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Abstract

We propose a novel theoretical framework of anal-
ysis for Generative Adversarial Networks (GANs).
We reveal a fundamental flaw of previous analyses
which, by incorrectly modeling GANs’ training
scheme, are subject to ill-defined discriminator
gradients. We overcome this issue which impedes
a principled study of GAN training, solving it
within our framework by taking into account the
discriminator’s architecture. To this end, we lever-
age the theory of infinite-width neural networks
for the discriminator via its Neural Tangent Ker-
nel. We characterize the trained discriminator
for a wide range of losses and establish general
differentiability properties of the network. From
this, we derive new insights about the conver-
gence of the generated distribution, advancing our
understanding of GANs’ training dynamics. We
empirically corroborate these results via an anal-
ysis toolkit based on our framework, unveiling
intuitions that are consistent with GAN practice.

1. Introduction
Generative Adversarial Networks (GANs; Goodfellow et al.,
2014) have become a canonical approach to generative mod-
eling as they produce realistic samples for numerous data
types, with a plethora of variants (Wang et al., 2021). These
models are notoriously difficult to train and require exten-
sive hyperparameter tuning (Brock et al., 2019; Karras et al.,
2020; Liu et al., 2021). To alleviate these shortcomings,
much effort has been put into better understanding their
training process, resulting in a vast literature of theoretical
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analyses. Many study the various GAN models, found to
optimize different losses like the Jensen-Shannon (JS) di-
vergence (Goodfellow et al., 2014) and the earth mover’s
distanceW1 (Arjovsky et al., 2017), to conclude about their
comparative advantages. Yet, empirical evaluations (Lucic
et al., 2018; Kurach et al., 2019) showed that they can yield
approximately the same performance. This indicates that
such theoretical works with an exclusive focus on the GAN
formulation might not properly model practical settings.

Importantly, GANs are trained in practice with alternating
gradient descent-ascent of the generator and discriminator,
which the vast majority of analyses do not model. Yet, this
makes GAN training deviate from its formulation in prior
works as a min-max problem: the networks are fixed w.r.t. to
each other at each step in the former, while they depend on
each other in the latter. Therefore, ignoring this ubiquitous
procedure prevents those works from adequately explain-
ing GANs’ empirical behavior, as it leads to two crucial
problems. Firstly, it alters the true implicitly optimized loss,
which consequently differs from the widely adopted JS and
W1. Secondly, it compels accurate frameworks to take into
account the discriminator parameterization as a neural net-
work with inductive biases influencing the generator’s loss
landscape, which most previous studies do not, or otherwise
be subject to ill-defined discriminator gradients.

To solve these issues, we introduce the first framework of
analysis for GANs modeling a wide range of discriminator
architectures and GAN formulations, while encompassing
alternating optimization. To this end, we leverage advances
in deep learning theory driven by Neural Tangent Kernels
(NTKs; Jacot et al., 2018) to model discriminator training.
We develop theoretical results showing the relevance of our
approach: we establish in our framework the differentiability
of the discriminator, hence having well-defined gradients,
by proving novel regularity results on its NTK.

This more accurate formalization enables us to derive new
knowledge about the generator. We formulate the dynamics
of the generated distribution via the generator’s NTK and
link it to gradient flows on probability spaces, thereby help-
ing us to discover its implicitly optimized loss. We deduce
in particular that, for GANs under the Integral Probability
Metric (IPM), the generated distribution minimizes its Max-
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imum Mean Discrepancy (MMD) given by the discrimina-
tor’s NTK w.r.t. the target distribution. Moreover, we release
an analysis toolkit based on our framework, GAN(TK)2,
which we use to empirically validate our analysis and gather
new empirical insights: for example, we study the singular
performance of the ReLU activation in GAN architectures.

2. Related Work
We introduce a framework advancing GAN knowledge, sup-
ported by prior and novel contributions in the NTK theory.

Neural Tangent Kernels. NTKs were introduced by Jacot
et al. (2018), who showed that a trained neural network in
the infinite-width regime equates to a kernel method, thereby
making its training dynamics tractable and amenable to the-
oretical study. This fundamental work has been followed by
a thorough line of research generalizing and expanding its
initial results (Arora et al., 2019; Bietti & Mairal, 2019; Lee
et al., 2019; Liu et al., 2020; Sohl-Dickstein et al., 2020),
developing means of computing NTKs (Novak et al., 2020;
Yang, 2020), further analyzing these kernels (Fan & Wang,
2020; Bietti & Bach, 2021; Chen & Xu, 2021), studying and
leveraging them in practice (Zhou et al., 2019; Arora et al.,
2020; Lee et al., 2020; Littwin et al., 2020b; Tancik et al.,
2020), and more broadly exploring infinite-width networks
(Littwin et al., 2020a; Yang & Hu, 2021; Alemohammad
et al., 2021). These prior works validate that NTKs can en-
capsulate the characteristics of neural network architectures,
providing a solid theoretical basis to understand the effect
of architecture on learning problems.

GAN theory. A first line of research, started by Good-
fellow et al. (2014) and pursued by many others (Nowozin
et al., 2016; Zhou et al., 2019; Sun et al., 2020), studies
the loss minimized by the generator. Assuming that the dis-
criminator is optimal and can take arbitrary values, different
families of divergences can be recovered. However, as noted
by Arjovsky & Bottou (2017), these divergences should be
ill-suited to GAN training, contrary to empirical evidence.
Our framework addresses this discrepancy, as it properly
characterizes the generator’s loss and gradient.

Another line of work analyzes the impact of the networks’
architecture on the loss landscape of GANs. Some works,
on one hand, only study the solution of the usual min-max
formulation of GANs, without considering their usual opti-
mization via alternating gradient descent-ascent (Liu et al.,
2017; Bai et al., 2019; Sun et al., 2020; Biau et al., 2021;
Sahiner et al., 2022). Not only are these results obtained un-
der restrictive assumptions – by focusing on a single GAN
model like WGAN, or with discriminators and generators
limited to shallow, linear or random features models –, but
overlooking alternating optimization hinders their ability to

explain GANs’ empirical behavior, as detailed in Section 3.

Some studies, on the other hand, deal with the dynamics
and convergence of the generated distribution in this setting.
Nonetheless, as these dynamics are highly non-linear, this
approach typically requires strong simplifying assumptions:
Mescheder et al. (2017) assume the existence of Nash equi-
libria to the considered optimization problem; Mescheder
et al. (2018) reduce the generated distribution to a single
datapoint; Domingo-Enrich et al. (2020) apply their zero-
sum games analysis to mean-field mixtures of generators
and discriminators; Balaji et al. (2021) restrict generators
and discriminators to be linear or shallow networks; Yang
& E (2022) only work with random feature models as dis-
criminators and a modified WGAN loss. In contrast to
these works, our framework provides a more comprehen-
sive optimization and architecture modeling as we establish
generally applicable results about the influence of the dis-
criminator’s architecture on the generator’s dynamics.

GANs and NTKs. To the best of our knowledge, our con-
tribution is the first to employ NTKs to comprehensively
study GANs. Only Jacot et al. (2019) and Chu et al. (2020)
have already studied GANs in the light of NTKs, but their
studies had restrictive assumptions and limited scope. Jacot
et al. (2019) explain, thanks to the generator’s NTK, some
GAN failure cases like generator collapse and identify nor-
malization techniques to alleviate them, but without break-
ing down GANs’ training dynamics. Chu et al. (2020) frame
the generator’s training dynamics for both GANs and vari-
ational autoencoders (Kingma & Welling, 2014; Rezende
et al., 2014) as a Stein gradient flow under the generator’s
NTK like in our Section 4.4, but under a strong assumption
on generator injectivity which we do not require. Moreover,
both works, focusing on the generator, fail to identify the
consequences of the discriminator’s parameterization on the
generator’s dynamics via alternating optimization which,
encompassed in our framework, yields in Sections 4 and 5
novel results challenging standard GAN knowledge.

Besides the generator, we thoroughly investigate for the
first time in the literature the discriminator and its effect
on generator optimization via its NTK. To this end, we
derive novel results in NTK theory. In particular, while
other works studied the regularity of NTKs (Bietti & Mairal,
2019; Yang & Salman, 2019; Basri et al., 2020), ours is,
as far as we know, the first to state general differentiability
results for NTKs and infinite-width networks. Furthermore,
we discover the link between IPM optimization and the
NTK MMD, independently of and concurrently with Cheng
& Xie (2021), although in a different context: they use the
NTK MMD for two-sample statistical testing, whereas we
find that IPM GANs actually optimize this metric, thereby
explaining the singular performance of NTKs within MMD
gradient flows (Arbel et al., 2019).
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3. Limits of Previous Studies
We present in this section the usual GAN formulation and
illustrate the limitations of prior analyses.

First, let us introduce some notations. Let Ω ⊆ Rn be a
closed convex set, P(Ω) the set of probability distributions
over Ω, and L2(µ) the set of square-integrable functions
from the support suppµ of µ to R with respect to measure
µ, with scalar product 〈·, ·〉L2(µ). If Λ ⊆ Ω, we write L2(Λ)

for L2(λ), with λ the Lebesgue measure on Λ.

3.1. Generative Adversarial Networks

GAN algorithms seek to produce samples from an unknown
target distribution β ∈ P(Ω). To this extent, a generator
function g ∈ G:Rd → Ω parameterized by θ is learned to
map a latent variable z ∼ pz to the space of target samples
such that the generated distribution αg and β are indistin-
guishable for a discriminator f ∈ F parameterized by ϑ.
The generator and the discriminator are trained in an adver-
sarial manner as they are assigned conflicting objectives.

Many GAN models consist in solving the following opti-
mization problem, with a, b, c:R→ R:

inf
g∈G

{
Cf?αg

(
αg
)
, Ex∼αg

[
cf?αg (x)

]}
, (1)

where cf = c◦f , and f?αg is chosen to solve, or approximate,
the following optimization problem:

sup
f∈F

{
Lαg (f) , Ex∼αg

[
af (x)

]
− Ey∼β

[
bf (y)

]}
. (2)

For instance, Goodfellow et al. (2014) originally used
a(x) = log

(
1− σ(x)

)
, b(x) = c(x) = − log

(
σ(x)

)
, σ

being the sigmoid function; in LSGAN (Mao et al., 2017),
a(x) = −(x+ 1)

2, b(x) = (x− 1)
2, c(x) = x2; and for

Integral Probability Metrics (Müller, 1997) used e.g. by Ar-
jovsky et al. (2017), a = b = c = id. Many more fall under
this formulation (Nowozin et al., 2016; Lim & Ye, 2017).

Equation (1) is then solved using gradient descent on the
generator’s parameters, with at each step j ∈ N:

θj+1 = θj − ηEz∼pz

∇θgθj (z)>∇x cf?αgθj (x)

∣∣∣∣
x=gθj (z)

.
(3)

This is obtained via the chain rule from the generator’s loss
Cf?αg

(
αg
)

in Equation (1). However, we highlight that the
gradient applied in Equation (3) differs from∇θCf?αg

(
αg
)
:

the terms taking into account the dependency of the optimal
discriminator f?αgθ on the generator’s parameters are dis-
carded. This is because the discriminator is, in practice, con-
sidered to be independent of the generator in the alternating
optimization between the generator and the discriminator.

Since∇xcf?α(x) = ∇xf?α(x)·c′
(
f?α(x)

)
, and as highlighted

e.g. by Goodfellow et al. (2014) and Arjovsky & Bottou
(2017), the gradient of the discriminator plays a crucial
role in the convergence of GANs. For example, if this
vector field is null on the training data when α 6= β, the
generator’s gradient is zero and convergence is impossible.
For this reason, this paper is devoted to developing a better
understanding of this gradient field and its consequences on
generator optimization when the discriminator is a neural
network. In order to characterize this gradient field, we must
first study the discriminator itself.

3.2. Alternating Optimization and the Necessity of
Modeling the Discriminator Parameterization

For each GAN formulation, it is customary to elucidate the
true generator loss C

(
αg, β

)
implemented by Equation (2),

often assuming that F = L2(Ω), i.e. the discriminator can
take arbitrary values. Under this assumption, C would have
the form of a Jensen-Shannon divergence in the original
GAN and of a Pearson χ2-divergence in LSGAN, for in-
stance.

However, as pointed out by Arora et al. (2017), the dis-
criminator is trained in practice with a finite number of
samples: both fake and target distributions are finite mix-
tures of Diracs, which we respectively denote as α̂g and β̂.
Let γ̂g = 1

2 α̂g + 1
2 β̂ be the distribution of training samples.

Assumption 1 (Finite training set). γ̂g ∈ P(Ω) is a finite
mixture of Diracs.

In this setting, the Jensen-Shannon and χ2 divergences are
constant since α̂g and β̂ generally do not have the same
support, which would imply that the generator could not be
properly trained since it would receive null gradients. This
is the theoretical reason given by Arjovsky & Bottou (2017)
to introduce new losses and constraints for the discriminator
such as in WGAN (Arjovsky et al., 2017). However, this
is inconsistent with empirical results showing that GANs
could already be trained adequately even without the latter
losses and constraints (Radford et al., 2016). This entails
that widely accepted theoretical frameworks miss a central
ingredient in their modeling of constrained-free GANs. Un-
covering the missing pieces and understanding how they
affect training is one of the aims of the current work.

In fact, in the alternating optimization setting as in Equa-
tion (3), the constancy of Lα̂g , or even of Cf?αg , does not
imply that ∇xcf?αg in Equation (3) is zero on these points.
This stems from the gradient of Equation (3) ignoring the
dependency of the optimal discriminator on the generator’s
parameters: while∇θCf?αg

(
αg
)

might be null, the gradient
of Equation (3) differs and may not be zero, thereby chang-
ing the actual loss C optimized by the generator. This fact
is unaccounted for in many prior analyses, like the ones of
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Arjovsky et al. (2017) and Arora et al. (2017). We refer to
Section 5.2 and Appendix B.2 for further discussion.

Furthermore, in the previous theoretical frameworks where
the discriminator can take arbitrary values, this gradient field
is not even defined for any loss Lα̂g . Indeed, when the dis-
criminator’s loss Lα̂g (f) is only computed on the empirical
distribution γ̂g (as in most GAN formulations), the discrimi-
nator optimization problem of Equation (2) never yields a
unique optimal solution outside γ̂g. This is illustrated by
the following straightforward result.

Proposition 1 (Ill-Posed Problem in L2(Ω)). Suppose that
F = L2(Ω), supp γ̂g ( Ω. Then, for all f, h ∈ F coin-
ciding over supp γ̂g, Lα̂g (f) = Lα̂g (h) and Equation (2)
has either no or infinitely many optimal solutions in F , all
coinciding over supp γ̂g .

In particular, the set of solutions, if non-empty, contains non-
differentiable discriminators as well as discriminators with
null or non-informative gradients. This signifies that the loss
alone does not impose any constraint on the values that fα̂g
takes outside supp γ̂g , and more particularly on its gradients.
Thus, this underspecification of the discriminator over Ω
makes the gradient of the optimal discriminator in standard
GAN analyses ill-defined. Therefore, an analysis beyond
the loss function is necessary to precisely determine the
learning problem and true loss C of the generator implicitly
defined by the discriminator under alternating optimization.

