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Towards a seamless experimental protocol for human arm
impedance estimation in an interactive dynamic task

Vincent Fortineau1,2, Maria Makarov1, Pedro Rodriguez-Ayerbe1, Isabelle A. Siegler2

Abstract—The estimation of the human endpoint impedance
interacting with a physical environment provides modelling
insights both for the field of human movement science and for
the design of innovative controllers for collaborative robotics
based on physical human-robot interaction. Most of the ex-
isting human impedance estimation methods described in the
literature rely on controlled environments closer to a laboratory
than to an industrial setting. In this paper, a force perturbation
method is proposed without any specific requirements on neither
the force nor the position trajectories and without additional
sensors placed on the human. The method is illustrated through
an experimental study on a benchmark interaction task. The
task was selected to be sufficiently variable for preventing the
use of average trajectories and the perturbations used for the
estimations are sufficiently low amplitude and short to not
deteriorate the human performance in the task. The obtained
impedance model parameters are in adequacy with the ones
found in the literature, suggesting the validity of the proposed
approach. The low constraints on the experimental settings
make it applicable even out of the lab, for example, in human-
robot collaboration in manufacturing environments, to adjust
the robot behaviour to changes in the state of the operator
(fatigue, stress) or to adjust to a variety of human operators
with different interaction strategies.

I. INTRODUCTION

Humans are capable of tailoring their limbs’ dynamic prop-
erties [1] to improve the performance during the exploration
of a new task [2] and achieve stable behaviour with a wide
range of environments. Understanding and reproducing some
properties of the humans’ interactions during various tasks is
thus relevant for the design of innovative robot control.

The mechanical impedance of human limbs has been
studied for decades under the control prism [3] and is still
an active research topic [4], [5]. The notion of impedance
relates kinematics to forces, allowing the modelling of human
movements during physical interactions. Elementary models,
such as mass (M or I for inertia) - spring (K) - damper
(B, hence the acronym KBM or KBI) have been shown to
approach human behaviour [1].

The mechanical impedance cannot be directly measured
and requires perturbing the limbs for estimations. Thus, the
environment often has to be very well mastered to identify
the impedance parameters. Two configurations can be easily
distinguished: on one hand, static or isometric tasks [4], [6],
where the unperturbed pose is well known and on the other
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2 CIAMS, Université Paris-Saclay, 91405, Orsay, France, & Université
d’Orléans, 45067, Orléans, France

hand, dynamic tasks, where ongoing movements make the
estimation of the unperturbed trajectory more complicated.

The choice of the perturbations nature, either force or
position, is often dictated by kinematics knowledge. When the
trajectory can be estimated online [7], position perturbations
enable stiffness identification alone. The introduction of
force perturbations requires prior information on neither
the movement nor the force shape. In [8], hand impedance
estimations were conducted among welders, which brightly
allowed the knowledge of the unperturbed trajectories. In
other situations where the trajectory could not be perfectly
known beforehand [7], [9], [10], the movement’s repeatability
allowed imperfect but sufficient knowledge on the unperturbed
trajectories.

Another family of methods proposed in the literature relies
on measurements of muscle activity using electromyographic
sensors. Impedance estimations based on such measurements
are reported in an isometric task [11] or right after its
completion [12]. Dynamic tasks make it more complicated to
differentiate impedance from the task muscles activation.

In previous work at the intersection of robotics, control
and human movement sciences [13], the authors studied the
human central nervous system during cyclic movements in
a simulated benchmark task. They were able to reproduce
human-like performances using a Central Pattern Generator
based control structure. An experimental test-bed was designed
for impedance measurements using interactive robotics [14].

The present paper aims to complete previous work by
adding an impedance model of the human arm during the
task. Dynamic considerations should allow finer modelling of
human behaviour during a cyclic task, notably by observing
possible impedance variations within a cycle or across
individuals with different strategies. Such an examination
provides insights for the human-robot collaboration and
teleoperation as well as for control strategies design for robot
interacting with various physical environments.

This paper proposes to identify the human endpoint
impedance through an interactive robot [14], in conditions
where both the restitution force and position (the differential
between unperturbed and perturbed) can neither be measured,
nor estimated with sufficient precision from average trajecto-
ries only. The new optimisation-based estimation of the un-
perturbed force trajectory proposed in this paper significantly
improves the impedance parameter estimation. Experimental
validation shows that the identified parameters are consistent
with previously documented values (Section V-B3). Thus,
the proposed estimation method allows less constrained
experimental conditions and can be more easily replicated



outside a laboratory for impedance estimation in a dynamic
task.

