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A variable parameters auxiliary information based quality control chart with application in a spring manufacturing process: The Markov chain approach

Introduction

To monitor and improve quality, the approach of using control charts in process monitoring has been widely adopted by researchers. Control charts which are extensively used in various manufacturing and service industries aid in enhancing the efficiency and quality of a process, thus reducing the amount of wastes produced and costs incurred. Recent studies on control charts can be found in [START_REF] Bourke | Detecting a downward shift in a proportion using a geometric CUSUM chart[END_REF], [START_REF] Chong | Some simplified Shewhart-type distribution-free joint monitoring schemes and its application in monitoring drinking water turbidity[END_REF], [START_REF] Mehmood | On efficient construction and evaluation of runs rules-based control chart for known and unknown parameters under different distributions[END_REF], [START_REF] Khatun | One-sided control charts for monitoring the multivariate coefficient of variation in short production runs[END_REF], and [START_REF] Lawson | Phase II monitoring of variability using Cusum and EWMA charts with individual observations[END_REF], to name a few. Due to the easy implementation of the basic Shewhart chart and its sensitivity in detecting large shifts in a process, the Shewhart chart has been widely adopted. However, the main drawback of the Shewhart chart is its lack of sensitivity in detecting small and moderate shifts. This is due to the fact that the Shewhart chart does not consider past process information. As a measure to improve the sensitivity of the Shewhart chart to small and moderate shifts, various control charting schemes have been proposed.

Traditionally, control charts use parameters, i.e. sample size, sampling interval, control and warning limits, that are fixed. However, using the same parameters lead to a lack of sensitivity to process shifts and an inefficient process monitoring [START_REF] Yeong | Monitoring the coefficient of variation using a variable parameters chart[END_REF]. Over the years, researchers have developed adaptive charts that take into account of past process information to overcome the setback of the basic Shewhart chart. An adaptive chart is a chart with one or more parameters that can vary in real time according to the location of the previous sample statistic plotted on the chart. The adaptive control scheme can be divided into four categories, which are the variable sample size (VSS), variable sampling interval (VSI), variable sample size and sampling interval (VSSI) and variable parameters (VP) charts. Some literature on adaptive charts can be found in [START_REF] Chong | Hotelling's T 2 control charts with fixed and variable sample sizes for monitoring short production runs[END_REF], [START_REF] Khoo | An improved variable sample size and sampling interval S control chart[END_REF], [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF], [START_REF] Hu | The performance of variable sample size chart with measurement errors[END_REF], [START_REF] Yeong | Monitoring the coefficient of variation using a variable parameters chart[END_REF], [START_REF] Lee | Double sampling |S| control chart with variable sample size and variable sampling interval[END_REF], [START_REF] Reynolds | Charts with variable sampling intervals[END_REF], Tagaras (1998), [START_REF] Prabhu | A combined adaptive sample size and sampling interval X control scheme[END_REF], [START_REF] Mahadik | A special variable sample size and sampling interval chart[END_REF], [START_REF] Carot | Combined double sampling and variable sampling interval X chart[END_REF], [START_REF] Costa | ̅ charts with variable sample size[END_REF], and [START_REF] Psarakis | Adaptive control charts: recent developments and extensions[END_REF].

For the VP chart, all the parameters of the chart are allowed to vary in real time. In other words, the selection of the sample size n, sampling interval t, and warning and control limits of the chart for the next inspection, depends on the location of the current sample statistic plotted on the chart. The VP chart is divided into three regions, namely the central, warning and out-of-control regions. When a sample point falls in the warning region, there is a higher tendency for the process to be out-of-control. Hence, control is tightened for the next inspection by taking a large sample size ( L n ), short sampling interval ( S t ), and tightened warning and control limits. In contrast, when the sample point falls in the central region, the tendency of the process to shift to an out-of-control condition is lower. Thus, we relax the control for the next inspection by taking a small sample size ( S n ), long sampling interval ( L t

), and loosened warning and control limits. The VP X chart that monitors the mean of a process was developed by [START_REF] Costa | X charts with variable parameters[END_REF]. Meanwhile, [START_REF] Yeong | Monitoring the coefficient of variation using a variable parameters chart[END_REF] proposed a VP chart that monitors the coefficient of variation (CV) and found that the VP CV chart consistently surpasses the other five competing CV charts in the literature. For other research works on the VP chart, readers can refer to [START_REF] Chen | Economic design of variable parameters X control charts for processes with fuzzy mean shifts[END_REF], [START_REF] Lin | Non-normality and the variable parameters ̅ control charts[END_REF], [START_REF] Guo | Economic Design of the Variable Parameters Control Chart with a Corrected A&L Switching Rule[END_REF] and [START_REF] Wang | Economic design of variableparameter X -Shewhart control chart used to monitor continuous production[END_REF].

To improve the process monitoring of the quality characteristic of interest, causeselecting and regression-adjusted control charts (see [START_REF] Mandel | The regression control chart[END_REF], [START_REF] Zhang | Cause-selecting control charts -a new type of quality control charts[END_REF], [START_REF] Wade | A review and analysis of cause-selecting control charts[END_REF], [START_REF] Shu | Effects of estimation errors on cause-selecting charts[END_REF], to name a few) utilize the correlation between the quality characteristic of interest and the associated quality characteristic(s). In fact, the construction of the cause-selecting and regression-adjusted control charts involve the adjustment of the effect of the associated quality characteristic(s) to monitor the quality characteristic of interest (i.e. obtaining residuals to monitor the quality characteristic of interest) [START_REF] Riaz | Monitoring process mean level using auxiliary information[END_REF]. Similarly, by utilising the relationship between the auxiliary variable and quality characteristic of interest in auxiliary information (AI) charts, the accuracy in which parameters are estimated can be enhanced. It is a common practice to apply the AI concept in survey sampling to obtain more accurate estimates of the population parameters.