4. NTK Analysis of GANs
To tackle the aforementioned issues, we notice that, in prac-
tice, the inner optimization problem of Equation (2) is not
solved exactly. Instead, using alternating optimization, a
proxy neural discriminator is trained using several steps
of gradient ascent for each generator update (Goodfellow,
2016). For a learning rate ε and a fixed generator g, this
results in the optimization procedure, from i = 0 to N :

ϑgi+1 = ϑgi + ε∇ϑLα̂g
(
fϑgi

)
, f?α̂g = fϑgN . (4)

This training of the discriminator as a neural network solves
the gradient indeterminacy of the previous section, but
makes a theoretical analysis of its impact unattainable. We
propose to facilitate it thanks to the theory of NTKs.

We develop our framework modeling the discriminator us-
ing its NTK in Section 4.1. We confirm in Sections 4.2
and 4.3 that it is consistent by proving that the discriminator
gradient is well-defined. We then leverage this accurate
framework to analyze the dynamics of the generated dis-
tribution under alternating optimization via the generator’s
NTK in Section 4.4. We notably frame this dynamics as a
gradient flow of the true generator loss C , which we deduce
to be non-increasing during training.

4.1. Modeling Inductive Biases of the Discriminator in
the Infinite-Width Limit

We study the continuous-time version of Equation (4):

∂tϑ
g
t = ∇ϑLα̂g

(
fϑgt

)
, (5)

which we consider in the infinite-width limit of the discrim-
inator, making its analysis more tractable.

In the limit where the width of the hidden layers of ft , fϑgt
tends to infinity, Jacot et al. (2018) showed that its so-called
NTK kϑgt remains constant during a gradient ascent such as
Equation (5), i.e. there is a limiting kernel k such that:

∀τ ∈ R+, ∀x, y ∈ Rn, ∀t ∈ [0, τ ],

kϑgt (x, y) , ∂ϑft(x)
>
∂ϑft(y) = k(x, y).

(6)

In particular, k only depends on the architecture of f and the
initialization distribution of its parameters. The constancy
of the NTK of ft during gradient descent holds for many
standard architectures, typically without bottleneck and end-
ing with a linear layer (Liu et al., 2020), which is the case of
most standard discriminators in the setting of Equation (2).
We discuss the applicability of this approximation in Ap-
pendix B.1. We more particularly highlight that, under the
same conditions, the discriminator’s NTK remains constant
over the whole GAN optimization process of Equation (3),
and not only under a fixed generator.

Assumption 2 (Kernel). k: Ω2 → R is a symmetric positive
semi-definite kernel with k ∈ L2

(
Ω2
)
.

The constancy of the NTK simplifies the dynamics of train-
ing in the functional space. In order to express these dynam-
ics, we must first introduce some preliminary definitions.

Definition 1 (Functional gradient). Whenever a functional
L:L2(µ)→ R has sufficient regularity, its gradient w.r.t. µ
evaluated at f ∈ L2(µ) is defined in the usual way as the
element∇µL(f) ∈ L2(µ) such that for all ψ ∈ L2(µ):

lim
ε→0

1

ε

(
L(f + εψ)− L(f)

)
=
〈
∇µL(f), ψ

〉
L2(µ)

. (7)

Definition 2 (RKHS w.r.t. µ and kernel integral operator
(Sriperumbudur et al., 2010)). If k follows Assumption 2
and µ ∈ P(Ω) is a finite mixture of Diracs, we define the
Reproducing Kernel Hilbert Space (RKHS) Hµk of k with
respect to µ given by the Moore–Aronszajn theorem as the
linear span of functions k(x, ·) for x ∈ suppµ. Its kernel
integral operator from Mercer’s theorem is defined as:

Tk,µ:L2(µ)→ Hµk , h 7→
∫
x

k(·, x)h(x) dµ(x). (8)

Note that Tk,µ generatesHµk , and elements ofHµk are func-
tions defined over all Ω asHµk ⊆ L2(Ω).
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The results of Jacot et al. (2018) imply that the infinite-width
discriminator ft trained by Equation (5) obeys the following
differential equation in-between generator updates:

∂tft = Tk,γ̂g
(
∇γ̂gLα̂(ft)

)
. (9)

Within the alternating optimization of GANs at generator
step j, f0 would correspond to the previous discriminator
step f?αgθj

, f j , and f j+1 = fτ , with τ being the training

time of the discriminator in-between generator updates.

In the following Sections 4.2 and 4.3, we rely on this dif-
ferential equation to assess under mild assumptions that the
proposed framework is sound w.r.t. the aforementioned gra-
dient indeterminacy issues. We first prove that Equation (9)
uniquely defines the discriminator for any initial condition.
We then conclude by proving the differentiability of the re-
sulting trained network. These results are not GAN-specific
but generalize to networks trained under empirical losses
like Equation (2), e.g. for classification and regression.

4.2. Existence, Uniqueness and Characterization of the
Discriminator

The following is a positive result on the existence and
uniqueness of the discriminator that also characterizes its
general form, amenable to theoretical analysis. Presented in
the context of a discrete distribution γ̂g but generalizable to
broader distributions, this result is proved in Appendix A.2.

Assumption 3 (Loss regularity). a and b from Equation (2)
are differentiable with Lipschitz derivatives over R.

Theorem 1 (Solution of gradient descent). Under Assump-
tions 1 to 3, Equation (9) with initial value f0 ∈ L2(Ω)
admits a unique solution f·:R+ → L2(Ω). Moreover, the
following holds for all t ∈ R+:

∀t ∈ R+, ft = f0 +

∫ t

0

Tk,γ̂g
(
∇γ̂gLα̂g (fs)

)
ds

= f0 + Tk,γ̂g

(∫ t

0

∇γ̂gLα̂g (fs) ds

)
.

(10)

As for any given training time t, there exists a unique
ft ∈ L2(Ω), defined over all of Ω and not only the training
set, the aforementioned issue in Section 3.2 of determining
the discriminator associated to γ̂g is now resolved. It is
now possible to study the discriminator in its general form
thanks to Equation (10). It involves two terms: the previous
discriminator state f0 = f j , as well as the kernel operator
of an integral. This integral is a function that is undefined
outside supp γ̂g, as by definition ∇γ̂gLα̂g (fs) ∈ L2

(
γ̂g
)
.

Fortunately, the kernel operator behaves like a smoothing
operator, as it not only defines the function on all of Ω but
embeds it in a highly structured space.

Corollary 1 (Training and RKHS). Under Assumptions 1
to 3, ft − f0 belongs to the RKHSHγ̂gk for all t ∈ R+.

In our setting, this space is generated from the NTK k,
which only depends on the discriminator architecture, and
not on the loss function. This highlights the crucial role
of the discriminator’s implicit biases, and enables us to
characterize its regularity for a given architecture.

4.3. Differentiability of the Discriminator and its NTK

We study in this section the smoothness, i.e. infinite differ-
entiability, of the discriminator, which we demonstrate in
Appendix A.3. It mostly relies on the differentiability of the
kernel k, by Equation (10), which is obtained by character-
izing the regularity of the corresponding conjugate kernel
(Lee et al., 2018). Therefore, we prove the differentiability
of the NTKs of standard architectures, and then conclude
about the differentiability of ft.

Assumption 4 (Discriminator architecture). The discrimina-
tor is a standard architecture (fully connected, convolutional
or residual). The activation can be any standard function:
tanh, softplus, ReLU-like, sigmoid, Gaussian, etc.

Assumption 5 (Discriminator regularity). The activation
function is smooth.

Assumption 6 (Discriminator bias). Linear layers have
non-null bias terms.

We first prove the differentiability of the NTK.

Proposition 2 (Differentiability of k). Let k be the NTK of
an infinite-width network from Assumption 4. For any y ∈ Ω,
k(·, y) is smooth everywhere over Ω under Assumption 5,
or almost everywhere if Assumption 6 holds instead.

From Proposition 2, NTKs satisfy Assumption 2. Using
Corollary 1, we thus conclude on the differentiability of ft.

Theorem 2 (Differentiability of ft). Suppose that k is the
NTK of an infinite-width network following Assumption 4.
Then ft is smooth everywhere over Ω under Assumption 5,
or almost everywhere when Assumption 6 holds instead.

Remark 1 (Bias-free ReLU networks). ReLU networks
with hidden layers and no bias are not differentiable at
0. However, by introducing non-zero bias, this non-
differentiability at 0 disappears in the NTK and the infinite-
width discriminator. This observation explains some experi-
mental results in Section 6. Note that Bietti & Mairal (2019)
state that the bias-free ReLU kernel is not Lipschitz even
outside 0. However, we find this result to be incorrect. We
further discuss this matter in Appendix B.3.

This result demonstrates that, for a wide range of GANs,
e.g. vanilla GAN and LSGAN, the optimized discriminator
indeed admits gradients, making the gradient flow given to
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the generator well-defined in our framework. This supports
our motivation to bring the theory closer to the empirical
evidence that many GAN models do work in practice while
their theoretical interpretation until now has been stating the
opposite (Arjovsky & Bottou, 2017).

4.4. Dynamics of the Generated Distribution

By ensuring the existence of ∇f?α̂g , the previous results
allow us to study Equation (3). We consider it in continuous-
time like Equation (5), with training time ` as well as g` ,
gθ` and α` , αg` . NTKs enable us to describe the generated
distribution’s dynamics and uncover the true generated loss
C in the following manner, as shown in Appendix A.4.

Proposition 3 (Dynamics of α`). Under Assumptions 4
and 5, Equation (3) is well-posed and yields in continuous-
time, with kg` the NTK of the generator g`:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (11)

Equivalently, the following continuity equation holds for the
joint distribution αz` of

(
z, g`(z)

)
under z ∼ pz:

∂`α
z
` = −∇x·

αz`Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

),
(12)

where α` is the marginalization of αz` over z ∼ pz .

In its infinite-width limit, the generator’s NTK is also con-
stant: kg` = kg; let us study the latter proposition under this
assumption. Suppose that there exists a functional C over
L2(Ω) such that cf?α̂ = ∂α̂C (α̂). Standard results in gradi-
ent flows theory – see Ambrosio et al. (2008, Chapter 10) for
a detailed exposition or Arbel et al. (2019, Appendix A.3)
for a summary – state that∇cf?α̂ is then the strong subdiffer-
ential of C (α̂) for the Wasserstein geometry.

When kg
(
z, z′

)
= δz−z′In with δ a Dirac centered at 0, we

have Tkg,pz = id. Then, from Equation (12), αz` follows
the Wasserstein gradient flow with C as potential. This im-
plies that C (α̂`) is decreasing w.r.t. the generator’s training
time `. In other words, the generator g is trained to mini-
mize C

(
α̂g
)
. Hence, this result characterizes the implicit

objective of the generator as C satisfying cf?α̂ = ∂α̂C (α̂).

In the general case, Tkg,pz introduces interactions between
generated particles as a consequence of the neural parame-
terization of the generator. Then, Equation (12) amounts to
following the same gradient flow as before, but in a Stein
geometry (Duncan et al., 2019) – instead of a Wasserstein
geometry – determined by the generator’s integral opera-
tor, directly implying that in this case C (α̂`) also decreases
during training. This geometrical understanding opens inter-
esting perspectives for theoretical analysis, e.g. we see that

GAN training in this regime generalizes Stein variational
gradient descent (Liu & Wang, 2016), with the Kullback-
Leibler minimization objective between generated and target
distributions being replaced with C (α̂).

Improving our understanding of Equation (12) is fundamen-
tal in order to elucidate the open problem of the neural
generator’s convergence. Our study enables us to shed light
on these dynamics and highlights the necessity of pursuing
the study of GANs via NTKs to obtain a more compre-
hensive understanding of them, which is the purpose of
the rest of this paper. In particular, the non-interacting case
where Tkg,pz = id already yields particularly useful insights
that we explore in Section 6. Moreover, we discuss in the
following section standard GAN losses and determine the
minimized functional C in these cases.

5. Study of Specific Losses
Armed with the previous framework, we derive in this sec-
tion more fine-grained results about the optimized loss C for
standard GAN models. Proofs are detailed in Appendix A.6.

5.1. The IPM as an NTK MMD Minimizer

We study the case of the IPM loss, with the following re-
markable discriminator expression, from which we deduce
the objective minimized by the generator.
Proposition 4 (IPM discriminator). Under Assumptions 1
and 2, the solutions of Equation (9) for a = b = id are ft =
f0 + tf∗α̂g , where f∗α̂g is the unnormalized MMD witness
function (Gretton et al., 2012) with kernel k, yielding:

f∗α̂g = Ex∼α̂g
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
,

Lα̂g (ft) = Lα̂g (f0) + t ·MMD2
k

(
α̂g, β̂

)
.

(13)

The latter result signifies that the direction of the gradient
given to the discriminator at each of its optimization step
is optimal within the RKHS of its NTK, stemming from
the linearity of the IPM loss. The connection with MMD is
especially interesting as it has been thoroughly studied in
the literature (Muandet et al., 2017). If k is characteristic,
as discussed in Appendix B.5, then it defines a distance
between distributions. Moreover, the statistical properties of
the loss induced by the discriminator directly follow from
those of the MMD: it is an unbiased estimator with a squared
sample complexity that is independent of the dimension of
the samples (Gretton et al., 2007).

Suppose that the discriminator is reinitialized at every step
of the generator, with f0 = 0 in Equation (9); this is possible
with the initialization scheme of Zhang et al. (2020). Then,
as c = id and from Proposition 4,∇cfα̂ = τ∇f∗α̂g , where τ
is the training time of the discriminator. The latter gradient
constitutes the gradient flow of the squared MMD, as shown
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by Arbel et al. (2019) with convergence guarantees and
discretization properties in the absence of generator. This
signifies that C (α̂) = τMMD2

k

(
α̂g, β̂

)
(see Section 4.4).

Therefore, in the IPM case, we discover via Proposition 4
that the generator is actually trained to minimize the MMD
between the empirical generated and target distributions,
w.r.t. the NTK of the discriminator. This novel connec-
tion implies that prior MMD GAN convergence results,
like the ones of Mroueh & Nguyen (2021) about the gen-
erator trained in such conditions, even though they were
established without considering the discriminator’s NTK,
remarkably transfer to the general unconstrained IPM case.

We further discuss our IPM results in the following remarks.

Remark 2 (IPM and WGAN). Along with a constraint
on the set of functions, the IPM is involved in the earth
mover’s distanceW1 (Villani, 2009) – used in WGAN and
StyleGAN (Karras et al., 2019), close to the hinge loss of
BigGAN (Brock et al., 2019) –, the MMD – used in MMD
GAN (Li et al., 2017) –, the total variation, etc. In Proposi-
tion 4, we study the IPM with the sole constraint of having
a neural discriminator. Our analysis implies that this suf-
fices to ensure relevant gradients, given the aforementioned
convergence results. This contradicts the recurring asser-
tion that the Lipschitz constraint of WGAN (Arjovsky et al.,
2017) is necessary to solve the gradient issues of prior ap-
proaches. Indeed, these issues originate from the analyses
inadequacy, as shown in this work. Hence, while WGAN
tackles them by changing the loss and adding a constraint,
we fundamentally address them with a refined framework.
A WGAN analysis, left for future work, would require com-
bining the neural discriminator and Lipschitz constraints.

Remark 3 (Instance smoothing). We show for IPMs
that modeling the discriminator’s architecture amounts to
smoothing out the input distribution using the kernel integral
operator Tk,γ̂g and can thus be seen as a generalization of
the regularization technique for GANs called instance noise
(Sønderby et al., 2017). This is discussed in Appendix B.4.