The experimental test-bed is outlined in Section II, with the
experimental data sets conditions. The issue of force trajectory
estimation raised in [14] is then addressed in Section III.
The impedance identification methodology is described in
Section IV. Finally, the results using this implementation are
presented in Section V.

II. EXPERIMENT

The experiment is briefly recalled in this section. For further
details, please confer to previous work, [13], [14] for the ball
bouncing task and [14] for the interactive robot control and a
first approach of impedance estimation based on spline virtual
trajectories.

Fig. 1: Experimental set-up

A. Interactive rhythmic task

A user is manipulating an admittance controlled robot,
manoeuvring its endpoint as a physical interface, to control
a paddle simulated in a virtual environment (see Fig. 1). A
5-DOF KUKATM youBot arm is used. The motion of the
robot arm is restricted to the vertical plane using the control
described in [14] and is performed using three actuated joints.
To yield a rhythmic dynamic behaviour, the user has to move
the paddle to bounce a virtual ball subject to gravity and
moving along the vertical axis, to a target height simulated
in the digital environment. When the ball hits the paddle,
force feedback fi is provided by the robot to the human to
simulate the impact of the ball on the paddle [15]. The motion
generated can be compared to industrial rhythmic tasks such
as stamping, punching or extended to planar movement such
as sanding.

To allow impedance estimation during the task, pulse
force perturbations are introduced using the robot, in both
directions of the uni-dimensional task. Both timing and
direction are stochastic. These perturbations are generated
at the motor torque level and are consequently filtered by
the robot dynamics before reaching the endpoint. In order
to have a negligible influence on the task and approach a
seamless methodology, the perturbations force effects have
a duration under 60ms and a rather low amplitude, below

5N. Perturbations are pseudo-randomly introduced at three
different phases of the cyclic behaviour. A cycle is defined
here as the time frame between two consecutive ball impacts
on the paddle. In the considered task, the mean cycle time
is of 1.18 s. According to the onset time in the cycle, the
three perturbations categories are denoted as shown on Fig. 2
c1, c2, c3.

Fig. 2: Time normalised cycles of the data set d3; perturbations are indicated
with circles, the dotted lines represent the average cycles while the coloured
areas represent 1 and 3 standard deviations from the average cycle. The time
normalisation was done using interpolations on the average cycle duration.

B. Data sets

Both the endpoint position and interaction force between
the human and robot arms are acquired with external sensors
to obtain unbiased data. Interaction force is measured using an
ATITM mini45 force sensor also used in the robot admittance
control and the endpoint position is measured using an
OptitrackTM V120:Trio motion capture system. For more
information, please refer to [14].

A single user conducted a total of 28 physical interactions
of approximately 5min each with the experimental test-bed,
without random perturbations. Half of those experiments (data
set d1) included force feedback for ball impacts (Section II-A).
The other half (d2) included no force feedback on impacts.

A third data set, d3, was collected by the same user. During
a total of 7 manipulations of less than 2min on average, 165
perturbed trajectories were recorded and classified according
to the onset time of the force perturbation in the cycle
(Section II-B). Eight of those perturbed trajectories could not
be clearly classified because they occurred in unsteady cycles
and were discarded. The distribution of onset time of the
force perturbation is presented in Fig. 2. The three categories
c1, c2 and c3 are not exactly equally represented since their
generation was pseudo-random, they have respectively 60
(+28/-32), 51 (+25/-26) and 46 (+29/-17) elements each.
Each of these three categories contains positive and negative
perturbations (numbers indicated previously in parentheses).

III. VIRTUAL TRAJECTORIES ESTIMATION

This section depicts the new methodology proposed to
estimate unperturbed trajectories, previously called virtual
trajectories (VT) in [14].

Most impedance estimation methods rely on the fact that
deviations δf (force) and δx (position) from VTs (see



Section IV for the impedance model relating motion to
restitution force) can be introduced either by force or position
perturbations. At least one is by essence unknown and needs
to be reconstructed, while the other one can be perfectly
mastered when the perturbation system allows it. In the
literature, the averaged previous unperturbed trajectories were
used in [9], with the assumption of sufficient reproducibility in
the movements. A prediction algorithm with an unbiased error
estimation, smaller than 1 cm after 200ms, was proposed in
[7]. We could not reach better result than those with cubic
splines [14] while replicating those methods, that were not
designed for force trajectories with high variability, as is the
case for the benchmark task considered in this study. The
variability of position and force profiles is illustrated in Fig. 2.