For an improved estimator precision, the auxiliary or also known as supplementary information can be utilised in both design and estimation stages [START_REF] Haq | A new synthetic control chart for monitoring process mean using auxiliary information[END_REF]. In order to improve process monitoring, researchers have integrated the concept of auxiliary information with control charting schemes. With a regression estimator that incorporates information from an auxiliary or supplementary variable, the precision of an estimator can be enhanced which leads to a more sensitive control chart. The auxiliary variable concept can be used in various fields. For example, in a platinum refinery, when the quantity of platinum metal is the study variable or quality characteristic, the auxiliary variable considered can be the quantity of other metals which are generally correlated to the quantity of platinum metal [START_REF] Ahmad | On efficient use of auxiliary information for control charting in SPC[END_REF]. Additionally, when monitoring the process of generating power from coal, the study variable monitored can be the total power generated, while the auxiliary variable used can be the air temperature or quantity of flue gas [START_REF] Ahmad | On efficient use of auxiliary information for control charting in SPC[END_REF]. In a fibre production process, the auxiliary information from the weight of textile fibres can be used to improve the monitoring of the study variable which is the single-strand break factor [START_REF] Haq | A new synthetic control chart for monitoring process mean using auxiliary information[END_REF]. [START_REF] Riaz | Monitoring process mean level using auxiliary information[END_REF] proposed a Shewhart chart with auxiliary information (SH-AI) that improves the monitoring of process mean. Furthermore, [START_REF] Abbas | An EWMA-type control chart for monitoring the process mean using auxiliary information[END_REF] proposed an exponentially weighted moving average (EWMA) control chart with auxiliary information (EWMA-AI) and found that their proposed chart is effective in detecting small and moderate shifts. [START_REF] Haq | A new synthetic control chart for monitoring process mean using auxiliary information[END_REF] proposed a synthetic control chart with auxiliary information (SYN-AI). Meanwhile, [START_REF] Ng | Run Sum Chart for the Mean with Auxiliary Information[END_REF] proposed the run sum chart with auxiliary information (RS-AI) and showed that the RS-AI chart outperforms the SH-AI, SYN-AI and EWMA-AI charts for all shifts given that the correlation ρ is large. [START_REF] Ng | Run Sum Chart for the Mean with Auxiliary Information[END_REF] developed the VSSI chart with auxiliary information (VSSI-AI) which surpasses the EWMA-AI and SYN-AI charts. Research works on control charts with auxiliary information can also be found in [START_REF] Ahmad | On efficient use of auxiliary information for control charting in SPC[END_REF], [START_REF] Riaz | An improved control chart structure for process location parameter[END_REF], [START_REF] Abbasi | On dual use of auxiliary information for efficient monitoring[END_REF], [START_REF] Riaz | On the performance of auxiliarybased control charting under normality and nonnormality with estimation effects[END_REF] and [START_REF] Lee | A control chart using an auxiliary variable and repetitive sampling for monitoring process mean[END_REF], to name a few. The rest of this paper is organized as follows: Section 2 discusses the concept of auxiliary information. In Section 3, the overview, performance measures and optimization algorithm of the VP-AI chart are outlined and discussed. A numerical analysis of the VP-AI chart is given in Section 4 while the VP-AI chart is compared with the five existing AI charts in Section 5. In Section 6, the robustness of the VP-AI chart is evaluated and compared with the EWMA-AI chart for the case where ρ is misspecified or the bivariate normality assumption is violated. To illustrate the implementation of the VP-AI chart, an illustrative example is provided in Section 7 using the dataset from a spring manufacturing process.

Motivated

Lastly, Section 8 completes the paper with conclusions and suggestions for future research.

Properties of the auxiliary information approach

In practice, it may be time-consuming and costly to measure a quality characteristic of interest which we refer to as the study variable X. Hence, obtaining an efficient estimation of the population mean X  of X, with a desired accuracy, is sometimes impossible. Thus, another characteristic that is correlated with the quality characteristic of interest, known as the auxiliary variable M can be measured. By employing information from both study and auxiliary variables, an estimation of X  with an enhanced accuracy can be obtained. The VP- AI chart is a univariate chart as it monitors only the mean shifts in X but it is designed based on a regression estimator that incorporates information obtained from both X and M. In other words, the design of the VP-AI chart is based on a test statistic that requires information from both the study variable and auxiliary variable but only detects shifts related to the process mean of the study variable X (one variable only). Along with the study variable, data on several related auxiliary variables are often available, but only one auxiliary variable which is correlated to the study variable is considered in this paper. 

  * r X r M r Y X M     , (1) 
such that

X M        .
For the rth sample, the sample mean of X is 

and

    * 2 2 1 1 () r XX Var Y nr   , (3) 
respectively, such that

      * 2 2 ~, 1/ ( ) 1 r X X X Y N n r     .

Variable parameters control chart with auxiliary information

Section 3 consists of three subsections. Section 3.1 provides an overview of the VP-AI chart.

Subsequently, the formulae of the steady state ATS, SDTS and EATS are outlined in Section 3.2. Lastly, the optimization algorithms of the VP-AI chart that minimize the out-of-control ATS and EATS, denoted by ATS 1 and EATS 1 , respectively, are given in Section 3.3.

Overview of the VP-AI chart

Assume that * r X Y , for 1, 2,... r 

, from Equation ( 1) is the quality characteristic to be monitored. The charting statistic plotted on the VP-AI chart is

  * 0 2 () 1 r XX r X n r Y Z      . ( 4 
) When the process is in-control   0   ,   * 0 r XX EY   and r Z follows the standard normal distribution, i.e. ~(0,1) r ZN .
For a standard SH-AI chart with fixed parameters, practitioners take a sample with size 0 n at every sampling interval 0 t with a fixed control limit 0 K . However, the SH-AI chart is only effective in detecting large shifts. The VP-AI chart enhances the performance of the SH-AI chart toward small and moderate shifts by considering past process information.

Similar to the VP chart, the VP-AI chart consists of three regions (i.e. central, warning and out-of-control) that are divided by the warning ( W  ) and control ( K  ) limits. Note that the upper and lower warning limits are denoted by W and -W, respectively, while the upper and lower control limits are denoted by K and -K, respectively. The region The schematic representation that shows the operation of the VP-AI chart is given in Figure 1.

--Insert Figure 1 here --

The VP-AI chart works as follows:

 When r
Z lies in the central region   1 r ZI  , there is a lower tendency for the process to shift to an out-of-control condition. Hence, the next sample size is small 0 ( ) 

( ) K K K  , 1 0 2 ( ) K K K      , 12 () WW  and 1 2 ( ) WW    .  When r Z lies in the warning region   2 r Z I 
, there is a higher tendency for the process to shift to an out-of-control condition. Thus, the next sample size is large 0 ( ) Z  is plotted on the VP-AI chart using tightened control and warning limits to tighten the control, i.e. 2 0 1 ()

K K K  , 2 0 1 ( ) K K K      , 2 1 () WW  and 2 1 () WW    .  Lastly, if r Z lies in the out-of-control region   3 r Z I 
, a signal is issued by the VP-AI chart to indicate an out-of-control condition and corrective actions have to be swiftly taken to remove the assignable cause(s). 

It is worth noting that

Performance measures

The average run length (ARL) is extensively adopted to study the performance of a control chart. However, it is not a suitable performance measure for the VP-AI chart as the sampling interval is allowed to vary. Hence, in this paper, we adopt the steady state ATS which is defined as the expected time from the process mean shift until an out-of-control condition is signaled by the chart to evaluate the performance of the VP-AI chart. It is assumed that the process is in-control initially and the process mean shift occurs at some time in the future.

In this paper, the Markov chain approach is adopted for the computation of the ATS.

The Markov chain consists of three states where the first state corresponds to the central region, the second state corresponds to the warning region and the third state corresponds to the out-of-control region [START_REF] Yeong | Monitoring the coefficient of variation using a variable parameters chart[END_REF] 

                    Q I Q 1 P 0 = (5)
such that Q represents a 2×2 tpm for the transient states, I represents a 2×2 identity matrix, 1 is a 2×1 column vector with all elements equal to unity and (0,0) 
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where   .  is the standard normal distribution function. , , and P P P P are computed with Equations ( 6) -( 9), respectively by setting 0   . ATS 1 is the ATS corresponding to the out-of-control case ( 0   ) while ATS 0 corresponds to the in-control case ( 0   ). A chart with lower ATS 1 values is more effective in detecting process mean shifts. Thus, when the ATS 0 is fixed, a chart which has smaller ATS 1 in comparison to other charts is superior. Meanwhile, the out-of-control SDTS (SDTS 1 ) is also considered as a performance measure to gain insight about the spread of the time to signal distribution. The SDTS can be computed as follows [START_REF] Yeong | Monitoring the coefficient of variation using a variable parameters chart[END_REF]

: SDTS a  , (12) 
where

  1 1 (2) 2 ( ) 2 ( ) ATS T a        t b I Q D I Q t t
. Note that t D is the diagonal matrix with diagonal elements from t while (2) t represents the squares of vector t elements.

