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Defect detection by in-process monitoring plays a key role in the traceability and optimization of production. Many fault detection algorithms 

are trained on known faults. However, industrial data is generally unlabeled and certain faults are unknown or missing in the training dataset. 

This paper presents an original approach for the incremental discovery of new manufacturing defects, by Bayes rule and distance rejection. 

Rejects are analyzed periodically to determine the possible appearance of new defect cluster among them. Visualization then supports the 

cluster interpretation by a manufacturing expert. The approach was successfully applied to a screwing database from automotive industry. 

 
Monitoring, Machine learning, User interaction  

 

1. Introduction  

The combination of Artificial Intelligence (AI) and Industrial 

Internet of Things (IIoT) is a great potential of improvement for 

the manufacturing industry. Significant gains and new 

possibilities are expected. AI-based manufacturing offers various 

innovations, such as efficient fault diagnostic and prognosis [1], 

the exploitation of big data analytics [2], or new Product-Service 

Systems [3]. The detection of process fault plays a key role in the 

traceability and optimization of production. It generally relies on 

in-process monitoring, for which abundant literature can be 

found, with an increasing role of AI technics. For instance, 

classification and clustering were successfully applied in smart 

machining process [4,5]. Similarly, many fault detection 

approaches were developed for automated threaded fastening 

[6]. Machine Learning (ML) technics, mainly supervised ones, 

have been proposed; such as convolutional neural networks 

(CNN) [7], fuzzy systems [8] or support vector machines [9]. One 

general limitation is that domain knowledge is rarely integrated 

in the approaches. Besides, training datasets are generally issued 

from experiments conducted in ideal laboratory conditions, 

where someone can manually label each one of the few 

operations as correct or faulty. Conversely, knowing the ground 

truth in an industrial context, with an intensive production rate, 

is almost impossible. This is the reason why unsupervised 

learning methods are required.  

Moreover, even if labels could be provided, these methods are 

generally trained on a limited number of known faults. When a 

process has been thoroughly studied, its main faults are well 

known and can be successfully monitored. But for less mature 

processes, the detection of unknown faults is an important issue. 

There are three types of approaches: thresholding of a correct 

state, or distance-rejection with or without probabilistic 

consideration. For the first one, only cases classified as good are 

considered for the training of a one-class classifier and the setting 

of a rejection threshold in relation to the variability [10]. But 

defects cannot be distinguished between them. The second one 

performs a clustering on a training dataset that includes some 

faults and then compares a new observation to each fault pattern 

using a distance-based rejection. It was applied for cybersecurity 

[11] or for the detection of machine fault with fuzzy C-means [12] 

and of manufacturing defect of wafer by CNN [13]. Such methods 

are highly dependent on the distance threshold, which is arduous 

to adjust, particularly if variability is disregarded [10]. Lastly, the 

detection of new events by Gaussian Mixture Model (GMM) is 

possible. After an initial training, a new Gaussian can be created 

when a new event is discovered. To detect the emergence of new 

events, two main approaches were proposed. The first one relies 

on a rejection criterion that evaluates the distance between a new 

observation and each Gaussian. This approach was applied in 

different fields, such as the recognition of human activity [14] or 

drift of electricity demand [15], but rarely in manufacturing. 

Another approach is based on the mean log-likelihood and was 

applied for drift detection in turning [16], but not for the 

detection of unknown faults.  

This paper presents an original approach for the discovery of 

new defects by in-process monitoring. An unsupervised learning 

by GMM is proposed and combined with an expert intervention 

for clusters interpretation and labeling. An on-line classification 

with a reject option is then suggested for the potential detection 

of unknown events. The approach was implemented for the 

monitoring of automated screwdriving in the automotive 

industry. 

2. Incremental discovery of new defect  

The proposed approach combines unsupervised machine 

learning with domain expert knowledge. This combination is 

necessary to understand the current status of a manufacturing 

process and its dynamics. The proposed approach is composed of 

three phases: initialization, real-time monitoring and periodic 

processing of rejects (Figure 1).  

Firstly, the proposed solution is initialized with a training 

dataset (Fig. 1a). It consists in the unsupervised learning of a 

GMM model. Indeed, during the in-process monitoring of 

industrial production, the collection of labeled output data (i.e. 

which manufacturing operation was actually correct or faulty) is 

generally impossible, hence unsupervised technics are required. 

The step of feature extraction integrates some domain specific 

knowledge, in the definitions of the critical periods to monitor 

and of the features to extract.  
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Figure 1. Incremental discovery of new defect: initialization (a), real-time 

monitoring (b) and periodic processing of rejects (c).  

