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A variable parameters auxiliary information based quality control chart with 

application in a spring manufacturing process: the Markov chain approach 

 

Abstract  

In this paper, a new variable parameters chart for the process mean with a statistic that 

integrates information from the study and auxiliary variables is proposed. The proposed 

variable parameters chart with auxiliary information (AI) (abbreviated as VP-AI) is optimally 

designed to minimize the out-of-control steady-state (i) average time to signal (ATS1) and (ii) 

expected average time to signal (EATS1) values when the mean shift sizes are known and 

unknown, respectively. The Markov chain approach is adopted to derive the formulae of the 

performance measures ATS1, standard deviation of the time to signal (SDTS1) and EATS1. 

The VP-AI chart significantly outperforms the standard VP chart; thus, justifying the 

incorporation of auxiliary information to enhance the ability of the VP chart. The VP-AI 

chart is also compared with the Shewhart AI, synthetic AI, exponentially weighted moving 

average (EWMA) AI, run sum AI and variable sample size and sampling interval (VSSI) AI 

charts. The VP-AI chart significantly outperforms the Shewhart AI, synthetic AI and VSSI 

AI charts for all levels of shifts. Meanwhile, the VP-AI chart outperforms the EWMA AI and 

run sum AI charts for most shifts. The VP-AI chart is found to be more robust than the 

EWMA-AI chart when the correlation coefficient is misspecified or the bivariate normality 

assumption is violated as long as the size of the shift is moderate or large. A real application 

which monitors spring elasticity is used to illustrate the VP-AI chart’s implementation. 

 

Keywords: control chart; variable parameters; auxiliary information; average time to signal; 

expected average time to signal 

 



1. Introduction 

To monitor and improve quality, the approach of using control charts in process monitoring 

has been widely adopted by researchers. Control charts which are extensively used in various 

manufacturing and service industries aid in enhancing the efficiency and quality of a process, 

thus reducing the amount of wastes produced and costs incurred. Recent studies on control 

charts can be found in Bourke (2020), Chong, Mukherjee, and Khoo (2020), Mehmood et al. 

(2019), Khatun et al. (2019), and Lawson (2019), to name a few. Due to the easy 

implementation of the basic Shewhart chart and its sensitivity in detecting large shifts in a 

process, the Shewhart chart has been widely adopted. However, the main drawback of the 

Shewhart chart is its lack of sensitivity in detecting small and moderate shifts. This is due to 

the fact that the Shewhart chart does not consider past process information. As a measure to 

improve the sensitivity of the Shewhart chart to small and moderate shifts, various control 

charting schemes have been proposed.  

 Traditionally, control charts use parameters, i.e. sample size, sampling interval, 

control and warning limits, that are fixed. However, using the same parameters lead to a lack 

of sensitivity to process shifts and an inefficient process monitoring (Yeong et al. 2018). Over 

the years, researchers have developed adaptive charts that take into account of past process 

information to overcome the setback of the basic Shewhart chart. An adaptive chart is a chart 

with one or more parameters that can vary in real time according to the location of the 

previous sample statistic plotted on the chart. The adaptive control scheme can be divided 

into four categories, which are the variable sample size (VSS), variable sampling interval 

(VSI), variable sample size and sampling interval (VSSI) and variable parameters (VP) 

charts. Some literature on adaptive charts can be found in Chong et al. (2019), Khoo et al. 

(2019), Castagliola et al. (2013), Hu et al. (2016), Yeong et al. (2018), Lee and Khoo (2018), 



Reynolds et al. (1988), Tagaras (1998), Prabhu et al. (1994), Mahadik and Shirke (2009), 

Carot et al. (2002), Costa (1994), and Psarakis (2015). 

  For the VP chart, all the parameters of the chart are allowed to vary in real time. In 

other words, the selection of the sample size n, sampling interval t, and warning and control 

limits of the chart for the next inspection, depends on the location of the current sample 

statistic plotted on the chart. The VP chart is divided into three regions, namely the central, 

warning and out-of-control regions. When a sample point falls in the warning region, there is 

a higher tendency for the process to be out-of-control. Hence, control is tightened for the next 

inspection by taking a large sample size (
Ln ), short sampling interval (

St ), and tightened 

warning and control limits. In contrast, when the sample point falls in the central region, the 

tendency of the process to shift to an out-of-control condition is lower. Thus, we relax the 

control for the next inspection by taking a small sample size (
Sn ), long sampling interval (

Lt

), and loosened warning and control limits. The VP X  chart that monitors the mean of a 

process was developed by Costa (1999). Meanwhile, Yeong et al. (2018) proposed a VP chart 

that monitors the coefficient of variation (CV) and found that the VP CV chart consistently 

surpasses the other five competing CV charts in the literature. For other research works on 

the VP chart, readers can refer to Chen and Chang (2008), Lin and Chou (2007), Guo, Cheng, 

and Lu (2014) and Wang et al. (2018).   

 To improve the process monitoring of the quality characteristic of interest, cause-

selecting and regression-adjusted control charts (see Mandel (1969), Zhang (1985), Wade and 

Woodall (1993), Shu, Tsung and Tsui (2005), to name a few) utilize the correlation between 

the quality characteristic of interest and the associated quality characteristic(s). In fact, the 

construction of the cause-selecting and regression-adjusted control charts involve the 

adjustment of the effect of the associated quality characteristic(s) to monitor the quality 

characteristic of interest (i.e. obtaining residuals to monitor the quality characteristic of 



interest) (Riaz 2008). Similarly, by utilising the relationship between the auxiliary variable 

and quality characteristic of interest in auxiliary information (AI) charts, the accuracy in 

which parameters are estimated can be enhanced. It is a common practice to apply the AI 

concept in survey sampling to obtain more accurate estimates of the population parameters. 

For an improved estimator precision, the auxiliary or also known as supplementary 

information can be utilised in both design and estimation stages (Haq and Khoo 2016). In 

order to improve process monitoring, researchers have integrated the concept of auxiliary 

information with control charting schemes. With a regression estimator that incorporates 

information from an auxiliary or supplementary variable, the precision of an estimator can be 

enhanced which leads to a more sensitive control chart. The auxiliary variable concept can be 

used in various fields. For example, in a platinum refinery, when the quantity of platinum 

metal is the study variable or quality characteristic, the auxiliary variable considered can be 

the quantity of other metals which are generally correlated to the quantity of platinum metal 

(Ahmad et al. 2014). Additionally, when monitoring the process of generating power from 

coal, the study variable monitored can be the total power generated, while the auxiliary 

variable used can be the air temperature or quantity of flue gas (Ahmad et al. 2014). In a fibre 

production process, the auxiliary information from the weight of textile fibres can be used to 

improve the monitoring of the study variable which is the single-strand break factor (Haq and 

Khoo 2016). 

 Riaz (2008) proposed a Shewhart chart with auxiliary information (SH-AI) that 

improves the monitoring of process mean. Furthermore, Abbas, Riaz, and Does (2014) 

proposed an exponentially weighted moving average (EWMA) control chart with auxiliary 

information (EWMA-AI) and found that their proposed chart is effective in detecting small 

and moderate shifts. Haq and Khoo (2016) proposed a synthetic control chart with auxiliary 

information (SYN-AI). Meanwhile, Ng et al. (2018) proposed the run sum chart with 



auxiliary information (RS-AI) and showed that the RS-AI chart outperforms the SH-AI, 

SYN-AI and EWMA-AI charts for all shifts given that the correlation ρ is large. Saha et al. 

(2018) developed the VSSI chart with auxiliary information (VSSI-AI) which surpasses the 

EWMA-AI and SYN-AI charts. Research works on control charts with auxiliary information 

can also be found in Ahmad et al. (2014), Riaz (2011), Abbasi and Riaz (2016), Riaz et al. 

(2013) and Lee et al. (2015), to name a few.  

 Motivated by the improved effectiveness of control charts through the incorporation 

of auxiliary information in the literature, a new VP chart that utilises auxiliary information 

(VP-AI) is developed in this paper by integrating two powerful control charting approaches 

which are the variable parameters method and auxiliary information technique. In control 

charting literature, it is a common practice to integrate effective control charting procedures 

to construct a new and superior control chart to improve process monitoring. To the best of 

the authors’ knowledge, the VP-AI chart is not present in the literature and this paper is 

presented to fill the gap. In this paper, the VP-AI chart is studied and compared with its 

standard VP counterpart and existing SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI 

charts, in terms of the steady-state average time to signal (ATS), standard deviation of the 

time to signal (SDTS) and expected ATS (EATS) criteria. Note that the VP-AI chart is 

equivalent to the standard VP chart when the correlation coefficient ρ = 0. The proposed VP-

AI chart outperforms the SH-AI, SYN-AI and VSSI-AI charts for all shifts while surpassing 

the EWMA-AI and RS-AI charts for most shifts. Additionally, the VP-AI chart surpasses its 

standard VP counterpart. This paper also contributes to the AI control charting literature by 

studying the robustness of the VP-AI chart. Traditionally, when designing an AI chart, it is 

assumed that (i) ρ is not misspecified and (ii) the study variable X and auxiliary variable M 

follow the bivariate normal distribution. In this paper, the robustness of the VP-AI chart when 

violations in (i) or (ii) occurs is studied and compared with the EWMA-AI chart.  



 The rest of this paper is organized as follows: Section 2 discusses the concept of 

auxiliary information. In Section 3, the overview, performance measures and optimization 

algorithm of the VP-AI chart are outlined and discussed. A numerical analysis of the VP-AI 

chart is given in Section 4 while the VP-AI chart is compared with the five existing AI charts 

in Section 5. In Section 6, the robustness of the VP-AI chart is evaluated and compared with 

the EWMA-AI chart for the case where ρ is misspecified or the bivariate normality 

assumption is violated. To illustrate the implementation of the VP-AI chart, an illustrative 

example is provided in Section 7 using the dataset from a spring manufacturing process. 

Lastly, Section 8 completes the paper with conclusions and suggestions for future research.  

 

2. Properties of the auxiliary information approach 

In practice, it may be time-consuming and costly to measure a quality characteristic of 

interest which we refer to as the study variable X. Hence, obtaining an efficient estimation of 

the population mean 
X  of X, with a desired accuracy, is sometimes impossible. Thus, 

another characteristic that is correlated with the quality characteristic of interest, known as 

the auxiliary variable M can be measured. By employing information from both study and 

auxiliary variables, an estimation of 
X  with an enhanced accuracy can be obtained. The VP-

AI chart is a univariate chart as it monitors only the mean shifts in X but it is designed based 

on a regression estimator that incorporates information obtained from both X and M. In other 

words, the design of the VP-AI chart is based on a test statistic that requires information from 

both the study variable and auxiliary variable but only detects shifts related to the process 

mean of the study variable X (one variable only). Along with the study variable, data on 

several related auxiliary variables are often available, but only one auxiliary variable which is 

correlated to the study variable is considered in this paper.  

 



  Suppose that X and M are correlated, and  ,X M  follows a bivariate normal 

distribution such that    2 2

2, ~ , , , ,
X M X M

X M N      . The population mean and variance 

of X are denoted by 
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represents the size of the standardized mean shift of X. Meanwhile, the population mean and 

variance of M are denoted by 
M  and 

2

M
 , respectively, and the correlation coefficient 

between the variables X and M is denoted by  . 

  Let  ,
j j

X M , where 1,2,..., ( )j n r  be a bivariate random sample from a bivariate 

normal distribution such that the sample size of a random sample r is ( )n r . The regression 

estimator of 
X  is as follows (Riaz 2008): 

 *

rX r M r
Y X M    ,                                                 (1) 

such that X

M
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
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 

. For the rth sample, the sample mean of X is 
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1

1

( )
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r jj
X X

n r 
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while the sample mean of M is 
( )

1

1

( )

n r

r jj
M M

n r 
  . Note that *

rXY  has mean and variance 

(Riaz 2008) 

 *

rX XE Y                                                             (2) 

and 

    * 2 21
1

( )rX XVar Y
n r

   ,                                               (3) 

respectively, such that     * 2 2~ , 1/ ( ) 1
rX X X

Y N n r   .  

 

3. Variable parameters control chart with auxiliary information 



Section 3 consists of three subsections. Section 3.1 provides an overview of the VP-AI chart. 

Subsequently, the formulae of the steady state ATS, SDTS and EATS are outlined in Section 

3.2. Lastly, the optimization algorithms of the VP-AI chart that minimize the out-of-control 

ATS and EATS, denoted by ATS1 and EATS1, respectively, are given in Section 3.3.  