The computation of ATS requires the specification of the shift size  in advance.

However, in practice, the value of  is unknown prior to the occurrence of the shift. Hence, the EATS that is computed based on a shift interval   min max ,  is adopted as an alternative to ATS and the computation of EATS is as follows:

    max min EATS ATS fd        (13)
such that min  and max  denote the minimum and maximum process mean shifts for the interval   

EATS ATS d        , (14) 
which is approximated with the Gauss-Legendre quadrature as the integral cannot be evaluated exactly. EATS 1 is the EATS corresponding to the out-of-control case ( 0   ) while 0 0

EATS ATS  corresponds to the in-control case ( 0   ).

Optimization algorithm

This section explains the algorithms used to compute the optimal parameters 1 2 1 2 , , , , , , and subject to three constraints that ensure a fair comparison, given by (Costa 1999)

S L S L n n t t K K W W of
1 2 0 , S L b n b n n   (16) 1 2 0 LS b t b t t  ( 17 
)
and 16) -( 18) set the in-control average sample size ( 0 ASS ) as 0 n , in-control average sampling interval ( 0 ASI ) as 0 t and ensure that the false alarm rates are the same, respectively. Using the constraints in Equations ( 11a) and ( 16), the values of i W such that 1, 2 i  can be computed with [START_REF] Costa | X charts with variable parameters[END_REF])

      1 1 2 2 0 Pr | | Pr | | Pr | | r r r b Z K b Z K Z K      , (18) 
1 00 2( ) ( ) , 2( ) L i S i LS n n K n n W nn           (19) 
while it follows from Equation ( 18) that

0 0 0 ( ) ( ) . L S S S L L t n n t n n t nn      (20) 
In this paper, 1 6 K  , 0 1 t  and 0 ATS 370  are employed. These are the steps employed to compute the optimal parameters of the VP-AI chart by minimizing

 

1 ATS  for a specific .

1. Specify the values of Based on the outputs computed using the steps above, the parameters

1 2 1 2
, , , , , , and 

S L S L n n t t K K W W that

Numerical analysis

In this section, the performance of the VP-AI chart is evaluated. This section presents the optimal parameters

1 2 1 2
, , , , , , and   are considered in this paper and the optimal parameters with their corresponding ATS 1 and SDTS 1 are shown in Tables 1 and2. Meanwhile, for (ii), we consider {0.01, 0.1}

S L S L n n t t K K W W that (i)
S t  , 0 {5, 7} n 
, {0, 0.25, 0.5, 0.75, 0.9, 0.95}   and min max ( , ) {(0.2,0.6),(0.5,1),(1,1.5),(1.5, 2)}   and the optimal parameters with their corresponding EATS 1 are shown in Tables 3 and4.

When the process is out-of-control, lower ATS 1 values indicate a better performance of the chart as less time is required to detect an out-of-control condition. In other words, the chart has a better ability in detecting mean shifts when the ATS 1 values are lower for an outof-control process. From Tables 1 and2, it can be seen that the ATS 1 values decrease as δ increases which implies that the VP-AI chart requires less time to detect larger mean shifts. This is justified by the need to quickly detect larger shifts that result in a significant loss of quality. As the ATS 1 values become smaller when  increases across all values of 0 n , it can be deduced that the VP-AI chart surpasses the standard VP chart ( = 0), thus justifying the integration of auxiliary information. To illustrate, when 0.2   and 0 5 n  in Table 1, ATS 1 = 55.28 (for  = 0) decreases to ATS 1 = 3.11 (for  = 0.95). Additionally, the outperformance of the VP-AI chart in comparison to the standard VP chart increases with . This implies that the sensitivity of the VP-AI chart is enhanced with an increase in ρ. Hence, utilising information from the auxiliary variable has enhanced the ability of the VP chart in detecting process mean shifts. Furthermore, an increase in the sample size 0 n results in a decrease in the ATS 1 values for all shifts. Thus, a larger sample size enhances the sensitivity of the VP-AI chart as an out-of-control condition is signalled earlier. For example, consider Table 1 when 0.25   and δ = 0.2, the ATS 1 = 51.37 (for 0 5 n  ) decreases to ATS 1 = 39.98 (for 0 7 n  ). By comparing Tables 1 and2, there is only a slight difference in the performance of the VP-AI chart when 0.01

S t  in comparison to 0.1 S t  .
The SDTS 1 values of the standard VP chart ( = 0) are higher than that of the VP-AI chart for all shifts, indicating that the former has a larger spread of the time to signal distribution; thus, the latter is superior to the former.

--Insert Table 1 here----Insert Table 2 here--To obtain the results in Tables 1 and2, it is assumed that the value of δ can be specified in advance. However, in practice, δ values cannot be specified a priori.

Alternatively, EATS 1 is computed based on a range of shifts   min max ,



to account for the case when we cannot specify the exact shift size in advance. The optimal parameters and their corresponding EATS 1 values are shown in Tables 3 and4. For all values of 0 n , the EATS 1 values when 0   are lower than the corresponding EATS 1 values when 0   , which implies that the VP-AI chart surpasses the standard VP chart. Additionally, the EATS 1 values decrease when ρ increases. As can be seen in 3 and4).

--Insert Table 3 here --   .

--Insert
--Insert Table 5 here - --Insert Table 6 here -

Based on

In Table 6, it can be seen that the SDTS 1 values of the VP-AI chart are generally lower than that of the SH-AI, SYN-AI and VSSI-AI charts, especially when the shift size, δ < 0.8. This implies that the VP-AI chart has a smaller spread of the time to signal distribution in comparison with the SH-AI, SYN-AI and VSSI-AI charts for small and moderate shifts. To illustrate, when δ = 0.2,  = 0.25 and n 0 = 5, the spread of the time to signal distribution for the SH-AI, SYN-AI and VSSI-AI charts are 3. --Insert Table 7 here --

Robustness of the VP-AI chart under misspecifications of ρ and violation of bivariate normality

The analyses in the preceding sections assume that the values of ρ are specified correctly and

 

,

XM follows a bivariate normal distribution, i.e.     22 2 , ~, , , , X M X M X M N      .
However, in real life applications, these assumptions may not always hold and whether the performance of the control chart is adversely affected when these assumptions are violated is of interest especially to quality practitioners. Hence, in this section, the robustness of the VP-AI chart is studied by evaluating its performance in terms of ATS 1 when there are violations in these assumptions. As can be seen in the preceding sections, the EWMA-AI chart is the only competing chart that challenges the performance of the VP-AI chart (especially for small shifts for which the EWMA-AI chart is known to be sensitive). Thus, the robustness of the VP-AI chart is compared with the EWMA-AI chart for two cases when the assumptions are violated which are (i) misspecifications in the value of ρ, or (ii)   , XM does not follow a bivariate normal distribution.