 

The GMM models are trained on the extracted features. The 

probable number of clusters is determined by optimizing the 

Bayesian Information Criterion (BIC), revealing the underlying 

structure of the training dataset. A cluster corresponds to a 

particular type of faulty or correct manufacturing operations. 

Besides, contrary to the inefficient labeling of thousands of 

manufacturing operations, the labeling of a few clusters by an 

expert is relevant. Therefore, the clustering results are shown to a 

manufacturing expert through a human-machine interface (HMI). 

Based on his empirical knowledge, the expert interprets the 

results and determines the type of fault corresponding to each 

cluster, i.e. labeling it. This interpretation property of the solution 

facilitates data understanding, combining intelligences of the 

expert and of the monitoring system.  

A second phase exploits the initialization results for the real-

time monitoring of industrial production (Fig. 1b). However, 

certain faults can be unknown or missing in the training dataset. 

Thus, the management of potentially unknown defect is 

particularly interesting. This is the reason why a classifier by 

Bayes rules with a reject option is proposed for the real-time 

monitoring. Thus, a new manufacturing operation can be 

classified as correct, as a known defect, or rejected.  

Lastly, the periodic processing of the exception set enables the 

potential discovery of unknown fault (Fig. 1c). If new faults are 

detected and confirmed by the expert by physical interpretations, 

the initial model is updated by incorporating the new faults. In 

this way, the updated model can henceforth recognize these new 

faults in future production. A stationary context (without drift) is 

considered. The proposed approach is generic and can be applied 

for the monitoring of different process with different sensors. 

3. Initial clustering  

3.1 Feature extraction 

 

After sensor integration on a production machine, real-time 

signals can be measured for the in-process monitoring. A 

preprocessing, e.g. noise filtering, is usually done. Considering a 

given manufacturing operation, its durations may vary from one 

workpiece to another, which makes the treatment of such time 

series quite difficult. A common solution is to use feature 

extraction, which transforms the raw signal of time series into a 

set of features. These features are generally statistical indicators 

(mean, variance, slope variation, etc.), but other operators can be 

used [17]. Features can be extracted in the time, frequency or 

angular domains; from one or several sensors. The set of features 

is preferably chosen based on domain expert knowledge, in 

relation to the considered sensor and manufacturing process, in 

order to extract meaningful information from the raw signal. 

Defects are thus assumed to be observable. Besides, it is also 

suitable to monitor accurately the critical phases of a 

manufacturing process (e.g. material transition or tool exit in 

stack drilling, or tightening phase in screwing). To do so, the time 

window corresponding to the critical phase should be 

automatically detected, in order to compute the features. Let’s 

consider a time series Fi(t) measured by a sensor during the ��� 

execution of a given manufacturing operation. A vector Xi of 

d features is extracted during a specific time window. Considering 

a set of N observations of the manufacturing operation, the 

dataset is represented by a feature matrix X of dimensions Nxd.  

 

3.2 Clustering 

 

The purpose is to discover the underlying structure of the 

dataset by unsupervised learning. Considering a given 

manufacturing context (i.e. same type of machine and process 

strategy), GMM approximates the probability density f of the 

dataset by a mixture of Gaussian components:  

����� 	 ∑ ��������
��� , with	������ 	 ����|�� ∼ ���� , ���  (1) 

where K is the number of mixture components, µk and Σk the 

mean vector and covariance matrix of the kth multivariate normal 

distribution of weight πk (	∑ ��
��� 	 1). 

The model parameters are ΘK = {πk, µk, Σk, where k∈{1,..,K}}, for 

a total of ΨK = K + Kd + Kd(d-1)/2 parameters. They are estimated 

by Expectation-Maximization (EM) algorithm, on the training 

dataset. EM algorithm requires the components number K, which 

is usually unknown in practical applications. A common way to 

determine the optimum K* is to find a compromise between 

model complexity (number of components) and the quality of the 

estimation (likelihood). The Bayesian Information Criterion (BIC) 

was chosen as score. It is calculated for each K (until a Kmax) as 

follows: 
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Once the optimal number !∗ found, each observation Xi is 

assigned by Bayes rule to its class Ci, corresponding to the 

component that maximizes the posterior probability obtained by: 

 � 	 argmax
�

� ��|��� 	 argmax
�

��������  (4) 

In that way, all observations will be assigned in a cluster. 

However, certain observations of the training dataset might 

actually belong to none of the discovered clusters (in a physical 

meaning), which could affect the judgement of the expert. In 

order to detect such potential outliers, a reject function (Eq.5 

described in section 4.1.1.) is carried out after the clustering to 

assign them in the exception set (Fig. 1c).  