 

3.1 Overview of the VP-AI chart 

Assume that *

rXY , for 1, 2,...r  , from Equation (1) is the quality characteristic to be 

monitored. The charting statistic plotted on the VP-AI chart is  

  
 *

0

2

( )

1

rX X

r

X

n r Y
Z



 





 .                                                    (4) 

When the process is in-control  0  ,  *

0rX XE Y   and 
rZ  follows the standard normal 

distribution, i.e. ~ (0,1)rZ N .  

 For a standard SH-AI chart with fixed parameters, practitioners take a sample with 

size 0n  at every sampling interval 0t  with a fixed control limit 0K . However, the SH-AI 

chart is only effective in detecting large shifts. The VP-AI chart enhances the performance of 

the SH-AI chart toward small and moderate shifts by considering past process information. 

Similar to the VP chart, the VP-AI chart consists of three regions (i.e. central, warning and 

out-of-control) that are divided by the warning ( W ) and control ( K ) limits. Note that the 

upper and lower warning limits are denoted by W and ‒W, respectively, while the upper and 

lower control limits are denoted by K and ‒ K, respectively. The region [ , ]W W  is the 

central region, while the regions ( , ]W K  and ( , ]K W   are the warning regions. The chart’s 

parameters vary according to the most recent process information. In other words, depending 

on the location of the sample statistic plotted on the VP-AI chart, each parameter of the chart 

(sample size, sampling interval, control and warning limits) can alternate between two values. 



The schematic representation that shows the operation of the VP-AI chart is given in Figure 

1.   

-- Insert Figure 1 here -- 

The VP-AI chart works as follows: 

 When 
rZ  lies in the central region  1rZ I , there is a lower tendency for the process 

to shift to an out-of-control condition. Hence, the next sample size is small 

0 ( )S Ln n n   and taken after a long sampling interval 
0 ( )L St t t  . Additionally, 

1rZ   is plotted on the VP-AI chart using loosened control and warning limits to relax 

the control, i.e. 1 0 2( )K K K  , 1 0 2( )K K K     , 1 2( )W W  and 
1 2( )W W   .  

 When 
rZ  lies in the warning region  2rZ I , there is a higher tendency for the 

process to shift to an out-of-control condition. Thus, the next sample size is large 

0 ( )L Sn n n    and taken after a short sampling interval 0 ( )S Lt t t  . Furthermore, 

1rZ   is plotted on the VP-AI chart using tightened control and warning limits to tighten 

the control, i.e. 2 0 1( )K K K  , 2 0 1( )K K K     , 2 1( )W W  and 
2 1( )W W   .  

 Lastly, if 
rZ  lies in the out-of-control region  3rZ I , a signal is issued by the VP-

AI chart to indicate an out-of-control condition and corrective actions have to be 

swiftly taken to remove the assignable cause(s).  

It is worth noting that Figure 1 consists of two scales. If 
rZ  lies in the central region, the 

loosened scale on the left is used to plot 1rZ   on the VP-AI chart. On the other hand, if  rZ  

lies in the warning region, the tightened scale on the right is used to plot 1rZ   on the VP-AI 

chart. 

 

3.2 Performance measures 



The average run length (ARL) is extensively adopted to study the performance of a control 

chart. However, it is not a suitable performance measure for the VP-AI chart as the sampling 

interval is allowed to vary. Hence, in this paper, we adopt the steady state ATS which is 

defined as the expected time from the process mean shift until an out-of-control condition is 

signaled by the chart to evaluate the performance of the VP-AI chart. It is assumed that the 

process is in-control initially and the process mean shift occurs at some time in the future.  

 In this paper, the Markov chain approach is adopted for the computation of the ATS. 

The Markov chain consists of three states where the first state corresponds to the central 

region, the second state corresponds to the warning region and the third state corresponds to 

the out-of-control region (Yeong et al. 2018). The first and second states are transient while 

the third state is absorbing. Hence, the transition probability matrix (tpm) P is  

11 12 11 12

21 22 21 22

1
( )

1
1

0 0 1

T

P P P P

P P P P

  
           

 

Q I Q 1
P

0
=                                 (5) 

such that Q represents a 2×2 tpm for the transient states, I represents a 2×2 identity matrix, 1 

is a 2×1 column vector with all elements equal to unity and (0,0)T 0 . The transition 

probabilities in Q are 11 12 21, ,P P P  and 22P  which are given as 
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r S
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P W Z W n
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

 
 
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   
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                                    (6) 
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 
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   
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   
             

                    (7) 



     

 21 2 2

2 22 2

Pr | ,

    ,
1 1

r L

L L

P W Z W n

n n
W W



 
 
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                    (9) 

where  .  is the standard normal distribution function. The VP-AI chart is equivalent to the 

standard VP chart when 0  . The steady-state ATS is computed as  

1ATS ( ) ,T  b I Q t                                                     (10) 

where  ,T

L St tt  is the vector of sampling intervals and  1 2,T
b bb  represents the steady-

state probability vector such that 
1 2 1b b  . Note that 1b  and 

2b  represent the probabilities of 

being in the central and warning regions, respectively such that  

0

11
1 0 0

11 12

P
b

P P



                                                          (11a) 

and 

0

22
2 0 0

21 22

,
P

b
P P




                                                        (11b) 

where 
0 0 0 0

11 12 21 22, ,  and P P P P  are computed with Equations (6) - (9), respectively by setting 

0  . ATS1 is the ATS corresponding to the out-of-control case ( 0  ) while ATS0 

corresponds to the in-control case ( 0  ). A chart with lower ATS1 values is more effective 

in detecting process mean shifts. Thus, when the ATS0 is fixed, a chart which has smaller 

ATS1 in comparison to other charts is superior. Meanwhile, the out-of-control SDTS (SDTS1) 

is also considered as a performance measure to gain insight about the spread of the time to 

signal distribution. The SDTS can be computed as follows (Yeong et al. 2018): 



SDTS a ,                                                        (12) 

where  1 1 (2) 2( ) 2 ( ) ATST
a

     tb I Q D I Q t t . Note that 
tD  is the diagonal matrix with 

diagonal elements from t  while 
(2)t represents the squares of vector t  elements. 

 The computation of ATS requires the specification of the shift size   in advance. 

However, in practice, the value of   is unknown prior to the occurrence of the shift. Hence, 

the EATS that is computed based on a shift interval  min max,   is adopted as an alternative 

to ATS and the computation of EATS is as follows: 

   max

min

EATS ATS f d



                                        (13) 

such that min  and max  denote the minimum and maximum process mean shifts for the 

interval  min max,  , respectively. Additionally,  ATS  is computed based on Equation (10) 

and   f   represents the probability density function (pdf) of the shift  . By assuming that 

there is an equal probability of occurrence of   in  min max,  , then the distribution of   is 

uniform, i.e.  min max~ ,U    (Sparks 2000). Hence, as a result of the uniform distribution, 

Equation (13) becomes 

 max

min
max min

1
EATS ATS  d




 

 


  ,                              (14) 

which is approximated with the Gauss-Legendre quadrature as the integral cannot be 

evaluated exactly. EATS1 is the EATS corresponding to the out-of-control case ( 0  ) while 

0 0EATS ATS  corresponds to the in-control case ( 0  ). 

 

3.3 Optimization algorithm 

This section explains the algorithms used to compute the optimal parameters 

1 2 1 2, , , , , ,  and S L S Ln n t t K K W W  of the VP-AI chart. The optimization program of the VP-AI 



chart is written in the ScicosLab software and the results are verified with simulation in the 

Statistical Analysis System (SAS) software. In this paper, there are two optimization criteria 

considered. The first optimization criterion involves the minimization of 
1ATS  when   is 

known in advance while the second optimization criterion involves the minimization of 

1EATS when  is unknown in advance. The first optimization criterion can be formulated by 

the model shown below: 

Objective function: Minimize 
1ATS                                         (15) 

subject to three constraints that ensure a fair comparison, given by (Costa 1999) 

1 2 0 ,S Lb n b n n                                                             (16) 

    
1 2 0L Sb t b t t                                                                (17) 

and 

      1 1 2 2 0Pr | | Pr | | Pr | |r r rb Z K b Z K Z K     ,                        (18) 

such that 0 ,n  0t  and 
0K  are the fixed parameters of the SH-AI chart and 

 0 0Pr | | 1/ ATSrZ K   . The in-control performance of the VP-AI chart has to be equal 

with the competing charts for a fair comparison among the charts. Thus, the constraints in 

Equations (16) - (18) set the in-control average sample size ( 0ASS ) as 0n , in-control average 

sampling interval ( 0ASI ) as 0t  and ensure that the false alarm rates are the same, 

respectively. Using the constraints in Equations (11a) and (16), the values of 
iW  such that 

1, 2i   can be computed with (Costa 1999) 

1 0 02( ) ( )
,

2( )

L i S
i

L S

n n K n n
W

n n

     
   

                                       (19) 

while it follows from Equation (18) that  

0 0

0

( ) ( )
.L S S S

L

L

t n n t n n
t

n n

  



                                           (20) 



In this paper, 
1 6K  , 

0 1t   and 
0ATS 370   are employed. These are the steps employed to 

compute the optimal parameters of the VP-AI chart by minimizing  1ATS   for a specific . 

1. Specify the values of 
0 0 1 0, , , , ,  and ATSSt t n K  while initializing 

minATS  . The 

value of 
St  is specified to avoid the possibility of obtaining an extremely small value 

as very frequent sampling is not practical in a real-life scenario (Yeong et al. 2018).   

2. Initialize 2Sn  . 

3. Initialize 0 1Ln n  .  

4. Determine the value of 
2K  such that the specified 0ATS  value in Step 1 is acquired.  

5. Meanwhile, the values of 1 2 and W W  are computed using Equation (19).   

6. Using Equation (20), compute the value of 
Lt . 

7. With the values of the parameters 1 2 1 2, , , , , ,  and S L S Ln n t t K K W W  obtained prior to this 

step, compute the value of 1ATS  using Equation (10).  

8. If 1 minATS ATS , let min 1ATS ATS .  

9. With the same value of 
Sn , increase 

Ln by 1.  

10. If 31Ln  , repeat Steps 4 to 9.  

11. Increase the value of 
Sn  by 1. 

12. If 0 1Sn n  , repeat Steps 4 to 11. 

 Based on the outputs computed using the steps above, the parameters 

1 2 1 2, , , , , ,  and S L S Ln n t t K K W W  that result in the lowest 1ATS  value are the optimal 

parameters. The SDTS1 values are then computed based on these optimal parameters. The 

second optimization criterion can be formulated by the model shown below: 

Objective function: Minimize 1EATS                                          (21) 



subject to the constraints in Equations (16) - (18).  Steps (1) to (12) can also be employed for 

the second optimization criterion by substituting   with  min max,   and computing 
1EATS  

using Equation (14) instead of 
1ATS . Note that 

0EATS  is equal to the 
0ATS  value specified 

in Step (1). 

 

4. Numerical analysis 

In this section, the performance of the VP-AI chart is evaluated. This section presents the 

optimal parameters 1 2 1 2, , , , , ,  and S L S Ln n t t K K W W  that (i) minimize 1ATS  and (ii) minimize 

1EATS  subject to the constraints 0 0ASS n , 0 0ASI t  and 
0ATS 370 . For (i), 

{0.01,0.1}St  , 
0 {5,7}n  , {0,0.25,0.5,0.75,0.9,0.95}  and {0.2,0.4,0.6,0.8,1,1.5,2}   

are considered in this paper and the optimal parameters with their corresponding ATS1 and 

SDTS1 are shown in Tables 1 and 2. Meanwhile, for (ii), we consider {0.01,0.1}St  , 

0 {5,7}n  , {0,0.25,0.5,0.75,0.9,0.95} and min max( , ) {(0.2,0.6),(0.5,1),(1,1.5),(1.5,2)}    

and the optimal parameters with their corresponding EATS1 are shown in Tables 3 and 4.  

 When the process is out-of-control, lower ATS1 values indicate a better performance 

of the chart as less time is required to detect an out-of-control condition. In other words, the 

chart has a better ability in detecting mean shifts when the ATS1 values are lower for an out-

of-control process. From Tables 1 and 2, it can be seen that the ATS1 values decrease as δ 

increases which implies that the VP-AI chart requires less time to detect larger mean shifts. 

