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Abstract  5 

Through new technologies development, customers can create or cancel an order in real time, 6 
which disrupts the established production schedule. This realty forces many companies to 7 
quickly react for dealing with this situation through rescheduling processes. When efficiency 8 
usually measures the performance of a scheduling system, in dynamic environments, stability 9 
measures the impact of jobs deviation. Differently from previous works, this paper investigates 10 
a new approach to measure simultaneously efficiency by total weighted waiting times, and 11 
stability by weighted completion time deviation. This mix could be a very helpful and 12 
significant criterion in industrial and health care environments. This paper considers a parallel 13 
machine rescheduling problem with jobs arriving over time. Based on predictive-reactive 14 
strategy, a mixed integer linear programming model is developed, as well as an online iterative 15 
methodology to solve this rescheduling problem. Finally, numerical results are performed for 16 
studying the impact of efficiency and stability coefficient, as well as the computing time to 17 
solve the described problem.           18 

Keywords: Rescheduling, Parallel Machine, Waiting time, Stability, Completion time 19 
deviation, Disruption.  20 

1. Introduction  21 
 22 

Due to the fourth revolution experiencing, today’s industry is developing new technologies 23 
and solutions for the production process. In addition, the customers’ practices are also changed. 24 
Henceforth, a customer can, at any time, create or cancel an order in real time. Indeed, these 25 
changed situations have a direct impact on work organization, especially production scheduling 26 
(Ivanov et al. 2016; Uhlmann, and Frazzon 2018; Da Silva et al., 2019). In fact, production 27 
planning is subject to unexpected events that disrupt the established schedule, such as: new jobs 28 
arrival, cancelation of jobs, machine failures, quality problems, shortage of raw materials, etc. 29 
(Li et al., 1993; Sabuncuoglu and Karabuk 1999; Katragjini et al., 2013). Hence, the decision 30 
makers are forced to quickly react to deal with these disruptions. Therefore, rescheduling is 31 
necessary to revise the initial schedule in a cost-effective manner (Vieira et al., 2003).  32 

Rescheduling is the process of updating an established schedule in response to disruptions 33 
(Vieira et al., 2003). In the rescheduling literature, the classical efficiency criteria are often used 34 
to measure the performance of a schedule, including: the Makespan, the total completion time, 35 
the maximum lateness, etc. Differently from previous researches, this work considers a new 36 
efficiency criterion, which is the Total Weighted Waiting Times (TWWT). On the scheduling 37 
literature, the waiting time is the period that the job has waited before its execution in a system 38 
(Jurčišin and Šebo 2015). Indeed, the TWWT could be a very helpful and significant criterion 39 
in industrial and health care environments. For instance, in production systems, it can represent 40 
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the waiting time of a job in front of a workstation, considering the importance of each job as 41 
the weight. In hospital systems, the waiting time can represent the delay between a patient’s 42 
arrival and his actual treatment, considering the emergency level as the weight. Guo et al., 43 
(2013) is among the first works that considered the waiting time on rescheduling problems. The 44 
authors formulated a single machine rescheduling problem to minimize the sum of waiting 45 
times of rework jobs and the original loads with release time. They proved that the problem is 46 
NP-hard and designed a dynamic insert heuristic algorithm of polynomial-time. To fill the void 47 
in existing literature, in our study, we considered the TWWT as an efficiency scheduling 48 
measure, which has been defined for the first time by Kan (1976), and classified as NP-hard for 49 
a single machine. To the best of our knowledge, there is not any rescheduling problem in the 50 
literature which discussed this criterion. 51 

The efficiency usually measures the performance of a scheduling system, but, in dynamic 52 
environments, the impact of jobs deviation is also studied in the literature, known as stability 53 
measure (Wu et al., 1993; Pfeiffer et al., 2007; Zhang et al., 2013). This criterion measures the 54 
impact of disruptions induced by moving jobs during a rescheduling event (Rangsaritratsamee 55 
et al., 2004). In real life systems, when the sequence is changed, this matter may generate 56 
additional costs, such as reallocation costs, raw-materials reordering costs, etc (Rahmani and 57 
Ramezanian 2016). Ahmadi et al., (2016) studied a multi-objective jobshop rescheduling 58 
problem, in which the disruptions were caused by random machine breakdown. The authors 59 
considered the makespan as the efficiency measure, and calculated the stability with the average 60 
difference between the completion times of the predicted schedule and the realized completion 61 
time. In fact, when a disruption occurs, initial completion times of jobs may change and are 62 
replaced by real completion times obtained after disruption. Two evolutionary algorithms are 63 
applied to solve this problem, with the objective simultaneously combines makespan 64 
improvement and stability. Indeed, this paper presents a new approach to measure the schedule 65 
stability, which consists in calculating the difference between the completion times of the job 66 
in the initial schedule and in the new one, associating for each job a weight. We denote by the 67 
Total Weighted Completion Time Deviation (TWCTD) this stability criterion. In fact, when a 68 
job has a high weight (i.e. more important), it is difficult to disrupt it. This is the case of an 69 
urgent patient in a hospital, for example. 70 

According to (Vieira et al., 2003; Herrmann 2006), there are two basic rescheduling 71 
strategies. The first is the dynamic scheduling strategy which consists in dispatching jobs when 72 
it is necessary and using the available information at the moment of dispatching. This strategy 73 
uses dispatching rules or other heuristics to prioritize jobs waiting to be processed at a 74 
workstation (El-Bouri 2012; Nurre and Sharkey 2018; Bektur, and Saraç 2019; Riahi et al., 75 
2019). The second is the Predictive-reactive scheduling strategy that consists in generating an 76 
initial schedule in a first step, and to update the schedule in response to a disruption (Vieira et 77 
al., 2003; Duenas and Petrovic 2008). In our approach, we firstly generate an initial schedule 78 
with the objective of minimizing the TWWT. After a disruption, we generate a second schedule 79 
to minimize a multi-criterion combining simultaneously efficiency and stability, with the 80 
stability measured with the Total Weighted Completion Time Deviation. 81 
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The analysis of scheduling performance often requires more than one aspect (Loukil et al., 82 
2005). Therefore, in the rescheduling literature, several papers deal with multi-objective 83 
function. For instance, Wang, D et al., 2015 considered a rescheduling problem disrupted by 84 
machine breakdown and deterioration effect. The authors aim to minimize a multi objective 85 
function, considering initial operational cost assessed by the total completion time and resource 86 
consumption, as well as the rescheduling cost assessed by match-up time and additional 87 
resource cost. In this paper, we established a relationship between both parts of the objective 88 
function, by associating a coefficient for each measure (i.e. α efficiency + (1- α) stability). We 89 
called α the efficiency-stability coefficient, and studied the influence of this coefficient on the 90 
system. 91 

