Γ, C = An(x).
F (C): ∃x ∈ Γ, C = Fn(x).
Dk(C): ∃x ∈ Γ, C = An(x) & Cn(x) is discrete.
If C is an abelian group, then for every prime p and non-negative integer r the quotient group

prC/pr+1C is a Z/pZ-vector space. In the following two formulas, dim denotes the dimension of
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this vector space. Furthermore, Torp(C) denotes the subgroup of elements of C which torsion is an
exponent of p. One can check that the sets {y ∈ Γ : Fn(y) ⊆ Fn(x)} and {y ∈ Γ : Fn(y) ( Fn(x)}
are subgroups of Γ.
βp,m(C): ∃x ∈ Γ, C = An(x) and lim

r→+∞
dim

(
prCn(x)/pr+1Cn(x)

)
≥ m.

αp,k,m(C): ∃x ∈ Γ, C = An(x) and m ≤ dim
(
Torp(p

kF ∗n(x))/Torp(p
k+1F ∗n(x))

)
,

where F ∗n(x) =
{y ∈ Γ : Fn(y) ⊆ Fn(x)}
{y ∈ Γ : Fn(y) ( Fn(x)}

, or F ∗n(x) = {0Γ} if {y ∈ Γ : Fn(y) ( Fn(x)} = ∅.

Theorem 4.5. ([20, Corollary 3.2, p. 33]). If Γ′ is an other abelian linearly ordered group, then
Γ ≡ Γ′ if, and only if, for every integer n we have Spn(Γ) ≡ Spn(Γ′).

There is also a relative quantifiers elimination when adding the predicates Mn,k(x), Dp,r,i(x)
and Ep,r,i(x) (i < r) interpreted as follows.
Mn,k(x) holds if, and only if, Cn(x) is discrete and if the class x0 +An(x) of some x0 ∈ Γ is the

smallest positive element of Cn(x), then x+An(x) = k(x0 +An(x)).
Dp,r,i(x) holds if, and only if, either x ∈ prΓ or there is some y ∈ Γ such that Fpr (x) ( Fpr (y),

x− y ∈ piΓ and Fpr
(
x−y
pi

)
⊆ Fpr (x).

Ep,r,k(x) holds if, and only if, there exists y ∈ Γ such that Fpr (x) = Apr (y) and Cpr (y) is
discrete with smallest positive element the class of y and Fpr (x− ky) ( Fpr (x).

The relative quantifiers elimination is the following.

Theorem 4.6. ([20, Theorem 4.5, p. 66]) Let Ψ(Z1, . . . , Zm) be a formula in the language of or-
dered groups. Then there exist an integer n, a formula ϕ0(X1, . . . , Xk, Y1, . . . , Yk) in the language
Spn, some terms t1, . . . , tk with variables Z1, . . . , Zm and a quantifier-free formula ϕ1(Z1, . . . , Zm)
in above language such that for every abelian ordered group (Γ,≤) and every sequence −→x =
(x1, . . . , xm) of elements of Γ we have (Γ,≤) |= Ψ(−→x ) if, and only if,

Spn(Γ) |= ϕ0(An(t1(−→x )), . . . , An(tk(−→x )), Fn(t1(−→x )), . . . , Fn(tk(−→x )))) and (Γ,≤) |= ϕ1(−→x ).

4.3. Spines of “almost divisible” abelian groups. If (Γ,≤) is an n-divisible linearly ordered
abelian group, then for every positive integer n and every x ∈ Γ we have An(x) = {0Γ}, Bn(x) = Γ
and Fn(x) = ∅. It follows that the predicates αp,k,m and βp,m don’t make sense. Now we turn to
a less trivial case.

By Lemma 2.1, if G is p-divisible without p-torsion element, then [p]uw(G) = p, and if G is
c-p-divisible, then [p]uw(G) = 1. So in this subsection we focus on the case where for every prime
p we have [p]Γ ∈ {1, p}.

For every linearly ordered abelian group (Γ,≤) and every prime p, we denote by Γp the greatest
p-divisible convex subgroup of (Γ,≤). The group Γp is definable by the formula

x ∈ Γp ⇔ ∀y ∈ Γ (0Γ ≤ y ≤ x or x ≤ y ≤ 0Γ)⇒ ∃z ∈ Γ y = pz.

Indeed, Let Γ′p be the subset defined by this formula. Then, 0Γ ∈ Γ′p and for every x ∈ Γ we
have x ∈ Γ′p ⇔ −x ∈ Γ′p. So, in the same way as in the proof of (1) of Lemma 4.3, Γ′p is the
greatest p-divisible convex subset of Γ. Finally, the proof of (1) of Lemma 4.3 shows that Γ′p is a
subgroup (in Lemma 4.3, If Hp 6= G, then Hp ⊆ l(G), hence we considered a convex subset of a
linearly ordered group).

This subsection is dedicated to prove the following proposition.

Proposition 4.7. Let (Γ,≤) be a linearly ordered abelian group such that, for every prime p,
[p]Γ ∈ {1, p}. Then, the spines of the (Γ,≤) are determined by the ordered set of Γp’s (p prime),
and if this set admits a maximal element Γp, the property Γ/Γp being discrete or dense.

In the remainder of this subsection, (Γ,≤) is a linearly ordered abelian group such that, for
every prime p, [p]Γ ∈ {1, p}.

Lemma 4.8. Let C ( C ′ be two convex subgroups of (Γ,≤) and p be a prime. Then C ′/C is
p-divisible if, and only if, either Γp ( C, or C ′ ⊆ Γp.
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Proof. Clearly, if C ′ ⊆ Γp, then C ′/C is p-divisible. This holds if Γp = Γ, i.e. [p]Γ = 1. Now, we
assume [p]Γ = p.

We have: [p]C = 1 if, and only if, C ⊆ Γp. Otherwise, [p]C = p (the same holds with C ′).
Assume that Γp ( C. Then, there exists x ∈ C\pC such that the classes of C modulo p are

pC, x+ pC, . . . , (p− 1)x + pC. Since C is a convex subgroup of C ′, x is not p-divisible within C ′

(if x = py, then |y| ≤ |x|, hence y ∈ C). Now, [p]C = [p]C ′ = p, so the classes of C ′ modulo p are
pC ′, x+ pC ′, . . . , (p− 1)x+ pC ′. Let x′ ∈ C ′ and j ∈ {0, . . . , p− 1} such that x′ ∈ jx+ pC ′. Then,
there is y′ ∈ C ′ such that x′ − py′ = jx. Since jx ∈ C, we have x′ + C = py′ + C, which proves
that C ′/C is p-divisible.

Assume that C ⊆ Γp ( C ′. Let x′ ∈ C ′ such that the class of x′ modulo C is p-divisible. Hence,
there exists y′ ∈ C ′ such that x′ − py′ ∈ C. Now, C = pC, hence x′ − py′ ∈ pC ⊆ pC ′, which
proves that x′ ∈ pC ′. Since C ′ 6= pC ′, we see that C ′/C is not p-divisible. �

Corollary 4.9. If there is some C ( C ′ in the set {Γ, Γp : p prime } such that C ′/C is discrete,
then C ′ = Γ, and C = max{Γp : p prime }

Proof. If there exists p1 and p2 such that {0G} ( Γp1 ( Γp2 , then Γp2/Γp1 is p2-divisible. It
follows that it is dense, and that Γ/Γp1 is dense. Consequently, if some group C ′/C is discrete,
then C = max{Γp : p prime }. Since C ′ ∈ {Γ, Γp : p prime }, we have C ′ = Γ. �

Note that if C = {0Γ} and C ′/C is discrete, then C ′ is discrete. Hence Γ is discrete and for
every prime p we have Γp = {0Γ}.

Before to prove the next Proposition, we review some properties of the sets An(x) and Fn(x).

Lemma 4.10. Assume that n = pr11 · · · p
rk
k , where p1, . . . , pk are the primes which divide n and let

x ∈ Γ.

(a) We have Fn(x) ⊆ An(x) and (Fn(x) = ∅ ⇔ x ∈ nΓ) ([20, Lemma 2.8, p. 25]). One can
check that if x /∈ nΓ, then Fn(x) contains the greatest n-divisible convex subgroup of Γ.

(b) The set An(x) is the maximum of the Apj (x) ([20, Lemma 2.3 p. 19]).
(c) The set Fn(x) is the maximum of the F

p
rj
j

(x)’s, where 1 ≤ j ≤ k ([20, Lemma 2.3 p. 19]).

If m is an other integer, then Fmn(mx) = Fn(x), and if (m,n) = 1, then Fn(x) = Fn(mx)
([20, 3 and 4 of Lemma 2.10, p. 26]).

Proposition 4.11. Let n = pr11 · · · p
rk
k be a positive integer, where p1, . . . , pk are the primes which

divide n.

(1) Spn(Γ) = {Γpi : 1 ≤ i ≤ k} ∪ { {0Γ}}. We denote by {0Γ} = C1 ( C2 ( · · · ( Cl (
Cl+1 = Γ, the elements of Spn(Γ) ∪ {Γ}.
Let x ∈ Γ\{0Γ} and j be the integer such that x ∈ Cj+1\Cj. Then An(x) = Cj and Bn(x) =
Cj+1. In particular, for every α ∈ Z\{0} we have An(αx) = An(x) and Bn(αx) = Bn(x).
If x /∈ nuw(G), then Fn(x) = max{Γpi : 1 ≤ i ≤ k, prii - x}.

(2) Let C, C ′ in Spn(Γ). Then A(C), F (C ′) hold if, and only if, C and C ′ belong to
{Γp1 , . . . ,Γpk}. Furthermore, there exists x such that C = An(x) and C ′ = Fn(x) if,
and only if, C ′ ⊆ C.

(3) Let C, in Spn(Γ). If Dk(C) holds, then C = Cl, and for any x such that An(x) = C we
have Bn(x) = Γ.

(4) Let j ∈ {2, . . . , l}. Then βp,0(Cj) holds, for m ≥ 2, βp,m(Cj) does not hold, and βp,1(Cj)
holds if, and only if, Cj ⊆ Γp ( Cj+1.

(5) Let C ∈ Spn(Γ)\{ {0Γ} }. If m > 1, then αp,k,m(C) does’nt hold. If m = 0 then it holds.
In the case m = 1 it holds if, and only if, pk+1 divides n and Γp ⊆ C.

Proof. (1) Let x ∈ Γ\{0Γ} and p be a prime.
Assume that x ∈ Γp. Then B(x) ⊆ Γp. Hence Ap(x) = {0Γ}. By (a) of Lemma 4.10 we have

Fp(x) = ∅. If Γp ( C for some convex subgroup C, then by Lemma 4.8 C/Γp is not p-divisible, so
C is not p-regular. Hence C/Ap(x) = C/{0Γ} is not p-regular. Therefore, Bp(x) = Γp.

Assume that x /∈ Γp. Then, Γp ( B(x). The group B(x)/C is p-regular if, and only if, for every
C ′ such that C ( C ′ ( B(x), the group (B(x)/C) / (C ′/C) is p-divisible, i.e. B(x)/C ′ is p-divisible.



16 G. LELOUP

By Lemma 4.8, this is equivalent to Γp ( C ′. It follows that Ap(x) = Γp, and Bp(x) = Γ. We
deduce from (b) of Lemma 4.10 that An(x) is equal to the maximum of the Γpi such that x /∈ Γpi ,
1 ≤ i ≤ k (or to {0Γ} if the preceding set is empty).

Assume that x = pdi x
′, where x′ /∈ pi Γ, and let r be a positive integer. By (a) of Lemma 4.10,

Γpi ⊆ Fpri (x
′) ⊆ Apri (x

′) = Γpi . Hence Fpri (x
′) = Γpi . If pri divides x, then, by (a) of Lemma

4.10, Fpri (x) = ∅. Now, assume that pri doesn’t divide x (i.e. r > d). By (c) of Lemma 4.10,

Fpri (x) = Fpr−di pdi
(pdi x

′) = Fpr−d(x′) = Γpi . Therefore, if x /∈ nΓ, then, by (c) of Lemma 4.10,

Fn(x) = max{Γpi : 1 ≤ i ≤ k, prii - x}. Hence Spn(Γ) = {Γpi : 1 ≤ i ≤ k} ∪ { {0Γ}}, that we
can write as { {0Γ} = C1 ( C2 ( · · · ( Cl}. The hypothesis [p]Γ = p, for every prime, implies that
Γp 6= Γ. So Γ /∈ Spn(Γ), for convenience we let Cl+1 = Γ.