 

3.3 Expert Intervention 

 

The objective is that the expert interprets the results and 

determines which cluster corresponds to a correct manufacturing 

operation and what the type of fault is in the other ones. To 

support the interpretation of the physical meaning of the clusters, 

a visualization of the time series per cluster is proposed through 

an HMI. Features can also be visualized. Then, the expert suggests 

the type of fault observed and hence assigns a labelk to each 

component fk. For that purpose, he uses his empirical knowledge 

of manufacturing faults and his ability to understand the 

underlying physics of the process. In case of indecision, further 

investigations (e.g. product testing) may be performed on 

product samples from the unassigned cluster. 



4. On-line classification with reject option  

In this phase, the aim is to use the information gained from the 

previous section in order to perform in-process monitoring and 

classify the manufacturing operation in real-time. The first step is 

to check that the incoming observation belongs to the 

manufacturing context in which the GMM was trained. The 

proposed solution then extracts the features from the time series 

and proceeds to the classification.  

 

4.1 Classification with reject option 

 

This step classifies with a reject option the incoming feature 

vector by Bayes rule (Fig. 1b). Firstly, a distance rejection test is 

performed to check whether a new observation belongs to a 

known cluster. If so, it is assigned to the most probable cluster; 

otherwise, it is rejected and assigned in the exception set. 

 

4.1.1 Rejection test 

 

An algorithm of distance rejection computes successively the 

local distances between a new observation and each cluster fk, to 

take local decisions that are then simply aggregated, but the 

probability of each cluster is not considered [10,15]. An improved 

formulation is proposed in Eq. 5 where the local distances are 

weighted by the clusters probabilities πk and summed. As a 

consequence, rejects are increased around clusters of rare fault. 

As the right-hand side of Eq. 5 is constant, the resulting criterion 

enables a global decision of reject: 

 ����� 3
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where τ is a user-defined parameter (corresponding to a type I 

error). If the density f(Xi) is higher, the observation can be 

classified in one of the known clusters. 

 

4.1.2 Classification and update 

 

A new observation Xi, that meets the test, is classified by Bayes 

rule (Eq. 4). Once classified, all clusters weights of the GMM 

model are recursively updated by: 
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Then, the number of observations per cluster and total are 

incremented (i.e. Nk=Nk+1 and N=N+1 respectively). The mean 

and covariance matrix could also be updated. It has not been 

retained here, to enable the potential detection of process drift. 

 

4.2 Detection of new defect 

 

The aim is to analyze periodically the possible emergence of 

unknown faults by exploring the exception set. To this purpose, 

the same clustering method by GMM and BIC (Eq. 3) is applied to 

the exception set and a visualization of the potential new clusters 

is proposed through the HMI (after rejection of potential outliers 

with Eq. 5). Based on these results, the expert interprets the type 

of fault discovered.  

If new faults are confirmed, the previous GMM model is updated 

with the new cluster information (Gaussian model, number of 

observations, label). The previous GMM(prev)  and new GMM(new) 

are merged. The numbers of components and observations are 

added (K = K(prev) + K(new) and N = N(prev) + N(new)) and the weights 

πk = πk(prev).N(prev)/N and Nk(new)/N are updated for respectively the 

previous and new ones. Through the update mechanism, the 

approach is not a static one, since unknown faults can be detected 

and incrementally incorporated. 

5. Use case: automated threaded fastening 

The effectiveness of the complete workflow was evaluated in a 

use case concerning the automated threaded fastening. Indeed, 

many product failures are caused by improper torquing of this 

assembly solution. Thus, the monitoring of screwing operation is 

important to ensure reliability and safety of the final product. 

Automated screwdrivers are generally instrumented to monitor 

the tightening torque and are connected to the Information 

System, enabling traceability and constituting interesting IIoT.  

The present use-case was developed in collaboration with 

Desoutter company. The proposed approach was implemented 

and tested on a database collected during the fastening of engine 

component in the automotive industry. 4096 screwing operations 

were performed during five days of production of an automated 

screwdriver. The time series of torque and angular position were 

measured. With 4096 observations, determining which operation 

was correct or not is impossible manually. Thus, an unsupervised 

approach, as proposed, is suitable. The first 2000 operations 

constituted the training dataset. The second dataset was used for 

the on-line classifications with reject option and for the periodic 

processing of the rejects. 

 

5.1 Description of a screwing operation 

 

Figure 2 illustrates the evolution of the torque in the angular 

domain, which enables a better understanding. A typical screwing 

operation is composed of four phases: the entry (a), the run-down 

of the screw (b), until the screw head makes contact with the 

work surface in the snug zone (c) and the tightening phase (d) to 

achieve the desired clamping load [6]. The tightening phase is the 

most critical one and should be monitored to avoid failures. High 

quality screwdrivers are instrumented with a torque sensor and 

an encoder to obtain the angular position of the screw. The 

monitoring can be performed on torque time series. But for more 

accurate fault detection, torque-angle control strategies are used. 