Remark 4 (Regularization by training time). Proposition 4
highlights the importance of discriminator training time,
which needs to be controlled to regularize its gradient mag-
nitude. This corresponds to customary practices where the
discriminator is trained for a small number of steps to avoid
divergence issues, like in DCGAN (Radford et al., 2016). In
the IPM case, we have, with ‖·‖Hγ̂k as the RKHS semi-norm:

‖ft‖2Hγ̂k ≤ ‖f0‖2Hγ̂k + t2
∥∥∥f∗α̂g∥∥∥2

Hγ̂k
, (14)

with equality when f0 = 0. This provides a simple criterion
to control the discriminator norm by its training time. For

example, assuming f0 = 0, setting t =
∥∥∥f∗α̂g∥∥∥−1

Hγ̂k
recovers

the MMD dual constraint of a unit-norm discriminator, i.e.
that ‖ft‖Hγ̂k = 1, yielding Lα̂g (ft) = MMDk

(
α̂g, β̂

)
.

5.2. LSGAN and New Divergences

Optimality of the discriminator can be proved when assum-
ing that its loss function is well-behaved. Let us consider the
case of LSGAN, for which Equation (9) can be solved by
adapting the results from Jacot et al. (2018) for regression.
Proposition 5 (LSGAN discr.). Under Assumptions 1 and 2,
the solutions of Equation (9) for a = −(id + 1)

2 and b =

−(id− 1)
2 are defined for all t ∈ R+ as:

ft = exp
(
−4tTk,γ̂g

)
(f0 − ρ) + ρ, ρ =

d(β̂−α̂g)
d(β̂+α̂g)

. (15)

In the previous result, ρ is the optimum of Lα̂g over L2
(
γ̂g
)
.

When k is positive definite over γ̂g (see Appendix B.5), ft
tends to the optimum for Lα̂g as its limit is ρ over supp γ̂g.
Nonetheless, unlike the discriminator with arbitrary values
of Section 3.2, f∞ is defined over all Ω thanks to the inte-
gral operator Tk,γ̂g . It is also the solution to the minimum
norm interpolant problem in the RKHS (Jacot et al., 2018),
therefore explaining why the discriminator does not overfit
in scarce data regimes (see Section 6), and consequently
has bounded gradients despite large training times. We
also prove a generalization of this optimality conclusion for
concave bounded losses in Appendix A.5.

Following the discussion initiated in Section 3.2 and ap-
plying it to LSGAN using Proposition 5, similarly to the
Jensen-Shannon, the resulting generator loss on discrete
training data is constant when the discriminator is optimal.
However, the gradients received by the generator are not
necessarily null, e.g. in the empirical analysis of Section 6.
This is because the learning problem of the generator in-
duced by the discriminator makes the generator minimize
another loss C , as explained in Section 4.4. This raises the
question of determining C for LSGAN and other standard
losses. Furthermore, the same problem arises in the case of
incompletely trained discriminators ft. Unlike the IPM case
for which the results of Arbel et al. (2019) who leveraged
the theory of Ambrosio et al. (2008) led to a remarkable
solution, this connection remains to be established for other
adversarial losses. We leave this as future work.

6. Empirical Study
We present a selection of empirical results for different
losses and architectures to show the relevance of our frame-
work, with more insights in Appendix C, by evaluating its
adequacy and practical implications on GAN convergence.
All experiments are performed with the proposed Genera-
tive Adversarial Neural Tangent Kernel ToolKit GAN(TK)2

that we release at https://github.com/emited/

https://github.com/emited/gantk2
https://github.com/emited/gantk2
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Figure 1. Values of cf? for LSGAN and IPM, where f? is a 3-layer ReLU MLP with bias and varying width trained on the dataset
represented by t (real) and s (fake) markers, initialized at f0 = 0. The infinite-width network is trained for a time τ = 1 and the
finite-width networks using 10 gradient descent steps with learning rate ε = 0.1, to make training times correspond. The gradients∇xcf?

are shown with white arrows on the two-dimensional plots for the fake distribution.

gantk2 in the hope that the community leverages and
expands it for principled GAN analyses. It is based on the
JAX Neural Tangents library (Novak et al., 2020), and is
convenient to evaluate architectures and losses based on
different visualizations and analyses.

For the sake of efficiency and for these experiments only,
we choose f0 = 0 using the antisymmetrical initialization
(Zhang et al., 2020). Indeed, in the analytical computations
of the infinite-width regime, taking into account all previous
discriminator states for each generator step is computation-
ally infeasible. This choice also allows us to ignore residual
gradients from the initialization, which introduce noise in
the optimization process.

Adequacy for fixed distributions. We first study the case
where generated and target distributions are fixed. In this set-
ting, we qualitatively study the similarity between the finite-
and infinite-width regimes of the discriminator. Figure 1
shows cf? and its gradients on one- and two-dimensional
data for LSGAN and IPM losses with a ReLU MLP with
3 hidden layers of varying widths. We find the behavior of
finite-width discriminators to be close to their infinite-width
counterpart for standard widths, and converges rapidly to
the given limit as the width becomes larger.

In the rest of this section, we focus on the study of conver-
gence of the generated distribution.

Experimental setting. We consider a target distribution
sampled from 8 Gaussians evenly distributed on a centered

sphere (cf. Figure 2), in a setup similar to that of Metz et al.
(2017), Srivastava et al. (2017) and Arjovsky et al. (2017).
We alleviate the complexity of the analysis by following
Equation (12) with Tkg` ,pz = id, similarly to Mroueh et al.
(2019) and Arbel et al. (2019), thereby modeling the gener-
ator’s evolution by considering a finite number of samples,
initially Gaussian. For IPM and LSGAN losses, we evaluate
the convergence of the generated distributions for a discrim-
inator with ReLU activations in the finite- and infinite-width
regime, either with or without bias. We also comparatively
evaluate the advantages of this architecture by considering
the case where the infinite-width loss is not given by an
NTK, but by the popular Radial Basis Function (RBF) ker-
nel, which is characteristic and presents attractive properties
(Muandet et al., 2017). We refer to Figure 2 for qualitative
results and Table 1 in Appendix C for a numerical evaluation.
Note that similar results for more datasets, including MNIST
and CelebA, and architectures are available in Appendix C.

Adequacy. We observe that correlated performances be-
tween the finite- and infinite-width regimes, ReLU networks
being considerably better in the latter. Remarkably, for the
infinite-width IPM, generated and target distributions per-
fectly match. This can be explained by the high capacity
of infinite-width networks; it has already been shown that
NTKs benefit from low-data regimes (Arora et al., 2020).

Impact of bias. The bias-free discriminator performs
worse than with bias, for both regimes and both losses. This
is in line with findings of e.g. Basri et al. (2020), and can be

https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
https://github.com/emited/gantk2
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Figure 2. Generator (l) and target (×) samples for different methods. In the background, cf? .

explained in our theoretical framework by comparing their
NTKs. Indeed, the NTK of a bias-free ReLU network is not
characteristic, whereas its bias counterpart was proven to
present powerful approximation properties (Ji et al., 2020).
Furthermore, results of Section 4.3 state that the ReLU NTK
with bias is differentiable at 0, whereas its bias-free version
is not, which can disrupt optimization based on its gradi-
ents: note in Figure 2 the abrupt streaks of the discriminator
directed towards 0 and their consequences on convergence.

NTK vs. RBF. We observe the superiority of NTKs over
the RBF kernel. This highlights that the gradients of a ReLU
network with bias are particularly well adapted to GANs.
Visualizations of these gradients in the infinite-width limit
are available in Appendix C.4 and further corroborate these
findings. More generally, we believe that the NTK of ReLU
networks could be of particular interest for kernel methods
requiring the computation of a spatial gradient, like Stein
variational gradient descent (Liu & Wang, 2016).

7. Conclusion
Leveraging the theory of infinite-width neural networks, we
propose a framework of analysis for GANs explicitly mod-
eling a large variety of discriminator architectures under the
alternating optimization setting. We show that the proposed
framework more accurately models GAN training compared

to prior approaches by deriving properties of the trained dis-
criminator. We demonstrate the analysis opportunities of
the proposed modeling by studying the generated distribu-
tion that we find to follow a gradient flow on probability
spaces minimizing some functional that we characterize. We
further study the latter for specific GAN losses and architec-
tures, both theoretically and empirically, notably using our
public GAN analysis toolkit. We believe that this work will
serve as a basis for more elaborate analyses, thus leading to
more principled, better GAN models.
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In the course of this appendix, we drop the subscript g for γ̂g, α̂g and other notations when the dependency on a fixed
generator g is clear and indicated in the main paper, for the sake of clarity.

A. Proofs of Theoretical Results and Additional Results
We prove in this section all theoretical results mentioned in Sections 4 and 5. Appendix A.2 is devoted to the proof of
Theorem 1, Appendix A.3 focuses on proving the differentiability results skimmed in Section 4.3, Appendix A.4 contains
the demonstration of Proposition 3, and Appendices A.5 and A.6 develop the results presented in Section 5.

We will need in the course of these proofs the following standard definition. For any measurable function T and measure µ,
T]µ denotes the push-forward measure which is defined as T]µ(B) = µ

(
T−1(B)

)
, for any measurable set B.

A.1. Recall of Assumptions in the Paper

Assumption 1 (Finite training set). γ̂ ∈ P(Ω) is a finite mixture of Diracs.

Assumption 2 (Kernel). k: Ω2 → R is a symmetric positive semi-definite kernel with k ∈ L2
(
Ω2
)
.

Assumption 3 (Loss regularity). a and b from Equation (2) are differentiable with Lipschitz derivatives over R.

Assumption 4 (Discriminator architecture). The discriminator is a standard architecture (fully connected, convolutional or
residual). Any activation φ in the network satisfies the following properties:

• φ is smooth everywhere except on a finite set D;

• for all j ∈ N, there exist scalars λ(j)
1 and λ(j)

2 such that:

∀x ∈ R \D,
∣∣∣φ(j)(x)

∣∣∣ ≤ λ(j)
1 |x|+ λ

(j)
2 , (16)

where φ(j) is the j-th derivative of φ.

Assumption 5 (Discriminator regularity). D = ∅, i.e. φ is smooth.

Assumption 6 (Discriminator bias). Linear layers have non-null bias terms. Moreover, for all x, y ∈ R such that x 6= y, the
following holds:

Eε∼N (0,1)φ(xε)
2 6= Eε∼N (0,1)φ(yε)

2
. (17)

Remark 5 (Typical activations). Assumptions 4 to 6 cover multiple standard activation functions, including tanh, softplus,
ReLU, leaky ReLU and sigmoid.

A.2. On the Solutions of Equation (9)

The methods used in this section are adaptations to our setting of standard methods of proof. In particular, they can be easily
adapted to slightly different contexts, the main ingredient being the structure of the kernel integral operator. Moreover,
it is also worth noting that, although we relied on Assumption 1 for γ̂, the results are essentially unchanged if we take a
compactly supported measure γ instead.

We decompose the proof into several intermediate results. Theorem 3 and Proposition 6, stated and demonstrated in this
section, correspond when combined to Theorem 1.

Let us first prove the following two intermediate lemmas.

Lemma 1. Let δT > 0 and FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)

endowed with the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (18)

Then FδT is complete.

Proof. Let (un)n be a Cauchy sequence in FδT . For a fixed t ∈ [0, δT ]:

∀n,m, ‖unt − umt ‖L2(γ̂) ≤ ‖u
n − um‖, (19)
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which shows that (unt )n is a Cauchy sequence in L2(γ̂). L2(γ̂) being complete, (unt )n converges to a u∞t ∈ L2(γ̂).
Moreover, for ε > 0, because (un) is Cauchy, we can choose N such that:

∀n,m ≥ N, ‖un − um‖ ≤ ε. (20)

We thus have that:

∀t,∀n,m ≥ N, ‖unt − umt ‖L2(γ̂) ≤ ε. (21)

Then, by taking m to∞, by continuity of the L2(γ̂) norm:

∀t, ∀n ≥ N, ‖unt − u∞t ‖L2(γ̂) ≤ ε, (22)

which means that:

∀n ≥ N, ‖un − u∞‖ ≤ ε. (23)

so that (un)n tends to u∞.

Moreover, as:

∀n, ‖unt ‖L2(γ̂) ≤ 1, (24)

we have that ‖u∞t ‖L2(γ̂) ≤ 1.

Finally, let us consider s, t ∈ [0, δT ]. We have that:

∀n, ‖u∞t − u∞s ‖L2(γ̂) ≤ ‖u
∞
t − unt ‖L2(γ̂) + ‖unt − uns ‖L2(γ̂) + ‖u∞s − uns ‖L2(γ̂). (25)

The first and the third terms can then be taken as small as needed by definition of u∞ by taking n high enough, while
the second can be made to tend to 0 as t tends to s by continuity of un. This proves the continuity of u∞ and shows that
u∞ ∈ FδT .

Lemma 2. For any F ∈ L2(γ̂), we have that F ∈ L2(α̂) and F ∈ L2
(
β̂
)

with:

‖F‖L2(α̂) ≤
√

2‖F‖L2(γ̂) and ‖F‖L2(β̂) ≤
√

2‖F‖L2(γ̂). (26)

Proof. For any F ∈ L2(γ̂), we have that

‖F‖2L2(γ̂) =
1

2
‖F‖2L2(α̂) +

1

2
‖F‖2L2(β̂), (27)

so that F ∈ L2(α̂) and F ∈ L2
(
β̂
)

with:

‖F‖2L2(α̂) = 2‖F‖2L2(γ̂) − ‖F‖
2
L2(β̂) ≤ 2‖F‖2L2(γ̂), ‖F‖2L2(β̂) = 2‖F‖L2(γ̂) − ‖F‖L2(α̂) ≤ 2‖F‖2L2(γ̂), (28)

which allows us to conclude.

From this, we can prove the existence and uniqueness of the initial value problem from Equation (9).

Theorem 3 (Existence and Uniqueness). Under Assumptions 1 to 3, Equation (9) with initial value f0 admits a unique
solution f· : R+ → L2(Ω).

Proof.
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A few inequalities. We start this proof by proving a few inequalities.

Let f, g ∈ L2(γ̂). We have, by the Cauchy-Schwarz inequality, for all z ∈ Ω:∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣ ≤ ∥∥k(z, ·)
∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

. (29)

Moreover, by definition:〈
∇γ̂Lα̂(f)−∇γ̂Lα̂(g), h

〉
L2(γ̂)

=

∫ (
a′f − a′g

)
hdα̂−

∫ (
b′f − b′g

)
hdβ̂, (30)

so that: ∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥2

L2(γ̂)
≤
∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)

∥∥∥
L2(γ̂)

(∥∥∥a′f − a′g∥∥∥
L2(α̂)

+
∥∥∥b′f − b′g∥∥∥

L2(β̂)

)
, (31)

and then, along with Lemma 2:∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

≤
∥∥∥a′f − a′g∥∥∥

L2(α̂)
+
∥∥∥b′f − b′g∥∥∥

L2(β̂)
≤
√

2

(∥∥∥a′f − a′g∥∥∥
L2(γ̂)

+
∥∥∥b′f − b′g∥∥∥

L2(γ̂)

)
. (32)

By Assumption 3, we know that a′ and b′ are Lipschitz with constants that we denote K1 and K2. We can then write for all
x: ∣∣∣a′(f(x)

)
− a′

(
g(x)

)∣∣∣ ≤ K1

∣∣f(x)− g(x)
∣∣, ∣∣∣b′(f(x)

)
− b′

(
g(x)

)∣∣∣ ≤ K2

∣∣f(x)− g(x)
∣∣, (33)

so that: ∥∥∥a′f − a′g∥∥∥
L2(γ̂)

≤ K1‖f − g‖L2(γ̂),
∥∥∥b′f − b′g∥∥∥

L2(γ̂)
≤ K2‖f − g‖L2(γ̂). (34)

Finally, we can now write, for all z ∈ Ω:∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣ ≤ √2(K1 +K2)‖f − g‖L2(γ̂)

∥∥k(z, ·)
∥∥
L2(γ̂)

, (A)

and then: ∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)
)
− Tk,γ̂

(
∇γ̂Lα̂(g)

)∥∥∥∥
L2(γ̂)

≤ K‖f − g‖L2(γ̂), (B)

where K =
√

2(K1 +K2)
√∫ ∥∥k(z, ·)

∥∥2

L2(γ̂)
dγ̂(z) is finite as a finite sum of finite terms from Assumptions 1 and 2. In

particular, putting g = 0 and using the triangular inequality also gives us:∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)
)∥∥∥∥

L2(γ̂)

≤ K‖f‖L2(γ̂) +M, (B’)

where M =
∥∥∥Tk,γ̂(∇γ̂Lα̂(0)

)∥∥∥
L2(γ̂)

.