We let Cj = An(x). Since Cj is the maximum of the Γpi such that x /∈ Γpi , 1 ≤ i ≤ k (or
to {0Γ} if the preceding set is empty), we have x ∈ Cj+1\Cj . Let C, C ′ be convex subgroups
such that Cj ( C ( C ′, and i ∈ {1, . . . , k}. By Lemma 4.8, C ′/C is pi-divisible if, and only if,
either Γpi ( C or C ′ ⊆ Γpi . Hence C ′/Cj is pi-regular if, and only if, either Γi ⊆ Cj or C ′ ⊆ Γpi .
Consequently, C ′/Cj is n-regular if, and only if, C ′ ⊆ Cj+1. Therefore, Bn(x) = Cj+1. This proves
(1).

(2) Predicates A and F . Since ∅ /∈ Spn(Γ), it follows from (1) that A(C), F (C ′) hold if, and
only if, C and C ′ belong to {Γp1 , . . . ,Γpk}. By (a) of Lemma 4.10, if there exists x such that
An(x) = C and Fn(x) = C ′, then C ′ ⊆ C. In order to prove the converse, we assume that
Γp1 ⊆ · · · ⊆ Γps−1

( Γps = · · · = Γpt ( Γpt+1
⊆ · · · ⊆ Γpk and C = Γps , we denote by B the set

Bn(x) for any x ∈ Γ such that An(x) = C (this is equivalent to B = Γpt+1
if t < k and to B = Γ if

t = k). By the definition of the sets Γp, for i ∈ {1, . . . , t} there exists an element xi ∈ B\Γpi = B\C
which is not divisible by pi. We let x = p2 · · · ptx1 + p1p3 · · · ptx2 + · · · + p1 · · · pt−1xt. Then x is
not divisible by any of p1, . . . , pt. In particular, x ∈ B\C. Hence An(x) = C and Fn(x) = C. The
element prss · · · p

rt
t x belongs to B\C. Hence An(prss · · · p

rt
t x) = C, and Fn(prss · · · p

rt
t x) = Γps−1

. In
the same way, by multiplying by the other prii ’s, i < s, we get elements yi such An(yi) = C and
Fn(yi) = Γpi .

(3) Predicate Dk. If C is not the maximum of the groups Γp, then Dk(C) does not hold
(Corollary 4.9). Assume that C is the maximum of the Γp’s. For every x ∈ Γ such that C = An(x),
x does not belong to any Γp. Therefore, Bn(x) = Γ.

(4) Predicates βp,m(Cj). Let x ∈ Γ such that Cj = An(x) (i.e. x ∈ Cj+1\Cj). If Cn(x) is
not p-divisible, then, [p]Cn(x) = p. Hence, for every r, dim(prCn(x)/pr+1Cn(x)) = 1. Otherwise,
dim(prCn(x)/pr+1Cn(x)) = 0. It follows that if m ≥ 2, then βp,m(Cj) does not hold and if m = 0,
then it holds. If m = 1, then βp,1(Cj) holds if, and only if, Cn(x) is not p divisible. By Lemma
4.8, Cn(x) is not p-divisible if, and only if, An(x) ⊆ Γp ( Bn(x), that is, Ci ⊆ Γp ( Ci+1

(5) Predicates αp,k,m(C). We let x ∈ Γ such that An(x) = C. We assume that Γp1 ⊆ · · · ⊆
Γps−1

( Γps = · · · = Γpt ( Γpt+1
⊆ · · · ⊆ Γpk and Fn(x) = Γps . By (1), for i > t, prii divides x,

and there is some i ∈ {s, . . . , t} such that prii doesn’t divide x. Let y ∈ Γ. Then Fn(y) ( Fn(x)
if, and only if, for every i ≥ s, prii divides y. We let n1 = p

rt+1

t+1 · · · p
rk
k and n2 = prss · · · p

rt
t . Then

{y ∈ Γ : Fn(y) ( Fn(x)} = n1n2Γ. In the same way, {y ∈ Γ : Fn(y) ⊆ Fn(x)} = n1Γ.
So F ∗n(x) = n1Γ/n1n2Γ. Let y0 ∈ n1Γ\n1n2Γ, p be a prime, d be the greatest integer such

that pd divides y0, and k be a positive integer. Then pky0 ∈ n1n2Γ if, and only if, there is
i ∈ {s, . . . , t} such that p = pi, k ≥ ri− d, and for i′ 6= i in {s, . . . , t}, pri′i′ divides y. Consequently,
if p /∈ {ps, . . . , pt}, then F ∗n(x) doesn’t contain any nontrivial p-torsion element. If this holds, then
dim

(
Torp(p

kF ∗n(x))/Torp(p
k+1F ∗n(x))

)
= 0.

Assume that p = pi with i ∈ {s, . . . , t}. Then Torpi(F
∗
n(x)) =

(
n1

n2

p
ri
i

Γ
)
/ (n1n2Γ), and

Torpi(piF
∗
n(x)) =

(
n1

n2

p
ri−1

i

Γ

)
/ (n1n2Γ).

Hence dim(Torpi(F
∗
n(x))/Torpi(piF

∗
n(x))) = 1.

More generally, if k < ri, then dim
(
Torpi(p

k
i F
∗
n(x))/Torpi(p

k+1
i F ∗n(x))

)
= 1.

If k ≥ ri, then both of Torpi(p
k
i F
∗
n(x)) and Torpi(p

k+1
i F ∗n(x)) are trivial, hence

dim
(
Torpi(p

k
i F
∗
n(x))/Torpi(p

k+1
i F ∗n(x))

)
= 0.
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By (1), Fn(x) can be any element of Spn(Γ) which is a subgroup of C, i.e. any Γpi where
i ∈ {1, . . . , k} and Γpi ⊂ C. �

Now, Proposition 4.7 follows from Proposition 4.11.

4.4. Theories of divisible abelian cyclically ordered groups. Let (G,R) be a cyclically
ordered group. It follows from Theorems 4.5 and 4.6 that determining the first-order theory of
(uw(G), zG) is also equivalent to determining Spn(uw(G))’s and the type of zG. So, François
Lucas proved that if G is divisible, then the type of zG is determined by the Spn(uw(G))’s and
the functions fG,p. Our approach here is more explicit and we give the links with the theory of
(G,R). We first state a lemma.

Lemma 4.12. (Lucas) Let (G,R) be a nonlinear divisible cyclically ordered abelian group. If
Cn(zG) is discrete, then it is not archimedean.

Proof. Since zG is cofinal in (uw(G),≤R) and zG ∈ B(zG) ⊆ Bn(zG), it follows that Bn(zG) =
uw(G). Hence, the condition “Cn(zG) archimedean” is equivalent to An(zG) = A(zG) = l(G)uw.
Hence Cn(zG) = uw(G)/l(G)uw. Since (G,R) is nonlinear, we have U(G) 6= {1}. Now, (G,R)
is divisible, hence U(G) is divisible. In particular it is infinite, so it is dense. By Lemma 2.4,
uw(G)/l(G)uw is dense. �

Proposition 4.13. Let (G,R) be a divisible nonlinear cyclically ordered abelian group. The spines
of Schmitt of (uw(G),≤R) are determined by CD(G).

Proof. It follows from Lemma 2.1 that, for every prime p, [p]uw(G) ∈ {1, p}. If [p]uw(G) = 1,
then uw(G) is p-divisible and uw(G)p = Guw = (Hp)uw. Assume that [p]uw(G) = p. Since l(G)uw
is the greatest convex subgroup of uw(G) and this group is not p-divisible, we have uw(G)p ⊆
l(G)uw. Therefore uw(G)p = (Hp)uw. Hence By Proposition 4.7, the spines of (uw(G),≤R) are
determined by the set of (Hp)uw’s, and if this set admits a maximal element (Hp)uw, the property
uw(G)/(Hp)uw being discrete or dense. The preordered subset of the (Hp)uw’s and CD(G) are
isomorphic, and uw(G)/(Hp)uw is discrete if, and only if, G/Hp is (Remark 4.1), and this is first-
order definable (Lemma 4.3 (3)).

By Lemma 4.3 (2), Hp ( Hq depends on the first-order theory of (G,R), hence the same holds
for the predicate <S of Spn(uw(G)). �

Lemma 4.14. Let (G,R) be a nonlinear cyclically ordered divisible abelian group and p be a
prime such that G/Hp is discrete. Then for every x ∈ l(G)uw such that the class x+ (Hp)uw is the
smallest positive element of uw(G)/(Hp)uw and every r ∈ N\{0}, there exists y ∈ uw(G) such that
pry = x+ fG,p(r)zG. Furthermore, if there exists y′ ∈ uw(G) and k ∈ Z such that pry′ = x+ kzG,
then k is congruent to fG,p(r) modulo pr.

Proof. Let r ∈ N\{0} and x ∈ l(G)uw such that the class x + (Hp)uw is the smallest positive
element of uw(G)/(Hp)uw. Since G is divisible, its unwound uw(G) is divisible modulo 〈zG〉.
Hence there exists y′ ∈ uw(G) and an integer k such that pry′ = x + kzG. Let k = prk′ + k′′,
with k′′ ∈ {0, . . . , pr − 1} be the euclidean division, and y = y′ − k′zG. Then pry = x+ k′′zG. Let

h = ȳ and g = x̄. Then g = prh, hence, by the definition of fG,p(r), we have U(h) = e
2ifG,p(r)π

pr .

In the divisible hull of uw(G), we have y =
1

pr
x+

k′′

pr
zG. Hence U(h) = U

(
k′′

pr
zG

)
= e

2ik′′π
pr .

Consequently, k′′ = fG,p(r), and k is congruent to fG,p(r) modulo pr. �

The proof of the following theorem is similar to that of an analogous Lucas result, but much
read in detail here.

Theorem 4.15. Let (G,R) be a divisible nonlinear cyclically ordered abelian group. If every
G/Hp is dense, then the type of zG in the language of Schmitt is entirely determined by CD(G).
Otherwise, it is entirely determined by CD(G) and the mappings fG,p, where Hp is the maximum
of the set {Hq : q prime}.
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Proof. Let Ψ(Z) be a formula in the language of ordered groups. By Theorem 4.6, there exist an
integer n, a formula ϕ0(X1, . . . , Xk, Y1, . . . , Yk) in the language Spn, some terms t1, . . . , tk with
variables Z and a quantifier-free formula ϕ1(Z) in the language defined before Theorem 4.6 such
that for every abelian ordered group (Γ,≤) and every x in Γ we have (Γ,≤) |= Ψ(−→x ) if, and only
if,

Spn(Γ) |= ϕ0(An(t1(x)), . . . , An(tk(x)), Fn(t1(x)), . . . , Fn(tk(x)))) and (Γ,≤) |= ϕ1(−→x ).

The only terms with variable zG look like αzG, where α ∈ Z\{0}. Set t1(zG) = α1zG, . . . , tk(zG) =
αkzG. Let (n, αi) be the gcd of n and αi. By (1) of Proposition 4.11, we have An(αizG) = An(zG).

By (c) of Lemma 4.10, Fn(αizG) = F n
(n,αi)

(
αi

(n,αi)
zG

)
= F n

(n,αi)
(zG). Therefore, ϕ0 can be written

as

ϕ0

(
An(zG), F n

(n,α1)
(zG), . . . , F n

(n,αk)
(zG)

)
.

Since zG is cofinal in uw(G), it follows from (1) of Proposition 4.11 that An(zG) is the greatest
(Hp)uw such that p divides n. If zG is n-divisible, then F n

(n,αi)
(zG) = ∅. If zG is not divisible

n-divisible, then by (1) of Proposition 4.11 F n
(n,αi)

(zG) is the greatest (Hp)uw such that p divides
n

(n, αi)
. So all these subsets are determined by the preordered set of the (Hp)uw’s.