Comparative studies of the VP-AI chart under the misspecifications of ρ

This section presents the performance comparison between the VP-AI and EWMA-AI charts   .

when ρ is misspecified even though     22 2 , ~, , , , X M X M X M N      .
Note that miss  denotes the misspecified value of ρ. To compute the ATS 1 values of the VP-AI chart when ρ is misspecified, the optimal parameters provided in Table 1 are used but with miss   {0.3,0.7} instead of {0, 0.25, 0.5, 0.75, 0.9, 0.95}   . For example, based on Table 1, for 0 n = 5, ρ = 0.5 and δ = 0.2, the optimal parameters are = 2, = 31, = 1.11, K 2 = 2.225, W 1 = 1.628 and W 2 = 1.527. Using the same optimal parameters, the value of ρ = 0.5 is changed to miss   {0.3, 0.7} when computing the ATS 1 values of the VP-AI chart. The same approach is adopted in determining the parameters of the VP-AI chart for use when {0,0.25,0.75,0.9,0.95}   . It is worth noting that, even though ρ is misspecified, 0 ATS 370  when δ = 0 for both VP-AI and EWMA-AI charts (same as the case when the correct value of ρ is used).

--Insert Table 8 here -

As can be seen in Table 8, for miss  = 0.3 and = 5, the VP-AI chart surpasses the EWMA-AI chart for all shifts, as the former has smaller 1 ATS values than the latter, except δ = 0.2 (δ  {0.2, 0.4}) for ρ ≤ 0.5 (ρ ≥ 0.75). Meanwhile, for miss  = 0.3 and = 7, the VP-AI chart is superior to the EWMA-AI chart for all shifts, except δ = 0.2 (δ  {0.2, 0.4}) for ρ  {0.25, 0.5, 0.75, 0.95} (ρ = 0.9). For miss  = 0.7, the VP-AI chart is superior to the EWMA-AI chart with the exception of δ = 0.2 when = {5, 7}. To summarize, the VP-AI chart still outperforms the EWMA-AI chart for moderate and large shifts with the misspecification of ρ.

Comparative studies of the VP-AI chart under the violations of bivariate normality

In the design of AI control charts, it is usually assumed that   , XM comes from a bivariate normal distribution, which may not be true for some processes. Thus, in this section, the performance of the VP-AI chart is evaluated and compared with the EWMA-AI chart when bivariate normality is violated. To study the performance of the VP ̅ chart under nonnormality, [START_REF] Lin | Non-normality and the variable parameters ̅ control charts[END_REF] respectively, which are obtained by minimizing ATS 1 when δ = 0.5,  = 0.5, ATS 0 = 370, S t = 0.01 and 0 n = 5, based on the bivariate normal distribution.

Table 9 shows the ATS 1 values of the EWMA-AI and VP-AI charts for the bivariate t distribution with v  {3, 10, 20} degrees of freedom when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. It can be seen in Table 9 that, as v increases, the ATS 0 value (when δ = 0) of the VP-AI and EWMA-AI charts under the bivariate t distribution approaches 370 (which is similar to the bivariate normal distribution that has ATS 0 = 370). However, the ATS 0 value of the VP-AI chart is larger and closer to 370 in comparison with the ATS 0 of the EWMA-AI chart, indicating that the VP-AI chart is more robust against a symmetric non-normal distribution. To illustrate, when δ = 0 and  = 0.25, the ATS 0 values of the VP-AI and EWMA-AI charts when v = 3 (v = 20) are 284.09 (371.32) and 214.63 (356.94), respectively. It is found that  has no influence on the charts' ATS 0 values but for the out-of-control case, the charts become more sensitive with an increase in .

This is because the ATS 1 values of both charts decrease as  increases. For example, when v = 10 and δ = 0.2, the ATS 1 values of the VP-AI (EWMA-AI) charts decrease from 79.91 (43.23) when  = 0.25 to 3.16 (5.48) when  = 0.95. When δ increases, the ATS 1 values of both charts decrease. Additionally, when δ is small (with the exception of  = 0.9 and 0.95), the EWMA-AI chart is superior to the VP-AI chart but the former's superiority is at the expense of the former having substantially lower ATS 0 values than the latter. As for moderate to large shifts, the VP-AI chart surpasses the EWMA-AI chart. Note that the VP-AI chart outperforms the EWMA-AI chart by having smaller ATS 1 values for all δ (> 0) when  = 0.95. For example, when v  {3, 10, 20},  = 0.2 and  = 0.95, ATS 1  {3. 47, 3.16, 3.19} for the VP-AI chart, while that for the EWMA-AI chart are ATS 1  {5.51, 5.48, 5.50}, where the former has smaller ATS 1 values than the latter.

--Insert Table 9 here -On the other hand, Table 10 shows the ATS 1 values of the EWMA-AI and VP-AI charts for the bivariate gamma distribution with G (, ), where   {1, 2} and  =1 when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. Note that for G (, ),  is the shape parameter and  is the scale parameter. It can be seen in Table 10 that Still investigating Table 10, it is seen that an increase in the value of  decreases the charts' ATS 0 value which explains why the charts become more sensitive for the out-ofcontrol case when  increases. The ATS 1 values of both charts decrease as  increases. As an example, for G(1, 1) and δ = 0.2, the ATS 1 values of the VP-AI (EWMA-AI) charts decrease from 90.25 (37.28) when  = 0.25 to 6.24 (5.63) when  = 0.95. It is found that the VP-AI chart always has a higher ATS 0 value than the EWMA-AI chart when  is fixed. For example, for G(1, 1), ATS 0  {393.10 (249.40), 285.90 (200.90), 177.64 (128.61), 112.42 (81.43), 97.06 (66.18)} when   {0.25, 0.5, 0.75, 0.9, 0.95} for the VP-AI (EWMA-AI) charts. When δ increases, the ATS 1 values of both charts decrease. Additionally, when δ is small (with the exception of  = 0.95 for G(2, 1)), the EWMA-AI chart is superior to the VP-AI chart but the former's superiority is at the expense of the former having generally lower ATS 0 values than the latter. As for moderate to large shifts, the VP-AI chart surpasses the EWMA-AI chart. For example, for G(1, 1) when  = 0.5 and δ = 0.6, the VP-AI chart outperforms the EWMA-AI chart as the former's ATS 1 = 3.56, which is lower than the latter's ATS 1 = 5.08.

--Insert Table 10 here -

An illustrative example

An example that illustrates the implementation of the VP-AI chart is given in this section using the dataset on a spring manufacturing process taken from Chen, Cheng, and Xie (2005) and adopted by [START_REF] Ghute | A multivariate synthetic control chart for monitoring process mean vector[END_REF]. In a spring manufacturing process, the spring elasticity represents the study variable X that is monitored for process shifts. Meanwhile, the spring inner diameter represents the auxiliary variable M which is correlated to X and

 

, XM follows a bivariate normal distribution. As the exact shift size δ for which a quick detection is needed cannot be specified a priori by the quality engineer, the optimal parameters of the VP-AI chart are obtained by minimizing EATS 1 for the range of shifts = (, 2.874)  (2.874, ) (out-of-control region). Subsequently, corrective actions are taken by the quality practitioners to remove the assignable cause(s) and return the process to its in-control condition. The total time elapsed until the VP-AI chart signals an out-of-control condition is 20.5

hours.