According to Alagöz and Azizoğlu (2003), in the flexible manufacturing systems, changes 92 
in jobs assignments to machines may generate some additional costs, like setup and tooling 93 
costs. Thus, the authors considered the number of jobs processed on different machines after 94 
the disruption as the stability measure in parallel machines rescheduling problem. In the 95 
operating rooms scheduling case, this matter can also generate additional costs related to the 96 
preparation phase before the operation. In our study, we have used the lexicographic 97 
optimization to reduce the number of jobs processed on different machines after disruption. 98 
This method is investigated in many papers dealing with the multi objective problems. It always 99 
provides a Pareto optimal solution (Chang 2015). It consists in obtaining an arbitrarily small 100 
improvement for the most important criterion through any loss in other less important criteria 101 
(Zykina 2004). In our work, we have assumed the bi-objective function considering 102 
simultaneously the efficiency and the stability as the priority function. From the optimal value 103 
obtained for this objective function, we minimize then the number of jobs processed on different 104 
machines, taking as constraint the optimal value of the priority function. 105 

This work addresses a rescheduling problem on identical parallel machines, when the 106 
disruption is caused by the arrival of new jobs. A mixed integer linear programming model is 107 
developed to describe the problem, and an online iterative methodology to solve it. The 108 
proposed methodology provides, for each step, the optimal solution. The presented 109 
rescheduling problem has not been studied in the research literature before. The main 110 
contributions of this work are as follows: 111 

− We implement a mathematical model based on sequence formulation, after we have 112 
improved it to match the parallel machines problem. Besides, we develop an online 113 
iterative methodology adapting this model to our rescheduling problem, and we 114 
discuss its limitation in function of the number of jobs. 115 

− We consider for the first time ‘TWWT’ as a criterion in a parallel machine rescheduling 116 
problem, which is a very significant criterion in several environments. 117 

− We adopt a new approach in parallel machine rescheduling problem by simultaneously 118 
considering the efficiency defined by the TWWT, and the stability as the Total 119 
Weighted Completion Time Deviation. 120 

− We establish a lexicographic optimization, by minimizing the number of jobs which 121 
are processed on different machines after disruption. 122 
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The rest of the paper is organized as follows: we present in section 2 the literature review. 123 
Our research motivation is given in section 3. In section 4 the problem description, as well as 124 
the strategy that we propose to tackle it. In section 5, the mathematical model is presented. We 125 
then analyze the numerical results in section 6. We conclude and propose some perspectives in 126 
section 7. 127 