Now, we look at the quantifier-free formula ϕ1(zG) in the language (0,+,≤R,Mn,k, Dp,r,i, Ep,r,i),
where n, k, r, i belong to N and p is a prime.

(1) The formulas which contain only the symbols 0, +, ≤R can be seen as formulas of Z. Hence
they do not depend on zG (for example, αzG ≥R (0, 0G) is equivalent to α ≥ 0).

(2) By Lemma 4.12, if Cn(zG) is discrete, then it is not archimedean. Since the class of zG is
cofinal, zG + An(zG) does not belong to the smallest convex subgroup of Cn(G) (which contains
the smallest positive element). Hence Mn,k(k′zG) nether holds.

(3) Predicates Dp,r,i(αzG). Assume that zG /∈ p uw(G). Hence αzG ∈ pruw(G) ⇔ α ∈ prZ.
Assume that α /∈ prZ, say α = psα′, with 0 ≤ s < r and (α′, p) = 1. By (c) of Lemma
4.10, Fpr (αzG) = Fpr−s(zG). By (1) of Proposition 4.11, Fpr−s(zG) = (Hp)uw. Hence Fpr (x) (
Fpr (zG)⇒ Fpr (x) = ∅, i.e. x ∈ pruw(G). Let x ∈ pruw(G). For i ≤ r we have:

αzG − x ∈ piuw(G)⇔ αzG ∈ piuw(G)⇔ α ∈ piZ⇔ i ≤ s,

which does not depend on (G,R).
If this holds, then by (1) of Proposition 4.11 we have

Fpr

(
αzG − x

pi

)
= ∅ or Fpr

(
αzG − x

pi

)
= (Hp)uw.

In any case, Fpr

(
αzG − x

pi

)
⊆ Fpr (zG). So, Dp,r,i(αzG) holds.

Therefore, the formula Dp,r,i(αzG) is determined by CD(G).
(4) Predicates Ep,r,k(αzG) (there exists some x ∈ uw(G) such that Apr (x) = Fpr (αzG), Cpr (x)

is discrete, the class of x is the smallest positive element, and Fpr (αzG − kx) ( Fpr (αzG)). By
Corollary 4.9, if Cpr (x) is discrete, then Bpr (x) = uw(G) and Apr (x) is the maximum of the set
of all the (Hp)uw’s. This is determined by CD(G) and the set of all primes p such that G/Hp is
discrete.

We assume that uw(G)/(Hp)uw is discrete. Then uw(G) is not p divisible, so G is not c-p-
divisible. In particular zG is not p-divisible (Lemma 2.6). We let x with class in the smallest
positive element.

If αzG ∈ pruw(G), then we already saw that Fpr (αzG) = ∅. It follows that Ep,r,k(αzG) doesn’t
hold, since the sets Apr (x) are nonempty. This is determined by CD(G).

Otherwise, we have Fpr (αzG) = (Hp)uw, and the last condition is equivalent to Fpr (αzG−kx) =
∅. This in turn is equivalent to αzG − kx ∈ pruw(G). By Lemma 4.14, there exists y ∈ uw(G)
such that pry = x+ fG,p(r)zG. Since zG is not p-divisible, we have:

αzG − kx ∈ pruw(G)⇔ αzG − kfG,p(r)zG ∈ pruw(G)⇔ α− kfG,p(r) ∈ prZ,

which is entirely determined by the function fG,p. �
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Now, Theorem 2 follows from Proposition 4.4 and Theorem 4.15.

Note that a divisible abelian cyclically ordered group G is c-regular if, and only if, for every
prime p we have either Hp = {0G} or Hp = G. If Hp = G for every p, then it is c-divisible, and if
Hp = {0G} for every p, then it is torsion-free c-regular.

4.5. Cyclic orders on the additive group Q of rational numbers. We describe the cyclic
orders on Q, we deduce a characterization of the families of functions fG,p, and we prove Theorem
3. Note that there is only one linear order on Q.

The description of the cyclic orders on Q will give rise to the characterization of all functions
fG,p because of the following proposition.

Proposition 4.16. ([14, Proposition 4.38]) Let (G,R) be an abelian cyclically ordered group which
is not c-archimedean. Then (G,R) is discrete and divisible if, and only if, there exists a discrete
cyclic order R′ on the group Q such that (Q, R′) is an elementary substructure of (G,R).

Note that in the statement of [14, Proposition 4.38] the word “c-regular” is redundant, since by
Proposition 2.11 every discrete divisible abelian cyclically ordered group is c-regular.

The description of the cyclic orders on Q is based on the following mappings.

Fact 4.17. For every prime number p, let fp be a mapping from N in {0, . . . , p − 1}. Then one
can define in a unique way a mapping from N\{0} to N in the following way. Set f(1) = 0. For p
prime and r ∈ N\{0}, f(pr) = fp(1) + pfp(2) + · · ·+ pr−1fp(r). For n = pr11 · · · p

rk
k with r1, . . . , rk

in N\{0}, let f(n) be the unique integer in {0, . . . , n−1} which is congruent to every f (prii ) modulo
prii (the existence of f(n) follows from the Chinese remainder theorem).

Proposition 4.18. Let R be a ternary relation on Q. Then R is a cyclic order if, and only if,
there exist mapping from N\{0} to N, defined as in Fact 4.17, θ ∈ [0, 2π[ and a non-negative a ∈ R
such that (Q, R) is c-isomorphic to the subgroup of the lexicographic product U−→×Q generated by{(

exp

(
i
θ + 2f(n)π

n

)
,
a

n

)
: n ∈ N\{0}

}
.

The proof of this proposition consists of Lemmas 4.19, 4.20, 4.21, 4.22.

Lemma 4.19. (Lucas) Let R be a nonlinear cyclic order on Q. The cyclically ordered group (Q, R)

embeds in the lexicographic product U−→×Q.

Proof. By [22, p. 161], there is a linearly ordered group L such that (Q, R) embeds in the lexi-

cographic product U−→×L. Let x 7→ (ϕ1(x), ϕ2(x)) be this embedding. Then ϕ1 and ϕ2 are group
isomorphisms. It follows that they are Q-linear. In particular, the image of ϕ2 is Q ·ϕ2(1). So

either Q·ϕ2(1) is trivial, or it is isomorphic to Q. In any case (Q, R) embeds in U−→×Q. �

Lemma 4.20. Let G be a subgroup of U−→×Q which is isomorphic to Q in the language of groups.
There exist θ ∈ R, 0 ≤ a ∈ Q, with a = 0⇒ θ /∈ Q·π, such that G is generated by{(

exp

(
i
θ + 2f(n)π

n

)
,
a

n

)
: n ∈ N\{0}

}
,

where f is a mapping from N\{0} in N which satisfies:
(*) for every n ∈ N\{0}, f(n) ∈ {0, . . . , n− 1},
(**) for every m, n in N\{0}, f(n) is the remainder of the euclidean division of f(mn) by n.

Proof. Let x 7→ (ϕ1(x), ϕ2(x)) be the group isomorphism between Q and G. We pick an x0 6= 0 in
Q and we let (exp(iθ), a) = (ϕ1(x0), ϕ2(x0)). Then G is generated by the set{(

ϕ1

(x0

n

)
, ϕ2

(x0

n

))
: n ∈ N\{0}

}
.

Now, ϕ2

(
x0

n

)
= a

n , and there exists a unique f(n) ∈ {0, . . . , n− 1} such that

ϕ1

(x0

n

)
= exp

(
i
θ + 2f(n)π

n

)
.
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Consequently, f satisfies (*).
If a < 0, then we can take −x0 instead of x0, so we can assume that a ≥ 0. Now, G is torsion-free,

so if a = 0, then, for every m ∈ Z\{0} and every n ∈ N\{0}, exp
(
im θ+2f(n)π

n

)
6= 1. This implies

that θ /∈ Q·π. Conversely, if a 6= 0 or θ /∈ Q·π, then
(

exp
(
im θ+2f(n)π

n

)
, mn a

)
= (1, 0)⇒ m = 0.

Let m, n in N\{0}. Then ϕ1

(
x0

n

)
= mϕ1

(
x0

mn

)
. Hence θ+2f(n)π

n − m θ+2f(mn)π
mn ∈ 2πZ. So

f(n) − f(mn) ∈ nZ, where 0 ≤ f(n) < n and 0 ≤ f(mn) < mn. Hence f(n) is the remainder of
the euclidean division of f(mn) by n. This proves that f satisfies (**). �

Lemma 4.21. For every θ ∈ R, 0 ≤ a ∈ Q, with a = 0 ⇒ θ /∈ Q·π, and every mapping f from
N\{0} in N which satisfies (*) and (**), the set

G =

{(
exp

(
im

θ + 2f(n)π

n

)
,
m

n
a

)
: m ∈ Z, n ∈ N\{0}

}
is a subgroup of U−→×Q, which is isomorphic to Q in the language of groups.

Proof. Let m, m′ in Z, n, n′ in N\{0} be such that(
exp

(
im

θ + 2f(n)π

n

)
,
m

n
a

)
=

(
exp

(
im′

θ + 2f(n′)π

n′

)
,
m′

n′
a

)
.

Then
(
m
n −

m′

n′

)
θ+ 2

(
mf(n)
n − m′f(n′)

n′

)
π ∈ 2πZ and

(
m
n −

m′

n′

)
a = 0. If a 6= 0, then m

n = m′

n′ . If

a = 0, then by hypothesis θ /∈ Qπ. Hence
(
m
n −

m′

n′

)
θ = 0, and m

n = m′

n′ .

Therefore, there is a one-to-one mapping between Q and G: for m ∈ Z and n ∈ N\{0},

ϕ
(m
n

)
=

(
exp

(
im

θ + 2f(n)π

n

)
,
m

n
a

)
.

Since
m

n
+
m′

n′
=
mn′ +m′n

nn′
, to prove that ϕ is an isomorphism in the language of groups, it

suffices to prove that
(mn′ +m′n)f(nn′)

nn′
·2π is congruent to

mn′f(n) +m′nf(n′)

nn′
·2π modulo 2π.

By (**), the euclidean divisions of f(nn′) by n and by n′ can be written as f(nn′) = qn + f(n)
and f(nn′) = q′n′ + f(n′). Therefore

mn′f(n)+m′nf(n′)
nn′ ·2π = (mn′+m′n)f(nn′)−nn′(mq+m′q′)

nn′ ·2π
= (mn′+m′n)f(nn′)

nn′ ·2π − 2(mq +m′q′)π.

It follows that ϕ is an isomorphism in the language of groups, and so its image G is a subgroup of
U−→×Q. �

Lemma 4.22. There is a one-to-one correspondence between the set of mappings from N\{0} in N
which satisfies (*) and (**), and the set of families {fp : p a prime}, where the fp’s are mappings
from N\{0} to {0, . . . , p− 1}.

Proof. For every prime number p, let fp be a mapping from N in {0, . . . , p − 1}, and let f be
the mapping defined in Fact 4.17. Then f satisfies (*). Let m = pr11 · · · p

rk
k and n = ps11 · · · p

sk
k

(where one of ri or si can be equal to 0). We let i ∈ {1, . . . k}. By the construction of f
(
pri+sii

)
and f (psii ), it follows that psii divides f

(
pri+sii

)
− f (psii ). Now, since f

(
pri+sii

)
is congruent to

f(mn) modulo pri+sii and f (psii ) is congruent to f(n) modulo psii , we deduce that f(mn)− f(n) is

congruent to f
(
pri+sii

)
− f (psii ) modulo psii . Therefore psii divides f(mn) − f(n). Consequently,

n divides f(mn)− f(n). Since f(n) < n, we conclude that f(n) is the remainder of the euclidean
division of f(mn) by n. This proves that f satisfies (**).