--Insert Table 11 here----Insert Figure 2 here --

Conclusions

In control charting literature, researchers strive to improve the sensitivity of control charts in order to enhance the effectiveness of control charts in quality and process monitoring.

Control charts that incorporate auxiliary information have been shown to vastly improve quality and process monitoring in the literature. Hence, in this paper, the VP-AI chart with improved effectiveness in monitoring process mean is developed through the incorporation of the auxiliary information approach with the VP control charting scheme. By employing a regression estimator of the process mean that incorporates information from the study and auxiliary variables, process monitoring has vastly improved. Consequently, the VP-AI chart outperforms the standard VP chart for all values of shifts; thus, justifying the integration of auxiliary information. The VP-AI chart involves parameters (sample size, sampling interval, control and warning limits) that can be varied according to the location of the previous sample statistic plotted on the chart.

The VP-AI chart is studied and subsequently compared with five existing AI charts which are the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts. The charts are compared in terms of ATS 1 and SDTS 1 when the exact shift size can be specified a priori and EATS 1 when the exact shift size cannot be specified in advance. The VP-AI chart significantly outperforms the SH-AI, SYN-AI and VSSI-AI charts for all levels of shifts.

Meanwhile, the VP-AI chart outperforms the EWMA-AI and RS-AI charts for most shifts.

Additionally, the VP-AI chart has a lower spread in the time to signal distribution in comparison with the SH-AI, SYN-AI, RS-AI and VSSI-AI charts for small and moderate shifts. Thus, this justifies the development of the VP-AI chart as an enhanced control charting scheme that has a better ability to monitor the process mean. Owing to the enhanced process monitoring performance of the proposed VP-AI chart in comparison to the standard VP and five existing AI charts, the proposed chart will be a useful approach to quality practitioners in monitoring the process mean and significantly contributes to the present literature of AI charts. This paper also studies the robustness of the VP-AI chart by examining and comparing its performance with the EWMA-AI chart under misspecifications of ρ and violation of bivariate normality. Overall, it is found that the VP-AI chart is more robust than the EWMA-AI chart when the size of the shift is moderate or large.

The implementation of the VP-AI chart is illustrated with a dataset from a spring manufacturing process in this paper to provide a better understanding of the workings of the VP-AI chart. As the VP-AI chart that monitors process mean is proposed in this paper, future research can consider its VP-AI counterpart that monitors the process variance. A future extension that studies the performance of the VP-AI chart when process parameters are estimated can also be explored. In this paper, only one auxiliary variable is used.

Additionally, the economic design of the VP-AI chart can be studied as a future research. The adaptive EWMA or RS charts that incorporate the auxiliary information method can also be considered in future research works.  {5, 7}, ρ {0, 0.25, 0.5, 0.75, 0.9, 0.95} and δ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2} (δ min, δ max ) {(0.2, 0.6), (0.5, 1), (1, 1.5), (1.5, 2)} (δ min, δ max )  {(0.2, 0.6), (0.5, 1), (1, 1.5), (1.5, 2)} 
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  by the improved effectiveness of control charts through the incorporation of auxiliary information in the literature, a new VP chart that utilises auxiliary information (VP-AI) is developed in this paper by integrating two powerful control charting approaches which are the variable parameters method and auxiliary information technique. In control charting literature, it is a common practice to integrate effective control charting procedures to construct a new and superior control chart to improve process monitoring. To the best of the authors' knowledge, the VP-AI chart is not present in the literature and this paper is presented to fill the gap. In this paper, the VP-AI chart is studied and compared with its standard VP counterpart and existing SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts, in terms of the steady-state average time to signal (ATS), standard deviation of the time to signal (SDTS) and expected ATS (EATS) criteria. Note that the VP-AI chart is equivalent to the standard VP chart when the correlation coefficient ρ = 0. The proposed VP-AI chart outperforms the SH-AI, SYN-AI and VSSI-AI charts for all shifts while surpassing the EWMA-AI and RS-AI charts for most shifts. Additionally, the VP-AI chart surpasses its standard VP counterpart. This paper also contributes to the AI control charting literature by studying the robustness of the VP-AI chart. Traditionally, when designing an AI chart, it is assumed that (i) ρ is not misspecified and (ii) the study variable X and auxiliary variable M follow the bivariate normal distribution. In this paper, the robustness of the VP-AI chart when violations in (i) or (ii) occurs is studied and compared with the EWMA-AI chart.

  Figure 1 consists of two scales. If r Z lies in the central region, the loosened scale on the left is used to plot 1 r Z  on the VP-AI chart. On the other hand, if r Z lies in the warning region, the tightened scale on the right is used to plot 1 r Z  on the VP-AI chart.

f

   represents the probability density function (pdf) of the shift  . By assuming that there is an equal probability of occurrence of  in  

  the VP-AI chart. The optimization program of the VP-AI chart is written in the ScicosLab software and the results are verified with simulation in the Statistical Analysis System (SAS) software. In this paper, there are two optimization criteria considered. The first optimization criterion involves the minimization of 1 ATS when  is known in advance while the second optimization criterion involves the minimization of 1 EATS when  is unknown in advance. The first optimization criterion can be formulated by the model shown below:

  -control performance of the VP-AI chart has to be equal with the competing charts for a fair comparison among the charts. Thus, the constraints in Equations (

  result in the lowest 1 ATS value are the optimal parameters. The SDTS 1 values are then computed based on these optimal parameters. The second optimization criterion can be formulated by the model shown below: Objective function: Minimize 1 EATS (21)subject to the constraints in Equations (16) -(18). Steps (1) to (12) can also be employed for the second optimization criterion by substituting  with  

.

  ). The outperformance of the VP-AI chart in comparison to the VSSI-AI chart implies that the monitoring of process mean is enhanced by varying the control and warning limits. Even though the VP-AI chart is more complex than the VSSI-AI chart, as the VP-AI chart involves the additional step of varying the control and warning limits, the complexity is justified as the VP-AI chart is more effective and significantly outperforms the VSSI-AI chart for all shift sizes across all ρ and n 0 values. The computation time to solve the required optimization for the VP-AI chart due to the additional complexity only differs slightly from the VSSI-AI chart. By comparing the VP-AI and EWMA-AI charts, it can be seen that, for all values of 0 n , the VP-AI chart is superior to the EWMA-AI chart for all shifts when   0.9 while the VP-AI chart surpasses the EWMA-AI chart for all As an example, the VP-AI is 1.8   5.46 3.11 times faster than the EWMA-AI chart in detecting mean shifts when 0 5, VP-AI chart is 1.2   10.59 9.02 times faster than the EWMA-AI chart in shift detection when 0 5, n   = 0.4 and 0.25   (see Table 5). In short, the VP-AI chart outperforms the EWMA-AI chart for detecting all shift sizes when  = 0.95. A comparison of the VP-AI chart with the RS-AI chart shows that the VP-AI chart is superior to the RS-AI chart for all shifts when 0 5 n  . Meanwhile, for 0 7 n  , the VP-AI chart outperforms the RS-AI chart for all shifts when 0.75   while the VP-AI chart outperforms the RS-AI chart for all the VP-AI chart outperforms the RS-AI chart for most shifts.