This is justified by the need to quickly detect larger shifts that result in a significant loss of 

quality. As the ATS1 values become smaller when  increases across all values of 0n , it can 

be deduced that the VP-AI chart surpasses the standard VP chart ( = 0), thus justifying the 

integration of auxiliary information. To illustrate, when 0.2   and 0 5n   in Table 1, ATS1 

= 55.28 (for  = 0) decreases to ATS1 = 3.11 (for  = 0.95). Additionally, the outperformance 



of the VP-AI chart in comparison to the standard VP chart increases with . This implies that 

the sensitivity of the VP-AI chart is enhanced with an increase in ρ. Hence, utilising 

information from the auxiliary variable has enhanced the ability of the VP chart in detecting 

process mean shifts.  Furthermore, an increase in the sample size 
0n  results in a decrease in 

the ATS1 values for all shifts. Thus, a larger sample size enhances the sensitivity of the VP-

AI chart as an out-of-control condition is signalled earlier. For example, consider Table 1 

when 0.25   and δ = 0.2, the ATS1 = 51.37 (for 
0 5n  ) decreases to ATS1 = 39.98 (for 

0 7n  ). By comparing Tables 1 and 2, there is only a slight difference in the performance of 

the VP-AI chart when 0.01St   in comparison to 0.1St  . The SDTS1 values of the standard 

VP chart ( = 0) are higher than that of the VP-AI chart for all shifts, indicating that the 

former has a larger spread of the time to signal distribution; thus, the latter is superior to the 

former. 

-- Insert Table 1 here-- 

-- Insert Table 2 here-- 

 To obtain the results in Tables 1 and 2, it is assumed that the value of δ can be 

specified in advance. However, in practice, δ values cannot be specified a priori. 

Alternatively, EATS1 is computed based on a range of shifts  min max,   to account for the 

case when we cannot specify the exact shift size in advance. The optimal parameters and their 

corresponding EATS1 values are shown in Tables 3 and 4. For all values of 0n , the EATS1  

values when 0   are lower than the corresponding EATS1  values when 0  , which 

implies that the VP-AI chart surpasses the standard VP chart. Additionally, the EATS1 values 

decrease when ρ increases. As can be seen in Table 3, the EATS1 values for the range of 

shifts  min max,   that covers larger δ values are lower, thus the VP-AI chart requires less 

time to detect the range of shifts  min max,   covering larger values of δ. As an illustration, 



when 0.5   and 
0 5n   in Table 3, 

1EATS 11.04  when  min max, (0.2,0.6)    reduces to 

1EATS 1.00  when  min max, (1.5,2)   . Similar to the case with known shift sizes, by 

increasing the value of 
0 ,n  the performance of the VP-AI chart improves. Furthermore, there 

is only a minimal effect on 
1EATS  when 

St  is varied (see Tables 3 and 4).   

-- Insert Table 3 here -- 

-- Insert Table 4 here -- 

   

5. Comparative studies 

In this paper, the performance of the VP-AI chart is compared with five competing charts, in 

terms of the ATS1, SDTS1 and EATS1 criteria. The first and second criteria are used to 

compare the charts when the exact shift size, δ is known and unknown in advance, 

respectively. The chart that has lower ATS1 and EATS1 values has a superior performance as 

a shorter amount of time to detect an out-of-control condition is required. Meanwhile, the 

chart with lower SDTS1 values is more effective as the spread of the time to signal 

distribution is smaller. Specifically, in this paper, the competing charts that are compared 

with the VP-AI chart are the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts. In this 

paper, to ensure a fair comparison can be made among the charts, the constraints 0 0ASS n , 

0ASI 1  and 0ATS 370  have to be adhered to. Note that for the SH-AI, SYN-AI, EWMA-

AI and RS-AI charts that have a fixed sampling interval, 0t  is set as 1 to ensure that 

1 1ATS ARL .  

 For more information on the designs of the SH-AI, SYN-AI, EWMA-AI, RS-AI and 

VSSI-AI charts, readers can refer to Riaz (2008), Haq and Khoo (2016), Abbas et al. (2014), 

Ng et al. (2018) and Saha et al. (2018), respectively. The VP-AI and VSSI-AI charts are 

adaptive charts with parameters that can be varied depending on the location of the sample 



statistic plotted on the chart. For the VSSI-AI chart, two parameters (sample size and 

sampling interval) are varied, while the VP-AI chart varies all parameters (sample size, 

sampling interval, and control and warning limits). By comparing the performance of the VP-

AI and VSSI-AI charts, the effect of varying the control and warning limits can be studied. 

The VP-AI chart is also compared with the RS-AI chart. Although the RS-AI chart proposed 

by Ng et al. (2018) consists of 4 and 7 regions, only the RS-AI chart with 7 regions that has a 

superior performance compared to its 4 regions counterpart is considered in this paper. 

Similar to the RS-AI chart, the VP-AI chart is also compared with the SH-AI, SYN-AI and 

EWMA-AI charts. It is worth noting that the run length properties of the EWMA-AI chart 

considered in this paper is derived with the Markov chain approach and not computed 

through simulation as in Abbas et al. (2014). As a result of space constraints and the minimal 

effect of varying 
St  as shown in Section 4, we only consider 0.01St   in this section. Tables 

5 and 6 show the comparison among the charts, in terms of the ATS1 and SDTS1 criteria, 

respectively, where the exact shift size, δ is assumed to be known a priori for 0.01St  , 

0ATS 370 , 0 {5,7}n  , {0,0.25,0.5,0.75,0.9,0.95}  and {0.2,0.4,0.6,0.8,1,1.5,2}  . 

-- Insert Table 5 here – 

 Based on Table 5, the VP-AI chart significantly outperforms the SH-AI, SYN-AI and 

VSSI-AI charts for all shift sizes across all   and 
0n  values. To illustrate, when 

0 5, 0.2n   and 0.25  , the VP-AI chart is 3.3 (171.05 / 51.37), 2.8 (142.28 / 51.37) and 

2.5 (127.08 / 51.37) times faster than the SH-AI, SYN-AI and VSSI-AI charts, respectively in 

detecting mean shifts (see Table 5). The outperformance of the VP-AI chart in comparison to 

the VSSI-AI chart implies that the monitoring of process mean is enhanced by varying the 

control and warning limits. Even though the VP-AI chart is more complex than the VSSI-AI 

chart, as the VP-AI chart involves the additional step of varying the control and warning 

limits, the complexity is justified as the VP-AI chart is more effective and significantly 



outperforms the VSSI-AI chart for all shift sizes across all ρ and n0 values. The computation 

time to solve the required optimization for the VP-AI chart due to the additional complexity 

only differs slightly from the VSSI-AI chart. By comparing the VP-AI and EWMA-AI charts, 

it can be seen that, for all values of 
0n , the VP-AI chart is superior to the EWMA-AI chart 

for all shifts when   0.9 while the VP-AI chart surpasses the EWMA-AI chart for all shifts 

except 0.2   when  0.75  . As an example, the VP-AI is 1.8  5.46 3.11  times faster 

than the EWMA-AI chart in detecting mean shifts when 
0 5,n    = 0.2 and 0.95  , while 

the VP-AI chart is 1.2  10.59 9.02  times faster than the EWMA-AI chart in shift detection 

when 
0 5,n    = 0.4 and 0.25   (see Table 5). In short, the VP-AI chart outperforms the 

EWMA-AI chart for detecting all shift sizes when   = 0.95. A comparison of the VP-AI 

chart with the RS-AI chart shows that the VP-AI chart is superior to the RS-AI chart for all 

shifts when 
0 5n  . Meanwhile, for 

0 7n  , the VP-AI chart outperforms the RS-AI chart for 

all shifts when 0.75   while the VP-AI chart outperforms the RS-AI chart for all shifts 

except 0.2   when  0.5  . Hence, the VP-AI chart outperforms the RS-AI chart for most 

shifts.  

-- Insert Table 6 here – 

 In Table 6, it can be seen that the SDTS1 values of the VP-AI chart are generally 

lower than that of the SH-AI, SYN-AI and VSSI-AI charts, especially when the shift size, δ < 

0.8. This implies that the VP-AI chart has a smaller spread of the time to signal distribution in 

comparison with the SH-AI, SYN-AI and VSSI-AI charts for small and moderate shifts. To 

illustrate, when δ = 0.2,   = 0.25 and n0 = 5, the spread of the time to signal distribution for 

the SH-AI, SYN-AI and VSSI-AI charts are 3.30 (170.71/ 51.72), 2.71 (140.33 / 51.72) and 

2.46 (127.25 / 51.72) times larger than that of the VP-AI chart (see Table 6). A comparison of 

the SDTS1 values of the VP-AI and RS-AI charts when n0 = 5 shows that the VP-AI chart is 



superior to the RS-AI chart when δ ≤ 0.6 for ρ ≤ 0.75, and δ = 0.2 for ρ = 0.9 and 0.95 (see 

Table 6). When comparing the VP-AI and RS-AI charts for n0 = 7, the RS-AI chart has 

smaller SDTS1 values for most shift sizes δ but when δ increases the difference in the SDTS1 

values between the two charts generally decreases. The EWMA-AI chart has a smaller spread 

of the time to signal distribution in comparison with the VP-AI chart but the difference in 

SDTS1 values generally decreases with δ. 

 As mentioned in Section 4, in practice, the exact shift size is usually unknown a 

priori. Hence, the performance measure EATS1 is adopted and compared with the 

corresponding EATS1 of the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when 

0.01St  , 
0EATS 370 , 

0 {5,7}n  , {0,0.25,0.5,0.75,0.9,0.95}  and min max( , )  {(0.2, 

0.6), (0.5, 1), (1, 1.5), (1.5, 2)} as shown in Table 7. When the exact shift size, δ cannot be 

specified in advance, the VP-AI chart outperforms the SH-AI, SYN-AI and RS-AI charts for 

all ranges of shifts  min max,   considered, irrespective of the values of   and 
0n . 

Meanwhile, the VP-AI chart outperforms the VSSI-AI chart for most (δmin, δmax),   and 0n  

values (with the exception of n0 = 7, ρ = 0 and (δmin, δmax) = (1, 1.5), where the VSSI-AI chart 

performs slightly better) (see Table 7). On the other hand, when 0 5n  , the VP-AI chart is 

superior to the EWMA-AI chart for all shift sizes when 0.75   while the VP-AI chart 

surpasses the EWMA-AI chart for all shift sizes, except (δmin, δmax)  = (0.2, 0.6) when 

0.5  . Meanwhile, when 0 7n  , the VP-AI chart surpasses the EWMA-AI chart for all 

shift sizes (with the exception of ρ = 0 and (δmin, δmax) = (0.2, 0.6)). Thus, the VP-AI chart 

outperforms the EWMA-AI chart for most ranges of shifts  min max,   when the exact shift 

size cannot be specified.  

-- Insert Table 7 here -- 

 



6. Robustness of the VP-AI chart under misspecifications of ρ and violation of bivariate      

normality 

The analyses in the preceding sections assume that the values of ρ are specified correctly and 

 ,X M  follows a bivariate normal distribution, i.e.    2 2

2, ~ , , , ,
X M X M

X M N      . 

However, in real life applications, these assumptions may not always hold and whether the 

performance of the control chart is adversely affected when these assumptions are violated is 

of interest especially to quality practitioners. Hence, in this section, the robustness of the VP-

AI chart is studied by evaluating its performance in terms of ATS1 when there are violations 

in these assumptions. As can be seen in the preceding sections, the EWMA-AI chart is the 

only competing chart that challenges the performance of the VP-AI chart (especially for 

small shifts for which the EWMA-AI chart is known to be sensitive). Thus, the robustness of 

the VP-AI chart is compared with the EWMA-AI chart for two cases when the assumptions 

are violated which are (i) misspecifications in the value of ρ, or (ii)  ,X M  does not follow a 

bivariate normal distribution.  

 

6.1 Comparative studies of the VP-AI chart under the misspecifications of ρ 

This section presents the performance comparison between the VP-AI and EWMA-AI charts 

when ρ is misspecified even though    2 2

2, ~ , , , ,
X M X M

X M N      . Table 8 shows the 

ATS1 values of the VP-AI and EWMA-AI charts for miss   {0.3, 0.7}, 0.01St  , 

0ATS 370,  0 {5,7}n  , {0.25,0.5,0.75,0.9,0.95}   and {0.2,0.4,0.6,0.8,1,1.5,2}  . 

Note that miss  denotes the misspecified value of ρ. To compute the ATS1 values of the VP-

AI chart when ρ is misspecified, the optimal parameters provided in Table 1 are used but with 

miss   {0.3,0.7} instead of {0,0.25,0.5,0.75,0.9,0.95} . For example, based on Table 1, 

for 0n  = 5, ρ = 0.5 and δ = 0.2, the optimal parameters are     = 2,    = 31,    = 1.11, K2 = 



2.225, W1 = 1.628 and W2 = 1.527. Using the same optimal parameters, the value of ρ = 0.5 is 

changed to miss   {0.3, 0.7} when computing the ATS1 values of the VP-AI chart. The same 

approach is adopted in determining the parameters of the VP-AI chart for use when 

{0,0.25,0.75,0.9,0.95}  . It is worth noting that, even though ρ is misspecified, 

0ATS 370  when δ = 0 for both VP-AI and EWMA-AI charts (same as the case when the 

correct value of ρ is used).  