2. Literature review 128 
 129 

In this section, we focus on the different issues studied in the rescheduling. The rescheduling 130 
literature is very rich. Vieira et al. (2003), Li and Ierapetritou (2008), Ouelhadj and Petrovic 131 
(2009), and recently Uhlmann, and Frazzon (2018) provided interesting reviews of the state-of-132 
the-art of developing research on rescheduling at those times. In the rescheduling literature, the 133 
classical efficiency criteria are often used to measure the performance of a schedule, including 134 
the makespan (Yuan and Mu 2007; Zakaria and Petrovic 2012; Tang et al., 2016; Li et al. 2017; 135 
Wu et al., 2018), the total completion time (Lu et al., 2003; Yang 2007), the total weighted 136 
completion time (Hall and Potts 2010; Luo et al., 2018), the average flowtime, the average 137 
tardiness and the percentage tardy (Kunnathur et al, 2004), the total weighted tardiness (Mason 138 
et al., 2004; Kaplan and Rabadi 2015), the total flow time (Ozlen and Azizoğlu 2011), and the 139 
maximum lateness (Hall and Potts 2004). As well, the rescheduling literature has taken interest 140 
in studying different types of machine environments such as: single machine (Unal et al., 1997; 141 
Hall and Potts 2004; Hall et al., 2007), flowshop (Yan-hai et al., 2005; Katragjini et al., 2013), 142 
jobshop (Bierwirth and Mattfeld 1999; Mason et al., 2004; Salido et al., 2017; Yan et al., 2018; 143 
Larsen and Pranzo 2019), or openshop (Liu and Zhou 2013b). Moreover, there are also several 144 
papers dealing with parallel machines rescheduling problems. Yin et al., (2016) studied a 145 
rescheduling problem on identical parallel machines, and considered the total completion time 146 
as the original scheduling objective and the maximum time deviation or the total virtual 147 
tardiness with respect to the original schedule as the deviation cost associated with a disruption 148 
caused by machine breakdowns. The complexity of the described problem is studied and a 149 
pseudo-polynomial time solution algorithm is proposed. Hamzadayi and Yildiz (2016) treated 150 
a dynamic identical parallel machines scheduling problem, in which sequence dependent setup 151 
operations are performed by a single server. An event driven rescheduling strategy is proposed 152 
to control the dynamic system, with the objective of minimizing the makespan. The authors 153 
indicated that the simulated annealing based complete rescheduling approach produces the best 154 
performance. Alagöz and Azizoğlu (2003) addressed a rescheduling problem in parallel 155 
machine environments under machine eligibility constraints. The authors considered the total 156 
flow time as efficiency measure, and the number of jobs processed on different machines after 157 
disruption as stability measure. Several heuristics are proposed to provide a set of approximate 158 
efficient schedules. For other related papers, dealing with parallel machine rescheduling, the 159 
reader may refer to Church and Uzsoy (1992); Vieira et al., (2000); Azizoglu and Alagöz 160 
(2005); Curry and Peters (2005); Duenas and Petrovic (2008); Arnaout (2010); ShangGuan et 161 
al., (2012); Liu and Zhou (2013a), and recently Wang et al., (2018); Ferrer et al.,(2018);  162 
Kovalyov et al., (2019); Cunha et al., (2020). 163 
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The waiting time is the period during which a job is waiting before its execution in a system 164 
(Jurčišin and Šebo 2015). In the scheduling literature, this criterion is used to measure the 165 
schedule efficiency. Guo et al., (2016) treated a rescheduling problem with the objective of 166 
minimizing the maximum waiting time, inspired from quartz manufacturing industry, where 167 
waiting times represent the w aiting for some materials before the reheating step in oven, where 168 
both the rework stream and the regular production stream meet. Thus, the authors studied and 169 
analyzed the complexity of a rescheduling problem on a single machine, with the objective of 170 
deciding where to insert the rework jobs in an initial sequence of regular jobs to minimize 171 
maximum waiting time. Guo and Xie (2017) formulated a two mixed integer programming 172 
models for a single machine rescheduling problem with the objective of minimizing the total 173 
waiting time. The studied problem came also from quartz glass factory, considering that the 174 
waiting time is the waiting for materials before the welding step, and its minimization saves the 175 
energy consumption. However, in dynamic environments, stability criteria are also studied. 176 
Several papers in the literature deal with this criterion. Akkan (2015) considered a multi 177 
objective rescheduling problem that simultaneously measures the scheduling efficiency with 178 
the maximum tardiness, and the stability with the sum of absolute starting time deviations, 179 
which are the sum of absolute difference between starting times of jobs before and after 180 
rescheduling. The author demonstrated that his algorithm improves the stability of schedules 181 
with no degradation in the maximum tardiness. Gao et al. (2018) studied a rescheduling 182 
problem on a flexible jobshop, with newly arrived priority jobs which are inserted in the existing 183 
schedule. The authors considered a bi-objective rescheduling criterion. The first is the 184 
efficiency, and the second is the stability which is defined as the percentage of machines-185 
changed operations of the existing jobs during rescheduling. Pfeiffer et al., (2007) proposed a 186 
schedule stability measure calculated with two penalties. The first is the starting time deviation 187 
penalty, which is the difference between starting times of jobs at the new and previous 188 
rescheduling points. The second is the penalty related to the deviation of job starting time from 189 
the current time. Moreover, we found other related works dealing with stability measure in 190 
rescheduling problems, such as starting time deviation and total deviation penalty 191 
(Rangsaritratsamee et al., 2004), starting time deviation (Cui et al., 2018), the amount of 192 
operations and starting times operations which have been altered (Li et al., 2015, Peng et al. 193 
2018), the absolute positional disruption, the positional disruption and absolute completion time 194 
disruption (Hoogeveen et al., 2012), the total sequence disruption (Yuan et al., 2007), the 195 
maximum time disruption (delivery times of jobs to customers changes) (Liu and Ro 2014). For 196 
considering the both aspects, efficiency combining with stability, the most of the treated 197 
mathematical models use a multi objective function, such as (Wu et al., 1993; 198 
Rangsaritratsamee et al., 2004; Qi et al., 2006; Wang et al., 2017; Peng et al., 2019). 199 

In the rescheduling literature, we found also several papers dealing with operating rooms 200 
rescheduling, modeling the problem as a machine scheduling problem. For instance, Stuart and 201 
Kozan (2012) addressed a rescheduling problem of a day-to-day running of a day surgery unit, 202 
modeling the problem as a single machine scheduling problem, with sequence dependent 203 
processing time and due date. They proposed a branch and bound algorithm to solve the 204 
problem. Wang, B et al., (2015) discussed a surgery scheduling problem for single surgical 205 
suite, where each patient should be treated in same order by three stages. The system is 206 
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disrupted by the arrival of random emergency surgeries. The authors handled the system as a 207 
no-wait permutation flowshop scheduling problem and developed a predictive reactive 208 
approach to tackle it. For other related papers, the reader may refer to Fei et al., (2010), Farrokhi 209 
et al., (2014), M’Hallah and Al-Roomi (2014), Addis et al., (2016), Zhong and Shi (2018).       210 

The Predictive-reactive scheduling strategy consists in generating an initial schedule in a 211 
first step, and to update it in response to a disruption (Vieira et al., 2003). In the literature, 212 
several researchers have adopted predictive-reactive approach. For example, Yang and Geunes 213 
(2008) considered a predictive–reactive scheduling on a single machine with uncertain future 214 
jobs. The authors determined the amount of planned idle time for uncertain jobs and their 215 
positions in the predictive schedule. Then, the schedule reacts when a disruption occurs, through 216 
including the new jobs in the idle times. Gürel et al. (2010) developed an anticipative 217 
scheduling approach based on a predictive reactive strategy, on parallel non-identical machines 218 
with controllable processing times. Firstly, an initial schedule is designed to minimize the total 219 
manufacturing cost of the jobs. When a machine breakdown occurs, a reactive schedule is 220 
generated and the remaining schedule is repaired. 221 

3. Motivation  222 
 223 

     Our research motivation is inspired from real cases which can be encountered, either in 224 
hospital environment or in industrial environment. In what follows, we present an illustration 225 
of our problem in the context of hospital systems and in the context of industrial systems.  226 