  } as shown in Table 7. When the exact shift size, δ cannot be specified in advance, the VP-AI chart outperforms the SH-AI, SYN-AI and RS-AI charts for all ranges of shifts   min max ,  considered, irrespective of the values of  and 0 n . Meanwhile, the VP-AI chart outperforms the VSSI-AI chart for most (δ min , δ max ),  and 0 n values (with the exception of n 0 = 7, ρ = 0 and (δ min , δ max ) = (1, 1.5), where the VSSI-AI chart performs slightly better) (see Table7). On the other hand, when 0 5 n  , the VP-AI chart is superior to the EWMA-AI chart for all shift sizes when 0.75   while the VP-AI chart surpasses the EWMA-AI chart for all shift sizes, except (δ min , δ max ) = (0the VP-AI chart surpasses the EWMA-AI chart for all shift sizes (with the exception of ρ = 0 and (δ min , δ max ) = (0.2, 0.6)). Thus, the VP-AI chart outperforms the EWMA-AI chart for most ranges of shifts  

  , the VP-AI and EWMA-AI charts under the bivariate gamma distribution has a larger ATS 0 value (closer performance to the bivariate normal distribution) when  is smaller. To illustrate, when δ = 0 and  = 0.5, the ATS 0 values of the VP-AI and EWMA-AI charts for G(1, 1) (G(2, 1)) distributions are285.90 (32.53) and 200.90 (31.36), respectively. For G(1, 1), the ATS 0 value of the VP-AI chart is generally larger and closer to 370 in comparison with the corresponding ATS 0 value of the EWMA-AI chart, indicating that the VP-AI chart is more robust against a skewed non-normal distribution. However, for G(2, 1), both VP-AI and EWMA-AI charts show a lack of robustness as their ATS 0 values are far from the designed value of 370.

Figure 1 .

 1 Figure 1. Schematic representation of the VP-AI chart

  . The first and second states are transient while the third state is absorbing. Hence, the transition probability matrix (tpm) P is

	T	1 ()	11 21 0 P P 12 22 0 P P	1 1	11 21 1 P P 12 22 P P 

Table 3

 3 

	, the EATS 1 values for the range of

,  that covers larger δ values are lower, thus the VP-AI chart requires less time to detect the range of shifts  

  For the VSSI-AI chart, two parameters (sample size and sampling interval) are varied, while the VP-AI chart varies all parameters (sample size, sampling interval, and control and warning limits). By comparing the performance of the VP-AI and VSSI-AI charts, the effect of varying the control and warning limits can be studied.The VP-AI chart is also compared with the RS-AI chart. Although the RS-AI chart proposed by[START_REF] Ng | Run Sum Chart for the Mean with Auxiliary Information[END_REF] consists of 4 and 7 regions, only the RS-AI chart with 7 regions that has a superior performance compared to its 4 regions counterpart is considered in this paper.Similar to the RS-AI chart, the VP-AI chart is also compared with the SH-AI, SYN-AI and

								S t 	0.01	,
	0 ATS 370 	, 0 {5, 7} n 	,	 	{0, 0.25, 0.5, 0.75, 0.9, 0.95}	and	{0.2, 0.4, 0.6, 0.8,1,1.5, 2}
								0 ASS n 0  ,
	0 ASI 1  and	0 ATS 370 	have to be adhered to. Note that for the SH-AI, SYN-AI, EWMA-
	AI and RS-AI charts that have a fixed sampling interval, 0 t is set as 1 to ensure that
	1 ATS ARL 1 	.				
	For more information on the designs of the SH-AI, SYN-AI, EWMA-AI, RS-AI and
	VSSI-AI charts, readers can refer to Riaz (2008), Haq and Khoo (2016), Abbas et al. (2014),

Table 4 here --

5. Comparative studies

In this paper, the performance of the VP-AI chart is compared with five competing charts, in terms of the ATS 1 , SDTS 1 and EATS 1 criteria. The first and second criteria are used to compare the charts when the exact shift size, δ is known and unknown in advance, respectively. The chart that has lower ATS 1 and EATS 1 values has a superior performance as a shorter amount of time to detect an out-of-control condition is required. Meanwhile, the chart with lower SDTS 1 values is more effective as the spread of the time to signal distribution is smaller. Specifically, in this paper, the competing charts that are compared with the VP-AI chart are the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts. In this paper, to ensure a fair comparison can be made among the charts, the constraints

[START_REF] Ng | Run Sum Chart for the Mean with Auxiliary Information[END_REF] 

and

[START_REF] Ng | Run Sum Chart for the Mean with Auxiliary Information[END_REF]

, respectively. The VP-AI and VSSI-AI charts are adaptive charts with parameters that can be varied depending on the location of the sample statistic plotted on the chart.

EWMA-AI charts. It is worth noting that the run length properties of the EWMA-AI chart considered in this paper is derived with the Markov chain approach and not computed through simulation as in

[START_REF] Abbas | An EWMA-type control chart for monitoring the process mean using auxiliary information[END_REF]

. As a result of space constraints and the minimal effect of varying S t as shown in Section 4, we only consider 0.01 S t  in this section. Tables

5 and 6

show the comparison among the charts, in terms of the ATS 1 and SDTS 1 criteria, respectively, where the exact shift size, δ is assumed to be known a priori for

Table 5
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	0 n	5, and 0.2 	 	0.25	, the VP-AI chart is 3.3 (171.05 / 51.37), 2.8 (142.28 / 51.37) and
	2.5 (127.08 / 51.37) times faster than the SH-AI, SYN-AI and VSSI-AI charts, respectively in
	detecting mean shifts (see Table 5

, the VP-AI chart significantly outperforms the SH-AI, SYN-AI and VSSI-AI charts for all shift sizes across all  and 0 n values. To illustrate, when

  30 (170.71/ 51.72), 2.71 (140.33 / 51.72) and 2.46 (127.25 / 51.72) times larger than that of the VP-AI chart (see Table6). A comparison of the SDTS 1 values of the VP-AI and RS-AI charts when n 0 = 5 shows that the VP-AI chart is superior to the RS-AI chart when δ ≤ 0.6 for ρ ≤ 0.75, and δ = 0.2 for ρ = 0.9 and 0.95 (see Table6). When comparing the VP-AI and RS-AI charts for n 0 = 7, the RS-AI chart has smaller SDTS 1 values for most shift sizes δ but when δ increases the difference in the SDTS 1 values between the two charts generally decreases. The EWMA-AI chart has a smaller spread of the time to signal distribution in comparison with the VP-AI chart but the difference in SDTS 1 values generally decreases with δ.As mentioned in Section 4, in practice, the exact shift size is usually unknown a priori. Hence, the performance measure EATS 1 is adopted and compared with the corresponding EATS 1 of the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when