Conversely, let f be a mapping from N\{0} in N which satisfies (*) and (**). For every prime

p we set fp(1) = f(p), and for r ∈ N\{0} we set fp(r) =
f (pr)− f

(
pr−1

)
pr−1

. By (**), fp(r) is an

integer (it is the quotient of the euclidean division of f(pr) by pr−1). Now, f (pr) < pr, hence
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f (pr)− f
(
pr−1

)
pr−1

< p, so it belongs to {0, . . . , p − 1}. By construction, f (pr) = fp(1) + pfp(2) +

· · ·+ pr−1fp(r). We show that f (pr11 · · · p
rk
k ) is the unique integer in {0, . . . , pr11 · · · p

rk
k − 1} which

is congruent to every f (prii ) modulo prii . Since 0 ≤ f (pr11 · · · p
rk
k ) < pr11 · · · p

rk
k , it suffices to prove

that every prii divides f (pr11 · · · p
rk
k )− f (prii ). Now, this follows from (**). �

Remark 4.23. Let (G,R) be a cyclically ordered group and p be a prime such that G/Hp is
discrete. By Lemma 2.13, for every positive integers m, n, fG,p(n) is the remainder of the euclidean
division of fG,p(m+ n) by pn and p doesn’t divide fG,p(n). Hence in the same way as in the proof
of Lemma 4.21 there is a function fp : N\{0} → {0, . . . , p − 1} such that for every n ∈ N\{0},
fG,p(n) = fp(1) + pfp(2) + · · ·+ pn−1fp(n). Since p doesn’t divide fG,p(n), we have fp(1) 6= 0.

Note that the linear part of the cyclically ordered group U−→×Q is {1}−→×Q, so U(U−→×Q) is

isomorphic to U. The unwound of U−→×Q is isomorphic to R−→×Q. The convex subgroups of this
unwound are {(0, 0)}, {0}−→×Q, which is isomorphic to l(U−→×Q)uw, and R−→×Q. So, if G is a subgroup

of U−→×Q, then CD(G) contains at most three elements.

In the following we let G be a nonlinear subgroup of U−→×Q, which is isomorphic to Q in the
language of groups, and θ ∈ R, 0 ≤ a ∈ Q, f : N\{0} → N as in Lemma 4.20, and fp (p prime)
be the family of functions defined in Lemma 4.22.

Remark 4.24. If θ ∈ Qπ, then there is m
n > 0 in Q such that ϕ1

(
m
n x0

)
∈ 2πZ. So, by taking

m
n x0 instead of x0 in the proof of Lemma 4.20 we can assume that θ = 0.

Proposition 4.25. The cyclically ordered group G is c-archimedean if, and only if, θ /∈ Qπ. If
this hods, then it is c-isomorphic to a subgroup G′ of U−→×Q such that θ′ = θ, f ′ = f and a′ = 0.

Proof. Assume that θ /∈ Q ·π. Then, exp

(
im

θ + 2f(n)π

n

)
= 1⇔ m

θ + 2f(n)π

n
∈ 2πZ. This

implies mθ ∈ Qπ, hence m = 0. It follows that exp

(
im

θ + 2f(n)π

n

)
= 1 if, and only if, m = 0.

Hence l(G) = {(1, 0)} and (G,R) is c-archimedean. Since it is infinite, it is dense.
Assume that θ ∈ Q ·π. Recall that this implies a > 0. By Remark 4.24 we can assume that

θ = 0. Then l(G) contains the
(
1, man

)
’s where m f(n)

n ∈ Z. In particular, l(G) 6= {(1, 0)}, so G is
not c-archimedean.

Now, assume that θ /∈ Qπ and let G′ be the subgroup of U−→×{0} generated by the set{(
ϕ1

(x0

n

)
, 0
)

: n ∈ N\{0}
}
.

Then θ′ = θ and f ′ = f . We proved above that ϕ1 is one-to-one, hence the groups G and
G′ are isomorphic. Furthermore, since both of ϕ1 and ϕ2 are one-to-one, for any x1 x2 in Q
we have (ϕ1(x1), ϕ2(x1)) 6= (ϕ1(x2), ϕ2(x2)) ⇔ x1 6= x2. Now, let x1, x2, x3 in Q such that
(ϕ1(x1), ϕ2(x1)) 6= (ϕ1(x2), ϕ2(x2)) 6= (ϕ1(x3), ϕ2(x3)) 6= (ϕ1(x1), ϕ2(x1)). This equivalent to
ϕ1(x1) 6= ϕ1(x2) 6= ϕ1(x3) 6= ϕ1(x1). Hence R((ϕ1(x1), ϕ2(x1)), (ϕ1(x2), ϕ2(x2)), (ϕ1(x3), ϕ2(x3)))

holds in U−→×Q if, and only if, R(ϕ1(x1), ϕ1(x2), ϕ1(x3)) hods in U. Therefore, G and G′ are c-
isomorphic. �

By [10, Lemma 5.1, Theorem 5.3], there is one and only one c-embedding of each c-archimedean

cyclically ordered group in U. Hence if Q θ
π ∩ Q θ′

π = ∅, then (G,R) and (G′, R′) are not c-

isomorphic. Hence there are 2ℵ0 non isomorphic c-archimedean cyclic orders on Q. Now, since
any c-archimedean cyclically ordered group is c-regular, by Theorem 2.9, all c-archimedean dense
torsion-free divisible abelian cyclically ordered groups are elementarily equivalent.

Now, we turn to the non-c-archimedean case. By Lemma 4.20 and Remark 4.24 we can assume
that θ = 0 and a > 0.

Lemma 4.26. Assume that G is not c-archimedean, and let p be a prime. Then Hp = l(G) if,
and only if, fp is the 0 mapping. Otherwise, Hp = {(1, 0)}.
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Proof. Saying that Hp = l(G) is equivalent to saying that l(G) is a p-divisible group. This is turn
is equivalent to saying that for every r ∈ N the element (1, a) is pr-divisible within l(G), that is,

there is m
n ∈ Q such that exp

(
im 2f(n)π

n

)
= 1 and pr mn a = a. Now, exp

(
im 2f(n)π

n

)
= 1 and

pr mn a = a⇔ m
n = 1

pr and exp
(
i 2f(pr)π

pr

)
= 1. Since 0 ≤ f(pr) ≤ pr − 1, this in turn is equivalent

to m
n = 1

pr and f(pr) = 0. One can prove by induction that ∀r ∈ N\{0} f(pr) = 0 is equivalent to

∀n ∈ N\{0} fp(n) = 0.
Since l(G) is isomorphic to Q, its only proper subgroup is {(1, 0)}, hence Hp 6= l(G) ⇔ Hp =

{(1, 0)}. �

Corollary 4.27. For every subset P ′ of the set P of primes we can chose f so that, for every
p ∈ P ′, Hp = l(G), and, for every p ∈ P\P ′, Hp = {(1, 0)}. In particular, there are 2ℵ0 non
elementarily equivalent dense nonlinear cyclic orders on Q.

Proof. For every p ∈ P ′ we let fp be the 0 mapping and for every p ∈ P\P ′ we let fp be a function
from N\{0} to {0, . . . , p − 1} such that fp(1) 6= 0. We let f be defined in the same way as in
Lemma 4.22. By Lemma 4.26 for every p ∈ P we have Hp = l(G) and for every p ∈ P\P ′ we have
Hp = {(1, 0)}.

Therefore, if P ′ is nonempty, then there is p such that l(G) is p-divisible, so it it dense. So the
cyclic order is dense. Since there are 2ℵ0 nonempty subsets of P, by Theorem 2 there 2ℵ0 pairwise
non elementarily equivalent dense nonlinear cyclic orders on Q. �

The following provides a necessary and sufficient condition for G being discrete.

Proposition 4.28. (1) G is discrete if, and only if, for every prime p the mapping fp is not
the zero mapping and there is only a finite number of primes p such that fp(1) = 0. If this
holds, then we can choose the real number a such that for every prime p we have fp(1) 6= 0.

(2) Assume that for every prime p we have fp(1) 6= 0. Then, for every prime p and every
n ∈ N, Hp = {0} and f(pn) = fG,p(n).

(3) For every family of functions fp : N \{0} → {0, . . . , p − 1} with fp(1) 6= 0 (p prime),
there is a discrete cyclically ordered group isomorphic to Q such that the family of fG,p is
constructed as in Remark 4.23. Therefore, there 2ℵ0 pairwise non elementarily equivalent
discrete cyclic orders on Q.

Proof. (1) Assume that for every prime p we have fp(1) 6= 0. Since for every prime p we have
fp(1) 6= 0, the integers f(p) = fp(1) and p are coprime. For every r ≥ 2, f(pr) and p are co-
prime, since f(p) is the remainder of the euclidean division of f(pr) by pr−1. Let p1 < · · · < pk
be primes, r1, . . . , rk be positive integers, and n = pr11 · · · p

rk
k . Further, let u, v in Z such that

uf(pr11 ) + vp1 = 1, and q ∈ N such that f(n) = qpr11 + f(pr11 ). Then 1 = uf(n) + p1

(
v − qupr1−1

1

)
.

Therefore f(n) and p1 are coprime. The same holds with p2, . . . , pk, hence f(n) and n are coprime.

Therefore, if m
2πf(n)

n
∈ 2πZ, then n divides m. Consequently, either

m

n
a ≤ 0, or

m

n
a ≥ a. It

follows that (G,R) is discrete, with smallest positive element (1, a). Conversely, assume that (1, a)

is the smallest element of l(G), and let p be a prime. Since
(

1, ap

)
< (1, a), l(G) doesn’t contain

the element
(

1, ap

)
of U−→×Q. Therefore, ei

2πf(p)
p 6= 1, which is equivalent to f(p) 6= 0.

Assume that G is discrete. Then for every prime p we have Hp = {(1, 0)}. By Lemma 4.26, the
functions fp are different from the zero mapping.

Assume that no function fp is the zero mapping, but that there are infinitely many primes p
such that fp(1) = 0. Let n be a positive integer such that

(
1, an

)
belongs to the positive cone of

l(G). This is equivalent to f(n) = 0. Indeed, since 0 ≤ f(n) ≤ n − 1, 2f(n)π
n ∈ 2Zπ ⇔ f(n) = 0.

Now, we let p be a prime which does not divide n and such that fp(1) = 0. Since f(np) is congruent
to f(n) modulo n and to f(p) = fp(1) modulo p, we have f(np) = 0. Hence (1, anp ) ∈ l(G), with

(1, 0) < (1, anp ) < (1, an ). Therefore l(G) has no smallest positive element, and l(G) is dense. This

proves that G is dense.
It remains the case where there is only finitely many primes p1, . . . , pk such that, for i ∈
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{1, . . . , k}, fpi(1) = 0. Since fpi is not the zero mapping, there is a greatest positive integer
ri such that fpi(ri) = 0. Let p be a prime and n, r be positive integers such that pr divides n.
Since f(pr) is the remainder of the euclidean division of f(n) by pr, if f(pr) 6= 0, then f(n) 6= 0.

Set n0 = pr11 · · · p
rk
k . By construction, we have f(n0) = 0, hence

(
1, an0

)
∈ l(G). If m

n is a positive

rational number such that ma
n < a

n0
, then n > n0. Let n > n0. If the primes which divide n belong

to {p1, . . . , pk}, then there is i ∈ {1, . . . , k} such pri+1
i divides n. Therefore, f(n) 6= 0. If some p

not in {p1, . . . , pk} divides n, then f(n) 6= 0, since f(p) 6= 0. So (1, man ) /∈ l(G). Consequently,(
1, an0

)
is the smallest element of l(G). By taking m

n0
instead of a, in the same way as above we

get a new function f such that, for every prime p, f(p) 6= 0.
(2) By Lemma 4.26, for every prime p we have Hp = {0}. Recall that fG,p(n) is the element of

{1, . . . , pn−1} such that the element h such that pnh = 1G/Hp satisfies U(h) = exp

(
im

2fG,p(n)π

pn

)
.

From the definition of f , we have fG,p(n) = f(pn).
(3) We consider a family of functions fp : N\{0} → {0, . . . , p − 1} with fp(1) 6= 0 (p prime).

By Lemma 4.22 we can assume that the function f is generated by the family of fp’s. Hence for
every n ∈ N\{0} f(pn) = fG,p(n). Consequently, the family of fG,p is constructed as in Remark
4.23. This implies that there are 2ℵ0 distinct families of functions fG,p.