-- Insert Table 8 here – 

 As can be seen in Table 8, for miss  = 0.3 and    = 5, the VP-AI chart surpasses the 

EWMA-AI chart for all shifts, as the former has smaller 1ATS  values than the latter, except δ 

= 0.2 (δ  {0.2, 0.4}) for ρ ≤ 0.5 (ρ ≥ 0.75). Meanwhile, for miss  = 0.3 and    = 7, the VP-AI 

chart is superior to the EWMA-AI chart for all shifts, except δ = 0.2 (δ  {0.2, 0.4}) for ρ  

{0.25, 0.5, 0.75, 0.95} (ρ = 0.9). For miss  = 0.7, the VP-AI chart is superior to the EWMA-

AI chart with the exception of δ = 0.2 when    = {5, 7}. To summarize, the VP-AI chart still 

outperforms the EWMA-AI chart for moderate and large shifts with the misspecification of ρ.  

 

 6.2 Comparative studies of the VP-AI chart under the violations of bivariate normality 

In the design of AI control charts, it is usually assumed that  ,X M  comes from a bivariate 

normal distribution, which may not be true for some processes. Thus, in this section, the 

performance of the VP-AI chart is evaluated and compared with the EWMA-AI chart when 

bivariate normality is violated. To study the performance of the VP  ̅ chart under non-

normality, Lin and Chou (2007) used the t and gamma distributions to represent non-normal 

symmetric and skewed distributions, respectively. Additionally, Borror et al. (1999), Calzada 

and Scariano (2001), and Stoumbos and Reynolds (2000) have used the gamma and t 

distributions to represent various non-normal populations when they studied the robustness of 



control charts to non-normality. In this section, the bivariate non-normal distributions 

considered for comparing the effects of symmetric and skewed distributions on the VP-AI 

and EWMA-AI charts are the bivariate t and bivariate gamma distributions. Note that 

simulation is used to obtain the ATS1 values, based on the assumption that  ,X M  comes 

from the bivariate t and bivariate gamma distributions, instead of the bivariate normal 

distribution. The optimal parameters adopted for the EWMA-AI and VP-AI charts are  ,k  

= (0.21, 2.8715) and  2 1 2, , , , ,s L Ln n t K W W  = (2, 16, 1.27, 2.4945, 1.2419, 1.2154), 

respectively, which are obtained by minimizing ATS1 when δ = 0.5,   = 0.5, ATS0 = 370, St  

= 0.01 and 0n  = 5, based on the bivariate normal distribution. 

 Table 9 shows the ATS1 values of the EWMA-AI and VP-AI charts for the bivariate t 

distribution with v  {3, 10, 20} degrees of freedom when   {0.25, 0.5, 0.75, 0.9, 0.95} 

and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. It can be seen in Table 9 that, as v increases, the 

ATS0 value (when δ = 0) of the VP-AI and EWMA-AI charts under the bivariate t 

distribution approaches 370 (which is similar to the bivariate normal distribution that has 

ATS0 = 370). However, the ATS0 value of the VP-AI chart is larger and closer to 370 in 

comparison with the ATS0 of the EWMA-AI chart, indicating that the VP-AI chart is more 

robust against a symmetric non-normal distribution. To illustrate, when δ = 0 and  = 0.25, 

the ATS0 values of the VP-AI and EWMA-AI charts when v = 3 (v = 20) are 284.09 (371.32) 

and 214.63 (356.94), respectively. It is found that  has no influence on the charts’ ATS0 

values but for the out-of-control case, the charts become more sensitive with an increase in . 

This is because the ATS1 values of both charts decrease as  increases. For example, when v 

= 10 and δ = 0.2, the ATS1 values of the VP-AI (EWMA-AI) charts decrease from 79.91 

(43.23) when  = 0.25 to 3.16 (5.48) when   = 0.95. When δ increases, the ATS1 values of 

both charts decrease. Additionally, when δ is small (with the exception of   = 0.9 and 0.95), 



the EWMA-AI chart is superior to the VP-AI chart but the former’s superiority is at the 

expense of the former having substantially lower ATS0 values than the latter. As for moderate 

to large shifts, the VP-AI chart surpasses the EWMA-AI chart. Note that the VP-AI chart 

outperforms the EWMA-AI chart by having smaller ATS1 values for all δ (> 0) when   = 

0.95. For example, when v  {3, 10, 20},  = 0.2 and   = 0.95, ATS1  {3.47, 3.16, 3.19} 

for the VP-AI chart, while that for the EWMA-AI chart are ATS1  {5.51, 5.48, 5.50}, where 

the former has smaller ATS1 values than the latter. 

-- Insert Table 9 here – 

 On the other hand, Table 10 shows the ATS1 values of the EWMA-AI and VP-AI 

charts for the bivariate gamma distribution with G (, ), where   {1, 2} and  =1 when   

 {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. Note that for G (, ), 

 is the shape parameter and  is the scale parameter. It can be seen in Table 10 that, the VP-

AI and EWMA-AI charts under the bivariate gamma distribution has a larger ATS0 value 

(closer performance to the bivariate normal distribution) when  is smaller. To illustrate, 

when δ = 0 and  = 0.5, the ATS0 values of the VP-AI and EWMA-AI charts for G(1, 1) 

(G(2, 1)) distributions are 285.90 (32.53) and 200.90 (31.36), respectively. For G(1, 1), the 

ATS0 value of the VP-AI chart is generally larger and closer to 370 in comparison with the 

corresponding ATS0 value of the EWMA-AI chart, indicating that the VP-AI chart is more 

robust against a skewed non-normal distribution. However, for G(2, 1), both VP-AI and 

EWMA-AI charts show a lack of robustness as their ATS0 values are far from the designed 

value of 370.  

Still investigating Table 10, it is seen that an increase in the value of  decreases the 

charts’ ATS0 value which explains why the charts become more sensitive for the out-of-

control case when  increases. The ATS1 values of both charts decrease as  increases. As an 

example, for G(1, 1) and δ  = 0.2, the ATS1 values of the VP-AI (EWMA-AI) charts decrease 



from 90.25 (37.28) when  = 0.25 to 6.24 (5.63) when  = 0.95. It is found that the VP-AI 

chart always has a higher ATS0 value than the EWMA-AI chart when  is fixed. For 

example, for G(1, 1), ATS0  {393.10 (249.40), 285.90 (200.90), 177.64 (128.61), 112.42 

(81.43), 97.06 (66.18)} when   {0.25, 0.5, 0.75, 0.9, 0.95} for the VP-AI (EWMA-AI) 

charts. When δ increases, the ATS1 values of both charts decrease. Additionally, when δ is 

small (with the exception of   = 0.95 for G(2, 1)), the EWMA-AI chart is superior to the VP-

AI chart but the former’s superiority is at the expense of the former having generally lower 

ATS0 values than the latter. As for moderate to large shifts, the VP-AI chart surpasses the 

EWMA-AI chart. For example, for G(1, 1) when  = 0.5 and δ  = 0.6, the VP-AI chart 

outperforms the EWMA-AI chart as the former’s ATS1 = 3.56, which is lower than the 

latter’s ATS1 = 5.08. 

-- Insert Table 10 here – 

 

7. An illustrative example 

An example that illustrates the implementation of the VP-AI chart is given in this section 

using the dataset on a spring manufacturing process taken from Chen, Cheng, and Xie (2005) 

and adopted by Ghute and Shirke (2008). In a spring manufacturing process, the spring 

elasticity represents the study variable X that is monitored for process shifts. Meanwhile, the 

spring inner diameter represents the auxiliary variable M which is correlated to X and 

 ,X M  follows a bivariate normal distribution. As the exact shift size δ for which a quick 

detection is needed cannot be specified a priori by the quality engineer, the optimal 

parameters of the VP-AI chart are obtained by minimizing EATS1 for the range of shifts 

   min max, 1,1.5    with the assumption that δ follows a uniform distribution over the range 

 min max,  , i.e.  ~ 1,1.5 .U   



 According to the historical Phase-I dataset given in Chen et al. (2005), the correlation 

coefficient, as well as the in-control means and standard deviations of X and M are given by 

00.5172,  45.85,   28.29, X M      0.1503X   and 0.0592M  . Using the 

optimization algorithm outlined in Section 3.3 with the constraints 
0ASS 5,  

0ASI 1  and 

0ATS 370,  the optimal parameters  1 2 1 2, , , , , , ,S L S Ln n t t K K W W   (3, 6, 0.1, 2.8, 6, 2.874, 

0.431, 0.429) are obtained. Table 11 shows the bivariate observations  ,X M , charting 

statistic 
rZ , sampling interval and total time elapsed for 19 samples. Additionally, Figure 2 

shows the application of the VP-AI chart on the spring manufacturing process dataset. The 

points plotted on the VP-AI chart are the charting statistics, 
rZ , for r = 1, 2, …, 19, from 

Table 11. The parameters of the VP-AI chart that can be varied are the sample size, sampling 

interval, as well as control and warning limits that vary according to the location of the 

previous 
rZ  statistic plotted on the VP-AI chart. Note that each sample can either be small 

 3Sn   and taken after a long  2.8 hoursLt   sampling interval or large  6Ln   and 

taken after a short  0.1 hoursSt   sampling interval. To relax the control, loosened control 

and warning limits    1 1 1 1, , , 6, 6,0.431, 0.431K K W W      are adopted with the parameters 

 ,S Ln t . On the other hand, to tighten the control, tightened control and warning limits 

   2 2 2 2, , , 2.874, 2.874,0.429, 0.429K K W W      are adopted with the parameters 

 ,L Sn t . Table 11 can be interpreted as follows:  

 For the first sample  1r  , process monitoring begins with the assumption that a 

small sample of size 3Sn   is taken after a long sampling interval 2.8 hoursLt  , 

with loosened control and warning limits    1 1 1 1, , , 6, 6,0.431, 0.431K K W W     .    



 Then 
1Z  = 1.0908 is computed using Equation (4). As 

21 1.0908Z I   (warning 

region) indicates that there is a higher tendency for the process to shift to an out-of-

control condition, the control for the second sample  2r   is tightened. Hence, for 

the second sample, the parameters    , 6,0.1L Sn t   and  2 2 2 2, , ,K K W W  

 2.874, 2.874,0.429, 0.429   are adopted to tighten the control.  

 On the other hand, for the fourth sample  4r  , as 
14 0.2026 IZ    (central 

region) implies that there is a lower possibility for the process to be out-of-control, the 

control for the fifth sample  5r   is relaxed. Thus, the parameters    , 3,2.8S Ln t   

and    1 1 1 1, , , 6, 6,0.431, 0.431K K W W      are adopted to relax the control.  

 At the 15
th

 sample (r = 15), 
15 2Z I  (warning region), hence, the tightened limits 

 2 2 2 2, , ,K K W W    2.874, 2.874,0.429, 0.429   are adopted to evaluate sample 

16. Consequently, the VP-AI chart signals an out-of-control condition at the 16
th

 

sample  16r   as 316 2.9287Z I  = (, 2.874)  (2.874, ) (out-of-control 

region). Subsequently, corrective actions are taken by the quality practitioners to 

remove the assignable cause(s) and return the process to its in-control condition. The 

total time elapsed until the VP-AI chart signals an out-of-control condition is 20.5 

hours.  

--Insert Table 11 here-- 

-- Insert Figure 2 here -- 

 

8. Conclusions 

In control charting literature, researchers strive to improve the sensitivity of control charts in 

order to enhance the effectiveness of control charts in quality and process monitoring. 



Control charts that incorporate auxiliary information have been shown to vastly improve 

quality and process monitoring in the literature. Hence, in this paper, the VP-AI chart with 

improved effectiveness in monitoring process mean is developed through the incorporation of 

the auxiliary information approach with the VP control charting scheme. By employing a 

regression estimator of the process mean that incorporates information from the study and 

auxiliary variables, process monitoring has vastly improved. Consequently, the VP-AI chart 

outperforms the standard VP chart for all values of shifts; thus, justifying the integration of 

auxiliary information. The VP-AI chart involves parameters (sample size, sampling interval, 

control and warning limits) that can be varied according to the location of the previous 

sample statistic plotted on the chart.  

 The VP-AI chart is studied and subsequently compared with five existing AI charts 

which are the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts. The charts are 

compared in terms of ATS1 and SDTS1 when the exact shift size can be specified a priori and 

EATS1 when the exact shift size cannot be specified in advance. The VP-AI chart 

significantly outperforms the SH-AI, SYN-AI and VSSI-AI charts for all levels of shifts. 