Existence and uniqueness in L2(γ̂). We now adapt the standard fixed point proof to prove existence and uniqueness of a
solution to the studied equation in L2(γ̂).

We consider the family of spaces FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)

. FδT is defined, for δT > 0, as the space of continuous

functions from [0, δT ] to the closed ball of radius 1 centered around f0 in L2(γ̂) which we endow with the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (35)
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We now define the application Φ where Φ(u) is defined as, for any u ∈ FδT :

Φ(u)t = f0 +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(us)

)
ds. (36)

We have, using Equation (B’):

∥∥Φ(u)t − f0

∥∥
L2(γ̂)

≤
∫ t

0

(
K‖us‖L2(γ̂) +M

)
ds ≤ (K +M)δT. (37)

Thus, taking δT =
(
2(K +M)

)−1
makes Φ an application from FδT into itself. Moreover, we have:

∀u, v ∈ FδT ,
∥∥Φ(u)− Φ(v)

∥∥ ≤ 1

2
‖u− v‖, (38)

which means that Φ is a contraction of FδT . Lemma 1 and the Banach-Picard theorem then tell us that Φ has a unique fixed
point in FδT . It is then obvious that such a fixed point is a solution of Equation (9) over [0, δT ].

Let us now consider the maximal T > 0 such that a solution ft of Equation (9) is defined over [0, T ). We have, using
Equation (B’):

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂) +

∫ t

0

(
‖fs‖L2(γ̂) +M

)
ds, (39)

which, using Grönwall’s lemma, gives:

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂)e
KT +

M

K

(
eKT − 1

)
. (40)

Define gn = fT− 1
n

. We have, again using Equation (B’):

∀m ≥ n, ‖gn − gm‖L2(γ̂) ≤
∫ T− 1

m

T− 1
n

(K‖fs‖+M) ds ≤
(

1

n
− 1

m

)(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
, (41)

which shows that (gn)n is a Cauchy sequence. L2(γ̂) being complete, we can thus consider its limit g∞. Clearly, ft tends
to g∞ in L2(γ̂). By considering the initial value problem associated with Equation (9) starting from g∞, we can thus extend
the solution ft to [0, T + δT ), thus contradicting the maximality of T , which proves that the solution can be extended to
R+.

Existence and uniqueness in L2(Ω). We now conclude the proof by extending the previous solution to L2(Ω). We keep
the same notations as above and, in particular, f is the unique solution of Equation (9) with initial value f0.

Let us define f̃ as:

∀t, ∀x, f̃t(x) = f0(x) +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(fs)

)
(x) ds, (42)

where the r.h.s. only depends on f and is thus well-defined. By remarking that f̃ is equal to f on supp γ̂ and that, for every
s,

Tk,γ̂
(
∇γ̂Lα̂

(
f̃s

))
= Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))
= Tk,γ̂

(
∇γ̂Lα̂(fs)

)
, (43)

we see that f̃ is solution to Equation (9). Moreover, from Assumption 2, we know that, for any z ∈ Ω,
∫
k(z, x)

2
dΩ(x) is

finite and, from Assumption 1, that
∥∥k(z, ·)

∥∥2

L2(γ̂)
is a finite sum of terms k(z, xi)

2 which shows that
∫ ∥∥k(z, ·)

∥∥2

L2(γ̂)
dΩ(z)

is finite, again from Assumption 2. We can then say that f̃s ∈ L2(Ω) for any s by using the above with Equation (A) taken
for g = 0.

Finally, suppose h is a solution to Equation (9) with initial value f0. We know that h|supp γ̂ coincides with f and thus with

f̃
∣∣∣
supp γ̂

in L2(γ̂) as we already proved uniqueness in the latter space. Thus, we have that
∥∥∥∥hs|supp γ̂ − f̃s

∣∣∣
supp γ̂

∥∥∥∥
L2(γ̂)

= 0
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for any s. Now, we have:

∀z ∈ Ω,∀s,

∣∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(hs)

)
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

)))
(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Tk,γ̂(∇γ̂Lα̂(hs|supp γ̂

))
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))(z)

∣∣∣∣∣∣ ≤ 0,

(44)

by Equation (A). This shows that ∂t
(
f̃ − h

)
= 0 and, given that h0 = f̃0 = f0, we have h = f̃ which concludes the proof.

There only remains to prove for Theorem 1 the inversion between the integral over time and the integral operator. We first
prove an intermediate lemma and then conclude with the proof of the inversion.

Lemma 3. Under Assumptions 1 to 3,
∫ T

0

(∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

)
ds is finite for any T > 0.

Proof. Let T > 0. We have, by Assumption 3 and the triangular inequality:

∀x,
∣∣∣a′(f(x)

)∣∣∣ ≤ K1

∣∣f(x)
∣∣+M1, (45)

where M1 =
∣∣a′(0)

∣∣. We can then write, using Lemma 2 and the inequality from Equation (40):

∀s ≤ T,
∥∥a′∥∥

L2((fs)]α̂) ≤ K1

√
2‖fs‖L2(γ̂) +M1 ≤ K1

√
2

(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
+M1, (46)

the latter being constant in s and thus integrable on [0, T ]. We can then bound
∥∥b′∥∥

L2((fs)]β̂) similarly, which concludes the
proof.

Proposition 6 (Integral inversion). Under Assumptions 1 to 3, the following integral inversion holds:

ft = f0 +

∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂,β̂(fs)

)
ds = f0 + Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂,β̂(fs) ds

)
. (47)

Proof. By definition, a straightforward computation gives, for any function h ∈ L2(γ̂):〈
∇γ̂Lα̂(f), h

〉
L2(γ̂)

= dLα̂(f)[h] =

∫
a′fhdα̂−

∫
b′fhdβ̂. (48)

We can then write:∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
=
〈
∇γ̂Lα̂(ft),∇γ̂Lα̂(ft)

〉
L2(γ̂)

=

∫
a′ft∇

γ̂Lα̂(ft) dα̂−
∫
b′ft∇

γ̂Lα̂(ft) dβ̂, (49)

so that, with the Cauchy-Schwarz inequality and Lemma 2:∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
≤
∫ ∣∣∣a′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)

∣∣∣dα̂+

∫ ∣∣∣b′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)
∣∣∣ dβ̂

≤
∥∥∥a′ft∥∥∥

L2(α̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(β̂)

≤
√

2
∥∥∥∇γ̂Lα̂(ft)

∥∥∥
L2(γ̂)

[∥∥∥a′ft∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

]
,

(50)
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which then gives us: ∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(γ̂)

≤
√

2

[∥∥a′∥∥
L2((ft)]α̂) +

∥∥b′∥∥
L2((ft)]β̂)

]
. (51)

By the Cauchy-Schwarz inequality and Equation (51), we then have for all z:∫ t

0

∫
x

∣∣∣k(z, x)∇γ̂Lα̂(fs)(x)
∣∣∣dγ̂(x) ds ≤

∫ t

0

∥∥k(z, ·)
∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(fs)
∥∥∥
L2(γ̂)

ds

≤
√

2
∥∥k(z, ·)

∥∥
L2(γ̂)

∫ t

0

[∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

]
ds.

(52)

The latter being finite by Lemma 3, we can now use Fubini’s theorem to conclude that:∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂(fs)

)
ds =

∫ t

0

∫
x

k(·, x)∇γ̂Lα̂(fs)(x) dγ̂(x) ds

=

∫
x

k(·, x)

[∫ t

0

∇γ̂Lα̂(fs)(x) ds

]
dγ̂(x)

= Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂(fs)(x) ds

)
.

(53)

A.3. Differentiability of Infinite-Width Networks and their NTKs

Given Theorem 1, establishing the desired differentiability of ft can be done by separately proving similar results on both
ft − f0 and f0.

In both cases, this involves the differentiability of the following activation kernel Kφ(A) given another differentiable kernel
A:

Kφ(A):x, y 7→ Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
, (54)

where GP(0, A) is a univariate centered Gaussian Process (GP) with covariance function A. Indeed, the kernel-transforming
operator Kφ is central in the recursive computation of the neural network conjugate kernel sss which determines the NTK
(involved in ft − f0 ∈ H

γ̂g
k ) as well as the behavior of the network at initialization (which follows a GP with the conjugate

kernel as covariance).

Hence, our proof of Theorem 2 relies on the preservation of kernel smoothness through Kφ, proved in Appendix A.3.1,
which ensures the smoothness of the conjugate kernel, the NTK and, in turn, of ft as addressed in Appendix A.3.2 which
concludes the overall proof.

Before developing these two main steps, we first need to state the following lemma showing the regularity of samples of a
GP from the regularity of the corresponding kernel.

Lemma 4 (GP regularity). Let A:Rn × Rn → R be a symmetric kernel. Let V an open set such that A is C∞ on V × V .
Then the GP induced by the kernel A has a.s. C∞ sample paths on V .

Proof. Because A is C∞ on V × V , we know, from Theorem 2.2.2 of Adler (1981) for example, that the corresponding GP
f is mean-square smooth on V . If we take α a k-th order multi-index, we also know, again from Adler (1981), that ∂αf is
also a GP with covariance kernel ∂αA. As A is C∞, ∂αA then is differentiable and ∂αf has partial derivatives which are
mean-square continuous. Then, by the Corollary 5.3.12 of Scheuerer (2009), we can say that ∂αf has continuous sample
paths a.s. which means that f ∈ Ck(V ). This proves the lemma.

A.3.1. Kφ PRESERVES KERNEL DIFFERENTIABILITY

Given the definition of Kφ(A) in Equation (54), we choose to prove its differentiability via the dominated convergence
theorem and Leibniz integral rule. This requires to derive separate proofs depending on whether φ is smooth everywhere or
almost everywhere.
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The former case allows us to apply strong GP regularity results leading to Kφ preserving kernel smoothness without
additional hypothesis in Lemma 5. The latter case requires a careful decomposition of the expectation of Equation (54) via
two-dimensional Gaussian sampling to circumvent the non-differentiability points of φ, yielding additional constraints on
kernels A for Kφ to preserve their smoothness in Lemma 6; these constraints are typically verified in the case of neural
networks with bias (cf. Appendix A.3.2).

In any case, we emphasize that these differentiability constraints may not be tight and are only sufficient conditions ensuring
the smoothness of Kφ(A).

Lemma 5 (Kφ with smooth φ). Let A:Rn × Rn → R be a symmetric positive semi-definite kernel and φ:R → R. We
suppose that φ is an activation function following Assumptions 4 and 5; in particular, φ is smooth.

Let y ∈ Rn and U be an open subset of Rn such that x 7→ A(x, x) and x 7→ A(x, y) are infinitely differentiable over U .
Then, x 7→ Kφ(A)(x, x) and x 7→ Kφ(A)(x, y) are infinitely differentiable over U as well.

Proof. In order to prove the smoothness results over the open set U , it suffices to prove them on any open bounded subset of
U . Let then V ⊆ U be an open bounded set. Without loss of generality, we can assume that its closure clV is also included
in U .

We define B1 and B2 from Equation (54) as follows, for all x ∈ V :

B1(x) , Kφ(A)(x, y) = Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
, B2(x) , Kφ(A)(x, x) = Ef∼GP(0,A)

[
φ
(
f(x)

)2]
. (55)

In the previous expressions, Lemma 4 tells us that we can take f to be C∞ over clV with probability one. Hence, B1 and
B2 are expectations of smooth functions over V . We seek to apply the dominated convergence theorem to prove that B1 and
B2 are, in turn, smooth over V . To this end, we prove in the following the integrability of the derivatives of their integrands.

Let α = (α1, . . . , αn) ∈ Nn. Using the usual notations for multi-indexed partial derivatives, via a multivariate Faà di Bruno
formula (Leipnik & Pearce, 2007), we can write the derivatives ∂α(ψ ◦ f) at x ∈ V for ψ ∈

{
φ, φ2

}
as a weighted sum of

terms of the form:
ψ(j)

(
f(x)

)
g1(x) · · · gN (x), (56)

where the gis are partial derivatives of f at x. As A is C∞ over V , each of the gis is thus a GP with a C∞ covariance function
by Lemma 4. We can also write for all x ∈ V :∣∣∣ψ(j)

(
f(x)

)
g1(x) · · · gN (x)

∣∣∣ ≤ sup
z∈clV

∣∣∣ψ(j)
(
f(z)

)
g1(z) · · · gN (z)

∣∣∣
≤ sup
z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣. (57)

For each i, because the covariance function of gi is smooth over the compact set clV , its variance admits a maximum in
clV and we take σ2

i the double of its value. We then know from Adler (1990), that there is an Mi such that:

∀m ∈ N,Ef∼GP(0,A)

[
sup

zi∈clV

∣∣gi(zi)∣∣m] ≤Mm
i E|Yi|m, (58)

where Yi is a Gaussian distribution which variance is σ2
i , the right-hand side thus being finite.

We also have, by Assumption 4 from Appendix A.1, that:

sup
z∈clV

∣∣∣φ(j)
(
f(z)

)∣∣∣2 ≤ sup
z∈clV

(
λ

(j)
1

∣∣f(z)
∣∣+ λ

(j)
2

)2

, (59)

which is shown to be integrable over f by the same arguments as for the gis. Moreover, the Faà di Bruno formula decomposes
ψ(j) when ψ = φ2 as a weighted sum of terms of the form φ(l)φ(l′) with l, l′ ∈ N. Therefore, thanks to similar arguments,
for any ψ ∈

{
φ, φ2

}
:

Ef∼GP(0,A)

[
sup
z∈clV

∣∣∣ψ(j)
(
f(z)

)∣∣∣2] <∞. (60)
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Now, by using the Cauchy-Schwarz inequality, we have that:

E

[
sup

z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣]

≤

√√√√E

[
sup

z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣2]
√√√√E

[
sup

z1∈clV

∣∣g1(z1)
∣∣2 · · · sup

zN∈clV

∣∣gN (zN )
∣∣2]. (61)

By iterated applications of the Cauchy-Schwarz inequality and using the previous arguments, we can then show that:

sup
z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣ (62)

is integrable over f . Additionally, note that by the same arguments for the case of ψ = φ, a multiplication by φ
(
f(y)

)
preserves this integrability.

We can then write for all x ∈ V , by a standard corollary of the dominated convergence theorem:

∂αB1(x) = Ef∼GP(0,A)

[
∂α (φ ◦ f)

∣∣
x
φ
(
f(y)

)]
, ∂αB2(x) = Ef∼GP(0,A)

[
∂α
(
φ2 ◦ f

)∣∣∣∣
x

]
, (63)

which shows that B1 and B2 are C∞ over V . This in turn means that B1 and B2 are C∞ over U .