A. Preliminary remarks for signal analysis

The estimation of the position and force VTs is first
validated using the unperturbed data set d2 (Section II-B).
The position VT was well approximated with cubic splines
in [14]. Accordingly, this part focuses on force trajectories.

1) Temporal analysis: As seen from Fig. 3, the force signals
shape varies significantly across cycles, even in the absence of
perturbations. While the positions follow roughly a sinusoidal
profile (Fig. 2a), forces (Fig. 2b) are affected by higher
frequency oscillations inside the cycle. These oscillations
should not be considered as perturbations, and their origin
can be related to the human-robot physical interaction and
the admittance control tuning (while the stability of this
control was experimentally verified, strict passivity was not
ensured). This situation is not exceptional, all the more if
several human subjects operate the same robot and employ
different interaction patterns. These intra-cycle oscillations
can not be simply filtered out and should be taken into account
for an efficient VT estimation.
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Fig. 3: Two examples of force trajectory estimations, with the measured
unperturbed force (solid blue), the simulated perturbations (dashed orange)
and estimated unperturbed force (green). Figure (a) depicts a successful
estimation, while figure (b) shows a failed estimation that leads to an
underestimated restitution force with oscillations.

2) Frequency analysis: In the Fourier transform of the data
sets d1 and d2, the main frequency is observed around 0.9Hz,
that is the frequency imposed by the ball bouncing task. While
looking at the spectral analysis of both case scenario (with
and without force feedback), the main differences occur after
5Hz in both position and force signals. Those differences
are more pronounced in the force spectral density, since

the perturbations have more impacts on the force trajectory.
Therefore, it can be deduced that most of the perturbed
behaviour dynamics modify the trajectories, both in force
and position, within a window of 200ms. It also is worth
noticing that the force spectral density is larger, in a broader
frequency band than the position, confirming that this signal
is less filtered and richer in frequency content.

B. Force virtual trajectory estimation

The estimation of the virtual force using cubic spline
interpolations [14] raised the issue of sensitivity to the landing
point. Indeed, as advanced in Section III-A2, the force signal
has higher power intensities, notably in higher frequencies.
This makes the application of spline interpolation less reliable
than for the position. In [10], the cyclic patterns of previous
unperturbed data were fitted to a sinusoidal expression to
predict the virtual position. A sum of sines is proposed to
approach the virtual force in an offline resolution in a similar
spirit. The general form is given in (1), with n the number of
sines; Ai, fi and φi the parameters of each sine. a and b the
linear components, and l a boolean. Hereinafter, this general
form is adapted to the considered case through optimisations,
and statistical analysis is performed.

fz(t) = l(at+ b) +

n∑
i=1

Ai sin(2πfi + φi) (1)

1) Optimisation: From (1), the tested subset of func-
tions corresponds to 2 ≤ n ≤ 5, which amounts to a
total of 8 possible combinations with l = 0 or 1. To
identify the parameters of these functions, an optimisation
problem is defined to minimise the nonlinear quadratic
error, minx ||f(x = {Ai, fi, φi, a, b})||22, with a Levenberg-
Marquardt algorithm. Thereagainst [7], [10], the previous
unperturbed cycle is not used to solve the VT, but only data
within a cycle shortly before and after the perturbation; this
is only possible since the estimation is proceeded offline (see
Fig. 3). A chunk of the signal is selected with a masked
window, corresponding to the perturbed force. The masked
interval is chosen to be 100ms long and will not be used to
minimise the quadratic errors. 40ms before the perturbation
and 110ms after the mask are used for the optimisation
definition, as shown in Fig. 3.

This optimal problem is sensitive to its initialisation.
Therefore, two options are put forward using d2: i) for each
of the 14 sessions, the optimisation for the first cycle in
the session is performed with 250 starting points and the
parameters obtained from this optimisation are then used as
initial values for the next cycles, ii) 50 starting points are
used for every cycle.