Among the hospital departments, the Operating Theater (OT) represents the largest hospital 227 
cost category by 33% (Macario et al., 1995). Hence, operating rooms scheduling has been 228 
identified as an interesting potential area by hospital decision makers. Moreover, among the 229 
heard complaints in the health care services, the long waiting lists are the most received 230 
(Cardoen et al., 2010). Therefore, it is relevant to react on the minimization of the patient 231 
waiting time, to reduce hospital costs and improve patient’s satisfaction. In practice, there are 232 
two types of operations, the elective operations that are known in advance, and the emergency 233 
operations caused by the arrival of an urgent patient. These ones are unknown in advance, and 234 
represent a disruption for the already established schedule. To cope with this uncertainty, 235 
Wullink et al. (2007) proved that the approach consisting to share OT between elective and 236 
emergency operations is better than the approach of dedicating one or several OTs for 237 
emergency operations. That justifies our approach of modelling the system as a parallel machine 238 
rescheduling problem. In addition, according to surgery priorities, the patients can be divided 239 
to five majors’ groups (Abedini et al., 2016). Thus, we have considered for each job a weight 240 
representing its emergency level. The aim of our study is to model this practical example as a 241 
parallel machine rescheduling problem, consisting in the predictive (elective) step to minimize 242 
the patient weighted waiting times, and in the reactive step (i.e. when the emergency operations 243 
occur), the same criterion combined with the stability, in order not to deviate too much from 244 
the initial schedule.  245 

This described system can also be an illustration of industrial cases, as described by Guo et 246 
al. (2016), where the waiting time is the waiting period for some materials before the reheating 247 
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step in oven, with disruptions caused by the arrival of new orders. The weight can also be 248 
considered, representing the customer priority.                  249 

4. Problem description 250 

 We study a parallel machine rescheduling problem, under disruptions caused by the arrival 251 
of new jobs. For each job j, we associate a processing time pj, a release date rj and a weight wj. 252 
When a job j starts at time Sj, it is processed to completion time Cj without interruption (i.e. Cj 253 
= Sj + pj). The waiting time Wj of job j is the period during which the job has waited, from its 254 
entry into the system rj, until its execution at the starting time. Then, it is defined as Wj = Sj – 255 
rj = Cj – rj - pj (see Fig.1). 256 

 257 

 258 

Fig. 1 The waiting time of job j  259 

In the studied system, we supposed that we have a set of n jobs, N = {1, 2, ..., n}, already 260 
available to be scheduled in the set of parallel machines M = {1, 2, ..., nm}, all the jobs 261 
information (pj, rj, wj) is available at the beginning. An initial schedule should be determined 262 

with the objective of minimizing the TWWT, i.e. j j
j N

w W
∈
 . Indeed, a mathematical model is 263 

developed to solve the initial problem, that can be represented in standard notation by 264 

| |j j jP r w W . During execution of the jobs, the initial schedule can be disrupted by the 265 

arrival of new jobs. Consequently, a new set of jobs is generated, N’ = {1, 2, ..., n’}, which 266 
contains the unexecuted jobs (i.e. the jobs that haven't started) as well as new arrival jobs. The 267 
methodology is to omit the already executed jobs, and to combine the unexecuted jobs with 268 
new arrival ones to create an updated schedule. Therefore, a new reactive schedule is generated 269 
to update the existing one, simultaneously considering efficiency measured by original 270 

objective 
'

j j
j N

w W
∈
 and stability measured by the deviation from the original schedule, as 271 

described hereafter. 272 

Stability measure: If no disruption occurs, the job j will finish processing at completion time 273 
of original schedule Coj. Else, if a disruption occurs and a new job is inserted inside the old 274 
schedule, some jobs will change their positions. Hence, a new schedule will be established. 275 
Consequently, the job j will really finish in the real completion time Cj. Then, the difference 276 
between Coj and Cj can be used to assess the deviation cost. In addition, we used the weight wj 277 
for each job, which makes it difficult to deviate important jobs. Hence, the stability objective is 278 

defined as ( )j j j
j N

w C Co
∈

− . We called it the Total Weighted Completion Times Deviation 279 

(TWCTD). In this approach, we only calculate the stability criterion for the jobs existing in the 280 
previous schedule (j ϵ N). However, once the new jobs are scheduled in their first sequence, 281 

Job j 

pj 
Cj rj T 

Wj 

t=0 Sj 
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they will be concerned by the stability criterion in the ulterior schedules. When 282 

( ) 0j j jw C C o− > , a deviation has occurred and an instability penalty is generated.  283 

Along with that, we established a relationship between the both parts of objective functions, 284 
by integrating α as an efficiency-stability coefficient. Thus, α is associated to efficiency part 285 
and (1- α) to stability, where α is a real number between zero and one. Finally, we defined the 286 
new objective function that simultaneously measures efficiency and stability as287 

'
(1 ) ( )j j j j j

j N j N

w W w C Coα α
∈ ∈

+ − −  . Then, the dynamic rescheduling problem can be 288 

represented in standard notation by: | | (1 ) ( )j j j i j jP r w W w C Coα α+ − −  .  289 

In the rescheduling process, the disruptions occur while the machine executes jobs. 290 
Therefore, we noted by td the current time when a disruption occurs (see Fig.2). 291 

 292 

Fig. 2 Disruption occurred at time td 293 

Indeed, all executed jobs before td must keep the same position. Thus, these jobs are omitted, 294 
and the new set N’ will be scheduled, then a new sequence will be established, it begins, for 295 
each machine, from the completion time of the last executed job.    296 

Online iterative methodology 297 

Firstly, we have discretized the finite time horizon [0, T], into periods ∆t (see Fig.3). Indeed, 298 
∆t is the time period length which represents the time step. The occurrence of disruptions may 299 
be possible only at these times. In fact, when a job occurs at time t, this date will be its release 300 
date. In order to simplify the calculations, we assumed that ∆t = 1 unit of time, the same time 301 
unit that we used for the jobs data pj, rj, and wj. 302 