Lemma 6 (Kφ with piecewise smooth φ). Let A:Rn×Rn → R be a symmetric positive semi-definite kernel and φ:R→ R.
We suppose that φ is an activation function following Assumptions 4 and 6 (cf. Appendix A.1). Let us define the matrix Σx,yA
as:

Σx,yA ,

(
A(x, x) A(x, y)
A(x, y) A(y, y)

)
. (64)

Let y ∈ Rn and U be an open subset of Rn such that x 7→ A(x, x) and x 7→ A(x, y) are infinitely differentiable over U .
Then, x 7→ Kφ(A)(x, x) and x 7→ Kφ(A)(x, y) are infinitely differentiable over U ′ ,

{
x ∈ U

∣∣ Σx,yA is invertible
}

.

Proof. Since det Σx,yA is smooth over U and U ′ =
{
x ∈ U

∣∣ det Σx,yA > 0
}

, U ′ is an open subset of U . Hence, similarly to
the proof of Lemma 5, it suffices to prove the smoothness ofB1 andB2 defined in Equation (55) on any open bounded subset
of U ′. Let then V ⊆ Rn be an open bounded set such that clV ⊆ U ′. Note that det Σx,yA > 0 implies that A(x, x) > 0 and
A(y, y) > 0.

We will conduct in the following the proof that B1 is smooth over V . Like in the proof of Lemma 5, the smoothness of B2

follows the same reasoning with little adaptation; in particular, it relies on the fact that A(x, x) > 0 for all x ∈ U ′, making
its square root smooth over clV .

Since the dominated convergence theorem cannot be directly applied from Equation (55) because of φ’s potential non-
differentiability points D, let us decompose its expression for all x ∈ U ′:

B1(x) = Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
= E(z,z′)∼N((0,0),Σx,yA )

[
φ(z)φ

(
z′
)]

(65)

= Ez′∼N(0,A(y,y))

φ(z′)E
z∼N

(
A(x,y)
A(y,y)

z′,A(x,x)−A(x,y)2

A(y,y)

)[φ(z)
] (66)

= Ez′∼N(0,A(y,y))

[
φ
(
z′
)
h
(
z′, x

)]
, (67)

where h is defined as:

h
(
z′, x

)
,
∫ +∞

−∞
φ(z) · 1

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz, µ(x) =
A(x, y)

A(y, y)
, σ(x) =

√
det Σx,yA
A(y, y)

. (68)
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Now, if D = {c1, . . . , cL} with L ∈ N and c1 < · · · < cL, the cls constitute the non-differentiability points of φ; we can
then decompose the integration of φ in Equation (68) as a sum of L + 1 integrals with differentiable integrands, using
c0 = −∞ and cL+1 = +∞:

h(ε, x) =
1√
2π

L∑
l=0

∫ cl+1

cl

φ(z)

σ(x)
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz. (69)

Therefore, it remains to show the smoothness of all applications B1,l for l ∈ J0, LK defined as:

B1,j(x) = Ez′∼N(0,A(y,y))

∫ cl+1

cl

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz

. (70)

The rest of this proof unfolds similarly to the one of Lemma 5. Indeed, the integrand of Equation (70) is smooth over clV .
There remains to show that all derivatives of this integrand are dominated by an integrable function of z and z′. Consider the
following integrand:

ι
(
z, z′, x

)
=
φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

. (71)

By applying the multivariate Faà di Bruno formula and noticing that σ and µ are smooth over the closed set clV , we know
that the derivatives of ι

(
z, z′, x

)
with respect to x for any derivation order are weighted sums of terms of the form:

zkz′
k′
κ(x)

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

, (72)

where κ is a smooth function over clV and k, k′ ∈ N. Moreover, because σ, µ and κ are smooth over the closed set clV
with positive values for σ, there are constants a1, a2 and a3 such that:∣∣∣∣∣∣zkz′k′κ(x)

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2
∣∣∣∣∣∣ ≤

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣a3e

− 1
2

(
z−a1z

′
a2

)2

, (73)

which is integrable over z via Assumption 4 and Equation (16). Finally, let us notice that for some constants b1, b2 and b3:

∫ cl+1

cl

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣a3e

− 1
2

(
z−a1z

′
a2

)2

≤ b1Ez∼N (b2z′,b3)

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣, (74)

which is also integrable with respect to Ez′∼N(0,A(y,y)) by similar arguments (see also the integrability of Equation (58) in
Lemma 5). This concludes the proof of integrability required to apply the dominated convergence theorem, allowing us to
conclude about the smoothness of all B1,j and, in turn, of B1 over U ′.

Remark 6 (Relaxed condition for smoothness). The invertibility condition of Lemma 6 is actually stronger than needed: it
suffices to assume that the rank of Σx,yA remains constant in a neighborhood of x.

A.3.2. DIFFERENTIABILITY OF CONJUGATE KERNELS, NTKS AND DISCRIMINATORS

From the previous lemmas, we can then prove the results of Section 4.3. We start by demonstrating the smoothness of the
conjugate kernel for dense networks, and conclude in consequence about the smoothness of the NTK and trained network.

Lemma 7 (Differentiability of the conjugate kernel). Let kc be the conjugate kernel (Lee et al., 2018) of an infinite-width
dense non-residual architecture such as in Assumption 4. For any y ∈ Rn, the following holds for A ∈

{
kc,Kφ′(kc)

}
:

• if Assumption 5 holds, then x 7→ A(x, x) and x 7→ A(x, y) are smooth everywhere over Rn;

• if Assumption 6 holds, then x 7→ A(x, x) and x 7→ A(x, y) are smooth over an open set whose complement has null
Lebesgue measure.



A Neural Tangent Kernel Perspective of GANs

Proof. We define the following kernel:

CφL(x, y) = E
f∼GP

(
0,CφL−1

)[φ(f(x)
)
φ
(
f(y)

)]
+ β2 = Kφ

(
CφL−1

)
+ β2, (75)

with:
Cφ0 (x, y) =

1

n
x>y + β2. (76)

We have that kc = CφL, with L being the number of hidden layers in the network. Therefore, Lemma 5 ensures the
smoothness result under Assumption 5.

Let us now consider Assumption 6 (cf. the detailed assumption in Appendix A.1); in particular, β > 0. We prove by
induction over L in the following that:

• B1:x 7→ CφL(x, y) is smooth over U =
{
x ∈ Rn

∣∣ ‖x‖ 6= ‖y‖};

• B2:x 7→ CφL(x, x) is smooth;

• for all x, x′ ∈ Rn with ‖x‖ 6=
∥∥x′∥∥, B2(x) 6= B2

(
x′
)
.

The result is immediate for L = 0. We now suppose that it holds for some L ∈ N and prove that it also holds for L + 1
hidden layers. Let us express B2:

B2(x) = Eε∼N (0,1)

[
φ

(
ε

√
CφL(x, x) + β2

)2
]
. (77)

Using Lemma 6 and Remark 6, the fact that β > 0 and the induction hypothesis ensures that B2 is smooth. Moreover,
Assumption 6, in particular Equation (17), allows us to assert that ‖x‖ 6=

∥∥x′∥∥ implies B2(x) 6= B2

(
x′
)
.

Finally, in order to apply Lemma 6 to prove the smoothness of B1 over U , there remains to show that the following matrix is
invertible:

Σx,yβ ,

(
CφL(x, x) + β2 CφL(x, y) + β2

CφL(x, y) + β2 CφL(y, y) + β2

)
. (78)

Let us compute its determinant:

det Σx,yβ =
(
CφL(x, x) + β2

)(
CφL(y, y) + β2

)
−
(
CφL(x, y) + β2

)2

= det Σx,y0 + β2
(
CφL(x, x) + CφL(y, y)− 2CφL(x, y)

)
.

(79)

CφL is a symmetric positive semi-definite kernel, thus:

det Σx,yβ − det Σx,y0 = β2 ·
(
1 −1

)
Σx,y0

(
1
−1

)
≥ 0. (80)

Hence, if det Σx,y0 > 0, then det Σx,yβ > 0. Besides, if det Σx,y0 = 0, then:

det Σx,yβ = β2
(√

B2(x)−
√
B2(y)

)2

> 0, (81)

for all x ∈ U . This proves that B1 is indeed smooth over U , and concludes the induction.

Note that U is indeed an open set whose complement in Rn has null Lebesgue measure. Overall, the result is thus proved
for A = kc; a similar reasoning using the previous induction result also transfers the result to A = Kφ′(kc).

Proposition 2 (Differentiability of k). Let k be the NTK of an infinite-width architecture following Assumption 4. For any
y ∈ Rn:
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• if Assumption 5 holds, then k(·, y) is smooth everywhere over Rn;

• if Assumption 6 holds, then k(·, y) is smooth almost everywhere over Rn, in particular over an open set whose
complement has null Lebesgue measure.

Proof. According to the definitions of Jacot et al. (2018), Arora et al. (2019) and Huang et al. (2020), the smoothness of the
kernel is guaranteed whenever the conjugate kernel kc and its transform Kφ′(kc) are smooth; the result of Lemma 7 then
applies. In the case of residual networks, there is a slight adaptation of the formula which does not change its regularity.
Regarding convolutional networks, their conjugate kernels and NTKs involve finite combinations of such dense conjugate
kernels and NTKs, thereby preserving their smoothness almost everywhere.

Theorem 2 (Differentiability of ft). Let ft be a solution to Equation (9) under Assumptions 1 and 3 by Theorem 1, with k
the NTK of an infinite-width neural network and f0 an initialization of the latter.

Then, under Assumptions 4 and 5, ft is smooth everywhere. Under Assumptions 4 and 6, ft is smooth almost everywhere,
in particular over an open set whose complement has null Lebesgue measure.

Proof. From Theorem 1, we have:

ft − f0 = Tk,γ̂

(∫ t

0

∇γ̂Lα̂(fs) ds

)
. (82)

We observe that Tk,γ̂(h) has, for any h ∈ L2(γ̂), a regularity which only depends on the regularity of k(·, y) for y ∈ supp γ̂.
Indeed, if k(·, y) is smooth in a certain neighborhood V for every such y, we can bound ∂αk(·, y) over V for every y and
any multi-index α and then use dominated convergence to prove that Tk,γ̂(h)(·) is smooth over V . Therefore, the regularity
of k(·, y) transfers to ft − f0. Given Proposition 2, there remains to prove the same result for f0.

The theorem then follows from the fact that f0 has the same regularity as its conjugate kernel kc thanks to Lemma 4
because f0 is a sample from the GP with kernel kc. Lemma 7 shows the smoothness almost everywhere over an open set
of applications x 7→ kc(x, y); to apply Lemma 4 and concludes this proof, this result must be generalized to prove the
smoothness of kc with respect to both its inputs. This can be done by generalizing the proofs of Lemmas 5 and 6 to show the
smoothness of kernels with respect to both x and y, with the same arguments than for x alone.

Remark 7. In the previous theorem, f0 is considered to be the initialization of the network. However, we highlight that,
without loss of generality, this theorem encompasses the change of training distribution γ̂ during GAN training. Indeed,
as explained in Section 4.1, f0 after j steps of generator training can actually be decomposed as, for some hk ∈ L2(γ̂k),
k ∈ J1, jK:

f0 = f0 +

j∑
k=1

Tk,γ̂k(hk), (83)

by taking into account the updates of the discriminators over the whole GAN optimization process. The proof of Theorem 2
can then be applied similarly in this case by showing the differentiability of f0 − f0 on the one hand and of f0, being the
initialization of the discriminator at the very beginning of GAN training, on the other hand.

A.4. Dynamics of the Generated Distribution

We derive in this proposition the differential equation governing the dynamics of the generated distribution.

Proposition 3 (Dynamics of α`). Under Assumptions 4 and 5, Equation (3) is well-posed. Let us consider its continuous-time
version with discriminators trained on discrete distributions as described above:

∂`θ` = −Ez∼pz

[
∇θg`(z)>∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

]
. (84)

This yields, with kg` the NTK of the generator g`:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (85)
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Equivalently, the following continuity equation holds for the joint distribution αz` , (id, g`)]pz:

∂`α
z
` = −∇x ·

αz`Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

). (86)

Proof. Assumptions 4 and 5 ensure, via Proposition 2 and Theorem 2 that the trained discriminator is differentiable
everywhere at all times, whatever the state of the generator. Therefore, Equation (3) is well-posed.

By following Mroueh et al. (2019, Equation (5))’s reasoning on a similar equation, Equation (84) yields the following
generator dynamics for all inputs z ∈ Rd:

∂`g`(z) = −Ez′∼pz

[
∇θ`g`(z)

>∇θ`g`
(
z′
)
∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z′)

]
. (87)

We recognize the NTK kg` of the generator as:

kg`
(
z, z′

)
, ∇θ`g`(z)

>∇θ`g`
(
z′
)
. (88)

From this, we obtain the dynamics of the generator:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (89)

In other words, the transported particles
(
z, g`(z)

)
have trajectories X` which are solutions of the Ordinary Differential

Equation (ODE):
dX`

d`
=
(
0, v`(X`)

)
, (90)

where:

v` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (91)

Then, because αz` , (id, g`)]pz is the induced transported density, following Ambrosio & Crippa (2014), whenever the ODE
above is well-defined and has unique solutions (which is necessarily the case for any trained g), αz` verifies the continuity
equation with the velocity field v`:

∂`α
z
` = −∇z,x ·

αz`
0, Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)


= −∇x ·

αz`Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

).
(92)

This yields the desired result.

A.5. Optimality in Concave Setting

We derive an optimality result for concave bounded loss functions of the discriminator and positive definite kernels.

A.5.1. ASSUMPTIONS

We first assume that the NTK is positive definite over the training dataset.

Assumption 7 (Positive definite kernel). k is positive definite over γ̂.
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This positive definiteness property equates for finite datasets to the invertibility of the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (93)

that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. We further discuss this hypothesis in
Appendix B.5.

We also assume the following properties on the discriminator loss function.

Assumption 8 (Concave loss). Lα̂ is concave and bounded from above, and its supremum is reached on a unique point y?

in L2(γ̂).

Moreover, we need for the sake of the proof a uniform continuity assumption on the solution to Equation (9).

Assumption 9 (Solution continuity). t 7→ ft|supp γ̂ is uniformly continuous over R+.

Note that these assumptions are verified in the case of LSGAN, which is the typical application of the optimality results that
we prove in the following.

A.5.2. OPTIMALITY RESULT

Proposition 7 (Asymptotic optimality). Under Assumptions 1 to 3 and 7 to 9, ft converges pointwise when t→∞, and:

Lα̂(ft) −−−→
t→∞

Lα̂(y?), f∞ = f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
, f∞|supp γ̂ = y?, (94)

where we recall that:
y? = arg max

y∈L2(γ̂)

Lα̂(y). (95)

This result ensures that, for concave losses such as LSGAN, the optimum for Lα̂ in L2(Ω) is reached for infinite training
times by neural network training in the infinite-width regime when the NTK of the discriminator is positive definite. However,
this also provides the expression of the optimal network outside supp γ̂ thanks to the smoothing of γ̂.

In order to prove this proposition, we need the following intermediate results: the first one about the functional gradient of
Lα̂ on the solution ft; the second one about a direct application of positive definite kernels showing that one can retrieve
f ∈ Hγ̂k over all Ω from its restriction to supp γ̂.