Meanwhile, the VP-AI chart outperforms the EWMA-AI and RS-AI charts for most shifts. 

Additionally, the VP-AI chart has a lower spread in the time to signal distribution in 

comparison with the SH-AI, SYN-AI, RS-AI and VSSI-AI charts for small and moderate 

shifts. Thus, this justifies the development of the VP-AI chart as an enhanced control charting 

scheme that has a better ability to monitor the process mean. Owing to the enhanced process 

monitoring performance of the proposed VP-AI chart in comparison to the standard VP and 

five existing AI charts, the proposed chart will be a useful approach to quality practitioners in 

monitoring the process mean and significantly contributes to the present literature of AI 

charts. This paper also studies the robustness of the VP-AI chart by examining and 

comparing its performance with the EWMA-AI chart under misspecifications of ρ and 



violation of bivariate normality. Overall, it is found that the VP-AI chart is more robust than 

the EWMA-AI chart when the size of the shift is moderate or large. 

 The implementation of the VP-AI chart is illustrated with a dataset from a spring 

manufacturing process in this paper to provide a better understanding of the workings of the 

VP-AI chart. As the VP-AI chart that monitors process mean is proposed in this paper, future 

research can consider its VP-AI counterpart that monitors the process variance. A future 

extension that studies the performance of the VP-AI chart when process parameters are 

estimated can also be explored. In this paper, only one auxiliary variable is used. 

Additionally, the economic design of the VP-AI chart can be studied as a future research. The 

adaptive EWMA or RS charts that incorporate the auxiliary information method can also be 

considered in future research works.  
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List of Acronyms 

AI  auxiliary information 

ARL  average run length  

ASI0   in-control average sampling interval 

ASS0  in-control average sample size 

ATS  average time to signal  

ATS0  in-control ATS 

ATS1  out-of-control ATS 

CV  coefficient of variation 



EATS   expected average time to signal 

EATS0  in-control EATS 

EATS1  out-of-control EATS 

EWMA exponentially weighted moving average 

EWMA-AI EWMA with auxiliary information 

RS  run sum 

RS-AI  RS with auxiliary information 

SDTS  standard deviation of the time to signal 

SDTS1  out-of-control SDTS 

SH-AI  Shewhart with auxiliary information 

SYN-AI         synthetic with auxiliary information 

tpm  transition probability matrix 

VSS  variable sample size 

VSI  variable sampling interval 

VSSI  variable sample size and sampling interval 

VSSI-AI VSSI with auxiliary information 

VP  variable parameters 

VP-AI  VP with auxiliary information 
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Table 1. Optimal parameters, ATS1 and SDTS1 values of the VP-AI chart, for    = 0.01,      = 370,     {5, 7}, ρ  {0, 0.25, 0.5, 0.75, 0.9, 0.95} and 

δ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

  n0 = 5  



 

Table 2. Optimal parameters, ATS1 and SDTS1 values of the VP-AI chart, for    = 0.1,      = 370,     {5, 7}, ρ {0, 0.25, 0.5, 0.75, 0.9, 0.95} and 

δ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 
 

                   n0 = 5    

 

nS nL tL K2 W1 W2 ATS1 SDTS1 nS nL tL K2 W1 W2 ATS1 SDTS1 nS nL tL K2 W1 W2 ATS1 SDTS1 

δ ρ = 0     ρ = 0.25 ρ = 0.5  

0.2 2 31 1.11 2.225 1.628 1.527 55.28 55.63 2 31 1.11 2.225 1.628 1.527 51.37 51.72 2 31 1.11 2.225 1.628 1.527 39.43 39.76 

0.4 2 30 1.12 2.238 1.611 1.516 9.75 9.89 2 28 1.13 2.267 1.574 1.491 9.02 9.17 2 23 1.17 2.348 1.465 1.408 6.89 7.01 

0.6 2 15 1.30 2.521 1.198 1.176 3.64 3.74 2 14 1.33 2.549 1.150 1.131 3.37 3.48 2 12 1.42 2.612 1.036 1.023 2.60 2.72 

0.8 2 9 1.74 2.732 0.792 0.786 1.91 2.13 3 9 1.50 2.648 0.967 0.957 1.80 1.75 3 7 1.99 2.782 0.675 0.670 1.46 1.62 

1 3 7 1.99 2.782 0.675 0.670 1.30 1.43 3 6 2.98 2.874 0.431 0.429 1.25 1.76 3 6 2.98 2.874 0.431 0.429 1.12 1.59 

1.5 4 6 1.99 2.782 0.670 0.675 1.02 1.02 4 6 1.99 2.782 0.675 0.670 1.00 1.01 4 6 1.99 2.782 0.675 0.670 1.00 1.00 

2 3 6 2.98 2.874 0.431 0.429 1.00 1.41 3 6 2.98 2.874 0.431 0.429 1.00 1.41 3 6 2.98 2.874 0.431 0.429 1.00 1.41 

δ ρ = 0.75   ρ = 0.9 ρ = 0.95  

0.2 2 31 1.11 2.225 1.628 1.527 19.74 19.99 2 24 1.16 2.330 1.490 1.427 7.00 7.12 2 13 1.37 2.579 1.097 1.080 3.11 3.24 

0.4 2 15 1.30 2.521 1.198 1.176 3.57 3.67 3 7 1.99 2.782 0.674 0.670 1.48 1.64 3 6 2.98 2.874 0.431 0.429 1.06 1.51 

0.6 3 8 1.66 2.710 0.842 0.834 1.51 1.51 4 6 1.99 2.782 0.674 0.670 1.03 1.04 3 6 2.98 2.874 0.431 0.429 1.00 1.41 

0.8 3 6 2.98 2.874 0.431 0.429 1.09 1.55 3 6 2.98 2.874 0.431 0.429 1.00 1.41 2 6 3.97 2.911 0.319 0.317 1.00 1.72 

1 4 6 1.99 2.782 0.674 0.670 1.02 1.02 3 6 2.98 2.874 0.431 0.429 1.00 1.41 4 6 1.99 2.782 0.674 0.670 1.00 0.99 

1.5 3 6 2.98 2.874 0.431 0.429 1.00 1.41 4 6 1.99 2.782 0.674 0.670 1.00 0.99 4 6 1.99 2.782 0.674 0.670 1.00 0.99 

2 4 6 1.99 2.782 0.674 0.670 1.00 0.99 4 6 1.99 2.782 0.674 0.670 1.00 0.99 4 6 1.99 2.782 0.674 0.670 1.00 0.21 

  n0 = 7  

δ ρ = 0   ρ = 0.25  ρ = 0.5  

0.2 2 31 1.21 2.417 1.364 1.324 43.42 43.85 2 31 1.21 2.417 1.364 1.324 39.98 40.41 2 31 1.21 2.417 1.364 1.324 29.67 30.08 

0.4 2 31 1.21 2.417 1.364 1.324 6.39 6.62 2 29 1.23 2.443 1.325 1.290 5.92 6.15 2 24 1.29 2.516 1.207 1.184 4.55 4.78 

0.6 3 16 1.44 2.621 1.020 1.007 2.46 2.55 3 15 1.50 2.648 0.967 0.957 2.29 2.40 3 12 1.79 2.744 0.765 0.759 1.82 2.03 

0.8 4 10 1.99 2.782 0.674 0.670 1.40 1.57 4 9 2.49 2.841 0.524 0.522 1.34 1.70 4 8 3.97 2.911 0.319 0.317 1.17 1.98 

1 5 8 2.98 2.874 0.431 0.429 1.10 1.54 5 8 2.98 2.874 0.431 0.429 1.07 1.51 5 8 2.98 2.874 0.431 0.429 1.03 1.45 

1.5 5 8 2.98 2.874 0.431 0.429 1.00 1.41 5 8 2.98 2.874 0.431 0.429 1.00 1.41 4 8 3.97 2.911 0.319 0.317 1.00 1.72 

2 3 8 4.96 2.931 0.253 0.252 1.00 1.99 3 8 4.96 2.931 0.253 0.252 1.00 1.99 3 8 4.96 2.931 0.253 0.252 1.00 1.99 

δ ρ = 0.75   ρ = 0.9 ρ = 0.95  

0.2 2 31 1.21 2.417 1.364 1.324 13.63 13.98 2 24 1.29 2.516 1.207 1.184 4.62 4.86 3 14 1.57 2.677 0.908 0.900 2.13 2.27 

0.4 3 15 1.50 2.648 0.967 0.957 2.42 2.54 4 8 3.97 2.911 0.319 0.317 1.18 1.99 5 8 2.98 2.874 0.431 0.429 1.01 1.43 

0.6 4 8 3.97 2.911 0.319 0.317 1.19 2.01 5 8 2.98 2.874 0.431 0.429 1.01 1.42 4 8 3.97 2.911 0.319 0.317 1.00 1.72 

0.8 5 8 2.98 2.874 0.431 0.429 1.02 1.44 4 8 3.97 2.911 0.319 0.317 1.00 1.72 3 8 4.96 2.931 0.253 0.252 1.00 1.99 

1 5 8 2.98 2.874 0.431 0.429 1.00 1.41 3 8 4.96 2.931 0.253 0.252 1.00 1.99 6 8 1.99 2.782 0.674 0.670 1.00 0.99 

1.5 3 8 4.96 2.931 0.253 0.252 1.00 1.99 6 8 1.99 2.782 0.674 0.670 1.00 0.99 6 8 1.99 2.782 0.674 0.670 1.00 0.21 

2 6 8 1.99 2.782 0.674 0.670 1.00 0.99 6 8 1.99 2.782 0.674 0.670 1.00 0.21 2 5 1.13 2.274 1.565 1.484 1.00 0.38 



 

nS nL tL K2 W1 W2 ATS1 SDTS1 nS nL tL K2 W1 W2 ATS1 SDTS1 nS nL tL K2 W1 W2 ATS1 SDTS1 

δ ρ = 0   ρ = 0.25 ρ = 0.5  

0.2 2 31 1.10 2.225 1.628 1.527 55.44 55.40 2 31 1.10 2.225 1.628 1.527 51.53 51.77 2 31 1.10 2.225 1.628 1.527 39.58 39.79 

0.4 2 30 1.11 2.238 1.611 1.516 9.84 9.87 2 29 1.11 2.252 1.593 1.504 9.12 9.14 2 24 1.14 2.330 1.489 1.427 6.99 6.98 

0.6 2 16 1.25 2.495 1.242 1.215 3.77 3.71 2 15 1.27 2.521 1.198 1.176 3.50 3.44 2 12 1.39 2.612 1.036 1.023 2.75 2.70 

0.8 3 10 1.36 2.595 1.068 1.053 2.07 1.83 3 10 1.36 2.595 1.068 1.053 1.95 1.70 3 8 1.60 2.709 0.842 0.834 1.61 1.44 

1 3 8 1.60 2.709 0.842 0.834 1.44 1.25 3 7 1.90 2.782 0.674 0.670 1.38 1.33 3 7 1.90 2.782 0.674 0.670 1.24 1.17 

1.5 3 6 2.80 2.874 0.431 0.429 1.08 1.36 3 6 2.80 2.874 0.431 0.429 1.07 1.35 3 6 2.80 2.874 0.431 0.429 1.05 1.33 

2 2 6 3.70 2.911 0.319 0.317 1.03 1.62 2 6 3.70 2.911 0.319 0.317 1.03 1.61 2 6 3.70 2.911 0.319 0.317 1.03 1.61 

δ ρ = 0.75   ρ = 0.9 ρ = 0.95  

0.2 2 31 1.10 2.225 1.628 1.527 19.86 20.00 2 24 1.14 2.330 1.489 1.427 7.11 7.10 2 14 1.30 2.549 1.150 1.131 3.25 3.19 

0.4 2 15 1.27 2.521 1.198 1.176 3.70 3.65 3 9 1.45 2.648 0.967 0.957 1.63 1.39 3 6 2.80 2.874 0.431 0.429 1.15 1.42 

0.6 3 9 1.45 2.648 0.967 0.957 1.66 1.42 3 6 2.80 2.874 0.431 0.429 1.11 1.38 2 6 3.70 2.911 0.319 0.317 1.04 1.62 

0.8 3 6 2.80 2.874 0.431 0.429 1.19 1.46 2 6 3.70 2.911 0.319 0.317 1.04 1.63 2 6 3.70 2.911 0.319 0.317 1.03 1.60 

1 3 6 2.80 2.874 0.431 0.429 1.08 1.35 2 6 3.70 2.911 0.319 0.317 1.03 1.61 4 6 1.90 2.782 0.674 0.670 1.02 0.92 