Let (G,R), (G′, R′) be discrete cyclically ordered groups isomorphic to Q such that for some
prime p we have fG,p 6= fG′,p. Then, by Theorem 2, (G,R) and (G′, R′) are not elementarily
equivalent. Hence there are 2ℵ0 pairwise non elementarily equivalent discrete cyclic orders on
Q. �

Fact 4.29. Let Γ be a linearly ordered divisible abelian group and (G,R) be a discrete cyclically

ordered group which is isomorphic to Q. Let (G′, R′) be the lexicographic product G
−→×Γ. Then

(G′, R′) is not discrete, for every prime p we have H ′p = {0G}×Γ, G′/H ′p ' G ' G/Hp is discrete
and fG′,p = fG,p. Hence, if some family of functions is the family of fG,p’s for some discrete
divisible abelian cyclically ordered group, then it is also the family of fG,p’s for some dense one.

Proof of Theorem 3. (1) By [27, Theorem 5.10], Γ is cyclically orderable if, and only if T (Γ)
embeds in T (U) and Γ/T (Γ) is orderable. By [8, Corollary 5 on p. 36], any abelian torsion-free
group admits a linear order. By Remark 2.5, T (Γ) is divisible.

(2) Assume that Γ is divisible and not trivial. By [9, Remark 5.4], every c-archimedean cyclically
ordered group c-embeds in a unique way in U. Hence all cyclic orders on Γ are c-isomorphic.
Without loss of generality, we can assume that Γ is a subgroup of T (U). Then, there is a prime
p such that e2iπ/p belongs to Γ. We prove by induction that it contains e2iπ/pn for every positive
integer n. Assume that e2iπ/pn ∈ Γ. Since Γ is divisible, it contains a p-root of e2iπ/pn , say

e2iπ/pn+1

e2ikπ/p, with k ∈ {0, 1, . . . , p−1}. Assume that k 6= 0. Then e2iπ/pn+1

e2ikπ/p(e2iπ/p)p−k =

e2iπ/pn+1

belongs to Γ. We can construct by induction infinitely many group isomorphisms between
T (U) and Γ. For every prime p and positive integer n, we send e2iπ/pn to any of the p−1 primitive

p-th root of the image of e2iπ/pn−1

in Γ. So, this gives that 2ℵ0 isomorphisms between T (U) and
Γ, each one gives rise to a cyclic order on Γ.

(4) Assume that Γ is torsion-free. Hence it is a Q-vector space, and there are two divisible
abelian subgroups Γ′ and Γ′′ such that Γ = Γ′ ⊕ Γ′′ and Γ′′ is isomorphic to Q. Recall that any
abelian torsion-free group admits a linear order. Hence we can assume that Γ′ is linearly ordered.
Now, let (G,R) be a cyclically ordered group which is isomorphic to Q, then Γ is isomorphic to

the cyclically ordered group G′ = G
−→×Γ′. In the same way as in Fact 4.29, if (G,R) is discretely

cyclically ordered, then for every prime p we have fG′,p = fG,p. Since there are 2ℵ0 pairwise
different families of fG,p’s, there are 2ℵ0 pairwise non elementarily equivalent cyclic orders on Γ.

Note that H ′p = Hp
−→×Γ′, hence by Corollary 4.27 we can have 2ℵ0 non isomorphic families of

CD(G′). Hence we can have 2ℵ0 non pairwise elementarily equivalent nonlinear cyclic orders such
that all the G′/G′p are dense.

Above construction is not the only possible. For example, we can also send 1 to eiθ, where
θ /∈ 2πZ. For θ and θ′ which are not congruent modulo 2πZ, we get non-c-isomorphic cyclic orders.
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So there uncountably many non-isomorphic such cyclic orders. If Γ is isomorphic to a countable
product

∏
n∈N Γn of groups isomorphic to Q, we can take embeddings of the Γn’s in U−→×Q such that

their images have trivial intersections. Then Γ is isomorphic to the subgroup of U−→×Q generated
by these images.

(3) Since Γ/T (Γ) is abelian torsion-free and divisible, it is a Q-vector space. Furthermore, its
dimension is positive, since Γ contains non-torsion elements. We let B be a basis of Γ/T (Γ) and
B′ be a subset of Γ such that the restriction of the canonical epimorphism Γ � Γ/T (Γ) induces
a one-to-one mapping between B′ and B. Then, the subspace Γ′ generated by B′ is a divisible
abelian subgroup of Γ which is isomorphic to Γ/T (Γ). One can check that Γ = Γ′ ⊕ T (Γ). We let
Γ′ = Γ′1 ⊕ Γ′2, where dim(Γ′2) = 1 (hence Γ′2 ' Q). We embed Γ′2 in U. Since Γ′2 ∩ T (Γ) = {0Γ},
this gives rise to a cyclic order on Γ′2 ⊕ T (Γ). So the lexicographic product (Γ′2 ⊕ T (Γ))

−→×Γ′1 is a
cyclically group which is isomorphic to Γ. Now, we saw after Proposition 4.25 that we can embed
Γ′2 in uncountably many in ways U so to get non-isomorphic cyclic orders. Hence this gives rise
to 2ℵ0 non-isomorphic cyclic orders on Γ. Now, if T (Γ) ' T (U), then Γ is c-divisible. Hence, by
Theorem 2.9, all these cyclic orders are elementarily equivalent. �

4.6. The families CD(G). Note that CD(G) induces an equivalence relation on the set of all
primes, where p and q are equivalent if, and only if, Hp = Hq. Hence it induces a partition of this
set. This partition is linearly ordered in the following way. We set α < β if, and only if, for p ∈ α
and q ∈ β we have Hp ( Hq.

If Hp = {0G} for every prime p, then the partition is trivial; this holds if (G,R) is discrete.

Proposition 4.30. (1) Every linearly ordered partition of the set of all prime numbers is
induced by some CD(G), where (G,R) is a dense divisible abelian nonlinear cyclically
ordered group.
If this chain has a smallest element α1, then we can assume that, for q ∈ α1, Hq = {0G}
or not. If this partition has a greatest element α0, then we can assume that for p ∈ α0 we
have Hp = l(G), so G/Hp is dense. We can also assume that G is c-p-divisible for every
p ∈ α0.

(2) For every linearly ordered partition A of the set of all prime numbers which has a greatest
element α0 and for every family of functions fp from N\{0} to {0, . . . , p−1} (p ∈ α0) with
fp(1) 6= 0, there is a divisible abelian nonlinear cyclically ordered group (G,R) such that
A is the partition induced by the Hp’s, for every p ∈ α0 G/Hp is discrete and for every
p ∈ α0, r ∈ N\{0} we have fG,p(r) = fp(1) + pfp(2) + · · ·+ pr−1fp(r).

Proof. In Proposition 4.28 we constructed examples where the partition contains only one class,
Hp = {0G} for every prime p, and (G,R) either dense or discrete. In the case where it is discrete, we
also proved that the family of functions fG,p can be any family satisfying the required conditions.
Corollary 4.27, gives an example where the partition contains only one class, Hp = l(G) for every
prime p. In the following we assume that the partition contains at least two classes.

(1) Let (A,≤) be an ordered partition of the set of all primes, which contains at least two classes.

(a) Construction of the unwound (Γ, z). For α ∈ A we denote by Qα the subgroup of Q generated

by

{
1

pn
: p /∈ α, n ∈ N

}
. The group Qα is p divisible if, and only if, p /∈ α, and if p ∈ α, then 1

is not p-divisible. For every prime p we let α(p) denote the unique α ∈ A such that p ∈ α.

We denote by
←−∏
α∈AQα the additive group

∏
α∈AQα together with the inverse lexicographic

order. The nontrivial convex subgroups of
←−∏
α∈AQα have the form

←−∏
α∈A1

Qα
←−×
←−∏

α∈A2
{0},

where A1 < A2 is an ordered partition of A. Now, such a group is p divisible if, and only if,

α(p) ∈ A2. So the family of maximal p-divisible convex subgroups of
←−∏
α∈AQα induces the ordered

partition (A,≤).

Let z = (zα)α∈A be the element of
←−∏
α∈AQα such that for every α we have zα = 1. Let α0 ∈ A.
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The element x = (xα)α∈A such that xα0
= 1 and, for α 6= α0, xα = 0 is denoted by 1α0

.
The support of an element x = (xα)α∈A is the set of α ∈ A such that xα 6= 0 (the support of 0

is ∅).
For α ∈ A, we let ∆α be the subroup of elements x of

←−∏
α∈AQα such that for every α′ 6= α we

have xα′ = 0. Then
∑
α∈A ∆α is the subgroup of all elements of

∏
α∈AQα with finite support. We

denote by Γ0 the subgroup generated by z and the
1

pn
(
z − 1α(p)

)
’s, where p is prime, n ∈ N\{0}.

We set Γ = Γ0 +
∑
α∈A

∆α. Note that z is cofinal in Γ. We show that it is not divisible by any prime.

The group
∑
α∈A ∆α is generated by the 1

m1α’s, where, for p ∈ α, the integers p and m are

coprime. So, if x = 1
m1α(p), then the denominator of xα(p) is not divisible by p. If x = 1

pn (z−1α(p)),

then xα(p) = 0, and xα = 1
pn for α 6= α(p). Now, the group Γ is generated by z, the 1

pn (z− 1α(p))’s

and the 1
m1α’s, where m and p are coprime. Hence, for any x ∈ Γ and p prime, if xα(p) 6= 0, then

its denominator is not divisible by p. In particular, z is not divisible by any prime.

(b) We let G = Γ/〈z〉. This group is torsion-free, since z is not divisible by any prime. We show
that the cyclically ordered group G is nonlinear. We saw after the definition of the wound-round
(Subsection 2.1) that if G is linearly cyclically ordered, then it is isomorphic to (Z−→×G)/〈(1, 0G)〉,
where

−→× denotes the lexicographic product of linearly ordered groups. By uniqueness of the
unwound, it follows that G is linearly cyclically ordered if, and only if, Γ is order isomorphic to
Z−→× l(G)uw, where l(G)uw is the greatest proper convex subgroup of Γ. Therefore, G is linearly
ordered if, and only if, for every cofinal x ∈ Γ there exists a positive integer n such that x − nz
belongs to the greatest proper convex subgroup of Γ. If A is infinite, then the greatest convex
subgroup of Γ is

∑
α∈A ∆α. For every prime p, 1

p (z− 1α(p)) is cofinal in Γ. Now, for every positive

integer n, 1
p (z−1α(p))−nz does not belong to

∑
α∈A ∆α, since it has an infinite support. Therefore

G is nonlinear. If A is finite, then it has a greatest element α0. Then Γ =
⊕

α∈A ∆α and its greatest

convex subgroup is
⊕

α6=α0
∆α. We let p be a prime not in α0. So 1

p (z − 1α(p)) is cofinal in Γ.

Now, for every positive integer n, 1
p (z − 1α(p))− nz does not belong to

⊕
α6=α0

∆α. Consequently,

G is nonlinear.

(c) We show that G is divisible by proving that for every prime p and every n ∈ N\{0}, each
generator of Γ is divisible by 1

pn modulo 〈z〉. We start with 1
m1α where, for every p ∈ α, m and p

are coprime. Clearly, if p /∈ α, then 1
m1α is divisible by pn. Assume that p ∈ α. We have

1α = pn
(

1α + (pn − 1)
1

pn
(z − 1α)

)
+ (1− pn) z.

Therefore 1α is divisible by pn modulo 〈z〉. Now, since m and pn are coprime, there exist integers u

and v such that upn + vm = 1. Then
1

m
1α = v1α + pn

u

m
1α. Hence 1

m1α is divisible by pn modulo

〈z〉.
We turn to

1

qm
(
z − 1α(q)

)
. If p = q, then

1

qm
(
z − 1α(q)

)
= pn

1

pm+n

(
z − 1α(p)

)
. Assume that

p, q are coprime and let u, v be integers such that upn + vqm = 1. Then,

pn
(
u

qm
(
z − 1α(q)

)
+

v

pn
(
z − 1α(p)

))
+ v(1α(p) − 1α(q)) =

=
1

qm
(
(upn + vqm) z − upn1α(q) − vqm1α(p)

)
+

1

qm
(
vqm1α(p) − vqm1α(q)

)
=

=
1

qm
(upn + vqm) (z − 1α(q)) =

1

qm
(z − 1α(q)).