Lemma 8. Under Assumptions 1 to 3 and 7 to 9, ∇γ̂Lα̂(ft) → 0 when t → ∞. Since supp γ̂ is finite, this limit can be
interpreted pointwise.

Proof. Assumptions 1 to 3 ensure the existence and uniqueness of ft, by Theorem 1.

t 7→ f̂t , ft|supp γ̂ and Lα̂ being differentiable, t 7→ Lα̂(ft) is differentiable, and:

∂tLα̂(ft) =
〈
∇γ̂Lα̂(ft), ∂tf̂t

〉
L2(γ̂)

=

〈
∇γ̂Lα̂(ft), Tk,γ̂

(
∇γ̂Lα̂(ft)

)〉
L2(γ̂)

, (96)

using Equation (9). This equates to:

∂tLα̂(ft) =

∥∥∥∥Tk,γ̂(∇γ̂Lα̂(ft)
)∥∥∥∥2

Hγ̂k

≥ 0, (97)

where ‖·‖Hγ̂k is the semi-norm associated to the RKHSHγ̂k . Note that this semi-norm is dependent on the restriction of its
input to supp γ̂ only. Therefore, t 7→ Lα̂(ft) is increasing. Since Lα̂ is bounded from above, t 7→ Lα̂(ft) admits a limit
when t→∞.

We now aim at proving from the latter fact that ∂tLα̂(ft)→ 0 when t→∞. We notice that ‖·‖2Hγ̂k is uniformly continuous

over L2(γ̂) since supp γ̂ is finite, ∇γ̂Lα̂ is uniformly continuous over L2(γ̂) since a′ and b′ are Lipschitz-continuous,
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Tk,γ̂
∣∣
supp γ̂

is uniformly continuous as it amounts to a finite matrix multiplication, and Assumption 9 gives that t 7→ ft|supp γ̂

is uniformly continuous over R+. Therefore, their composition t 7→ ∂tLα̂(ft) (from Equation (97)) is uniformly continuous
over R+. Using Barbălat’s Lemma (Farkas & Wegner, 2016), we conclude that ∂tLα̂(ft)→ 0 when t→∞.

Furthermore, k is positive definite over γ̂ by Assumption 7, so ‖·‖Hγ̂k is actually a norm. Therefore, since supp γ̂ is finite,
the following pointwise convergence holds:

∇γ̂Lα̂(ft) −−−→
t→∞

0. (98)

Lemma 9 (Hγ̂k determined by supp γ̂). Under Assumptions 1, 2 and 7, for all f ∈ Hγ̂k , the following holds:

f = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
f |supp γ̂

))
. (99)

Proof. Since k is positive definite by Assumption 7, then Tk,γ̂
∣∣
supp γ̂

from Equation (93) is invertible. Let f ∈ Hγ̂k . Then,
by definition of the RKHS in Definition 2, there exists h ∈ L2(γ̂) such that f = Tk,γ̂(h). In particular, f |supp γ̂ =

Tk,γ̂
∣∣
supp γ̂

(h), hence h = Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
.

We can now prove the desired proposition.

Proof of Proposition 7. Let us first show that ft converges to the optimum y? in L2(γ̂). By applying Lemma 8, we know
that ∇γ̂Lα̂(ft) → 0 when t → ∞. Given that the supremum of the differentiable concave function Lα̂:L2(γ̂) → R is
achieved at a unique point y? ∈ L2(γ̂) with finite supp γ̂, then the latter convergence result implies that f̂t , ft|supp γ̂

converges pointwise to y? when t→∞.

Given this convergence in L2(γ̂), we can deduce convergence on the whole domain Ω by noticing that ft − f0 ∈ Hγ̂k , from
Corollary 1. Thus, using Lemma 9:

ft − f0 = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

))
. (100)

Again, since supp γ̂ is finite, and Tk,γ̂
∣∣−1

supp γ̂
can be expressed as a matrix multiplication, the fact that ft converges to y?

over supp γ̂ implies that:

Tk,γ̂
∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

)
−−−→
t→∞

Tk,γ̂
∣∣−1

supp γ̂

(
y? − f0|supp γ̂

)
. (101)

Finally, using the definition of the integral operator in Definition 2, the latter convergence implies the following desired
pointwise convergence:

ft −−−→
t→∞

f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
. (102)

We showed at the beginning of this proof that ft converges to the optimum y? in L2(γ̂), so Lα̂(ft)→ Lα̂(y?) by continuity
of Lα̂ as claimed in the proposition.

A.6. Case Studies of Discriminator Dynamics

We study in the rest of this section the expression of the discriminators in the case of the IPM loss and LSGAN, as described
in Section 5, and of the original GAN formulation.
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A.6.1. PRELIMINARIES

We first need to introduce some definitions.

The presented solutions to Equation (9) leverage a notion of functions of linear operators, similarly to functions of matrices
(Higham, 2008). We define such functions in the simplified case of non-negative symmetric compact operators with a finite
number of eigenvalues, such as Tk,γ̂ .

Definition 3 (Linear operator). Let A:L2(γ̂) → L2(Ω) be a non-negative symmetric compact linear operator with a
finite number of eigenvalues, for which the spectral theorem guarantees the existence of a countable orthonormal basis
of eigenfunctions with non-negative eigenvalues. If ϕ:R+ → R, we define ϕ(A) as the linear operator with the same
eigenspaces as A, with their respective eigenvalues mapped by ϕ; in other words, if λ is an eigenvalue of A, then ϕ(A)
admits the eigenvalue ϕ(λ) with the same eigenspace.

In the case where A is a matrix, this amounts to diagonalizing A and transforming its diagonalization elementwise using ϕ.
Note that Tk,γ̂ has a finite number of eigenvalues since it is generated by a finite linear combination of linear operators (see
Definition 2).

We also need to define the following Radon–Nikodym derivatives with inputs in supp γ̂:

ρ =
d
(
β̂ − α̂

)
d
(
β̂ + α̂

) , ρ1 =
dα̂

dγ̂
, ρ2 =

dβ̂

dγ̂
, (103)

knowing that

ρ =
1

2
(ρ2 − ρ1), ρ1 + ρ2 = 2. (104)

These functions help us to compute the functional gradient of Lα̂, as follows.

Lemma 10 (Loss derivative). Under Assumption 3:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = ρ1 ·

(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
. (105)

Proof. We have from Equation (2):

Lα̂(f) = Ex∼α̂
[
af (x)

]
− Ey∼β̂

[
bf (y)

]
=
〈
ρ1, af

〉
L2(γ̂)

−
〈
ρ2, bf

〉
L2(γ̂)

, (106)

hence by composition:
∇γ̂Lα̂(f) = ρ1 ·

(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
= ρ1a

′
f − ρ2b

′
f . (107)

A.6.2. LSGAN

Proposition 5 (LSGAN discriminator). Under Assumptions 1 and 2, the solutions of Equation (9) for a = −(id + 1)
2 and

b = −(id− 1)
2 are the functions defined for all t ∈ R+ as:

ft = exp
(
−4tTk,γ̂

)
(f0 − ρ) + ρ = f0 + ϕt

(
Tk,γ̂

)
(f0 − ρ), (108)

where:
ϕt:x 7→ e−4tx − 1. (109)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given a and b in LSGAN. Thus, Theorem 1
applies, and there exists a unique solution t 7→ ft to Equation (9) over R+ in L2(Ω) for a given initial condition f0.
Therefore, there remains to prove that, for a given initial condition f0,

g: t 7→ gt = f0 + ϕt
(
Tk,γ̂

)
(f0 − ρ) (110)
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is a solution to Equation (9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.

Let us first express the gradient of Lα̂. We have from Lemma 10, with af = −(f + 1)
2 and bf = −(f − 1)

2:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ1(f + 1)− 2ρ2(f − 1) = 4ρ− 4f. (111)

So Equation (9) equates to:
∂tft = 4Tk,γ̂(ρ− ft). (112)

Now let us prove that gt is a solution to Equation (112). We have:

∂tgt = −4
(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ) = −4

(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ). (113)

Restricted to supp γ̂, we can write from Equation (110):

gt = f0 +

(
exp
(
−4tTk,γ̂

∣∣
supp γ̂

)
− idL2(γ̂)

)
(f0 − ρ), (114)

and plugging this in Equation (113):
∂tgt = −4Tk,γ̂(gt − ρ), (115)

where we retrieve the differential equation of Equation (112). Therefore, gt is a solution to Equation (112).

It is clear that g0 = f0. Moreover, Tk,γ̂ being decomposable in a finite orthonormal basis of elements of operators over
L2(Ω), its exponential has values in L2(Ω) as well, making gt belong to L2(Ω) for all t. With this, the proof is complete.

A.6.3. IPMS

Proposition 4 (IPM discriminator). Under Assumptions 1 and 2, the solutions of Equation (9) for a = b = id are the
functions of the form ft = f0 + tf∗α̂, where f∗α̂ is the unnormalized MMD witness function, yielding:

f∗α̂ = Ex∼α̂
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
, Lα̂(ft) = Lα̂(f0) + t ·MMD2

k

(
α̂, β̂

)
. (116)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given a and b of the IPM loss. Thus,
Theorem 1 applies, and there exists a unique solution t 7→ ft to Equation (9) over R+ in L2(Ω) for a given initial condition
f0. Therefore, in order to find the solution of Equation (9), there remains to prove that, for a given initial condition f0,

g: t 7→ gt = f0 + tf∗α̂ (117)

is a solution to Equation (9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.

Let us first express the gradient of Lα̂. We have from Lemma 10, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ. (118)

So Equation (9) equates to:

∂tft = −2Tk,γ̂(ρ) = 2

∫
x

k(·, x)ρ(x) dγ̂(x) =

∫
x

k(·, x) dα̂(x)−
∫
y

k(·, y) dβ̂(y), (119)

by definition of ρ (see Equation (103)), yielding:
∂tft = f∗α̂. (120)

Clearly, t 7→ gt = f0 + tf∗α̂ is a solution of the latter equation, g0 = f0 and gt ∈ L2(Ω) given that supp γ̂ is finite and
k ∈ L2

(
Ω2
)

by assumption. The set of solutions for the IPM loss is thus characterized.

Finally, let us compute Lα̂(ft). By linearity of Lα̂ for a = b = id:

Lα̂(ft) = Lα̂(f0) + t · Lα̂(f∗α̂) = Lα̂(f0) + t · Lα̂
(
Tk,γ̂(−2ρ)

)
. (121)

But, from Equation (106), Lα̂(f) = 〈−2ρ, f〉L2(γ̂), hence:

Lα̂(ft) = Lα̂(f0) + t ·
〈
−2ρ, Tk,γ̂(−2ρ)

〉
L2(γ̂)

= Lα̂(f0) + t ·
∥∥Tk,γ̂(−2ρ)

∥∥2

Hγ̂k
. (122)

By noticing that Tk,γ̂(−2ρ) = f∗α̂ and that
∥∥f∗α̂∥∥Hγ̂k = MMDk

(
α̂, β̂

)
since f∗α̂ is the unnormalized MMD witness function,

the expression of Lα̂(ft) in the proposition is obtained.



A Neural Tangent Kernel Perspective of GANs

A.6.4. VANILLA GAN

Unfortunately, finding the solutions to Equation (9) in the case of the original GAN formulation, i.e. a = log(1− σ) and
b = − log σ, remains to the extent of our knowledge an open problem. We provide in the rest of this section some leads that
might prove useful for more advanced analyses.

Let us first determine the expression of Equation (9) for vanilla GAN.

Lemma 11. For a = log(1− σ) and b = − log σ, Equation (9) equates to:

∂tft = Tk,γ̂
(
ρ2 − 2σ(f)

)
. (123)

Proof. We have from Lemma 10, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1

σ′(f)

1− σ(f)
+ ρ2

σ′(f)

σ(f)
. (124)

By noticing that σ′(f) = σ(f)
(
1− σ(f)

)
, we obtain:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1σ(f) + ρ2

(
1− σ(f)

)
= ρ2 − 2σ(f). (125)

By plugging the latter expression in Equation (9), the desired result is achieved.

Note that Assumption 3 holds for these choices of a and b. Therefore, under Assumptions 1 and 2, there exists a unique
solution to Equation (123) in R+ → L2(Ω) with a given initialization f0.

Let us first study Equation (123) in the simplified case of a one-dimensional ordinary differential equation.

Proposition 8. Let r ∈ {0, 2} and λ ∈ R. The set of differentiable solutions over R to this ordinary differential equation:

∂tyt = λ
(
r − 2σ(yt)

)
(126)

is the following set:

S =

{
y: t 7→ (1− r)

(
W
(

e2λt+C
)
− 2λt− C

) ∣∣∣∣∣ C ∈ R

}
, (127)

where W the is principal branch of the Lambert W function (Corless et al., 1996).

Proof. The theorem of Cauchy-Lipschitz ensures that there exists a unique global solution to Equation (126) for a given
initial condition y0 ∈ R. Therefore, we only need to show that all elements of S are solutions of Equation (126) and that
they can cover any initial condition.

Let us first prove that y: t 7→ (1− r)
(
W
(
e2λt+C

)
− 2λt− C

)
is a solution of Equation (126). Let us express the derivative

of y:
1

1− r
∂tyt = 2λ

(
e2λt+CW ′

(
e2λt+C

)
− 1

)
. (128)

W ′(z) = W (z)

z(1+W (z))
, so:

1

1− r
∂tyt = 2λ

(
W
(
e2λt+C

)
1 +W

(
e2λt+C

) − 1

)
= − 2λ

1 +W
(
e2λt+C

) . (129)

Moreover, W (z) = ze−W (z), and with r − 1 ∈ {1,−1}:

1

1− r
∂tyt = − 2λ

1 + e2λt+Ce−W(e2λt+C)
= − 2λ

1 + e(r−1)yt
. (130)
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Finally, we notice that, since r ∈ {0, 2}:

λ
(
r − 2σ(yt)

)
= − 2λ(1− r)

1 + e(r−1)yt
. (131)

Therefore:
∂tyt = λ

(
r − 2σ(yt)

)
(132)

and yt is a solution to Equation (126).

Since y0 = (1− r)
(
W
(
eC
)
− C

)
and z 7→W (ez)− z can be proven to be bijective over R, the elements of S can cover

any initial condition. With this, the result is proved.

Suppose that f0 = 0 in Equation (123) and that ρ2 has values in {0, 2} – i.e. α̂ and β̂ have disjoint supports (which is the
typical case for distributions with finite support). From Proposition 8, a candidate solution would be:

ft = ϕt(x)(ρ2 − 1) = −ϕt(x)(ρ), (133)

where:
ϕt:x 7→W

(
e2tx+1

)
− 2tx− 1, (134)

since the initial condition y0 = 0 gives the constant value C = 1 in Equation (127). Note that the Lambert W function of a
symmetric linear operator is well-defined, all the more so as we choose the principal branch of the Lambert function in our
case; see the work of Corless et al. (2007) for more details. Note also that the estimation of W (ez) is actually numerically
stable using approximations from Iacono & Boyd (2017).

However, Equation (133) cannot be a solution of Equation (123). Indeed, one can prove by following essentially the same
reasoning as the proof of Proposition 8 that:

∂tft = 2

(
Tk,γ̂ ◦

(
ψt
(
Tk,γ̂

))−1
)

(ρ2 − 1), (135)

with:
ψt:x 7→ 1 +W

(
e2tx+1

)
> 0. (136)

However, this does not allow us to obtain Equation (123) since in the latter the sigmoid is taken coordinate-wise, where the
exponential in Equation (135) acts on matrices.