1.5 2 6 3.70 2.911 0.319 0.317 1.03 1.61 4 6 1.90 2.782 0.674 0.670 1.01 0.91 4 6 1.90 2.782 0.674 0.670 1.00 0.90 

2 2 6 3.70 2.911 0.319 0.317 1.03 1.60 4 6 1.90 2.782 0.674 0.670 1.00 0.90 4 6 1.90 2.782 0.674 0.670 1.00 0.19 

  n0 = 7  

δ ρ = 0  ρ = 0.25    ρ = 0.5  

0.2 2 31 1.19 2.417 1.364 1.324 43.68 43.98 2 31 1.19 2.417 1.364 1.324 40.24 40.54 2 31 1.19 2.417 1.364 1.324 29.91 30.19 

0.4 2 31 1.19 2.417 1.364 1.324 6.50 6.59 2 30 1.20 2.430 1.345 1.308 6.04 6.12 2 25 1.25 2.500 1.233 1.208 4.68 4.74 

0.6 3 17 1.36 2.595 1.068 1.053 2.61 2.51 3 16 1.40 2.621 1.020 1.007 2.44 2.35 4 14 1.39 2.612 1.036 1.023 1.97 1.75 

0.8 4 11 1.68 2.732 0.792 0.785 1.55 1.42 4 11 1.68 2.732 0.792 0.785 1.48 1.35 4 10 1.90 2.782 0.674 0.670 1.30 1.25 

1 4 9 2.35 2.841 0.524 0.522 1.21 1.33 4 9 2.35 2.841 0.524 0.522 1.19 1.31 4 8 3.70 2.911 0.319 0.317 1.11 1.67 

1.5 3 8 4.60 2.931 0.253 0.252 1.04 1.86 3 8 4.60 2.931 0.253 0.252 1.04 1.86 3 8 4.60 2.931 0.253 0.252 1.03 1.85 

2 2 8 5.50 2.944 0.210 0.209 1.02 2.06 2 8 5.50 2.944 0.210 0.209 1.02 2.06 2 8 5.50 2.944 0.210 0.209 1.02 2.05 

δ ρ = 0.75   ρ = 0.9 ρ = 0.95  

0.2 2 31 1.19 2.417 1.364 1.324 13.81 14.01 2 25 1.25 2.500 1.233 1.208 4.75 4.82 3 15 1.45 2.648 0.967 0.957 2.28 2.21 

0.4 3 17 1.36 2.595 1.068 1.053 2.56 2.47 4 10 1.90 2.782 0.674 0.670 1.31 1.26 4 8 3.70 2.911 0.319 0.317 1.07 1.64 

0.6 4 10 1.90 2.782 0.674 0.670 1.33 1.27 4 8 3.70 2.911 0.319 0.317 1.05 1.62 2 8 5.50 2.944 0.210 0.209 1.02 2.07 

0.8 4 8 3.70 2.911 0.319 0.317 1.09 1.65 3 8 4.60 2.931 0.253 0.252 1.02 1.85 2 8 5.50 2.944 0.210 0.209 1.02 2.05 

1 3 8 4.60 2.931 0.253 0.252 1.04 1.86 2 8 5.50 2.944 0.210 0.209 1.02 2.05 6 8 1.90 2.782 0.674 0.670 1.00 0.90 

1.5 2 8 5.50 2.944 0.210 0.209 1.02 2.06 6 8 1.90 2.782 0.674 0.670 1.00 0.90 6 8 1.90 2.782 0.674 0.670 1.00 0.19 

2 6 8 1.90 2.782 0.674 0.670 1.01 0.90 6 8 1.90 2.782 0.674 0.670 1.00 0.64 6 31 1.04 1.828 2.054 1.622 1.00 0.35 

 

 

Table 3. Optimal parameters and EATS1 values of the VP-AI chart, for    = 0.01,       = 370,     {5, 7}, ρ {0, 0.25, 0.5, 0.75, 0.9, 0.95} and  



(δmin, δmax) {(0.2, 0.6), (0.5, 1), (1, 1.5), (1.5, 2)}  

 

n0 = 5 

  

nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 

δmin δmax              ρ = 0   ρ = 0.25 ρ = 0.5 

0.2 0.6 2 31 1.11 2.225 1.628 1.527 15.40 2 31 1.11 2.225 1.628 1.527 14.28 2 31 1.11 2.225 1.628 1.527 11.04 

0.5 1 2 13 1.37 2.579 1.097 1.080 2.78 2 12 1.42 2.612 1.036 1.023 2.59 3 11 1.33 2.549 1.150 1.131 2.06 

1 1.5 3 6 2.98 2.874 0.431 0.429 1.10 3 6 2.98 2.874 0.431 0.429 1.08 3 6 2.98 2.874 0.431 0.429 1.04 

1.5 2 4 6 1.99 2.782 0.675 0.670 1.01 4 6 1.99 2.782 0.675 0.670 1.00 3 6 2.98 2.874 0.431 0.429 1.00 

δmin δmax ρ = 0.75 ρ = 0.9   ρ = 0.95 

0.2 0.6 2 24 1.16 2.330 1.490 1.427 6.05 2 13 1.37 2.579 1.097 1.080 2.43 3 9 1.50 2.648 0.967 0.957 1.37 

0.5 1 3 7 1.99 2.782 0.675 0.670 1.31 3 6 2.98 2.874 0.431 0.429 1.02 3 6 2.98 2.874 0.431 0.429 1.00 

1 1.5 3 6 2.98 2.874 0.431 0.429 1.00 2 6 3.97 2.911 0.319 0.317 1.00 4 6 1.99 2.782 0.675 0.670 1.00 

1.5 2 2 6 3.97 2.911 0.319 0.317 1.00 4 6 1.99 2.782 0.675 0.670 1.00 4 6 1.99 2.782 0.675 0.670 1.00 

n0 = 7 

  

nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 

δmin δmax              ρ = 0   ρ = 0.25 ρ = 0.5 

0.2 0.6 2 31 1.21 2.417 1.364 1.324 10.95 2 31 1.21 2.417 1.364 1.324 10.09 2 31 1.21 2.417 1.364 1.324 7.67 

0.5 1 4 14 1.42 2.612 1.036 1.023 1.95 4 14 1.42 2.612 1.036 1.023 1.83 4 12 1.59 2.687 0.887 0.879 1.51 

1 1.5 5 8 2.98 2.874 0.431 0.429 1.04 5 8 2.98 2.874 0.431 0.429 1.02 5 8 2.98 2.874 0.431 0.429 1.01 

1.5 2 4 8 3.97 2.911 0.319 0.317 1.00 4 8 3.97 2.911 0.319 0.317 1.00 4 8 3.97 2.911 0.319 0.317 1.00 

δmin δmax ρ = 0.75 ρ = 0.9   ρ = 0.95 

0.2 0.6 3 27 1.20 2.404 1.383 1.340 4.15 4 15 1.37 2.579 1.097 1.080 1.76 4 10 1.99 2.782 0.674 0.670 1.16 

0.5 1 5 8 2.98 2.874 0.431 0.429 1.12 5 8 2.98 2.874 0.431 0.429 1.00 4 8 3.97 2.911 0.319 0.317 1.00 

1 1.5 4 8 3.97 2.911 0.319 0.317 1.00 6 8 1.99 2.782 0.674 0.670 1.00 6 8 1.99 2.782 0.674 0.670 1.00 

1.5 2 6 8 1.99 2.782 0.674 0.670 1.00 6 8 1.99 2.782 0.674 0.670 1.00 6 8 1.99 2.782 0.674 0.670 1.00 

 

 

 

 

 

 

 

 

Table 4. Optimal parameters and EATS1 values of the VP-AI chart, for    = 0.1,       = 370,    {5, 7}, ρ {0, 0.25, 0.5, 0.75, 0.9, 0.95} and  



(δmin, δmax)  {(0.2, 0.6), (0.5, 1), (1, 1.5), (1.5, 2)}  

 

n0 = 5 

  

nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 

δmin δmax              ρ = 0   ρ = 0.25 ρ = 0.5 

0.2 0.6 2 31 1.11 2.225 1.628 1.527 15.50 2 31 1.11 2.225 1.628 1.527 14.38 2 31 1.11 2.225 1.628 1.527 11.12 

0.5 1 2 14 1.30 2.549 1.150 1.131 2.90 2 13 1.34 2.579 1.096 1.080 2.71 3 12 1.26 2.507 1.221 1.196 2.18 

1 1.5 3 6 2.80 2.874 0.431 0.429 1.21 3 6 2.80 2.874 0.431 0.429 1.18 3 6 2.80 2.874 0.431 0.429 1.11 

1.5 2 3 6 2.80 2.874 0.431 0.429 1.06 2 6 3.70 2.911 0.319 0.317 1.05 2 6 3.70 2.911 0.319 0.317 1.04 

δmin δmax ρ = 0.75 ρ = 0.9   ρ = 0.95 

0.2 0.6 2 24 1.14 2.330 1.489 1.427 6.14 2 14 1.30 2.549 1.150 1.131 2.54 3 9 1.45 2.648 0.967 0.957 1.47 

0.5 1 3 8 1.60 2.709 0.842 0.834 1.42 3 6 2.80 2.874 0.431 0.429 1.08 2 6 3.70 2.911 0.319 0.317 1.04 

1 1.5 2 6 3.70 2.911 0.319 0.317 1.05 2 6 3.70 2.911 0.319 0.317 1.03 4 6 1.90 2.782 0.674 0.670 1.01 

1.5 2 2 6 3.70 2.911 0.319 0.317 1.03 4 6 1.90 2.782 0.674 0.670 1.01 4 6 1.90 2.782 0.674 0.670 1.00 

n0 = 7 

  

nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 nS nL tL K2 W1 W2 EATS1 

δmin δmax              ρ = 0   ρ = 0.25 ρ = 0.5 

0.2 0.6 2 31 1.19 2.417 1.364 1.324 11.09 2 31 1.19 2.417 1.364 1.324 10.22 2 31 1.19 2.417 1.364 1.324 7.77 

0.5 1 4 16 1.30 2.549 1.150 1.131 1.13 4 15 1.34 2.579 1.097 1.080 1.95 4 13 1.45 2.648 0.967 0.957 1.63 

1 1.5 4 8 3.70 2.911 0.319 0.317 1.10 4 8 3.70 2.911 0.319 0.317 1.09 4 8 3.70 2.911 0.319 0.317 1.06 

1.5 2 3 8 4.60 2.931 0.253 0.252 1.03 3 8 4.60 2.931 0.253 0.252 1.03 2 8 5.50 2.944 0.210 0.209 1.03 

δmin δmax ρ = 0.75 ρ = 0.9   ρ = 0.95 

0.2 0.6 3 27 1.18 2.404 1.383 1.340 4.24 4 16 1.30 2.549 1.150 1.131 1.86 4 11 1.68 2.732 0.792 0.785 1.25 

0.5 1 4 9 2.35 2.841 0.524 0.522 1.21 3 8 4.60 2.931 0.253 0.252 1.05 2 8 5.50 2.944 0.210 0.209 1.03 

1 1.5 3 8 4.60 2.931 0.253 0.252 1.03 6 8 1.90 2.782 0.674 0.670 1.02 6 8 1.90 2.782 0.674 0.670 1.01 

1.5 2 2 8 5.50 2.944 0.210 0.209 1.02 6 8 1.90 2.782 0.674 0.670 1.01 6 8 1.90 2.782 0.674 0.670 1.01 

 

 

 

 

 

 

 

 

Table 5. Comparison of the ATS1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when    = 0.01,      = 370,    {5, 7},  



ρ  {0, 0.25, 0.5, 0.75, 0.9, 0.95}and δ  {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

 

 

 

 

  SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI-

AI 

VP-

AI SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI-

AI 

VP-

AI SH-AI 

SYN-

AI 

EWMA-

AI 

RS-

AI 

VSSI-

AI 

VP-

AI 

 

n0 = 5 

δ ρ = 0 ρ = 0.25 ρ = 0.5 

0.2 177.56 148.95 30.32 57.11 135.24 55.28 171.05 142.28 29.00 53.46 127.08 51.37 148.63 119.84 24.78 42.15 99.82 39.43 

0.4 56.55 38.57 11.11 11.28 16.33 9.75 52.65 35.62 10.59 10.40 14.36 9.02 40.61 26.83 8.95 7.86 9.30 6.89 

0.6 20.55 13.40 6.03 4.15 4.12 3.64 18.77 12.29 5.74 3.84 3.78 3.37 13.61 9.14 4.84 2.94 2.84 2.60 

0.8 8.85 6.32 3.90 2.12 2.02 1.91 8.02 5.84 3.71 1.99 1.88 1.80 5.71 4.50 3.14 1.62 1.51 1.46 