Since 1α(p) and 1α(q) are divisible by pn modulo 〈z〉, this proves that 1
qm (z − 1α(q)) is divisible

by pn modulo 〈z〉.
Since the unwound Γ of G is dense, G is dense.

(d) Now, we look at the subgroups (Hp)uw of Γ. Since Γ is a subgroup of
←−∏
α∈AQα, (Hp)uw is
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the set of x ∈ Γ such that α ≥ α(p)⇒ xα = 0.
Since CD(G) is isomorphic to the preordered family {{(0, 0G)}, uw(G), (Hp)uw : p prime }, it

defines the ordered partition A.

(e) If the partition has a smallest element α1, then for p ∈ α1 we have Hp = {0G}. Then we can

take the lexicographical product G′ = G
−→×Q. The partition is the same, but it contains a divisible

c-convex proper subgroup. Hence for every prime p, H ′p 6= {0}.
If the partition has no greatest element, then every G/Hp is dense, since there is no maximal

Hp. Assume that the partition has a greatest element α0. Then, for p ∈ α0 the greatest p-divisible
convex subgroup of Γ is equal to the subset of elements x such that xα0

= 0. Now, this is also the
greatest convex subgroup of Γ, and we know that it is isomorphic to l(G). Therefore, Hp = l(G),
hence G/Hp ' U(G) is divisible, so it is dense. In order to get a group G′ with torsion elements,

in above construction take
←−∏
α∈A\{α0}Qα instead of

←−∏
α∈AQα, and let Γ′ be the group obtained

in the same way as Γ. Then Γ′ is p-divisible if, and only if, p ∈ α0. So G′ = Γ′/〈z〉 is c-p-divisible
if, and only if, p ∈ α0.

(2) Let A be a linearly ordered partition of the set of all prime numbers which has a greatest
element α0 and a family of functions fp from N\{0} to {0, . . . , p − 1} (p ∈ α0) with fp(1) 6= 0.
For every prime p /∈ α0, we set fp(1) = 1, and for every r > 1 we set fp(r) = 0. We let f be
the function defined in the same way as in the proof of Lemma 4.22. Denote by G0 the cyclically
ordered group {(

exp

(
im

2f(n)π

n

)
,
m

n

)
: m ∈ Z, n ∈ N\{0}

}
defined in Lemma 4.21. By Proposition 4.28, G0 is discrete. By Proposition 4.25, it is not c-
arcimedean. Since it embeds in U−→×Q, its linear part is isomorphic to a discrete subgroup of Q.
Hence l(G0) ' Z.

(a) Construction of the unwound. We embed the group uw(G0) in its divisible closure, and
we let ∆′α0

be the subgroup generated by uw(G0) and the 1
pn zG0

’s, where p /∈ α0 is a prime and

n ∈ N\{0}. The greatest convex subgroup l(G0)uw of uw(G0) is isomorphic to l(G0), so to Z. Now,
zG0

does not belong to this subgroup. Hence the greatest convex subgroup of ∆′α0
is isomorphic

to Z. It follows that ∆′α0
is discrete. We take

←−∏
α∈A\{α0}Qα

←−×∆′α0
, instead of

←−∏
α∈AQα.

For every α ∈ A, we let ∆α the subgroup of elements x such that xα′ = 0 for every α′ 6= α. If
α 6= α0, then 1α is defined as in the first part of this proof. We let 1α0

be the element x such that
α 6= α0 implies xα = 0, and xα0

= zG0
. We have ∆α0

' ∆′α0
and, for α 6= α0, ∆α ' Qα.

Let z = (zα)α∈A the element such that for every α 6= α0 we have zα = 1, and zα0
= zG0

. Note
that in ∆′α0

the element zG0 is not divisible by any p ∈ α0, and it is divisible by every pn such that

p /∈ α, and n ∈ N\{0}. We denote by Γ0 the subgroup generated by z and the
1

pn
(
z − 1α(p)

)
’s,

where p is prime, n ∈ N\{0}, and α(p) denotes the unique α ∈ A such that p ∈ α(p). We set

Γ = Γ0 +
∑
α∈A

∆α.

(b) Since z is cofinal in Γ, we can consider the cyclically ordered group G = Γ/〈z〉. In the same
way as in (1) (b), G is nonlinear. We show that G is torsion-free and divisible.

In the same way as in (1) (a), z is not divisible by any integer in Γ, so G is torsion-free.
Furthermore, for α ∈ A, the elements 1

m1α and 1
qm (z − 1α(q)) are divisible by every 1

pn modulo

〈z〉. In order to prove that G is divisible, it remains to look at the elements of ∆α0
. Note that

∆α0
is generated by the 1

m1α0
(where the gcd of m and every p ∈ α0 is 1) and the elements x such

that xα0 ∈ uw(G0) and for α 6= α0 we have xα = 0. So it is sufficient to focus on those x. Since
uw(G0) is divisible modulo 〈zG0〉, there is y ∈ ∆α0 and k ∈ Z such that pnyα0 = xα0 +kzG0 . Then
pny = x+ k ·1α0

. Since 1α0
is divisible by pn modulo 〈z〉, so is x.

(c) We look at the maximal p-divisible convex subgroups Γp of Γ. If p /∈ α0, then they are
constructed in the same way as in (1). If p ∈ α0, then in the same way as in (1) we see that

Γp ⊇ Γ ∩
←−∏
α∈\{α0}Qα

←−×{0G}. We prove that this inclusion is an equality. Since G0 is not

c-archimedean, uw(G0) is not archimedean. Since zG0 is cofinal in uw(G0), so are the 1
pn zG0 .



MODEL THEORY OF DIVISIBLE ABELIAN CYCLICALLY ORDERED GROUPS AND MINIMAL C. O. G. 27

Therefore, the greatest proper convex subgroup of ∆′α0
is l(G0)uw, which is isomorphic to Z. It

follows that the greatest proper convex subgroup of Γ is Γ ∩
←−∏
α∈\{α0}Qα

←−× l(G0)uw, and there is

no convex subgroup between Γ∩
←−∏
α∈\{α0}Qα

←−×{0G} and Γ∩
←−∏
α∈\{α0}Qα

←−× l(G0)uw. Since l(G0)
is discrete, the greatest proper convex subgroup is not divisible by any prime. So above inequality
is an equality.

(d) Now, Γ = uw(G), hence the greatest proper convex subgroup l(G)uw of Γ is isomorphic to
l(G). Consequently, the partition induced by G on the set of prime numbers is A. Let p ∈ α0,
q /∈ α0 and n ∈ N\{0}. Then 1

pn (z− 1α0
) ∈ Γp and 1

qn (z− 1α(q))−
1
qn ·1α0

∈ Γp. Clearly, z and the

elements of
∑
α∈A

∆α are congruent modulo Γp to an element of ∆α0
. It follows that every element

of Γ is congruent modulo Γp to an element of ∆α0
. Therefore, Γ/Γp ' ∆′α0

is discrete.
(e) Finally, we turn to the functions fG,p, where p ∈ α0. By the definition of the group G0, we

have fG0,p = fp. Let x be the element of ∆α0 such that xα0 is the smallest positive element of
∆′α0

. Then the class x + Γp is the smallest positive element of Γ/Γp. Let r ∈ N\{0}. By Lemma
4.14 there is y′ ∈ uw(G0) such that xα0

= pry′ + fp(r)zG0
. We denote by y the element of ∆α0

such that yα0
= y′. Then x = pry + fp(r)1α0

. So x = pry − fp(r)(z − 1α0
) + fp(r)z. Since p ∈ α0,

t = 1
pr (z − 1α0) belongs to Γ. Therefore x = pr(y − fp(r)t) + fp(r)z. By Lemma 4.14 again, this

shows that fp(r) is congruent to fG,p(r) modulo pr. Now, since both of fp(r) and fG,p(r) belong
to {0, . . . , pr − 1}, we have fp(r) = fG,p(r). This proves that the function fG,p is equal to fp. �

5. cyclically minimal cyclically ordered groups.

In the case of real numbers, each definable subset is a finite union of intervals, it is definable by
a quantifier-free formula in the language of order. The general study of linearly ordered algebraic
structures having such a property has been done by A. Pillay and C. Steinhorn as o-minimal
structures ([16]). Afterwards M. Dickmann introduced the notion of weakly o-minimal structures
([7]). In a very large context D. Macpherson and S. Steinhorn looked at analogues ([15]). In the
case of cyclically ordered structures the analogue is the notion of cyclically minimal structures.
They proved that a cyclically ordered group (G,R) is cyclically minimal if, and only if, it is abelian
and its unwound is divisible. Lucas proved independently this theorem. He deduced from Section 3
that this condition is sufficient. He proved the converse in several lemmas, which also characterized
the weakly cyclically minimal structures. Some of these lemmas contained errors, so we had to
make changes in the proof of Lucas. These results of Lucas remained unpublished. Later, weakly
cyclically minimal cyclically ordered groups were also studied in [13], where it was proved that
every weakly minimal cyclically ordered group is abelian.

Since the groups are not necessarily abelian, we take here the multiplicative notation for the
group law, however we speak of divisible group and of elements divisible by n (with this convention
x is divisible by n if ∃y yn = x).

Proposition 5.1. Each c-divisible abelian cyclically ordered group is cyclically minimal.

Proof. First, note that a c-divisible abelian cyclically ordered group is infinite since its torsion
subgroup is isomorphic to T (U). In [15], D. Macpherson and C. Steinhorn asserted that this follows
from the minimality of the divisible abelian linearly ordered groups and the interpretability of a
cyclically ordered group in its unwound. This interpretability has been studied more in detail in [9,
Lemma 4.3]. Lucas asserted that this result can be obtained using the elimination of quantifiers in
c-divisible abelian cyclically ordered groups (Theorem 1). We prove this assertion, that is we show
that any quantifier-free formula defines a finite union of intervals and singletons. First, note that
a c-divisible abelian cyclically ordered group is infinite, since its torsion subgroup is. A quantifier-
free formula is a boolean combination of formulas such that axn = b and R(axm, bxn, cxp). Since,
axn = b ⇔ a = bx−n, we can assume that n ≥ 1. The formula axn = b is equivalent to
xn = ba−1, and it defines the set n-th roots of ba−1, which contain n elements, by properties of
the subgroup of torsion elements of a c-divisible abelian cyclically ordered group. If m = n = p,
then R(axm, bxn, cxp) is equivalent to R(a, b, c). If m = n 6= p, then R(axm, bxn, cxp) is equivalent
to R(bc−1, xp−n, ac−1). The cases m 6= n = p and n 6= p = m are similar. If m 6= n 6= p 6= m,
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and m = min(m,n, p), then R(axm, bxn, cxp) is equivalent to R(ab−1, xn−m, cb−1xp−m), where
n −m > 0 and p −m > 0. The cases n = min(m,n, p) and p = min(m,n, p) are similar. So, it
remains to prove that the formulas R(a, xn, b) and R(a, xm, bxn) (where in the second case m, n
are positive integers) define unions of open intervals.

We let y be the element of the unwound Γ = uw(G) such that x is the image of y in G = Γ/〈zG〉
and eΓ ≤ y < zG. We also denote by a′ (resp. b′) the element of [eΓ, zG[ such that its image
is a (resp. b). Assuming n ≥ 1, we let a1/n (resp. b1/n, resp. ζn) be the image of (a′)1/n (resp.