Nonetheless, for t small enough, ft as defined in Equation (135) should approximate the solution of Equation (123), since
sigmoid is approximately linear around 0 and ft ≈ 0 when t is small enough. We find in practice that for reasonable values
of t, e.g. t ≤ 5, the approximate solution of Equation (135) is actually close to the numerical solution of Equation (123)
obtained using an ODE solver. Thus, we provide here a candidate approximate expression for the discriminator in the setting
of the original GAN formulation – i.e., for binary classifiers. We leave for future work a more in-depth study of this case.

B. Discussions and Remarks
We develop in this section some remarks and explanations on the topics that are broached in the main paper.

B.1. From Finite to Infinite-Width Networks

The constancy of the neural tangent kernel during training when the width of the network becomes increasingly large is
broadly applicable. As summarized by Liu et al. (2020), typical neural networks with the building blocks of multilayer
perceptrons and convolutional neural networks comply with this property, as long as they end with a linear layer and they
do not have any bottleneck – indeed, this constancy needs the minimum internal width to grow unbounded (Arora et al.,
2019). This includes, for example, residual convolutional neural networks (He et al., 2016). The requirement of a final
linear activation can be circumvented by transferring this activation into the loss function, as we did for the original GAN
formulation in Section 3. This makes our framework encompass a wide range of discriminator architectures.
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Indeed, many building blocks of state-of-the-art discriminators can be studied in this infinite-width regime with a constant
NTK, as highlighted by the exhaustiveness of the Neural Tangents library (Novak et al., 2020). Assumptions about the
used activation functions are mild and include many standard activations such as ReLU, sigmoid and tanh. Beyond fully
connected linear layers and convolutions, NTK constancy also affect typical operations such as self-attention (Hron et al.,
2020), layer normalization and batch normalization (Yang, 2020). This variety of networks affected by the constancy of the
NTK supports the generality of our approach, as it includes powerful discriminator architectures such as BigGAN (Brock
et al., 2019).

We highlight that the NTK of the discriminator remains constant throughout the whole GAN optimization process, and not
only under a fixed generator. Indeed, if it remains constant in-between generator updates, then it also remains constant when
the generator changes. This is because, for a finite training time, the constancy of the NTK solely depends on the network
architecture and initialization, regardless of the training loss which may change in the course of training without affecting
the NTK.

There are nevertheless some limits to the NTK approximation, as we are not aware of works studying the application of the
infinite-width regime to some operations such as spectral normalization, and networks in the regime of a constant NTK
cannot perform feature learning as they are equivalent to kernel methods (Geiger et al., 2020; Yang & Hu, 2021). However,
this framework remains general and constitutes the most advanced attempt at theoretically modeling the discriminator’s
architecture in GANs.

B.2. Loss of the Generator and its Gradient

We highlight in this section the importance of taking into account alternating optimization and discriminator gradients in
the optimization of the generator. Let us focus on an example similar to the one of Arjovsky et al. (2017, Example 1) and
choose as β a single Dirac centered at 0 and as αg = αθ single Dirac centered at xθ = θ (the generator parameters being
the coordinates of the generated point). Let us study for the sake of simplicity the case of LSGAN since it is a recurring
example in this work, but a similar reasoning can be done for other GAN instances.

In the theoretical min-max formulation of GANs considered by Arjovsky et al. (2017), the generator is trained to minimize
the following quantity:

Cf?αθ (αθ) , Ex∼αθ
[
cf?αθ

(x)
]

= f?αθ (xθ)
2
, (137)

where:

f?αθ = arg max
f∈L2( 1

2αθ+ 1
2β)

{
Lαθ (f) , Ex∼αθ

[
af (x)

]
− Ey∼β

[
bf (y)

]}
= arg min
f∈L2( 1

2αθ+ 1
2β)

{(
f?αθ (xθ) + 1

)2

+
(
f?αθ (0)− 1

)2
}
.

(138)

Consequently, f?αθ (0) = 1 and f?αθ (xθ) = −1 when xθ 6= 0, thus in this case:

Cf?αθ (αθ) = 1. (139)

This constancy of the generator loss would make it impossible to be learned by gradient descent, as pointed out by Arjovsky
et al. (2017).

However, the setting does not correspond to the actual optimization process used in practice and represented by Equation (3).
We do have ∇θCf?αθ (αθ) = 0 when xθ 6= 0, but the generator never uses this gradient in standard GAN optimization.
Indeed, this gradient takes into account the dependency of the optimal discriminator f?αθ in the generator parameters, since
the optimal discriminator depends on the generated distribution. Yet, in practice and with few exceptions such as Unrolled
GANs (Metz et al., 2017) and as done in Equation (3), this dependency is ignored when computing the gradient of the
generator, because of the alternating optimization setting – where the discriminator is trained in-between generator’s updates.
Therefore, despite being constant on the training data, this loss can yield non-zero gradients to the generator. However, this
requires the gradient of f?αθ to be defined, which is the issue addressed in Section 3.2.
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B.3. Differentiability of the Bias-Free ReLU Kernel

Remark 1 contradicts the results of Bietti & Mairal (2019) on the regularity of the NTK of a bias-free ReLU MLP with one
hidden layer, which can be expressed as follows (up to a constant scaling the matrix multiplication in linear layers):

k(x, y) = ‖x‖‖y‖κ
(
〈x, y〉
‖x‖‖y‖

)
, (140)

where:
κ: [0, 1]→ R

u 7→ 2

π
u(π − arccosu) +

1

π

√
1− u2

. (141)

More particularly, Bietti & Mairal (2019, Proposition 3) claim that k(·, y) is not Lipschitz around y for all y in the unit
sphere. By following their proof, it amounts to prove that k(·, y) is not Lipschitz around y for all y in any centered sphere.
We highlight that this also contradicts empirical evidence, as we did observe the Lipschitzness of such NTK in practice
using the Neural Tangents library (Novak et al., 2020).

We believe that the mistake in the proof of Bietti & Mairal (2019) lies in the confusion between functions κ and k0:x, y 7→
κ
(
〈x,y〉
‖x‖‖y‖

)
, which have different geometries. Their proof relies on the fact that κ is indeed non-Lipschitz in the neighborhood

of u = 1. However, this does not imply that k0 is not Lipschitz, or not derivable. We can prove that it is actually at least
locally Lipschitz.

Indeed, let us compute the following derivative for x 6= y ∈ Rn \ {0}:

∂k0(x, y)

∂x
=
y‖x‖ − x

‖x‖ 〈x, y〉

‖x‖2‖y‖
κ′(u) =

1

‖x‖‖y‖

(
y − 〈x, y〉 x

‖x‖2

)
κ′(u), (142)

where u = 〈x,y〉
‖x‖‖y‖ and:

π · κ′(u) =
u√

1− u2
+ 2(π − arccosu). (143)

Note that κ′(u) ∼u→1−
πu√
1−u2

∼u→1−
π√

2
√

1−u . Therefore:

π√
2
· ∂k0(x, y)

∂x
∼x→y

1

‖y‖2

(
y − 〈x, y〉 x

‖x‖2

) √
‖x‖‖y‖√

‖x‖‖y‖ − 〈x, y〉

∼x→y
‖x‖2y − 〈x, y〉x

‖y‖3
√
‖x‖‖y‖ − 〈x, y〉

∼x→y
‖y‖2 − 〈x, y〉

‖y‖3
√
‖y‖2 − 〈x, y〉

y −−−→
x→y

0,

(144)

which proves that k0 is actually Lipschitz around points (y, y), as well as differentiable, and confirms our remark.

B.4. Integral Operator and Instance Noise

Instance noise (Sønderby et al., 2017) consists in adding random Gaussian noise to the input and target samples. This amounts
to convolving the data distributions with a Gaussian density, which will have the effect of smoothing the discriminator. In
the following, for the case of IPM losses, we link instance noise with our framework, showing that smoothing of the data
distributions already occurs via the NTK kernel, stemming from the fact that the discriminator is a neural network trained
with gradient descent.

More specifically, it can be shown that if k is an RBF kernel, the optimal discriminators in both case are the same. This is
based on the fact that the density of a convolution of an empirical measure µ̂ = 1

N

∑
i δxi , where δz is the Dirac distribution

centered on z, and a Gaussian density k̃ with associated RBF kernel k can be written as k̃ ∗ µ̂ = 1
N

∑
i k(xi, ·).
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Let us consider the following regularized discriminator optimization problem in L2(R) smoothed from L2(Ω) with instance
noise, i.e. convolving α̂ and β̂ with k̃.

sup
f∈L2(R)

{
Lk̃α̂(f) , Ex∼k̃∗α̂

[
f(x)

]
− Ey∼k̃∗β̂

[
f(y)

]
− λ‖f‖2L2

}
(145)

The optimum f IN can be found by taking the gradient:

∇f
(
Lk̃α̂
(
f IN
)
− λ
∥∥∥f IN

∥∥∥2

L2

)
= 0 ⇔ f IN =

1

2λ

(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (146)

If we now study the resolution of the optimization problem in Hγ̂k as in Section 5.1 with f0 = 0, we find the following
discriminator:

ft = t
(
Ex∼α̂

[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

])
= t
(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (147)

Therefore, we have that f IN ∝ ft, i.e. instance noise and regularization by neural networks obtain the same smoothed
solution.

This analysis was done using the example of an RBF kernel, but it also holds for stationary kernels, i.e. k(x, y) = k̃(x− y),
which can be used to convolve measures. We remind that this is relevant, given that NTKs are stationary over spheres (Jacot
et al., 2018; Yang & Salman, 2019), around where data can be concentrated in high dimensions.

B.5. Positive Definite NTKs

Optimality results in the theory of NTKs usually rely on the assumption that the considered NTK k is positive definite over
the training dataset γ̂ (Jacot et al., 2018; Zhang et al., 2020). This property offers several theoretical advantages.

Indeed, this gives sufficient representational power to its RKHS to include the optimal solution over γ̂. Moreover, this
positive definiteness property equates for finite datasets to the invertibility of the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (148)

that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. From this, one can retrieve the expression of
f ∈ Hγ̂k from its restriction f |supp γ̂ to supp γ̂ in the following way:

f = Tk,γ̂ ◦ Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
, (149)

as shown in Lemma 9. Finally, as shown by Jacot et al. (2018) and in Appendix A.5, this makes the discriminator loss
function strictly increase during training.

One may wonder whether this assumption is reasonable for NTKs. Jacot et al. (2018) proved that it indeed holds for NTKs
of non-shallow MLPs with non-polynomial activations if data is supported on the unit sphere, supported by the fact that the
NTK is stationary over the unit sphere. Others, such as Fan & Wang (2020), have observed positive definiteness of the NTK
subject to specific assumptions on the networks and data. We are not aware of more general results of this kind. However,
one may conjecture that, at least for specific kinds of networks, NTKs are positive definite for any training data.

Indeed, besides global convergence results (Allen-Zhu et al., 2019), prior work indicates that MLPs are universal approxima-
tors (Hornik et al., 1989; Leshno et al., 1993). This property can be linked in our context to universal kernels (Steinwart,
2001), which are guaranteed to be positive definite over any training data (Sriperumbudur et al., 2011). Universality is linked
to the density of the kernel RKHS in the space of continuous functions. In the case of NTKs, previously cited approximation
properties can be interpreted as signs of expressive RKHSs, and thus support the hypothesis of universal NTKs. Furthermore,
beyond positive definiteness, universal kernels are also characteristic (Sriperumbudur et al., 2011), which is interesting
when they are used to compute MMDs, as we do in Section 5.1. Note that for the standard case of ReLU MLPs, Ji et al.
(2020) showed universal approximation results in the infinite-width regime, and works such as the one of Chen & Xu (2021)
observed that their RKHS is close to the one of the Laplace kernel, which is positive definite.
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Bias-free ReLU NTKs are not characteristic. As already noted by Leshno et al. (1993), the presence of bias is important
when it comes to representational power of MLPs. We can retrieve this observation in our framework. In the case of a ReLU
shallow network with one hidden layer and without bias, Bietti & Mairal (2019) determine its associated NTK as follows
(up to a constant scaling the matrix multiplication in linear layers):

k(x, y) = ‖x‖‖y‖κ
(
〈x, y〉
‖x‖‖y‖

)
, (150)

with in particular k(x, 0) = 0 for all x ∈ Ω; suppose that 0 ∈ Ω. This expression of the kernel implies that k is not positive
definite for all datasets: take for example x = 0 and y ∈ Ω \ {0}; then the Gram matrix of k has a null row, hence k
is not strictly positive definite over {x, y}. Another consequence is that k is not characteristic. Indeed, take probability
distributions µ = δ y

2
and ν = 1

2

(
δx + δy

)
with δz being the Dirac distribution centered on z ∈ Ω, and where x = 0 and

y ∈ Ω \ {0}. Then:

Ez∼µk(z, ·) = k

(
1

2
y, ·
)

=
1

2
k(y, ·) =

1

2

(
k(y, ·) + k(x, ·)

)
= Ez∼νk(z, ·), (151)

i.e., kernel embeddings of µ and ν 6= µ are identical, making k not characteristic by definition.

B.6. Societal Impact

As our work is mainly theoretical and does not deal with real-world data, it does not have direct broader negative impact on
the society. However, the practical perspectives that it opens constitute an object of interrogation. Indeed, the developments
of performant generative models can be the source of harmful manipulation (Tolosana et al., 2020) and reproduction of
existing biases in databases (Jain et al., 2020), especially as GANs are still misunderstood. While such negative effects
should be considered, attempts such as ours at explaining generative models might also lead to ways to mitigate potential
harms by paving the way for more principled GAN models.

C. GAN(TK)2 and Further Empirical Analyses
We present in this section additional experimental results that complement and explain some of the results already exposed
in Section 6. All these experiments were conducted using the proposed general toolkit GAN(TK)2.

We focus in this article on particular experiments for the sake of clarity and as an illustration of the potential of analysis of
our framework, but GAN(TK)2 is a general-purpose toolkit centered around the infinite-width of the discriminator and could
be leveraged for an even more extensive empirical analysis. We specifically focus on the IPM and LSGAN losses for the
discriminator since they are the two losses for which we know the analytic behavior of the discriminator in the infinite-width
limit, but other losses can be studied as well in GAN(TK)2. We leave a large-scale empirical study of our framework, which
is out of the scope of this paper, for future work.

C.1. Two-Dimensional Datasets

We provide in Table 1 numerical results corresponding to the experiments described in Section 6 on the 8 Gaussians dataset.

We present additional experimental results on two other two-dimensional problems, Density and AB; see, respectively,
Figures 3 and 4. Numerical results are detailed in Tables 2 and 3. We globally retrieve the same conclusions that we
developed in Section 6 on these datasets with more complex shapes.

C.2. ReLU vs. Sigmoid Activations

We additionally introduce a new baseline for the 8 Gaussians, Density and AB problems, where we replace the ReLU
activation in the discriminator by a sigmoid-like activation σ̃, that we abbreviate to sigmoid in this experimental study for
readability purposes. We choose σ̃ instead of the actual sigmoid σ for computational reasons, since σ̃, contrary to σ, allows
for analytic computations of NTKs in the Neural Tangents library (Novak et al., 2020). σ̃ is defined in the latter using the
error function erf scaled in order to minimize a squared loss with respect to σ over [−5, 5], with the following expression:

σ̃:x 7→ 1

2

(
erf

(
x

2.402 056 353 171 979 6

)
+ 1

)
. (152)
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Figure 3. Generator (l) and target (×) samples for different methods applied to the Density problem. In the background, cf? .
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Figure 4. Initial generator (l) and target (×) samples for the AB problem.