 303 

 304 

Fig. 3 Time discretization 305 

We then defined θ(t) a binary variable, equals to 1 if a job (or several jobs) occurs at time t, 306 
and 0 otherwise. The generation of its values is explained in the numerical results section. The 307 
algorithm below describes the online iterative methodology.  308 

t+∆t t-∆t T t=0 t 

B 

A 

M1 

M2 
C 

D 

Disruption 
occurs at 
time td  

td  
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Solve the initial problem  309 
LIST = {J1, ..., Jn} 310 
Memorize solution 311 
For (t in 1 to T) 312 
   If (θ(t)=1)  313 

- Add new job(s) to LIST. 314 

- O mit the already executed jobs from LIST (comparing their memorized 315 
starting time with t) 316 

- Reschedule the new problem with jobs in LIST 317 

- Memorize solution 318 
   End If 319 
End For 320 

The following flowchart describes the predictive-reactive strategy that we used to tackle the 321 
problem (see Fig.4). 322 

Fig. 4 The flowchart of predictive-reactive strategy 323 

5. Mathematical model 324 

A mixed integer linear programming model is implemented in this section, it is based on 325 
predictive-reactive strategy, Thus, in the first subsection, we present the mathematical model 326 
before disruption. In the second subsection, we present the mathematical model after disruption. 327 

t =t +Δt 

Start  

Solve the initial problem 

P|rj |ΣwjWj  

Update problem data, 

constraints and objective 

function 

New jobs 

arrival? 

Yes 

No 

Solve the new problem 

P|rj | αΣwjWj +(1-α) Σwj(Cj-Coj) 

End 

Data initialization  

t ≤ T? 

No 

Yes 



10 
 

5.1 Mathematical model before disruption 328 

The proposed model is based on sequence position formulation (assigning a job to a 329 
position). In the scheduling literature, several papers used this formulation. For instance, Eren 330 
(2009), Baker and Keller (2010), Kooli and Serairi (2014) and Guo and Xie (2017) in single 331 
machine scheduling problems. As well, other authors, like Abdel-Jabbar et al. (2014) and 332 
Beezão et al. (2017), used this formulation for parallel machine scheduling problems. However, 333 
most of this works consider the Makespan as a criterion. Indeed, our problem consists in 334 
minimizing the TWWT. Hence, supplementary data and variables are considered, such as 335 
(weights, release dates, waiting time). In fact, we were inspired by Beezão et al. (2017) model 336 
and have adapted it to our variables and constraints. The parameters, variables and constraints 337 
of the model are given below: 338 

Parameters:  339 

N: set of jobs {1, 2, ..., n} 340 

K: set of positions {1, 2, ..., n} 341 

M: set of machines {1, 2, ..., nm} 342 

j: index of job, j =1, 2, ..., n 343 

k: index of position, k =1, 2, ..., n 344 

m: index of machine, m =1, 2, ..., nm 345 

wj: weight of job j 346 

rj: release date of job j 347 

pj: processing time of job j  348 

bigM: big value, 
1

max
n

j j
j

bigM p r
=

= +   349 

Decision variables:  350 

 
th1 if the job isassignedtomachine in position

0 Otherwise
jkm

j m k
x

= 


 351 

CPkm: Completion time of job in kth position in machine m. 352 

SPkm: Starting time of job in kth position in machine m. 353 

Cj: Completion time of job j. 354 

Wj: Waiting time of job j. 355 

Objective function:     j j
j N

Min w W
∈
  356 

s.t: 357 

      (1) 358 

1 1
1

nm n

jkm
m k

x j N
= =

= ∀ ∈ 
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 359 

1
1 ,

n

jkm
j

x k K m M
=

≤ ∀ ∈ ∀ ∈      (2) 360 

( 1)
1 1

1.. 1,
n n

j k m jkm
j j

x x k n m M+
= =

≤ ∀ = − ∀ ∈    (3) 361 

1
,

n

km j jkm
j

SP r x k K m M
=

≥ ∀ ∈ ∀ ∈    (4) 362 

( 1)
1

1... 1,
n

k m km j jkm
j

SP SP p x k n m M+
=

≥ + ∀ = − ∀ ∈  (5) 363 

1
,

n

km km j jkm
j

CP SP p x k K m M
=

= + ∀ ∈ ∀ ∈   (6) 364 

(1 ) , ,j k m jk mC C P b ig M x j N k K m M≥ − − ∀ ∈ ∀ ∈ ∀ ∈  (7) 365 

(1 ) , ,j k m jk mC C P b ig M x j N k K m M≤ + − ∀ ∈ ∀ ∈ ∀ ∈  (8) 366 

j j j jW C r p j N= − − ∀ ∈      (9) 367 

, , , 0 , ,km km j jCP SP C W j N k K m M≥ ∀ ∈ ∀ ∈ ∀ ∈  (10) 368 

{ }0,1 , ,jkmx j N k K m M∈ ∀ ∈ ∀ ∈ ∀ ∈    (11) 369 

Constraint (1) specifies that each job is affected to one position in a machine. Constraint (2) 370 
consists in having only one or no job per position in a machine. Constraint (3) specifies that, if 371 
the position k is not occupied, the position k+1 is not occupied too. Constraint (4) consists in 372 
making, for all machines, the starting time of kth position greater than or equal to assigned 373 
release date. Constraint (5) consists in making, for all machines, the starting time of (k+1)th  374 
position greater than or equal to the previous position completion time. Constraint (6) specifies 375 
that, for all machines, the completion time of kth position is equal to starting time of kth position 376 
plus the assigned processing time. Constraint (7) defines, for all machines, the completion time 377 
of job j, which is greater than or equal to completion time of assigned position, where bigM 378 
must be sufficiently large. For that reason, we defined for our model a value of bigM according 379 
to the total completion times and maximum value of release dates to take into account jobs 380 

availability. Thus, 1 maxn
j jjbigM p r== + . Constraint (8) is a cut that allows reducing the 381 

computing time. Constraint (9) defines the waiting time of job j, according to its completion 382 
time, release date, and processing time, Constraint (10) consists in making all variables greater 383 
than or equal to zero. Constraint (11) consists in having a binary decision variable. 384 
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5.2 Mathematical model after disruption 385 