1 4.49 3.80 2.79 1.43 1.32 1.30 4.08 3.57 2.65 1.37 1.26 1.25 2.96 2.93 2.24 1.21 1.12 1.12 

1.5 1.57 2.15 1.50 1.04 1.02 1.02 1.47 2.11 1.43 1.03 1.01 1.00 1.24 1.30 1.23 1.01 1.00 1.00 

2 1.08 1.15 1.08 1.00 1.00 1.00 1.06 1.13 1.06 1.00 1.00 1.00 1.02 1.10 1.02 1.00 1.00 1.00 

δ ρ = 0.75 ρ = 0.9 ρ = 0.95 

0.2 98.10 72.75 16.80 22.60 46.39 19.74 41.26 27.30 9.04 7.99 9.54 7.00 17.09 11.25 5.46 3.55 3.47 3.11 

0.4 20.10 13.12 5.95 4.07 4.03 3.57 5.83 4.57 3.17 1.63 1.52 1.48 2.24 2.52 1.91 1.11 1.06 1.06 

0.6 6.04 4.69 3.22 1.67 1.56 1.51 1.88 2.32 1.71 1.07 1.03 1.03 1.11 1.18 1.11 1.00 1.00 1.00 

0.8 2.60 2.72 2.09 1.16 1.09 1.09 1.16 1.23 1.15 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 

1 1.54 2.14 1.48 1.03 1.02 1.02 1.02 1.10 1.02 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

1.5 1.02 1.10 1.02 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

2 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

n0 = 7 

δ ρ = 0 ρ = 0.25 ρ = 0.5 

0.2 143.79 115.11 23.94 39.94 102.84 43.42 137.44 108.97 22.85 37.17 95.61 39.98 116.18 88.98 19.47 28.77 72.37 29.67 

0.4 38.27 25.19 8.63 7.40 10.29 6.39 35.33 23.15 8.22 6.83 9.03 5.92 26.50 17.22 6.94 5.20 5.89 4.55 

0.6 12.67 8.57 4.67 2.78 2.67 2.46 11.51 7.88 4.45 2.57 2.47 2.29 8.22 5.95 3.76 2.02 1.91 1.82 

0.8 5.30 4.26 3.02 1.55 1.44 1.40 4.81 3.98 2.88 1.48 1.36 1.34 3.46 3.21 2.44 1.28 1.17 1.17 

1 2.76 2.81 2.16 1.18 1.10 1.10 2.53 2.68 2.06 1.15 1.07 1.07 1.92 2.34 1.73 1.07 1.03 1.03 

1.5 1.20 1.27 1.19 1.01 1.00 1.00 1.16 1.23 1.15 1.00 1.00 1.00 1.06 1.14 1.06 1.00 1.00 1.00 

2 1.01 1.09 1.01 1.00 1.00 1.00 1.01 1.09 1.01 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

δ ρ = 0.75 ρ = 0.9 ρ = 0.95 

0.2 71.49 50.31 13.12 14.93 30.91 13.63 26.97 17.52 7.01 5.28 6.03 4.62 10.42 7.24 4.23 2.39 2.28 2.13 

0.4 12.38 8.40 4.61 2.72 2.62 2.42 3.52 3.25 2.46 1.29 1.18 1.18 1.53 2.14 1.47 1.03 1.01 1.01 

0.6 3.64 3.32 2.51 1.30 1.20 1.19 1.35 1.41 1.33 1.02 1.01 1.01 1.02 1.10 1.02 1.00 1.00 1.00 

0.8 1.73 2.23 1.61 1.05 1.02 1.02 1.03 1.11 1.03 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

1 1.19 1.26 1.18 1.01 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

1.5 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

2 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 



Table 6. Comparison of the SDTS1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when    = 0.01,      = 370,    {5, 7},  

ρ  {0, 0.25, 0.5, 0.75, 0.9, 0.95} and δ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

  SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI-

AI 

VP-

AI SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI-

AI 

VP-

AI SH-AI 

SYN-

AI 

EWMA-

AI 

RS-

AI 

VSSI-

AI 

VP-

AI 

 

n0 = 5 

δ ρ = 0 ρ = 0.25 ρ = 0.5 

0.2 177.23 147.15 19.18 56.53 135.39 55.63 170.71 140.33 18.88 52.90 127.25 51.72 148.27 117.58 15.30 41.69 100.05 39.76 

0.4 56.09 36.08 6.33 10.96 16.69 9.89 52.19 33.12 6.06 10.07 14.72 9.17 40.14 24.53 5.00 7.51 9.64 7.01 

0.6 20.06 11.49 3.22 4.16 4.14 3.74 18.28 10.39 3.05 3.82 3.80 3.48 13.11 7.38 2.52 2.90 2.88 2.72 

0.8 8.34 4.72 1.98 2.03 2.15 2.13 7.51 4.25 1.86 1.88 2.07 1.75 5.19 3.03 1.55 1.55 1.49 1.62 

1 3.96 2.33 1.37 1.48 1.44 1.43 3.55 2.09 1.30 1.37 1.76 1.76 2.41 1.52 1.09 1.08 1.59 1.59 

1.5 0.94 0.62 0.72 0.69 1.01 1.02 0.84 0.56 0.68 0.63 1.01 1.01 0.54 0.60 0.50 0.48 1.00 1.00 

2 0.29 0.30 0.28 0.27 0.99 1.41 0.24 0.30 0.24 0.24 0.99 1.41 0.13 0.20 0.50 0.13 0.99 1.41 

δ ρ = 0.75 ρ = 0.9 ρ = 0.95 

0.2 97.69 70.07 10.06 22.26 46.73 19.99 40.79 24.99 5.07 7.64 9.88 7.12 16.59 9.47 2.87 3.51 3.51 3.24 

0.4 19.61 11.21 3.16 4.08 4.05 3.67 5.31 3.09 1.56 1.57 1.51 1.64 1.67 1.07 0.95 0.94 1.50 1.51 

0.6 5.52 3.21 1.60 1.61 1.55 1.51 1.29 0.83 0.85 0.86 1.04 1.04 0.35 0.40 0.34 0.33 0.99 1.41 

0.8 2.05 1.30 1.03 1.08 1.54 1.55 0.42 0.50 0.40 0.39 0.99 1.41 0.06 0.20 0.06 0.06 0.99 1.72 

1 0.91 0.60 0.71 0.67 1.01 1.02 0.13 0.20 0.13 0.13 0.99 1.41 0.00 0.20 0.00 0.00 0.99 0.99 

1.5 0.14 0.20 0.14 0.14 0.99 1.41 0.00 0.20 0.00 0.00 0.99 0.99 0.00 0.20 0.00 0.00 0.99 0.99 

2 0.01 0.20 0.01 0.01 0.99 0.99 0.00 0.20 0.00 0.00 0.99 0.99 0.00 0.20 0.00 0.00 0.99 0.21 

n0 = 7 

δ ρ = 0 ρ = 0.25 ρ = 0.5 

0.2 143.42 112.76 15.19 39.51 103.19 43.85 137.07 106.51 14.27 36.75 95.98 40.41 115.78 86.35 11.90 28.40 72.79 30.08 

0.4 37.79 22.88 4.75 7.04 10.78 6.62 34.85 20.96 4.52 6.47 9.52 6.15 26.01 15.16 3.75 4.86 6.35 4.78 

0.6 12.16 6.83 2.39 2.73 2.70 2.55 11.00 6.26 2.28 2.51 2.50 2.40 7.71 4.36 1.90 1.91 2.04 2.03 

0.8 4.78 2.79 1.48 1.67 1.59 1.57 4.28 2.51 1.41 1.55 1.50 1.70 2.92 1.74 1.19 1.21 1.98 1.98 

1 2.21 1.40 1.07 1.03 1.53 1.54 1.97 1.25 1.01 1.05 1.50 1.51 1.32 0.85 0.86 0.87 1.45 1.45 

1.5 0.49 0.50 0.46 0.44 1.41 1.41 0.43 0.50 0.41 0.40 1.40 1.41 0.25 0.30 0.25 0.25 1.40 1.72 

2 0.11 0.20 0.11 0.11 1.40 1.99 0.08 0.20 0.08 0.08 1.40 0.99 0.03 0.20 0.03 0.03 1.40 1.99 

δ ρ = 0.75 ρ = 0.9 ρ = 0.95 

0.2 71.05 47.71 7.59 14.61 31.41 13.98 26.48 15.46 3.81 4.95 6.49 4.86 9.92 5.63 2.15 2.32 2.33 2.27 

0.4 11.87 6.77 2.38 2.67 2.64 2.54 2.98 1.77 1.20 1.23 1.99 1.99 0.91 0.60 0.71 0.67 1.42 1.43 

0.6 3.11 1.84 1.23 1.26 2.01 2.01 0.69 0.70 0.60 0.59 1.41 1.42 0.14 0.20 0.14 0.14 1.40 1.72 

0.8 1.12 0.73 0.80 0.78 1.43 1.44 0.18 0.30 0.18 0.18 1.40 1.72 0.01 0.20 0.00 0.01 1.40 1.99 

1 0.47 0.50 0.45 0.43 1.40 1.41 0.03 0.20 0.18 0.03 1.40 1.99 0.00 0.20 0.00 0.00 0.81 0.99 

1.5 0.04 0.20 0.04 0.04 1.40 1.99 0.00 0.20 0.00 0.00 0.77 0.99 0.00 0.20 0.00 0.00 2.21 0.21 

2 0.00 0.20 0.00 0.00 0.81 0.99 0.00 0.20 0.00 0.00 0.21 0.21 0.00 0.20 0.00 0.00 2.21 0.38 



 

Table 7. Comparison of the EATS1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-

AI charts when    = 0.01,       = 370,     {5, 7}, ρ  {0, 0.25, 0.5, 0.75, 0.9, 0.95} and (δmin, δmax)  {(0.2, 0.6), 

(0.5, 1), (1, 1.5), (1.5, 2)}   

 

 

 

 

 

  

    SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI

-AI 

VP-

AI SH-AI 

SYN-

AI 

EWMA

-AI 

RS-

AI 

VSSI

-AI VP-AI 

  

n0 = 5 

δmin δmax ρ = 0 ρ = 0.25 

0.2 0.6 70.20 52.19 13.56 16.72 32.55 15.40 66.14 48.84 12.93 15.50 29.63 14.28 

0.5 1.0 13.29 9.11 4.71 2.95 3.13 2.78 12.12 8.39 4.49 2.74 2.89 2.59 

1.0 1.5 2.59 2.72 2.06 1.16 1.10 1.10 2.38 2.61 1.96 1.14 1.08 1.08 

1.5 2.0 1.25 1.32 1.24 1.01 1.01 1.01 1.20 1.27 1.20 1.01 1.00 1.00 

δmin δmax ρ = 0.5 ρ = 0.75 

0.2 0.6 53.27 38.46 10.99 11.90 21.12 11.04 29.57 20.53 7.38 6.25 8.90 6.05 

0.5 1.0 8.77 6.35 3.80 2.15 2.22 2.06 3.98 3.52 2.54 1.37 1.34 1.31 

1.0 1.5 1.82 2.30 1.65 1.07 1.04 1.04 1.17 1.24 1.17 1.01 1.00 1.00 

1.5 2.0 1.09 1.08 1.09 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 

δmin δmax ρ = 0.9 ρ = 0.95 

0.2 0.6 10.09 7.28 2.43 2.45 2.76 2.43 3.97 3.55 2.43 1.40 1.42 1.37 

0.5 1.0 1.47 2.13 1.39 1.04 1.02 1.02 1.06 1.14 1.06 1.00 1.00 1.00 

1.0 1.5 1.00 1.08 1.26 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

1.5 2.0 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

  

n0 = 7 

δmin δmax ρ = 0 ρ = 0.25 

0.2 0.6 50.70 36.44 10.60 11.23 22.54 10.95 47.44 33.89 10.11 10.39 20.39 10.09 

0.5 1.0 8.16 5.98 3.66 2.05 2.10 1.95 7.42 5.54 3.49 1.92 1.96 1.83 

1.0 1.5 1.73 2.25 1.59 1.06 1.03 1.04 1.62 2.19 1.52 1.05 1.02 1.02 

1.5 2.0 1.07 1.15 1.07 1.00 1.00 1.00 1.05 1.13 1.05 1.00 1.00 1.00 

δmin δmax ρ = 0.5 ρ = 0.75 

0.2 0.6 37.29 26.18 8.57 7.96 14.24 7.67 19.58 13.52 5.74 4.22 5.87 4.15 

0.5 1.0 5.34 4.32 2.96 1.58 1.57 1.51 2.51 2.69 1.98 1.16 1.12 1.12 

1.0 1.5 1.33 1.40 1.30 1.02 1.01 1.01 1.05 1.12 1.05 1.00 1.00 1.00 

1.5 2.0 1.02 1.16 1.02 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

δmin δmax ρ = 0.9 ρ = 0.95 

0.2 0.6 6.30 4.93 3.10 1.78 1.90 1.76 2.56 2.74 1.90 1.19 1.17 1.16 

0.5 1.0 1.18 1.25 1.17 1.01 1.00 1.00 1.01 1.09 1.01 1.00 1.00 1.00 

1.0 1.5 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 

1.5 2.0 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 



 