Table 1. Sinkhorn divergence (Feydy et al., 2019, lower is better, similar toW2) averaged over three runs between the final generated
distribution and the target dataset for the 8 Gaussians problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (2.60± 0.06) · 10−2 (9.40± 2.71) · 10−7 (9.70± 1.88) · 10−2 (8.40± 0.02) · 10−2

IPM — (1.21± 0.14) · 10−1 (1.20± 0.60) · 100 (7.40± 1.30) · 10−1

LSGAN (inf.) (4.21± 0.10) · 10−1 (7.56± 0.45) · 10−2 (1.27± 0.01) · 101 (7.35± 0.11) · 100

LSGAN — (3.07± 0.68) · 100 (7.52± 0.01) · 100 (7.41± 0.54) · 100
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Table 2. Sinkhorn divergence averaged over three runs between the final generated distribution and the target dataset for the Density
problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (2.37± 0.32) · 10−3 (3.34± 0.49) · 10−9 (7.34± 0.34) · 10−2 (6.25± 0.31) · 10−3

IPM — (5.02± 1.19) · 10−3 (9.25± 0.30) · 10−2 (3.06± 0.57) · 10−2

LSGAN (inf.) (7.53± 0.59) · 10−3 (1.49± 0.11) · 10−3 (2.80± 0.03) · 10−1 (2.21± 0.01) · 10−1

LSGAN — (1.53± 1.08) · 10−2 (1.64± 0.19) · 10−1 (5.88± 0.80) · 10−2

Table 3. Sinkhorn divergence averaged over three runs between the final generated distribution and the target dataset for the AB problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (4.65± 0.82) · 10−3 (2.64± 2.13) · 10−9 (6.11± 0.19) · 10−3 (5.69± 0.38) · 10−3

IPM — (2.75± 0.20) · 10−3 (3.65± 1.44) · 10−2 (1.25± 0.32) · 10−2

LSGAN (inf.) (1.13± 0.05) · 10−2 (8.63± 2.24) · 10−3 (1.02± 0.40) · 10−1 (1.40± 0.06) · 10−2

LSGAN — (1.32± 1.30) · 10−1 (2.57± 0.73) · 10−2 (8.78± 2.23) · 10−2

(a) RBF kernel: blurry digits on MNIST, prohibitively noisy images on CelebA.

(b) ReLU: sharp digits on MNIST, high-quality images on CelebA.

(c) ReLU (no bias): mostly sharp digits with some artifacts and blurry images on MNIST, blurry and noisy images on
CelebA.

Figure 5. Uncurated samples from the results of the descent of a set of 1024 particles over a subset of 1024 elements of MNIST and
CelebA, starting from a standard Gaussian. Training is done using the IPM loss in the infinite-width kernel setting.
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Results are given in Tables 1 to 3 and an illustration is available in Figure 3. We observe that the sigmoid baseline
is consistently outperformed by the RBF kernel and ReLU activation (with bias) for all regimes and losses. This is in
accordance with common experimental practice, where internal sigmoid activations are found less effective than ReLU
because of the potential activation saturation that they can induce.

We provide a qualitative explanation to this underperformance of sigmoid via our framework in Appendix C.4.

C.3. Qualitative MNIST and CelebA Experiment

An experimental analysis of our framework on complex image datasets is out the scope of our study – we leave it for future
work. Nonetheless, we present an experiment on MNIST (LeCun et al., 1998) and CelebA (Liu et al., 2015) images in a
similar setting as the experiments on two-dimensional point clouds of the previous sections. For each dataset, we make a
point cloud α̂, initialized to a standard Gaussian, move towards a subset of the MNIST dataset following the gradients of the
IPM loss in the infinite-width regime. Qualitative results are presented in Figure 5.

We notice, similarly to the two-dimensional experiments, that the ReLU network with bias outperforms its bias-free
counterpart and a standard RBF kernel in terms of sample quality. The difference between the RBF kernel and ReLU NTK
is even more flagrant in this complex high-dimensional setting, as the RBF kernel is unable to produce accurate samples.

C.4. Visualizing the Gradient Field Induced by the Discriminator

We raise in Sections 4.4 and 5 the open problem of studying the convergence of the generated distribution towards the target
distribution with respect to the gradients of the discriminator. We aim in this section at qualitatively studying these gradients
in a simplified case that could shed some light on the more general setting and explain some of our experimental results.
These gradient fields can be plotted using the provided GAN(TK)2 toolkit.

C.4.1. SETTING

Since we study gradients of the discriminator expressed in Equation (10), we assume that f0 = 0 – for instance, using the
anti-symmetrical initialization Zhang et al. (2020) – in order to ignore residual gradients from the initialization.

By Theorem 1, for any loss and any training time, the discriminator can be expressed as f?α̂ = Tk,γ̂(h0), for some h0 ∈ L2(γ̂).
Thus, there exists h1 ∈ L2(γ̂) such that:

f?α̂ =
∑

x∈supp γ̂

h1(x)k(x, ·). (153)

Consequently,

∇f?α̂ =
∑

x∈supp γ̂

h1(x)∇k(x, ·), ∇cf?α̂ =
∑

x∈supp γ̂

h1(x)∇k(x, ·)c′
(
f?α̂(·)

)
. (154)

Dirac-GAN setting. The latter linear combination of gradients indicates that, by examining gradients of cf?α̂ for pairs of
(x, y) ∈ supp α̂× supp β̂, one could already develop potentially valid intuitions that can hold even when multiple points
are considered. This is especially the case for the IPM loss, as h0, h1 have a simple form: h1(x) = 1 if x ∈ supp α̂ and
h1(y) = −1 if y ∈ supp α̂ (assuming points from α̂ and β̂ are uniformly weighted); moreover, note that c′

(
f?α̂(·)

)
= 1.

Thus, we study here ∇cf?α̂ when α̂ and β̂ are only comprised of one point, i.e. the setting of Dirac GAN (Mescheder et al.,
2018), with α̂ = δx , α̂x and β̂ = δy .

Visualizing high-dimensional inputs. Unfortunately, the gradient field is difficult to visualize when the samples live
in a high-dimensional space. Interestingly, the NTK k(x, y) for any architecture starting with a fully connected layer
only depends on ‖x‖, ‖y‖ and 〈x, y〉 (Yang & Salman, 2019), and therefore all the information of ∇cf?α̂ is contained in
Span{x, y}. From this, we show in Figures 6 and 7 the gradient field ∇cf?α̂ in the two-dimensional space Span{x, y} for
different architectures and losses in the infinite-width regime described in Section 6 and in this section. Figure 6 corresponds
to two-dimensional x, y ∈ R2, and Figure 7 to high-dimensional x, y ∈ R512. Note that in the plots, the gradient field
is symmetric w.r.t. the horizontal axis and for this reason we have restricted the illustration to the case where the second
coordinate is positive.



A Neural Tangent Kernel Perspective of GANs

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
R

B
F

IPM
−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

LSGAN

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
eL

U

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
eL

U
,

n
o

b
ia

s

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
ig

m
oi

d

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

β̂

Figure 6. Gradient field ∇cf?
α̂x

(x) received by a generated sample x ∈ R2 (i.e. α̂ = α̂x = δx) initialized to x0 with respect to its

coordinates in Span{x0, y} where y, marked by a ×, is the target distribution (i.e. β̂ = δy), with ‖y‖ = 1. Arrows correspond to the
movement of x in Span{x0, y} following ∇cf?

α̂x
(x), for different losses and networks; scales are specific for each pair of loss and

network. The ideal case is the convergence of x along this gradient field towards the target y. Note that in the chosen orthonormal
coordinate system, without loss of generality, y has coordinate (1, 0); moreover, the gradient field is symmetrical with respect to the
horizontal axis.
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Figure 7. Same plot as Figure 6 but with underlying points x, y ∈ R512.
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Convergence of the gradient flow. In the last paragraph, we have seen that the gradient field in the Dirac-GAN setting
lives in the two-dimensional Span{x, y}, independently of the dimensionality of x, y. This means that when training the
generated distribution, as in Section 6, the position of the particle x always remains in this two-dimensional space, and
hence (non-)convergence in this setting can be easily checked by studying this gradient field. This is what we do in the
following, for different architectures and losses.

C.4.2. QUALITATIVE ANALYSIS OF THE GRADIENT FIELD

x is far from y. When generated outputs are far away from the target, it is essential that their gradient has a large enough
magnitude in order to pull these points towards the target. The behavior of the gradients for distant points can be observed in
the plots. For ReLU networks, for both losses, the gradients for distant points seem to be well behaved and large enough.
Note that in the IPM case, the magnitude of the gradients is even larger when x is further away from y. This is not the case
for the RBF kernel when the variance parameter is too small, as the magnitude of the gradient becomes prohibitively small.
We highlight that we selected a large variance parameter in order to avoid such a behavior, but diminishing magnitudes can
still be observed. Note that choosing an overly large variance may also have a negative impact on the points that are closer
to the target.

x is close to y. A particularity of the NTK of ReLU discriminators with bias that arises from this study is that the gradients
vanish more slowly when the generated x tends to the target y, compared to NTKs of ReLU without bias and sigmoid
networks, and to the RBF kernel. We hypothesize that this is also another distinguishing feature that helps the generated
distribution to converge more easily to the target distribution, especially when they are not far apart. On the contrary, this
gradient vanishes more rapidly for NTKs of ReLU without bias and sigmoid networks, compared to the RBF kernel. This
can explain the worse performance of such NTKs compared to the RBF kernel in our experiments (see Tables 1 to 3). Note
that this phenomenon is even more pronounced in high-dimensional spaces such as in Figure 7.

x is close to 0. Finally, we highlight gradient vanishing and instabilities around the origin for ReLU networks without bias.
This is related to its differentiability issues at the origin exposed in Section 4.3, and to its lack of representational power
discussed in Appendix B.5. This can also be retrieved on larger scale experiments of Figures 2 and 3 where the origin is the
source of instabilities in the descent.

Sigmoid network. It is also possible to evaluate the properties of the discriminator’s gradient for architectures that are
not used in practice, such as networks with the sigmoid activation. Figures 2 and 3 provide a clear explanation: as stated
above, the magnitudes of the gradients become too small when x→ y, and heavily depend on the direction from which x
approaches y. Ideally, the induced gradient flow should be insensitive to the direction in order for the convergence to be
reliable and robust, which seems to be the case for ReLU networks.

D. Experimental Details
We detail in this section the experimental parameters needed to reproduce our experiments.

D.1. GAN(TK)2 Specifications and Computing Resources

GAN(TK)2 is implemented in Python (tested on versions 3.8.1 and 3.9.2) and based on JAX (Bradbury et al., 2018)
for tensor computations and Neural Tangents (Novak et al., 2020) for NTKs. We refer to the code released at https:
//github.com/emited/gantk2 for detailed specifications and instructions.

All experiments presented in this paper were run on Nvidia GPUs (Nvidia Titan RTX – 24GB of VRAM – with CUDA 11.2
as well as Nvidia Titan V – 12GB – and Nvidia GeForce RTX 2080 Ti – 11 GB – with CUDA 10.2). All two-dimensional
experiments require only a few minutes of computations on a single GPU. Experiments on MNIST and CelebA were run
using simultaneously four GPUs for parallel computations, for at most a couple of hours.

D.2. Datasets

8 Gaussians. The target distribution is composed of 8 Gaussians with their means being evenly distributed on the centered
sphere of radius 5, and each with a standard deviation of 0.5. The input fake distribution is drawn at initialization from a
standard normal distribution N (0, 1). We sample in our experiments 500 points from each distribution at each run to build

https://github.com/emited/gantk2
https://github.com/emited/gantk2
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α̂ and β̂.

AB and Density. These two datasets are taken from the Geomloss library examples (Feydy et al., 2019)1 and are distributed
under the MIT license. To sample a point from a distribution based on these greyscale images files, we sample a pixel
(considered to lie in [−1, 1]2) in the image from a distribution where each pixel probability is proportional to the darkness of
this pixel, and then apply a Gaussian noise centered at the chosen pixel coordinates with a standard deviation equal to the
inverse of the image size. We sample in our experiments 500 points from each distribution at each run to build α̂ and β̂.

MNIST and CelebA. We preprocess each MNIST image (LeCun et al., 1998) by extending it from 28 × 28 frames
to 32 × 32 frames (by padding it with black pixels). CelebA images (Liu et al., 2015) are downsampled from a size of
178× 218 to 32× 39 and then center-cropped to 32× 32.

For both datasets, we normalize pixels in the [−1, 1] range. For our experiments, we consider a subset of 1024 elements of
each dataset, which are randomly sampled for each run.

D.3. Parameters

Sinkhorn divergence. The Sinkhorn divergence is computed using the Geomloss library (Feydy et al., 2019), with a blur
parameter of 0.001 and a scaling of 0.95, making it close to the WassersteinW2 distance.

RBF kernel. The RBF kernel used in our experiments is the following:

k(x, y) = e
‖x−y‖2

2n , (155)

where n is the dimension of x and y, i.e. the dimension of the data.

Architecture. We used for the neural networks of our experiments the standard NTK paramaterization (Jacot et al., 2018),
with a scaling factor of 1 for matrix multiplications and, when bias in enabled, a multiplicative constant of 1 for biases
(except for sigmoid where this bias factor is lowered to 0.2 to avoid saturating the sigmoid, and for CelebA where it is equal
to 4). All considered networks are composed of 3 hidden layers and end with a linear layer. In the finite-width case, the
width of these hidden layers is 128. We additionally use antisymmetrical initialization (Zhang et al., 2020), except for the
finite-width LSGAN loss.

Discriminator optimization. Discriminators in the finite-width regime are trained using full-batch gradient descent
without momentum, with one step per update to the distributions and the following learning rates ε:

• for the IPM loss: ε = 0.01;

• for the IPM loss with reset and LSGAN: ε = 0.1.

In the infinite-width limit, we use the analytic expression derived in Section 5 with training time τ = 1 (except for MNIST
and CelebA where τ = 1000) and f0 = 0 (through the initialization of Zhang et al. (2020)) to avoid the computational cost
of accumulating discriminators’ analytic expressions across the generator’s optimization steps.

Point cloud descent. The multiplicative constant η over the gradient applied to each datapoint for two-dimensional
problems is chosen as follows:

• for the IPM loss in the infinite-width regime: η = 1000;

• for the IPM loss in the finite-width regime: η = 100;

• for the IPM loss in the finite-width regime and discriminator reset: η = 1000;

1They can be downloaded at https://github.com/jeanfeydy/geomloss/tree/main/geomloss/examples/
optimal_transport/data: AB corresponds to files A.png (source) and B.png (target), and Density corresponds to files
density_a.png (source) and density_a.png (target).

https://github.com/jeanfeydy/geomloss/tree/main/geomloss/examples/optimal_transport/data
https://github.com/jeanfeydy/geomloss/tree/main/geomloss/examples/optimal_transport/data
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• for LSGAN in the infinite-width regime: η = 1000;

• for LSGAN in the finite-width regime: η = 1.

We multiply η by 1000 when using sigmoid activations, because of the low magnitude of the gradients it provides. We
choose for MNIST η = 100.

Training is performed for the following number of iterations:

• for 8 Gaussians: 20 000;

• for Density and AB: 10 000;

• for MNIST: 50 000.
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