This second model is used after a disruption caused by the arrival of new jobs. We denoted 386 
by nt the number of the unexecuted jobs at time t, and nj the number of new arrived jobs. Thus, 387 
the new jobs have the same entry parameters as the first ones. For each job, we have wj, pj, and 388 
rj which correspond to the time when the job occurs. So, the new parameters are as follows: 389 

 New parameters: 390 

n' = nt + nj  391 

N’: set of jobs {1, 2, ..., n’} 392 

K’: set of positions {1, 2, ..., n’} 393 

j: index of job, j =1, 2, ..., n’ 394 

k: index of position, k =1, 2, ..., n’ 395 

Coj: original completion time of job j (obtained by the resolution of the initial problem). 396 

α: efficiency-stability coefficient. 397 

xojkm: variable assigning jobs to positions in the initial problem 398 

We notice that the parameters xojkm, and Coj are not decision variables. They are memorized 399 
when the initial model is solved. we recall that we only calculate the stability criterion for the 400 
jobs existing in the previous schedule (j ϵ N). The decision variables xjkm, CPkm, SPkm, Cj, Wj are 401 
the same for this new model. However, the new objective function is as follows: 402 

( )
'

1 ( )j j j j j
j N j N

Min w W w C Coα α
∈ ∈

+ − −   403 

The constraints (1), (2), (3), (4), (5), (6), (7), (8), (9), (10) and (11) are also used for this new 404 
model.  405 

In addition, when new jobs are added, the completion time of a job will be greater than its 406 
original completion time, because the original completion time have been obtained through 407 
minimization of the principal criterion “TWWT” only, since it is not concerned by the stability. 408 
Indeed, the job is placed in its ideal position, and it will not be moved forward after the 409 
rescheduling. Thus, in all rescheduling steps, we assumed that: 410 

j jC C o j N≥ ∀ ∈   (12) 411 

6. Numerical results 412 

The proposed mixed integer linear programming model has been designed on FICO Xpress 413 
IVE and has been performed on a Core i5 2.40GHz laptop. The programed model is composed 414 
of two parts. The first contains the predictive approach, and consists in solving the initial 415 
problem normally, with the objective of minimizing the TWWT. The second contains the 416 
reactive approach, and consists in rescheduling at each time the jobs occur, accordingly to the 417 
online iterative methodology previously described. The system omits the already executed jobs, 418 
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and combines the still unexecuted jobs with the new ones to create an updated schedule. The 419 
model implementation has been developed accordingly to the chart presented on Fig.4. This 420 
proposed methodology has been tested on the instances described hereafter, and it allowed 421 
giving, at each step, the optimal solution. 422 

In this section, we present the numerical results obtained through the model application, on 423 
two parallel machines. The data used in this section are as follows: 424 

Table 1 parameter values 425 

Parameters Values 
wj ~U (1,5) 
pj ~N (2.5,0.5) (ut) 
T 24 (ut) 

 426 

The data that we have chosen can be adapted for real cases, either in a hospital or in an 427 
industrial environment. The simulation will be over a 6-hours’ time horizon. The weight values 428 
can represent the 5-emergency levels or 5 priority levels of customers. We assumed also that Δt 429 
=1 unit of time (ut), and 1 ut is equivalent to 15 minutes. The processing times can represent 430 
the durations of operations or a product manufacturing time, and follow a normal distribution 431 
with mean 2.5 and standard deviation 0.5, obtaining operations of 1 ut (15 minutes) to 4 ut (60 432 
minutes), with more probability to have a processing time of 2 ut or 3 ut. The values of the 433 
variable θ(t) are randomly generated with the Bernoulli distribution which gives, at each time 434 
t, the value 1 with probability pθ, and 0 with probability 1-pθ. At first, we considered pθ = 0.8 435 
(high appearance probability), then we tested also for pθ = 0.5 (medium appearance probability) 436 
and pθ = 0.2 (small appearance probability). 437 

We established three main studies. Firstly, we examined the influence of efficiency-stability 438 
coefficient α on the optimal schedules. Secondly, we used the lexicographic method to 439 
minimize the number of altered jobs. Finally, we tested the computing time of the model 440 
resolution with different instances, to show its limitations according to the problems’ size. 441 

6.1 Influence of efficiency-stability coefficient on the optimal schedules 442 

In this study, we vary the value of α from 0.5 to 1 to discuss its impact on the optimal 443 
schedule. We have assumed that the efficiency criterion is the principal one, while the stability 444 
criterion is the secondary. Thus, it is not necessary to test the values of α inferior to 0.5. 445 

We first calculate the initial objective obtained by solving the offline problem. After each 446 
disruption, we update the problem, then we calculate the new objective function. The number 447 
of altered jobs is also calculated in this study, which represents the number of jobs which 448 
changed of machine after rescheduling. For that, we included the supplementary parameters: 449 
iAjm to assign jobs to machines in iteration i, and Difj that represents the deviation of a job from 450 
its machine. 451 

   (13)  452 

 453 

 454 
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(14) 455 

 456 

Therefore, the number of altered jobs is given by:  j
j N

Dif
∈
 . We note that Ajm and Difj are 457 

not considered as decision variables in this study, but they will be considered as such in the 458 
lexicographic optimization sub section. 459 

The study was conducted and analyzed for 25 different instances, generated accordingly to 460 
the parameters presented in Table 1. We present, in the following example, the data and the 461 
results obtained on a particular instance with two parallel identical machines. 462 

 Example 463 

In this example, the processing times pj, release dates rj and the weights wj for 5 jobs are 464 
given in the Table 2. 465 