Ai (N) fi (Hz) φi (rad s−1) a (Ns−1) b (N)
bl 0 0 −pi/2 -100 -100
x0 1 0.9(2i− 1) 0 1e-3 1e-3
bu 10 10 pi/2 100 100

TABLE I: Lower (bl) and upper (bu) boundaries for the random initial
starting points, and first manually fed initial condition (x0)



2) Evaluation: In order to evaluate the proposed method,
the estimated VTs need to be compared to a ground truth,
unavailable in perturbed measurements. To that purpose,
the sessions d2 conducted without perturbations nor force
feedback described in Section III-A are used. A total of 3144
evaluations are performed on the rhythmic force trajectories.
If the optimised parameters are capable of approximating
well the 100ms masked tmask as well as the next 100ms
tnext, then we consider that this methodology is capable of
estimating a sufficient portion of the virtual force trajectory,
for the impedance estimation, as explained in Section IV.

The comparison between the different models is then done
using the Akaike criterion (AIC) to favour the accuracy
of the model and penalise the number of parameters and,
therefore, potential overfitting. The model with three sines
(n = 3), no linear components (l = 0) and systematic
multi-starts (option ii) reached the lowest AIC value and
was therefore retained. This model has an average adjusted
coefficient of determination (R2

adj) of 91.0%± 10.0% on
tmask + tnext interval and 95.1%± 5.3% on tmask interval,
after removing outliers outside five scaled median absolute
deviations (sMAD). The distribution of the errors is Gaussian-
like centred close to zero, and most of the errors occurred in
the interval tmask.

IV. IMPEDANCE IDENTIFICATION METHODOLOGY

This section describes the methodology proposed for the
identification of the impedance parameters.

This paper does not intend to differentiate the contribution
of reflexes from the intrinsic properties of the human arm,
like it was done in [16], but rather observe the arm’s
endpoint behaviour along the uni-dimensional task. A simple
viscoelastic 2nd order model of impedance is used (2), in a
comparable manner as [8], with M , B and K ∈ Rnc×nc ,
respectively the matrices of mass, damping and stiffness in
the nc Cartesians dimensions. For the studied uni-dimensional
ball bouncing task, only the components along the vertical z
axis are considered, nc = 1.

δf = Mδẍ+Bδẋ+Kδx (2)

A. Auto Regressive model

1) Delay: Once the VTs have been computed from ex-
perimental data (see Section III), the differential estimated
behaviour δfz and δxz can be exposed. Fig. 4 shows isolated
perturbed behaviour of those trajectories. As expected from
Section II-A, the main dynamics of the force perturbation
happens in the first 60ms, with a maximum reached around
33ms. There is an apparent latency δt to notice in the
positioning behaviour compared to the force differential. The
figure does not allow an accurate evaluation of that delay; it
can solely be bounded safely between 5 and 15ms. This delay
is studied in Section V-A. A possible origin would be that
the motion capture system, used for the position acquisition,
has a sampling rate of 8.3ms, while position measurements
were next interpolated at 1 kHz. A delay of about 8ms can
therefore be expected.
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Fig. 4: Isolated typical effects of the perturbations on both the position and
force. The average behaviours are shown with dotted lines, while the coloured
areas represent the standard deviation. Positive (green) and negative (orange)
perturbations are differentiated by their colour.

2) Identification model: The following discrete-time dif-
ference equation is considered for the identification of the
second-order system (2) sampled with a zero-order hold and
taking into account the previously mentioned pure delay:

(1 + a1q
−1 + a0q

−2)δxz[Tk] = (b1 + b0q
−1)δfz(Tk − δt) + e(Tk)

(3)
with q the delay operator, ai and bj the model coefficients
related to K, B and M , δt a pure delay and e white noise.
The time window used for the identification is discussed in
Section V-B1.

The eigenvalues of the discrete-time model (2) z1,2 are
related to the ones of the model (3) z1,2 = λ1,2 via
eλ1,2T = exp(0.5T (−B±

√
B2 + 4MK)/M) = 0.5(−a1±√

a21 − 4a0), with T the sampling time.
The stiffness parameter of (2) corresponds to the static gain

and thus from (3), K = (1 + a1 + a0)/(b1 + b0).
Identifying the impedance parameters K, B and M using

this ARX model appears to be more numerically robust than
with a straight temporal least square identification technique
based on velocities and accelerations. Indeed, this way, the
kinematic derivatives are not required, either using sensors or
using numerical derivation.