	S t 	0.01	,	0 EATS 370 	, 0 {5, 7} n 	,	 	{0, 0.25, 0.5, 0.75, 0.9, 0.95}	and min max ( , 	)	{(0.2,
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	shows the

  used the t and gamma distributions to represent non-normal symmetric and skewed distributions, respectively. Additionally,Borror et al. (1999), Calzada and[START_REF] Calzada | The robustness of the synthetic control chart to non-normality[END_REF], and[START_REF] Stoumbos | Robustness to non-normality and autocorrelation of individuals control charts[END_REF] have used the gamma and t distributions to represent various non-normal populations when they studied the robustness of control charts to non-normality. In this section, the bivariate non-normal distributions considered for comparing the effects of symmetric and skewed distributions on the VP-AI and EWMA-AI charts are the bivariate t and bivariate gamma distributions. Note that simulation is used to obtain the ATS 1 values, based on the assumption that   , XM comes from the bivariate t and bivariate gamma distributions, instead of the bivariate normal distribution. The optimal parameters adopted for the EWMA-AI and VP-AI charts are  

					, k
	= (0.21, 2.8715) and 	2 , , , , , 1 L L n n t K W W 2 s		= (2, 16, 1.27, 2.4945, 1.2419, 1.2154),

  According to the historical Phase-I dataset given in[START_REF] Chen | A new multivariate control chart for monitoring both location and dispersion[END_REF], the correlation coefficient, as well as the in-control means and standard deviations of X and M are given by

				 Then 1 Z = 1.0908 is computed using Equation (4). As	1 Z		1.0908		I	2	(warning
							region) indicates that there is a higher tendency for the process to shift to an out-of-
			0 control condition, the control for the second sample  0.5172, 45.85, 28.29, X M      0.1503 X   and r    M  2 is tightened. Hence, for 0.0592 . Using the
	optimization algorithm outlined in Section 3.3 with the constraints the second sample, the parameters     , 6,0.1 LS nt  and  ASS 5, 0  2 , K K W W 0 ASI 1  and  2 2 2 , ,   
	0 ATS 370,   2.874, 2.874,0.429, 0.429 the optimal parameters     are adopted to tighten the control.  1 2 1 2 , , , , , , , S L S L n n t t K K W W  (3, 6, 0.1, 2.8, 6, 2.874,
	0.431, 0.429) are obtained. Table 11 shows the bivariate observations   On the other hand, for the fourth sample   4 r  , as 4 0.2026 I  , XM , charting 1 Z    (central
	statistic r Z , sampling interval and total time elapsed for 19 samples. Additionally, Figure 2 region) implies that there is a lower possibility for the process to be out-of-control, the
	shows the application of the VP-AI chart on the spring manufacturing process dataset. The control for the fifth sample   5 r  is relaxed. Thus, the parameters     , 3, 2.8 SL nt 
	points plotted on the VP-AI chart are the charting statistics, r and     1 1 1 1 , , , 6, 6,0.431, 0.431 K K W W      are adopted to relax the control.
				 At the 15 th sample (r = 15), 15 2 ZI  (warning region), hence, the tightened limits
								2 K K W W 2 2 2 , , ,  		 	2.874, 2.874,0.429, 0.429  		are adopted to evaluate sample
			S n 	 3 16. Consequently, the VP-AI chart signals an out-of-control condition at the 16 th and taken after a long   2.8 hours L t  sampling interval or large   6 L n  and
	taken after a short  sample  16 S t   r 	0.1 hours as 16 Z 	 2.9287 sampling interval. To relax the control, loosened control 3 I 
	and warning limits 	1 K K W W 1 1 1 , , ,  	    6, 6,0.431, 0.431  	are adopted with the parameters
		 nt . On the other hand, to tighten the control, tightened control and warning limits , SL
		2 K K W W 2 2 2 , , ,  	  	2.874, 2.874,0.429, 0.429  		are adopted with the parameters
		 nt . Table 11 can be interpreted as follows: , LS
				 For the first sample   1 r  , process monitoring begins with the assumption that a
							small sample of size	3 n  is taken after a long sampling interval S	L t 	2.8 hours	,
		min  ,	   1,1.5  with loosened control and warning limits  max with the assumption that δ follows a uniform distribution over the range    1 1 1 1 , , , 6, 6,0.431, 0.431 K K W W      .
	  min ,	max		, i.e.		  ~1,1.5 . U

Z , for r = 1, 2, …, 19, from Table

11

. The parameters of the VP-AI chart that can be varied are the sample size, sampling interval, as well as control and warning limits that vary according to the location of the previous r Z statistic plotted on the VP-AI chart. Note that each sample can either be small

Table 1 .

 1 Optimal parameters, ATS 1 and SDTS 1 values of the VP-AI chart, for = 0.01,

		auxiliary information
	ARL	average run length
	ASI 0	in-control average sampling interval
	ASS 0	in-control average sample size
	ATS	average time to signal
	ATS 0	in-control ATS
	ATS 1	out-of-control ATS
	CV	coefficient of variation

Table 2 .

 2 Optimal parameters, ATS 1 and SDTS 1 values of the VP-AI chart, for = 0.1,

	= 370,

Table 5 .

 5 Comparison of the ATS 1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when = 0.01,

	5

Table 6 .

 6 Comparison of the SDTS 1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-AI charts when = 0.01,

	= 370,	{5, 7},

Table 7 .

 7 Comparison of the EATS 1 values of the VP-AI chart with the SH-AI, SYN-AI, EWMA-AI, RS-AI and VSSI-

	AI charts when = 0.01,	= 370,	{5, 7}, ρ  {0, 0.25, 0.5, 0.75, 0.9, 0.95} and (δ min, δ max )  {(0.2, 0.6),

Table 8 .

 8 ATS 1 values of the EWMA-AI and VP-AI charts due to misspecification of the value of the correlation coefficient (), where {0.3, 0.7}, = 0.01, = 370,  {5, 7},   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}