Table 2. Initial problem data 466 

job 1 2 3 4 5 

rj 0 1 0 1 2 
pj 1 2 2 3 4 
wj 5 1 4 2 1 

 467 

The problem is solved with the objective to minimize the total weighted waiting times. So, 468 

the obtained optimal value is 5
1 3j jj w W= = . The optimal solution is given in Fig.5, we noted 469 

it “the first schedule”. 470 

 471 

Fig. 5 The optimal solution for the initial problem 472 

In the reactive approach, we assumed that the disruptions occur by the arrival of new jobs. 473 
In this example, a total of 20 jobs are treated online. The obtained results are given in the Table 474 
3. 475 

In the Table 3, we assumed that a disruption occurs at each step with appearance probability 476 
pθ = 0.8 (20 disruptions appeared in the total). At each disruption, we reschedule the problem, 477 
and we extract four information: the value of the efficiency criterion “TWWT”, the value of the 478 
stability criterion “TWCTD”, the number of jobs which are executed on a different machine 479 
after the disruption “N° of altered jobs”, as well as the value of the objective function that 480 
combines TWWT and TWCTD thanks to α. We have also numbered the schedules with their 481 
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step number. Different values of α are tested, to discuss the impact of this parameter on the 482 
obtained solutions.                   483 

Table 3. Influence of α on the optimal schedules 484 

(1) TWWT: Total Weighted Waiting Times ∑ �����∈��  485 
(2) TWCTD: Total Weighted Completion Time Deviation ∑ �	(�

	
− �	)�∈�  486 

(3) N° of altered jobs 487 
(4) Objective function 488 

 489 
α (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 
 2nd Schedule 3rd Schedule 4th Schedule 5th Schedule 

1 5 2 2 5 8 5 1 8 13 6 0 13 16 9 2 16 
0,9 5 2 2 4,7 8 2 2 7,4 13 3 0 12 16 3 1 14,7 
0,8 5 2 2 4,4 8 2 2 6,8 13 3 0 11 16 3 1 13,4 
0,7 5 2 2 4,1 8 2 2 6,2 13 3 0 10 16 3 1 12,1 
0,6 5 2 2 3,8 8 2 2 5,6 13 3 0 9 16 3 1 10,8 
0,5 5 2 2 3,5 8 2 2 5 13 3 0 8 16 3 1 9,5 

 6th Schedule 7th Schedule 8th Schedule 9th Schedule 
1 18 10 1 18 23 11 0 23 27 13 0 27 29 13 0 29 

0.9 19 3 0 17,4 25 4 0 22,9 28 4 1 25,6 29 5 2 26,6 
0.8 19 3 0 15,8 25 4 0 20,8 28 4 0 23,2 29 5 0 24,2 
0.7 19 3 0 14,2 25 4 0 18,7 28 4 0 20,8 29 5 0 21,8 
0.6 19 3 0 12,6 25 4 0 16,6 28 4 0 18,4 29 5 0 19,4 
0.5 19 3 0 11 25 4 0 14,5 28 4 1 16 29 5 2 17 

 10th Schedule 11th Schedule 12th Schedule 13th Schedule 
1 30 14 1 30 32 16 0 32 36 16 0 36 38 16 0 38 

0.9 30 5 0 27,5 32 7 0 29,5 36 8 1 33,2 38 10 1 35,2 
0.8 30 5 0 25 32 7 0 27 36 8 1 30,4 38 10 1 32,4 
0.7 30 5 0 22,5 32 7 0 24,5 36 8 1 27,6 38 10 1 29,6 
0.6 30 5 0 20 33 5 0 21,8 39 5 0 25,4 43 5 0 27,8 
0.5 30 5 0 17,5 33 5 0 19 39 5 0 22 43 5 0 24 

 14th Schedule 15th Schedule 16th Schedule 17th Schedule 
1 41 16 0 41 42 18 0 42 44 18 2 44 46 20 0 46 

0.9 41 10 0 37,9 42 11 0 38,9 44 11 2 40,7 46 13 0 42,7 
0.8 41 10 0 34,8 42 11 0 35,8 44 11 2 37,4 46 13 2 39,4 
0.7 41 10 0 31,7 42 11 0 2 44 11 2 34,1 46 13 2 36,1 
0.6 45 5 0 29 47 7 0 31 49 7 2 32,2 54 9 0 36 
0.5 45 5 0 25 47 7 2 27 49 7 2 28 54 9 0 31,5 

 18th Schedule 19th Schedule 20th Schedule 21th Schedule 
1 50 20 0 50 52 21 0 52 55 24 1 55 57 26 0 57 

0.9 49 16 0 45,7 50 17 2 46,7 52 19 2 48,7 53 20 2 49,7 
0.8 49 16 2 42,4 50 17 0 43,4 52 19 0 45,4 53 20 2 46,4 
0.7 49 16 2 39,1 50 17 0 40,1 52 19 0 42,1 53 20 2 43,1 
0.6 58 9 0 38,4 60 10 2 40 63 13 2 43 65 15 2 45 
0.5 58 9 1 33,5 60 10 2 35 63 13 1 38 66 14 0 40 

 490 

For α = 1, the objective function only considers the first criterion, TWWT. We noted that, 491 
when the new jobs arrive, they have been scheduled according to their weights and their 492 
processing times. Generally, when α = 1, and if all jobs are available, the wSPT-rule is optimal 493 
for this problem. 494 

Otherwise, for α values between 0.9 and 0.7, the stability is also considered. In this case, we 495 
have noted two observations: 496 
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• Short term: The optimal schedule has the same value of TWWT as when α = 1, but 497 
the value of the second criterion TWCTD is smaller. Indeed, the schedule is more 498 
stable. In this case, during the model execution, if there are two solutions which give 499 
the same value of TWWT, the system chooses the one that minimizes the stability. 500 

• Long term: The model gives a better value of both criteria (TWWT and TWCTD) 501 
compared to α = 1. This is a result of the proactive effect induced by the stability 502 
criterion. Indeed, when we have two similar solutions in terms of efficiency, the 503 

system prioritizes the one that minimizes ∑ �	(�
	

− �	)	∈� . This decision impacts the 504 

efficiency criterion in the next steps.  505 

For α = 0.6 and 0.5, the TWWT increases, because we give more importance to the stability 506 
criterion. Figure 6 shows, for each step, the variation of TWWT according to α. 507 