B. Model evaluation

1) Simulation: A simulation was used to validate both
the presented VT estimation and impedance parameters
identification methods. In an over-simplistic spirit, the model
for the arm movements (trajectory control) was assumed to be
the same as the one for the impedance behaviour (disturbance
rejection control). For the sake of veracity, empirical force
data was injected into the arm model. Force perturbations
of 5N amplitude were generated with a second-order filter
of 70ms pseudo-period to resemble the experimental ones.
Those perturbations were injected in an impedance model
with known parameters and summed to the simulated arm
movement. For simulated impedance behaviours given in
Table II, conducted on 104 estimations, an average R2

adj

of 99%± 1% was reached to reconstruct the position with
the identified parameters after removing outliers (5 sMAD).
The stiffness was the parameter with the highest volatility,
therefore to abide by the increase in abnormal data, the
threshold was reduced from five to the usual three sMAD.

It can be noticed that with perfect knowledge of the VT, the
parameters were estimated with relative errors of about 0.05%,
which means that the estimation errors mainly originate from
the errors of VT estimation.



K̂1 B̂1 M̂1 K̂2 B̂2 M̂2

mean 258Nm−1 12.5N sm−1 523 g 378Nm−1 15.9N sm−1 487 g

std(1) 116Nm−1 6.81N sm−1 110 g 166Nm−1 5.89N sm−1 63 g

re(2) 29% 25% 5% 5.4% 6.0% 2.5%

exact(3) 200Nm−1 10.0N sm−1 500 g 400Nm−1 15.0N sm−1 500 g
(1) standard deviation, (2) relative mean error, (3) actual simulated parameter values

TABLE II: Parameters estimation in simulation.

V. RESULTS

This section presents the results obtained using the ex-
perimental protocol previously described in [14], with force
feedback and controlled timing of force perturbations. The
data set d3, described in Section II-B, is used. Variance
analysis (ANOVA) is conducted with a threshold fixed at
5% for significance levels. Both the degrees of freedom and
the F value will be indicated in parenthesis (DOF, F) for the
ANOVAs.

A. Delay

The delay δt unveiled in Section IV-A1 was determined by
running several estimations with varying delay. To evaluate
the quality of estimated parameters, the measured position was
compared to its reconstruction using the identified parameters
and the estimated input force. A one-way ANOVA showed
a significant main effect of the delay on R2

adj (10, 14.75).
The highest adjusted coefficient of determination reached a
score of 95.1%± 5.5% for 12ms (5 sMAD); this delay is
therefore used for the impedance estimations. Although it is
important to stress that a posthoc analysis (Tukey’s HSD)
revealed that no significant differences were observed between
the 12ms delay and delays comprised between 8ms to 14ms.

B. Impedance parameters

1) Time window: As mentioned in [8], voluntary reactions
need to be discarded because linear impedance models cannot
correctly model them. Voluntary reactions can be observed as
soon as 100ms after a perturbation [17]. Yet, at a 1 kHz rate,
[8] found that using only 100ms of data after the perturbation
did not bring satisfying results. Therefore, they assumed that
voluntary actions were not dominant in the first 200ms and
used that time window for the evaluation. To confirm that
observation, impedance estimations were conducted with a
data range varying from 50ms to 200ms.

Fig. 5 shows the average estimated stiffness, damping and
mass values as functions of the estimation time window
length. Thoses average values no longer vary starting from
approximately 150ms estimation time windows. However, the
standard deviation of each of the parameter seems to reach
a steady-state before, for about 80ms, without significant
reductions after that milestone. At the final stage, for 200ms,
the stiffness still has a standard deviation that represents
44.8% of its average value, the damping 34.2% and the
mass 42.9%. This variability might be explained by the non-
differentiation of the different perturbation categories. This
result tends to show that an identification on a time window
of 150ms at 1 kHz might be enough. The paper will study
both the identified parameters using 150ms (subscript i) and
200ms (subscript ii) to carry this investigation.
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Fig. 5: Influence of the number of samples used for the ARX identification,
the blue dotted line represents the average, and the light blue area represents
one standard deviation from the average. The orange dotted lines show the
5% boundaries of the final values.

2) Outliers: The impedance estimations were separated
into several groups according to the cyclic phase and the
perturbation direction to isolate possible sources of variability.
For both identifications (i, ii), most of the outliers happened
in a single class c2+ (see Fig. 6). Among the 157 classified
recordings, a total of 14 values were not considered (8.9%).
Similar results were found for the identification i, but with a
total of 17 outliers, which represent 10.8% of the data.
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Fig. 6: The bar stacked chart shows in blue recordings kept for further analysis,
in orange and purple respectively dismissed recordings with R2

adj < 50%
(type 1) and stiffnesses outside 5 sMAD (type 2). The yellow indicates the
outliers that belong to both to type 1 and 2. The others charts indicate the
average and standard deviation for all impedance parameters estimated using
the valid recordings and 200ms (ii).