Table 8. ATS1 values of the EWMA-AI and VP-AI charts due to misspecification of the value of the correlation 

coefficient (     ), where       {0.3, 0.7},    = 0.01,      = 370,     {5, 7},  

  {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

  
 = 0.25  = 0.5  = 0.75  = 0.9  = 0.95 

miss  δ 
EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

n0 = 5 

0.3 0.2 28.40 49.59 28.40 49.59 25.32 49.59 35.25 57.11 45.10 83.95 

 

0.4 10.35 8.69 10.39 8.84 9.24 10.64 14.52 22.36 24.10 26.75 

0.6 5.61 3.24 5.64 3.28 5.04 4.18 9.69 5.86 15.95 5.72 

0.8 3.63 1.74 3.65 1.79 3.34 1.93 6.58 1.93 7.49 1.94 

1 2.60 1.22 2.61 1.22 2.41 1.25 3.84 1.22 3.84 1.25 

1.5 1.40 1.02 1.40 1.02 1.23 1.02 1.43 1.02 1.41 1.02 

2 1.05 1.00 1.05 1.00 1.02 1.01 1.05 1.01 1.35 1.01 

  
          

0.7 0.2 19.06 24.11 19.06 24.11 18.82 24.11 20.66 27.33 25.08 42.04 

 

0.4 6.87 4.90 6.77 4.53 6.70 4.32 7.70 7.54 11.48 9.22 

0.6 3.74 1.99 3.67 1.87 3.63 1.74 4.61 2.00 6.83 1.92 

0.8 2.45 1.22 2.40 1.16 2.36 1.14 2.92 1.14 3.17 1.16 

1 1.77 1.03 1.72 1.03 1.67 1.03 1.80 1.03 1.80 1.03 

1.5 1.05 1.01 1.05 1.01 1.05 1.00 1.05 1.01 1.05 1.01 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.00 

  
n0 = 7 

0.3 0.2 22.37 38.43 22.45 38.43 23.28 38.43 28.39 45.95 37.27 70.11 

 

0.4 8.04 5.71 8.07 5.81 8.57 7.65 11.76 15.85 22.13 15.81 

0.6 4.35 2.21 4.37 2.27 4.77 3.08 8.05 3.09 10.75 3.08 

0.8 2.82 1.31 2.84 1.33 3.26 1.34 4.43 1.33 4.51 1.34 

1 2.01 1.07 2.03 1.07 2.25 1.07 2.41 1.08 2.41 1.08 

1.5 1.14 1.01 1.14 1.01 1.14 1.01 1.14 1.01 1.31 1.01 

2 1.01 1.00 1.01 1.00 1.01 1.00 1.03 1.00 1.43 1.00 

  
          

0.7 0.2 15.01 17.05 14.82 17.05 14.71 17.05 16.27 20.18 20.09 32.65 

 

0.4 5.36 3.42 5.25 3.13 5.20 2.92 6.07 4.94 10.05 4.95 

0.6 2.92 1.48 2.86 1.38 2.82 1.33 3.64 1.33 4.49 1.33 

0.8 1.92 1.06 1.86 1.04 1.83 1.04 2.02 1.04 2.04 1.05 

1 1.37 1.01 1.32 1.01 1.30 1.01 1.31 1.02 1.31 1.01 

1.5 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.05 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.11 1.00 

 

 

  



 

Table 9. ATS1 values of the EWMA-AI and VP-AI charts for bivariate t distribution with v  {3, 10, 20}  

degrees of freedom when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

  
 = 0.25   = 0.5   = 0.75  = 0.9   = 0.95 

v δ 
EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

3 0 214.63 284.09 215.65 287.46 212.72 288.06 214.03 286.52 211.56 284.78 

 

0.2 49.31 113.82 39.66 90.13 22.77 45.25 9.64 9.83 5.51 3.47 

0.4 11.87 14.59 9.55 9.39 6.02 4.00 3.37 1.86 2.34 1.28 

0.6 5.77 3.80 4.90 2.92 3.42 1.92 2.17 1.21 1.63 1.21 

0.8 3.87 2.17 3.35 1.86 2.47 1.35 1.69 1.07 1.24 1.02 

1 2.95 1.61 2.61 1.42 2.00 1.15 1.38 1.03 1.05 1.01 

1.5 1.96 1.13 1.78 1.08 1.40 1.03 1.03 1.01 1.00 0.99 

2 1.54 1.04 1.38 1.03 1.09 1.01 1.00 1.00 1.00 1.00 

  
          

10 0 341.56 367.99 343.26 365.01 337.59 372.63 338.56 368.68 339.21 366.87 

 

0.2 43.23 79.91 34.54 61.43 20.18 29.90 9.30 7.81 5.48 3.16 

0.4 11.20 11.06 9.14 7.63 5.96 3.65 3.40 1.94 2.36 1.39 

0.6 5.74 3.43 4.87 2.76 3.45 1.92 2.19 1.29 1.62 1.08 

0.8 3.89 2.13 3.38 1.89 2.49 1.46 1.69 1.10 1.26 1.02 

1 2.95 1.70 2.60 1.51 2.00 1.22 1.39 1.03 1.06 1.01 

1.5 1.97 1.20 1.77 1.14 1.41 1.04 1.03 1.01 1.00 1.00 

2 1.52 1.05 1.39 1.04 1.10 1.01 1.00 1.00 1.00 1.00 

  
          

20 0 356.94 371.32 356.68 369.52 354.70 371.48 358.40 367.99 360.90 368.82 

 

0.2 42.73 77.29 34.31 60.08 20.37 29.45 9.29 7.73 5.50 3.19 

0.4 11.17 10.88 9.22 7.57 5.93 3.61 3.39 1.92 2.35 1.39 

0.6 5.77 3.48 4.89 2.73 3.45 1.94 2.20 1.32 1.64 1.09 

0.8 3.87 2.17 3.37 1.89 2.50 1.47 1.69 1.10 1.27 1.02 

1 2.96 1.69 2.61 1.53 2.00 1.23 1.40 1.03 1.06 1.01 

1.5 1.95 1.21 1.77 1.14 1.41 1.03 1.03 1.01 1.00 1.00 

2 1.53 1.05 1.38 1.03 1.10 1.01 1.00 1.00 1.00 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 10. ATS1 values of the EWMA-AI and VP-AI charts for bivariate gamma, G (, ) distribution,  

with   {1, 2} and  =1 when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} 

 

  
 = 0.25  = 0.5  = 0.75  = 0.9  = 0.95 

 
δ 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

EWMA-

AI 
VP-AI 

G(1, 1) 0 249.40 393.10 200.90 285.90 128.61 177.64 81.43 112.42 66.18 97.06 

 
0.2 37.28 90.25 29.99 65.12 19.27 35.28 9.97 12.94 5.63 6.24 

 

0.4 11.55 15.75 9.55 11.11 6.23 5.19 3.44 2.45 2.34 1.11 

0.6 5.97 4.43 5.08 3.56 3.50 2.53 2.20 1.10 1.68 1.04 

0.8 3.98 2.71 3.44 2.41 2.52 1.38 1.73 1.05 1.26 1.01 

1 3.00 2.02 2.64 1.74 2.02 1.11 1.43 1.03 1.07 1.01 

1.5 1.96 1.15 1.79 1.07 1.44 1.03 1.04 1.01 1.00 1.00 

2 1.55 1.01 1.41 1.01 1.11 1.01 1.00 1.00 1.00 1.00 

  
           

G(2, 1) 0 44.09 31.73 31.36 32.53 30.92 30.10 26.48 30.74 26.16 34.86 

 
0.2 21.02 23.24 18.21 20.72 13.42 15.43 8.48 9.43 5.48 5.43 

 

0.4 9.63 10.29 8.40 8.07 5.97 5.01 3.46 2.53 2.38 1.15 

0.6 5.78 4.74 5.03 3.79 3.58 2.57 2.27 1.15 1.70 1.05 

0.8 4.04 2.82 3.53 2.49 2.59 1.67 1.76 1.06 1.34 1.03 

1 3.12 2.16 2.74 1.95 2.08 1.17 1.48 1.05 1.14 1.02 

1.5 2.03 1.41 1.84 1.14 1.49 1.05 1.10 1.02 1.02 1.01 

2 1.59 1.05 1.46 1.03 1.20 1.01 1.02 1.01 1.00 1.00 

 

 

 

 



 

Table 11. Implementation of the VP-AI chart using the dataset on a spring manufacturing process 

 

Sample 

no., r 
X1 X2 X3 X4 X5 X6 M1 M2 M3 M4 M5 M6 r

X   
r

M   
*

r
X

Y   
r

Z   
tS or tL 

(hours) 

Total 

time 

elapsed 

(hours) 

1 46.32 45.79 45.88 

   

28.14 28.31 28.27 

   

46.00 28.24 45.93 1.0908      2.8 2.8 

2 45.88 45.80 45.85 45.91 45.80 45.91 28.20 28.26 28.50 28.35 28.30 28.32 45.86 28.32 45.90 0.9505      0.1 2.9 

3 45.93 45.83 45.75 45.75 45.52 45.58 28.20 28.29 28.30 28.29 28.38 28.29 45.73 28.29 45.73 -2.3068      0.1 3 

4 45.81 45.99 45.78 46.02 45.85 45.77 28.22 28.26 28.27 28.27 28.28 28.30 45.87 28.27 45.84 -0.2026      0.1 3.1 

5 45.94 46.04 45.77 

   

28.36 28.27 28.32 

   

45.92 28.32 45.95 1.3691      2.8 5.9 

6 45.67 45.77 45.93 45.77 45.92 46.04 28.30 28.34 28.29 28.32 28.27 28.19 45.85 28.29 45.84 -0.1250      0.1 6 

7 45.90 45.83 45.69 

   

28.24 28.32 28.31 

   

45.81 28.29 45.81 -0.5835      2.8 8.8 

8 45.78 45.72 45.75 45.89 45.66 45.84 28.36 28.41 28.23 28.36 28.34 28.31 45.77 28.34 45.83 -0.3347      0.1 8.9 

9 45.74 45.59 46.10 
   

28.33 28.25 28.39 
   

45.81 28.32 45.85 0.0508      2.8 11.7 

10 45.87 45.57 45.87 
   

28.31 28.35 28.32 
   

45.77 28.33 45.82 -0.4289      2.8 14.5 

11 45.70 45.75 45.78 
   

28.31 28.28 28.31 
   

45.74 28.30 45.76 -1.2594      2.8 17.3 

12 45.89 45.90 45.52 45.83 46.15 45.73 28.36 28.32 28.34 28.31 28.25 28.30 45.84 28.31 45.87 0.3295      0.1 17.4 



 

 

13 45.76 46.04 45.96 
   

28.45 28.27 28.23 
   

45.92 28.32 45.96 1.4140      2.8 20.2 

14 45.90 45.60 45.88 45.87 45.87 45.79 28.35 28.37 28.36 28.35 28.44 28.42 45.82 28.38 45.94 1.6890      0.1 20.3 

15 45.82 45.79 45.92 45.88 46.07 45.84 28.32 28.31 28.32 28.30 28.32 28.33 45.89 28.32 45.92 1.3650      0.1 20.4 

16 45.82 46.02 45.83 45.94 45.97 45.76 28.40 28.27 28.33 28.41 28.44 28.41 45.89 28.38 46.00 2.9287      0.1 20.5 

17 45.91 46.09 45.98 

   

28.35 28.29 28.38 

   

45.99 28.34 46.06 2.8140      2.8 23.3 

18 45.79 45.92 45.83 45.75 46.31 45.87 28.35 28.31 28.36 28.38 28.28 28.32 45.91 28.33 45.97 2.2578      0.1 23.4 

19 45.78 45.79 45.87 45.75 45.92 46.05 28.40 28.36 28.31 28.38 28.34 28.34 45.86 28.36 45.95 1.8157      0.1 23.5 



 

Figure 1. Schematic representation of the VP-AI chart 

 

 

 

 

Figure 2. Implementation of the VP-AI chart on the spring manufacturing process 
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