				 = 0.25	 = 0.5	 = 0.75	 = 0.9	 = 0.95
		miss	δ	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI
								n 0 = 5					
	0.3 0.2 28.40	49.59 28.40 49.59 25.32 49.59 35.25 57.11 45.10	83.95
			0.4 10.35	8.69	10.39	8.84	9.24	10.64 14.52 22.36 24.10	26.75
			0.6	5.61	3.24	5.64	3.28	5.04	4.18	9.69	5.86	15.95	5.72
			0.8	3.63	1.74	3.65	1.79	3.34	1.93	6.58	1.93	7.49	1.94
			1	2.60	1.22	2.61	1.22	2.41	1.25	3.84	1.22	3.84	1.25
			1.5	1.40	1.02	1.40	1.02	1.23	1.02	1.43	1.02	1.41	1.02
			2	1.05	1.00	1.05	1.00	1.02	1.01	1.05	1.01	1.35	1.01
	0.7 0.2 19.06	24.11 19.06 24.11 18.82 24.11 20.66 27.33 25.08	42.04
			0.4	6.87	4.90	6.77	4.53	6.70	4.32	7.70	7.54	11.48	9.22
			0.6	3.74	1.99	3.67	1.87	3.63	1.74	4.61	2.00	6.83	1.92
			0.8	2.45	1.22	2.40	1.16	2.36	1.14	2.92	1.14	3.17	1.16
			1	1.77	1.03	1.72	1.03	1.67	1.03	1.80	1.03	1.80	1.03
			1.5	1.05	1.01	1.05	1.01	1.05	1.00	1.05	1.01	1.05	1.01
			2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.07	1.00
								n 0 = 7				
	0.3 0.2 22.37	38.43 22.45 38.43 23.28 38.43 28.39 45.95 37.27	
			0.4	8.04	5.71	8.07	5.81	8.57	7.65	11.76 15.85 22.13	15.81
			0.6	4.35	2.21	4.37	2.27	4.77	3.08	8.05	3.09	10.75	3.08
			0.8	2.82	1.31	2.84	1.33	3.26	1.34	4.43	1.33	4.51	1.34
			1	2.01	1.07	2.03	1.07	2.25	1.07	2.41	1.08	2.41	1.08
			1.5	1.14	1.01	1.14	1.01	1.14	1.01	1.14	1.01	1.31	1.01
			2	1.01	1.00	1.01	1.00	1.01	1.00	1.03	1.00	1.43	1.00
	0.7 0.2 15.01	17.05 14.82 17.05 14.71 17.05 16.27 20.18 20.09	32.65
			0.4	5.36	3.42	5.25	3.13	5.20	2.92	6.07	4.94	10.05	4.95
			0.6	2.92	1.48	2.86	1.38	2.82	1.33	3.64	1.33	4.49	1.33
			0.8	1.92	1.06	1.86	1.04	1.83	1.04	2.02	1.04	2.04	1.05
			1	1.37	1.01	1.32	1.01	1.30	1.01	1.31	1.02	1.31	1.01
			1.5	1.01	1.00	1.01	1.00	1.01	1.00	1.01	1.00	1.05	1.00
			2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.11	1.00

Table 9 .

 9 ATS 1 values of the EWMA-AI and VP-AI charts for bivariate t distribution with v  {3, 10, 20} degrees of freedom when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}

			 = 0.25	 = 0.5	 = 0.75	 = 0.9	 = 0.95
	v	δ	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI
	3	0	214.63 284.09 215.65 287.46 212.72 288.06 214.03 286.52 211.56 284.78
		0.2 49.31 113.82 39.66 90.13 22.77 45.25	9.64	9.83	5.51	3.47
		0.4 11.87	14.59	9.55	9.39	6.02	4.00	3.37	1.86	2.34	1.28
		0.6	5.77	3.80	4.90	2.92	3.42	1.92	2.17	1.21	1.63	1.21
		0.8	3.87	2.17	3.35	1.86	2.47	1.35	1.69	1.07	1.24	1.02
		1	2.95	1.61	2.61	1.42	2.00	1.15	1.38	1.03	1.05	1.01
		1.5	1.96	1.13	1.78	1.08	1.40	1.03	1.03	1.01	1.00	0.99
		2	1.54	1.04	1.38	1.03	1.09	1.01	1.00	1.00	1.00	1.00
	10 0	341.56 367.99 343.26 365.01 337.59 372.63 338.56 368.68 339.21 366.87
		0.2 43.23	79.91 34.54 61.43 20.18 29.90	9.30	7.81	5.48	3.16
		0.4 11.20	11.06	9.14	7.63	5.96	3.65	3.40	1.94	2.36	1.39
		0.6	5.74	3.43	4.87	2.76	3.45	1.92	2.19	1.29	1.62	1.08
		0.8	3.89	2.13	3.38	1.89	2.49	1.46	1.69	1.10	1.26	1.02
		1	2.95	1.70	2.60	1.51	2.00	1.22	1.39	1.03	1.06	1.01
		1.5	1.97	1.20	1.77	1.14	1.41	1.04	1.03	1.01	1.00	1.00
		2	1.52	1.05	1.39	1.04		1.01	1.00	1.00	1.00	1.00
	20 0	356.94 371.32 356.68 369.52 354.70 371.48 358.40 367.99 360.90 368.82
		0.2 42.73	77.29 34.31 60.08 20.37 29.45	9.29	7.73	5.50	3.19
		0.4 11.17	10.88	9.22	7.57	5.93	3.61	3.39	1.92	2.35	1.39
		0.6	5.77	3.48	4.89	2.73	3.45	1.94	2.20	1.32	1.64	1.09
		0.8	3.87	2.17	3.37	1.89	2.50	1.47	1.69	1.10	1.27	1.02
		1	2.96	1.69	2.61	1.53	2.00	1.23	1.40	1.03	1.06	1.01
		1.5	1.95	1.21	1.77	1.14	1.41	1.03	1.03	1.01	1.00	1.00
		2	1.53	1.05	1.38	1.03	1.10	1.01	1.00	1.00	1.00	1.00

Table 10 .

 10 ATS 1 values of the EWMA-AI and VP-AI charts for bivariate gamma, G (, ) distribution, with   {1, 2} and  =1 when   {0.25, 0.5, 0.75, 0.9, 0.95} and δ  {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}

		 = 0.25	 = 0.5	 = 0.75	 = 0.9	 = 0.95
	δ	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI	EWMA-AI	VP-AI
	G(1, 1) 0 249.40 393.10 200.90 285.90 128.61 177.64 81.43 112.42 66.18 97.06
	0.2 37.28	90.25	29.99	65.12	19.27	35.28	9.97	12.94	5.63 6.24
	0.4 11.55	15.75	9.55	11.11	6.23	5.19	3.44	2.45	2.34 1.11
	0.6 5.97	4.43	5.08	3.56	3.50	2.53	2.20	1.10	1.68 1.04
	0.8 3.98	2.71	3.44	2.41	2.52	1.38	1.73	1.05	1.26 1.01
	1	3.00	2.02	2.64	1.74	2.02	1.11	1.43	1.03	1.07 1.01
	1.5 1.96	1.15	1.79	1.07	1.44	1.03	1.04	1.01	1.00 1.00
	2	1.55	1.01	1.41	1.01	1.11	1.01	1.00	1.00	1.00 1.00
	G(2, 1) 0	44.09	31.73	31.36	32.53	30.92	30.10 26.48 30.74 26.16 34.86
	0.2 21.02	23.24	18.21	20.72	13.42	15.43	8.48	9.43	5.48 5.43
	0.4 9.63	10.29	8.40	8.07	5.97	5.01	3.46	2.53	2.38 1.15
	0.6 5.78	4.74	5.03	3.79	3.58	2.57	2.27	1.15	1.70 1.05
	0.8 4.04	2.82	3.53	2.49	2.59	1.67	1.76	1.06	1.34 1.03
	1	3.12	2.16	2.74	1.95	2.08	1.17	1.48	1.05	1.14 1.02
	1.5 2.03	1.41	1.84	1.14	1.49	1.05	1.10	1.02	1.02 1.01
	2	1.59	1.05	1.46	1.03	1.20	1.01	1.02	1.01	1.00 1.00
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Table 11. Implementation of the VP-AI chart using the dataset on a spring manufacturing process Sample no., r X