A target window of torque and angle that should be reached is 

usually defined (green rectangle in Fig. 2).  

 
Figure 2. Monitoring of screwing operation on commercial system. 
 

5.2 Initial Clustering 

 

The proposed solution was initialized on the training dataset 

composed of the first 2000 screwing operations. Empirical 

knowledge is integrated for feature extraction. The tightening 

phase, which is known as critical, is thus selected. The complete 

tightening phase is considered (and not only on the reached 

torque as for commercial monitoring systems). In time series, the 

corresponding time window is automatically detected between 

the angle threshold T0 and the maximum torque (Fig. 2). Once the 

torque signals transposed in the angular domain, features are 

extracted for each tightening. A set of 9 suitable features for 

screwing monitoring, inspired from [18], was chosen:  the mean, 

standard deviation and range of the signal and its first and second 



derivatives. Regarding the GMM clustering, a maximum of Kmax 

=10 clusters was envisaged for the optimization of mixture 

component number by BIC score. A “full” covariance matrix was 

chosen because it can model complex structures with fewer 

components. Finally, the rejection parameter τ was fixed at 1%.  

As shown in Figure 3a, an optimal number of two clusters was 

found by BIC. A visualization of torque signals in angular domain 

of the initial clusters was proposed in Figure 3b, enabling an 

analysis by the expert. He declared that the green cluster was 

corresponding to correct screwing operations and was labeled as 

“OK”. He also determined that the second cluster, in grey, was a 

problem of stick and slip and was labeled as “Stick1”. In this way, 

NOK = 1975 and NStick1 = 25 correct and faulty operations were 

respectively found in the training dataset. Henceforth the GMM 

model is trained and the on-line classification can be carried on. 

     
Figure 3. Initial clustering: BIC score (a) and clusters visualization (b)  

 

5.3. On-line classification and discovery of new defect 

 

The on-line classification with reject option was then 

performed on the second dataset. As shown in Figure 4c, the 

monitoring model determined that 1622 screwing operations 

were correct (in green cluster “OK”) and 29 were “Stick1” fault (in 

grey). Besides, 445 operations were rejected (in orange). When 

processing the exception set, BIC score determined that one new 

defect had appeared (Fig. 4a). Visualizing Fig 4b, the expert 

confirmed that it was a second type of stick and slip problem, 

more difficult to detect. The new cluster was labeled “Stick2” and 

the GMM model was updated.  

 
Figure 4. BIC score (a) and cluster of the rejects (b) and final clusters (c) 
 

The chronology of the classified screwing operations is 

illustrated in Figure 5, enabling a traceability of the industrial 

production. The vertical black line separates the initialization 

phase from the on-line classifications. It can be observed that the 

second defect, in orange, only appears during the last day, 

whereas the first defect, in grey, seems random.  

 
Figure 5. Traceability of the classified screwing operations. 
 

Finally, 3597 “OK”, 54 “Stick1” and 445 “Stick2” were found and 

one new defect was discovered. Classes were unbalanced, which 

is more difficult for the unsupervised machine learning. Similar 

results were obtained with a reject function without weightings. 

Besides, the expert has validated by manual data mining that 

there were no classification error. Consequently, the proposed 

approach was considered as validated. Unlike pure data-driven 

approach, it is supported by punctual interventions of an expert 

that integrates some empirical knowledge, which brings a high 

level of confidence in the data mining process. This makes the 

proposed solution more reliable in industrial context. 

6. Conclusion 

This paper presents an original approach to discover potential 

new defects, by unsupervised classification with reject option.  

After selection of a critical process phase and of a suitable set of 

features, based on domain knowledge, GMM models are trained 

and the number of clusters is determined by BIC score, revealing 

the underlying data structure. Visualization then supports the 

interpretation and the labeling of clusters by the expert that 

determines if a cluster corresponds to a correct operation or to a 

particular type of fault. On-line classification by Bayes rule with a 

reject option was then suggested. The clusters probabilities were 

included in an improved formulation of the distance rejection 

criterion, enabling a global decision of reject. New defects can be 

discovered by analyzing the rejects. The model is then updated.  

The use-case concerned the monitoring of automated 

screwdriving in the automotive industry. Features were extracted 

on torque signals in the angular domain during the tightening 

phase. A correct and a faulty cluster were found in the training 

dataset and labeled by the expert. Then, a new defect was 

discovered in a second dataset, validating the proposed approach. 

The approach is generic and can be applied to different 

processes. The model enables drift detection, which could be an 

interesting perspective, as well as the knowledge management 

associated with the discovered defects. 
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