(b′)1/n, resp. z
1/n
G ). Assume that n ≥ 1. By properties of the unwounds R(a, xn, b) holds if, and

only if, there is k ∈ Z such that eΓ ≤ a′ < ynz−kG < b′ < zG, or eΓ ≤ ynz−kG < b′ < a′ < zG

or eΓ ≤ b′ < a′ < ynz−kG < zG. This in turn is equivalent to (a′)1/nz
k/n
G < y < (b′)1/nz

k/n
G , or

z
k/n
G ≤ y < (b′)1/nz

k/n
G < (a′)1/nz

k/n
G or (b′)1/nz

k/n
G < (a′)1/nz

k/n
G < y < z

(1+k)/n
G . Note that

eΓ ≤ y < zG and eΓ < ynz−kG < zG imply 0 ≤ k ≤ n − 1. It follows that R(a, xn, b) is equivalent

to
∨

0≤k≤n−1R(a1/nζkn, x, b
1/nζkn), which defines a finite union of intervals.

Assume that n < 0. Then R(a, xn, b) ⇔ R
(
b−1, (x−1)−n, a−1

)
. This is equivalent to saying

that x−1 belongs to a finite union of open intervals. Now, x−1 ∈ I(c, d)⇔ x ∈ I(d−1, c−1). Hence
R(a, xn, b) defines a finite union of open intervals.

We assume that m > n. The formula R(a, xm, bxn) holds if, and only if, there are integers

k, l such that eΓ ≤ a′ < ymz−kG < b′ynz−lG < zG or eΓ ≤ ymz−kG < b′ynz−lG < a′ < zG or

eΓ ≤ b′ynz−lG < a′ < ymz−kG < zG.

In the same way as above, this implies 0 ≤ k ≤ m− 1, and eΓ ≤ y < zG and eΓ < b′ynz−lG < zG
imply 0 ≤ l ≤ n.
• eΓ ≤ a′ < ymz−kG < b′ynz−lG < zG is equivalent to

(a′)1/mz
k/m
G < y, y < (b′)1/(m−n)z

(k−l)(m−n)
G and y < (b′)−1/nz

(l+1)/n
G .

We let c′k,l = min
(

(b′)1/(m−n)z
(k−l)(m−n)
G , (b′)−1/nz

(l+1)/n
G

)
and ck,l = c′k,l ·〈zG〉.

If l < n, then (b′)−1/nz
(l+1)/n
G < zG, and if l = n, then (b′)1/(m−n)z

(k−n)(m−n)
G < zG. It follows

that c′k,l < zG. Hence eΓ ≤ a′ < ymz−kG < b′ynz−lG < zG is equivalent to R(a1/mζkm, x, ck,l).

• eΓ ≤ ymz−kG < b′ynz−lG < a′ < zG is equivalent to y = z
k/m
G or:

z
k/m
G < y, y < (b′)1/(m−n)z

(k−l)(m−n)
G and y < (a′)1/n(b′)−1/nz

l/n
G .

We let d′k,l = min
(

(b′)1/(m−n)z
(k−l)(m−n)
G , (a′)1/n(b′)−1/nz

l/n
G

)
and dk,l = d′k,l ·〈zG〉.

If l < n, then (a′)1/n(b′)−1/nz
l/n
G < zG, and if l = n, then (b′)1/(m−n)z

(k−n)(m−n)
G < zG. Therefore

d′k,l < zG. Hence eΓ ≤ ymz−kG < b′ynz−lG < a′ < zG is equivalent to x = ζkm or R(ζkm, x, dk,l).

• eΓ ≤ b′ynz−lG < a′ < ymz−kG < zG is equivalent to y = (b′)−1/nz
l/n
G or:

(b′)−1/nz
l/n
G < y, y < (a′)1/n(b′)−1/nz

l/n
G , (a′)1/mz

k/m
G < y and y < z

(k+1)/m
G .

We let r′k,l = max
(

(b′)−1/nz
l/n
G , (a′)1/mz

k/m
G

)
and rk,l = r′k,l ·〈zG〉.

If k < m − 1, then z
(k+1)/m
G < zG, and if l < n, then (a′)1/n(b′)−1/nz

l/n
G < zG. So, if k < m − 1

or l < n, then we set s′k,l = min
(

(a′)1/n(b′)−1/nz
l/n
G , z

(k+1)/m
G

)
, and rk,l = r′k,l · 〈zG〉. We have

s′k,l < zG. Then eΓ < b′ynz−lG < a′ < ymz−kG < zG is equivalent to R(rk,l, x, sk,l). If k = m − 1

and l = n, then z
(k+1)/m
G = zG. eΓ < b′ynz−nG < a′ < ymz1−m

G < zG is equivalent to r′k,l < y <

(a′)1/n(b′)−1/nz
l/n
G , but we don’t know whether (a′)1/n(b′)−1/nz

n/n
G < zG or not. This inequality

is equivalent to a′ < b′. If a′ < b′, then we set s′m,n = (a′)1/n(b′)−1/nzG and sm,n = s′m,n ·〈zG〉.
Therefore eΓ < b′ynz−nG < a′ < ymz1−m

G < zG is equivalent to R(rm,n, x, sm,n). If a′ ≥ b′, then

eΓ < b′ynz−nG < a′ < ymz1−m
G < zG is equivalent to r′m,n < y < zG, which in turn is equivalent to

R(rm,n, x, eG). We set sm,n = eG.
Consequently, R(a, xm, bxn) is equivalent to the disjunction for k ∈ {0, . . . ,m − 1} and l ∈

{0, . . . , n} of: R(a1/mζkm, x, ck,l) or x = ζkm or R(ζkm, x, dk,l) or R(rk,l, x, sk,l).
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Assume that m < n. Then R(a, xm, bxn) ⇔ R
(
ba−1, (x−1)n, b(x−1)m

)
. We proved above that

this is equivalent to saying that x−1 belongs to a finite union of open intervals and singletons. In
the same way as in the case of the formula R(a, xn, b), it follows that R(a, xm, bxn) defines a finite
union of open intervals and singletons. �

Recall that a c-convex subset is a subset J such that either J is a singleton or for every g 6= g′

in J , either I(g, g′) ⊆ J or I(g′, g) ⊆ J .
We saw in Remark 1.4 that a c-convex subset is not necessarily a singleton or an open interval :

the linear part of a cyclically ordered group is a c-convex subset and if it is nontrivial, then it is
neither open interval nor finite unions of open intervals or singleton. There also exist definable c-
convex subset which are neither an open intervals nor a finite union of open intervals or singletons.
For example the subgroups Hp, and the subsets defined by the formulas argboundn, before the

proof of Proposition 1.2. Indeed, consider the lexicographic product U−→×D, where D is an abelian
linearly ordered group (see Definition 1.7). In this cyclically ordered group, the formula argboundn

defines the open interval I
(

(exp( 2π
n+1 ), 0), (exp( 2π

n ), 0)
)

. Now, if G is a subgroup of U−→×D such

that U(G) does not contain exp
(

2π
n+1

)
or exp

(
2π
n+1

)
, and U(G) is infinite, then it is not a finite

union of open intervals or singletons.

Proposition 5.2. (Lucas) For each n ∈ N\{0} and each nontrivial divisible abelian linearly ordered

group D, the cyclically ordered group T (U)n
−→×D is weakly cyclically minimal.

Proof. We denote by (G,R) the cyclically ordered group T (U)n
−→×D. Since D is nontrivial, G is

infinite. Let E be a subset of G. Then E can be written as a disjoint union E = E0∪
(
ei

2π
n , eD

)
E1∪

· · · ∪
(
ei

2π
n , eD

)n−1

En−1, where E0, E1, . . . , En−1 are subsets of l(G) = {1}−→×D. Now, in G, the

element
(
ei

2π
n , eD

)
is definable by the formula R(eG, x, . . . , x

n−1) and xn = eG. Hence all the

elements of T (U)n
−→×{eD} are definable. The subgroup l(G) is definable by the formula x = eG or

R(eG, x, x
2, . . . , xn) or R(eG, x

−1, x−2, . . . , x−n). Assume that E is definable by a formula ϕ(x) in
the language {·, R, e,−1 }. Then, for k ∈ {0, 1, . . . , n − 1} the set Ek is definable by the formula

x ∈ l(G) and ϕ

((
ei

2π
n , eD

)k
x

)
. Now, if, x, y, z belong to l(G), then R(x, y, z) is equivalent to

either x < y < z or y < z < x or z < x < y. Hence Ek is definable in l(G) equipped with the
language of ordered groups. Since l(G) is abelian and divisible, it is minimal. Therefore, Ek is a
finite union of open intervals. We saw in Remark 1.4 that the bounded open intervals of (l(G), <)
are open intervals of (G,R), hence they are c-convex. Now, every open interval of (l(G), <) is an
increasing union of bounded open intervals, so it is c-convex. �

Now, we look at necessary conditions. In the remainder of this section (G,R) is a cyclically
ordered group which is not necessarily abelian. We take Lucas’s approach to show that if (G,R)
is weakly cyclically minimal, then l(G) is divisible and abelian.

Definition 5.3. If H is a subset of (G,R) and h ∈ H, then we define the c-convex component of
H which contains h to be the greatest c-convex subset of (G,R) containing h and contained in H.
It is denoted by C(h,H).

Fact 5.4. For g, h in H, we have g ∈ C(h,H) ⇔ h ∈ C(g,H). It follows that C(g,H) 6=
C(h,H)⇔ C(g,H) ∩ C(h,H) = ∅.

A subset H of G is said to be symmetric if for every g ∈ G we have g ∈ H ⇔ g−1 ∈ H.

Lemma 5.5. (Lucas) Let H be a symmetric subset of (G,R) which contains e.

(1) C(e,H) is symmetric.
(2) C(e,H) = {h ∈ G : I(e, h) ⊆ H} ∪ {h ∈ G : I(e, h−1) ⊆ H}.
(3) If H is a subgroup, then C(e,H) is a subgroup of G, and for every h ∈ H we have

C(h,H) = hC(e,H) = C(e,H)h.
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Proof. (1) Let h ∈ C(e,H) such that h 6= h−1. We prove that h−1 ∈ C(e,H). We have either
I(e, h) ⊆ C(e,H) or I(h, e) ∈ C(e,H).

(a) Assume that I(e, h) ⊆ C(e,H).
If R(e, h−1, h) holds, then h−1 ∈ C(e,H). Assume that R(e, h, h−1) holds. Let t ∈ I(h−1, e).

Then we have R(h−1, t, e) so R(e, t−1, h). Hence t−1 ∈ C(h,H) ⊆ H. Since H is symmetric, we
have and t ∈ H. Consequently, I(h−1, e) ⊆ C(e,H). The subset {h−1}∪I(h−1, e)∪{e} is c-convex.
It contains e, and is contained in H hence it is contained in C(e,H), so h−1 ∈ C(e,H).

(b) Assume that I(h, e) ⊆ C(e,H).
If R(h, h−1, e) holds, then h−1 ∈ C(e,H). Assume that R(e, h−1, h) holds. Let t ∈ I(e, h−1).

Then R(e, t, h−1) so R(e, h, t−1) and R(h, t−1, e). In the same way as in (a), this proves that
I(h−1, e) ⊆ C(e,H), and we conclude h−1 ∈ C(e,H).

(2) Let h ∈ C(e,H). Since C(e,H) is c-convex, we have either I(e, h) ⊆ C(e,H) or I(h, e) ⊆
C(e,H). Since C(e,H) is symmetric, then I(h, e) ⊆ C(e,H) implies I(e, h−1) ⊆ C(e,H). Now,
let h ∈ H. If I(e, h) ⊆ H, then {e} ∪ I(e, h) ∪ {h} is a c-convex subset of G contained in H, so
it is contained in C(e,H). Since H is symmetric, we have h−1 ∈ H, hence in the same way if
I(e, h−1) ⊆ H, then h−1 ∈ C(e,H), so h ∈ C(e,H).

(3) Let h ∈ H. For every c-convex subset F of G, hF is c-convex. So hC(e,H) is c-convex
and contains h. Hence by the maximality of C(h,H) we have hC(e,H) ⊆ C(h,H). Conversely,
let h′ ∈ C(h,H). Then either I(h, h′) ⊆ H or I(h′, h) ⊆ H. Since H is a subgroup, this is
equivalent to either I(e, h−1h′) ⊆ H or I(h−1h′, e) ⊆ H. Since h−1h′ ∈ H, by (2), this is
equivalent to h−1h′ ∈ C(e,H). Therefore, h′ ∈ hC(e,H). Symmetrically, we can prove that
C(h,H) = C(e,H)h.