3) Estimated parameters: In [1], [3], [6], [8], Carte-
sian stiffnesses were found within a magnitude ranging in
40Nm−1 to 700Nm−1, under static and moving configura-
tions, with and without load for the human arm. Moreover [1],
[6], [8] found damping parameters ranging between 8N sm−1

to 44N sm−1 and masses between 0.6 kg to 2.5 kg. The
results presented here (Table III) are within those ranges
but for the estimated masses that are slightly below.



c+1 c−1 c+2 c−2 c+3 c−3 + −
iK 338± 158 319± 151 408± 227 294± 173 308± 133 397± 221 345± 172 343± 193

iB 16.7± 5.2 18.5± 4.2 17.8± 12.0 13.7± 4.4 15.6± 6.6 13.2± 5.4 16.6± 7.8 14.6± 5.2

iM 0.288± 0.061 0.369± 0.235 0.756± 0.788 0.293± 0.071 0.354± 0.123 0.484± 0.393 0.430± 0.441 0.391± 0.291

iR
2
adj 83.5± 4.6 88.7± 3.9 73.6± 14.0 93.0± 2.9 81.6± 9.8 82.6± 6.9 80.3± 10.2 87.6± 6.9

iiK 340± 147 310± 164 387± 177 298± 159 368± 167 411± 241 362± 160 348± 203

iiB 16.3± 4.5 19.1± 4.5 20.7± 7.9 14.2± 4.7 16.2± 4.8 14.5± 6.7 17.4± 5.9 15.4± 5.9

iiM 0.294± 0.057 0.378± 0.259 0.664± 0.581 0.305± 0.088 0.381± 0.147 0.471± 0.253 0.418± 0.334 0.392± 0.222

iiR
2
adj 88.1± 3.6 91.6± 3.0 80.5± 11.4 94.0± 7.5 86.4± 7.0 84.7± 6.8 80.4± 10.7 85.6± 10.4

TABLE III: Results: standard deviation are indicated in as confidence intervals.

4) Variance analysis: Considering the results from the
identifications using 150ms, an analysis of variance showed
a significant effect of the phase on the adjusted coefficients of
determination (5, 15.12). However, a posthoc analysis revealed
that differences between positive and negative perturbations
were only significant within c2. Only one significant difference
could be observed between the classes c1 and c3, for the
specific case of c−1 and positive c+3 . Taking into account
the impedance parameters, neither the mean variations of
stiffness nor damping observed during the different phases
were significant (5, 1.59), (5, 2.37).

Similar results were found for the identifications done
with 200ms. The only noticeable discrepancy was about the
damping values identified, which were found significantly
different (5, 4.34), solely because of group c+2 . Finally,
comparing i and ii identifications, in first hand, if regrouping
all classes, significant differences could only be found for
R2
adj (1, 12.03) with an increase of 4% in average for the

second identification and non-meaningful mean variations of
the impedance parameters between 1% and 5%. On the other
hand, if comparing separated classes in both identification,
(eg. ic+1 with iic

+
1 ), no significant differences were found.

VI. CONCLUSIONS

The identification method proposed here with the ex-
perimental test-bed design described in [14], offers a low-
constraint methodology for the impedance identification in the
absence of knowledge on both force and position VTs during
a dynamic task. Estimated endpoint impedance parameters
obtained with the proposed method are within the range
found in the literature. However, the identification being
sensitive to errors in the VTs as well as non-linear phenomena
(voluntary movements, non-linear reflexes), the method still
requires numerous estimations for reliable results. The results
in this paper tend to show that using a time window of only
150ms for the identification was sufficient to bring result non
significantly different from those with a 200ms time window.

No significant stiffness variations were observed in the three
cyclic phases chosen. Most of the significant variations were
concentrated in class c+2 . Compared to previous work, using an
ARX methodology improved the repeatability in the estimation
of both the damping and mass. Using the new force trajectory
estimation method drastically reduced the errors in VTs and
improved the estimation of the stiffness, for perturbation below
5N inducing typical movements deviations δx less than 1 cm.
It made the perturbations hardly distinguishable from the task
force feedback without disrupting the task.

Further experiments will be conducted to evaluate the

inter and intra-individual variability of end-point impedance
parameters in interactive tasks. Obtained parameter values
can be used for the analysis and design of feedback control
strategies in interactive robotics.
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