Let h, h′ in C(e,H). Since C(h,H) is the greatest c-convex subset which contains h, we
have C(h,H) = C(e,H) = C(h′, H). Furthermore, e ∈ C(e,H). Hence h ·h′ ∈ h ·h′C(e,H) =
hC(h′, H) = hC(e,H) = C(h,H) = C(e,H). This proves that C(e,H) is a subgroup of G. �

Lemma 5.6. (Lucas) Assume that (G,R) is weakly cyclically minimal and let H be a definable
subset. If H ∩ l(G) is a subgroup of l(G), then it is a convex subgroup of l(G).

Proof. If H ∩ l(G) = l(G), then it is a convex subgroup of l(G). In the following, we assume that
H ∩ l(G) 6= l(G) and we let H ′ = H ∩ l(G).

(a) We show that for every h ∈ H ′, C(h,H) = C(h,H ′). Let h ∈ H ′. Since H ′ ⊆ H, we
have C(h,H ′) ⊆ C(h,H). Now, there is e < h1 ∈ l(G)\H. Since H ′ is a subgroup, we have
h−1

1 h ∈ l(G)\H, h1h ∈ l(G)\H, and h−1
1 h < h < h1h. Since C(h,H) is c-convex, we have

C(h,H) ⊆ (h−1
1 h, h1h) ⊆ l(G). Therefore C(h,H) ⊆ H ∩ l(G) = H ′. By the maximality of

C(h,H ′), we have C(h,H) = C(h,H ′).
(b) By Lemma 5.5 (3), C(e,H) = C(e,H ′) is a subgroup of G. So, it is a convex subgroup of

l(G).
(c) We prove that H ′ = C(e,H), so it is a convex subgroup of l(G). We assume that H ′ 6=

C(e,H), and we show that the number of the c-convex components of H ∩ l(G) is infinite. By
(a), C(e,H) = C(e,H ′) ⊆ H ′. Hence there is h ∈ H ′\C(e,H). Then C(h,H) ∩ C(e,H) = ∅
(Fact 5.4). Assume that h > e in l(G). Then e < h < h2 < · · · < hn < · · · . Since C(e,H) is
a convex subgroup of l(G), for every n ∈ N\{0} we have hn /∈ C(e,H). Therefore, ∀n ∈ N\{0}
C(hn, H) ∩ C(e,H) = ∅. By Lemma 5.5 (3), for every positive integer n we have hnC(e,H) =
hnC(e,H ′) = C(hn, H ′) = C(hn, H). Let n, q in N\{0}. Therefore, C(hn+q, H) ∩ C(hn, H) =
hn+qC(e,H) ∩ hnC(e,H)) = hn(hqC(e,H) ∩ C(e,H)) = hn(C(hq, H) ∩ C(e,H)) = ∅. So the
C(hn, H)’s are pairwise disjoint. Consequently, H has infinitely many c-convex components. Since
H is definable, this contradicts the fact that G is weakly cyclically minimal. The case h < e is
similar. �

Proposition 5.7. (Lucas) If (G,R) is weakly cyclically minimal, then l(G) is abelian and divisible.

Proof. Let g in l(G), and Com(g) be the definable subgroup Com(g) = {h : hg = gh}. By
Lemma 5.6, Com(g)∩ l(G) is a convex subgroup of l(G), and we know that g ∈ Com(g)∩ l(G). It
follows that the convex subgroup generated by g is contained in Com(g). Since this holds for any
g ∈ l(G), we deduce that l(G) is abelian.
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For each positive integer n consider
IDn(G) = {e} ∪ {g : R(g−1, e, g) & ∃h (R(e, h, g) & hn = g)}
∪{g : R(g, e, g−1) & ∃h (R(g, h, e) & hn = g)}.
It is a definable set. Now, IDn(G)∩ l(G) = {e}∪{g ∈ l(G) : e < g & ∃h ∈ l(G) hn = g}∪{g ∈

l(G) : g < e & ∃h ∈ l(G) hn = g} is the subgroup of n-th powers of elements of the abelian group
l(G). So by Lemma 5.6 IDn(G)∩ l(G) is a convex subgroup of l(G). Moreover it is cofinal in l(G),
so, for each n, IDn(l(G))∩ l(G) = l(G) ⊆ IDn(G). Hence each element of l(G) is n-divisible within
l(G). �

We turn to the other necessary conditions, starting with a lemma.

Lemma 5.8. (Lucas) Assume that (G,R) is weakly cyclically minimal. Let D be a definable subset
of (G,R) and D′ = G\D. Then U(D) and U(D′) are not both dense in U.

Proof. The definable set D is a finite union of c-convex subsets. Let C be such a c-convex subset,
g, h in C and assume that U(D′) is dense in U. We prove that U(g) = U(h). Indeed, otherwise
there are h′1, h′2 in D′ such that R(U(g), U(h′1), U(h)) and R(U(h), U(h′2), U(g)) hold in U(G).
This implies that R(g, h′1, h) and R(h, h′2, g) hold in (G,R), which contradicts the fact that C is
c-convex. It follows that U(D) is finite. So it is not dense in U. Now, D′ is definable by the formula
g /∈ D. So in the same way we can prove that if U(D) is dense in U, then U(D′) is finite. �

Corollary 5.9. Let (G,R) be a divisible abelian nonlinear cyclically ordered group which is not
c-divisible. Then (G,R) is not weakly cyclically minimal.

Proof. Since G is not c-divisible, its torsion subgroup is not isomorphic to T (U). Hence there
is a prime p such that G does not contain any p-torsion element. Let D = {g ∈ G, : ∃h ∈
G, (R(e, h, g, g−1) or R(g−1, g, h, e)) and hp = g}. By Lemma 4.2, both of U(D) and U(G\D) are
dense in U. It follows that (G,R) is not weakly cyclically minimal. �

Not that if (G,R) is c-divisible, then the set D defined above is equal to G\{e}. Hence G\D is
finite.

Proposition 5.10. (Lucas, and independently Kulpeshov and Verbovskiy) If (G,R) is weakly cycli-
cally minimal, then it is abelian.

Proof. For every g ∈ G we let Com(g) = {h ∈ G : hg = gh} and Ncom(g) = {h ∈ G : hg 6= gh}.
Note that Com(g) = {h ∈ G : g−1hg = h} = {h ∈ G : ghg−1 = h} = Com(g−1). We start
listing some properties of Com(g) and Ncom(g).

(1) Assume that Ncom(g) 6= ∅. If h ∈ Com(g), then hNcom(g) ⊆ Ncom(g). Indeed, if
g−1g′g 6= g′, then g−1hg′g = hg−1g′g 6= hg′. Hence g′ ∈ Ncom(g) ⇒ hg′ ∈ Ncom(g). If h ∈
Ncom(g), then hCom(g) ⊆ Ncom(g). Indeed, let g′ ∈ Com(g). Then ghg′g−1 = ghg−1g′ 6= hg′.

(2) We prove that if (G,R) is not abelian and U(G) contains torsion-free elements, then there
is g0 ∈ G such that U(g0) is torsion-free and Ncom(g0) 6= ∅. Let g ∈ G such that Ncom(g) 6= ∅.
Since Com(g) ∪ Ncom(g) = G, we have U(Com(g)) ∪ U(Ncom(g)) = U(G). So U(Com(g)) or
U(Ncom(g)) contains a torsion-free element. We prove that in any case Ncom(g) contains an
element g0 such that U(g0) is torsion-free. Let g′ ∈ Ncom(g) and h ∈ Com(g) be such that U(g′)
is a torsion element and U(h) is torsion-free. Let g0 = hg′. Then, U(g0) is torsion-free. Since
hNcom(g) ⊆ Ncom(g), g0 ∈ Ncom(g). So, gg0 6= g0g, and Ncom(g0) 6= ∅.

(3) Assume that G is weakly cyclically minimal and U(G) contains a torsion-free element. If G is
not abelian, then there is g0 in G such that Ncom(g0) 6= ∅ and U(g0) is torsion-free. Since Com(g0)
contains the subgroup generated by g0, U(Com(g0)) is dense in U. Now, for h ∈ Ncom(g0) we
have hCom(g) ⊆ Ncom(g). Hence U(Ncom(g)) is dense in U. This contradicts Lemma 5.8. So G
is abelian.

(4) Assume that G is weakly cyclically minimal and U(G) ⊆ T (U). By Proposition 5.7 l(G) is

divisible. Hence by [10, Lemmas 5.1 and 6.7], G embeds in the lexicographic product U(G)
−→× l(G).

Since l(G) is abelian (Proposition 5.7), U(G)
−→× l(G) is abelian. Therefore G also is abelian. �

Proposition 5.11. (Lucas) If (G,R) is weakly cyclically minimal and not divisible, then G ∼=
T (U)n

−→× l(G), for some n ∈ N\{0, 1}, and l(G) is nontrivial, abelian, divisible.
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Proof. By Propositions 5.7 and 5.10 l(G) is abelian, divisible and G is abelian. Assume that U(G)
is infinite. Let n be a positive integer such that (G,R) is not n-divisible, and Dn (resp. D′n) be
the set of elements which are n-divisible (resp. not n-divisible). Since gn ∈ Dn for every g ∈ G,
U(Dn) is infinite. Therefore it is dense in U. Let g′ ∈ D′n. Then g′Dn ⊆ D′n. It follows that
U(D′n) is infinite, so it is dense. This contradicts Lemma 5.8. Therefore, U(G) is finite, and it
embeds in T (U). Since l(G) is divisible, by [10, Lemmas 5.1 and 6.7], G embeds in the lexicographic

product U(G)
−→× l(G). We show that this embedding is onto. First, note that since (G,R) is weakly

cyclically minimal, G is infinite. Hence l(G) is nontrivial. Since U(G) is a finite subgroup of T (U),
there exists a positive integer n such that U(G) is c-isomorphic to T (U)n. Since G is not divisible

and {1}−→× l(G) is divisible, we have n > 1. We let g ∈ G be such that U(g) = e2iπ/n. Then
U(gn) = 1, hence gn ∈ l(G). Since l(G) is divisible (Proposition 5.7) there exists h ∈ l(G) such
that gn = hn. Now, G is abelian (Proposition 5.10), so (gh−1)n = e. Therefore, G contains a
subgroup H which is isomorphic to U(G) ' G/l(G), hence G = H ⊕ l(G). It follows that G is

c-isomorphic to T (U)n
−→× l(G). �

Proof of Theorems 4 and 5. Let (G,R) be a cyclically ordered group.
Assume that G is not divisible. By Propositions 5.2 and 5.11, (G,R) is weakly cyclically min-

imal if, and only if l(G) is nontrivial, abelian, divisible, and there is an integer n > 1 such that

G ∼= T (U)n
−→× l(G). Now, this group is not cyclically minimal. Indeed, in this cyclically ordered

group, l(G) is definable by the formula x = e or R(e, x, x2, . . . , xn) or R(e, x−1, x−2, . . . , x−n). So,
l(G) is a definable subset which is not a finite union of open interval and singletons.

Now, we assume that G is divisible.
If (G,R) is abelian and c-divisible, then by Proposition 5.1 it is cyclically minimal. In particular,

it is weakly cyclically minimal.
If G is not abelian or if (G,R) is abelian non linear and not c-divisible, then, by Proposition 5.10

and by Corollary 5.9, (G,R) is not weakly cyclically minimal. Hence it is no cyclically minimal.

Finally, assume that (G,R) is linearly cyclically ordered. Then G ' l(G) ' T (U)1
−→× l(G). By

Propositions 5.2 and 5.7, (G,R) is weakly cyclically minimal if, and only if, it is abelian and di-
visible. Now, it is not cyclically minimal. For example, the set {g ∈ G : g > eG} is defined by
the formula R(eG, g, g

2), but it is not a finite union of bounded intervals and singletons. Note that
in a c-divisible abelian cyclically ordered group, R(eG, g, g

2) ⇔ R(eG, g, ζ2), where ζ2 6= eG and
ζ2
2 = eG. �
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