 508 

Fig. 6 TWWT in function of α with pθ=0.8 509 

In the short term, the value of TWWT is stable in most of cases. In the long term, the value 510 
of TWWT is smaller when α = 0.7, 0.8 and 0.9 compared to others values as result of proactive 511 
effect induced by the stability criterion. To clearly illustrate this phenomenon, we present the 512 
Gantt diagram (Table 5) of the optimal sequences given by model resolution for α = 0.8, 513 
compared to those obtained with α = 1, on the eleven first modified schedules (first eleven 514 
steps) for the instance below (Table 4). 515 

 516 
Table 4. Problem data 517 

 518 
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 521 

 522 

Table 5. Gantt diagram of the optimal sequences 523 

 524 

From the first step until step 10, in both cases, the model provides the same value of the 525 
principal criterion TWWT. However, when α = 0.8, the model provides more a stable schedule 526 
compared to α = 1. This difference has impacted the schedule in step 11. For instance, in the 527 
step 9, with α = 1, the system places the job 14 before the job 7. Whereas, if we consider the 528 
stability criterion (TWCTD), the system proposes the opposite to have a stable schedule. 529 
Consequently, this choice impacts the value of TWWT in the step 11. Thus, the difference of 530 
one unit of time between the schedule when α = 1 and α = 0.8. 531 

To confirm this behavior, we present in Figure 7, the average of TWWT in function of alpha, 532 
on the 25 instances generated. 533 
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 534 

Fig. 7 The average of TWWT in function of α with pθ=0.8 535 

Among the 25 instances that we have tested, for 8 of them, the proactive effect appears. In 536 
Fig 7, we observe that the average of TWWT is stable in the short term. However, in the long 537 
term, it is increasing when α goes down to 0.7. 538 

In the case of pθ = 0.8 (high appearance probability), and when alpha equals 1, the system 539 
does not consider the stability. So, if we have various solutions that gives the same value of 540 
TWWT, the system chooses arbitrarily one of them, as observed in the step 5 on Table 5, 541 
between the jobs 7 and 10. Consequently, this arbitrary choice impacts the next schedules. In 542 
the example of Table 5, the difference is shown in the step 11. Therefore, as result of this 543 
behaviour, we have concluded that the stability criterion can generate a proactive effect, when 544 
α is between 0.7 and 0.9, providing better results compared to a mono-criterion considering 545 
only efficiency. This behaviour, that we called “proactive effect” appears when we have a 546 
various choice in some steps, i.e. when the set of jobs that have to be executed is bigger.  547 

To confirm this conclusion, we have tested other sets of instances, with pθ = 0.5 (medium 548 
appearance probability) and pθ = 0.2 (small appearance probability) on the same time horizon 549 
T = 24 ut. The average of TWWT in function of α is respectively presented in figures 8 and 9. 550 

 551 
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 Fig. 8 The average of TWWT in function of α with pθ=0.5 555 

 In figure 8, the average of TWWT increases when α becomes inferior to 0.7. Moreover, we 556 
have observed the proactive effect in only one out of the 25 instances we have tested. In fact, 557 
when pθ = 0.5, the jobs appear with a medium frequency. Then, the set of jobs that have to be 558 
executed at each step is small compared to pθ = 0.8. Hence, the system does not have various 559 
choices at each step. Thus, the proactive effect does not appear as often as for pθ = 0.8. 560 

Fig. 9 The average of TWWT in function of α with pθ=0.2 561 

In figure 9, the average of TWWT decreases with α. Indeed, when pθ = 0.2, the jobs appear 562 
with a small frequency. Then, the number of disruptions is very small, and we have not observed 563 
the proactive effect. However, in the last steps (4,5,6), the average of TWWT is identical, 564 
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because the disruptions occur after the execution of existing jobs. Thus, the jobs do not wait, 565 
and TWWT does not increase. Therefore, we have also tested this case by increasing the number 566 
of initial jobs to seven jobs. The results are shown in Figure 10.  567 

 568 

Fig. 10 The average of TWWT in function of α for 7 initial jobs and pθ=0.2 569 

With 7 initial jobs, we observed the proactive effect in 2 instances out of the 25 tested. The 570 
increase of the number of initial jobs allows to increase the set of jobs that have to be executed 571 
at each time, and the probability to observe a proactive effect. This is what we have observed.    572 

6.2 Lexicographic optimization for minimizing the number of altered jobs  573 

The lexicographic optimization consists in optimizing the first objective function (of higher 574 
priority). Then, among the possible alternative optima, we optimize the second objective and 575 
so on (Mavrotas 2009). In this part, we performed as follows: we first optimize the multi 576 
objective function that simultaneously measures efficiency and stability criteria, 577 

1
'

(1 ) ( )j j j j j
j N j N

f w W w C Coα α
∈ ∈

= + − −  , obtaining the min f1= f1*. Then, we secondly 578 

optimize the number of altered jobs 2 j
j N

f Dif
∈

=   by adding the constraint f1 ≤ f1*, in order to 579 

keep the optimal solution of the first optimization. To do this, we put the constraints Ajm and 580 
Difj into a linear form:  581 
 582 

   (15) 583 

      (16) 584 

Constraint (15) specifies that each job is affected to machine m. Constraint (16) consists in 585 
having the binary variables Difj positive when the job changes of machine during an iteration, 586 
and equal to zero otherwise. 587 
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In the solution presented in Table 3, the number of altered jobs is not minimized. Therefore, 588 
at each iteration, the model gives a different value of the number of altered jobs. In the following 589 
table, we present the lexicographic optimization of the same example. The aim is to minimize 590 
f2 with f1 ≤ f1* as a constraint. However, if the model cannot reduce the number of altered jobs 591 
to zero, we relaxed the constraint in order to obtain a better solution for f2. Therefore, the 592 
constraint becomes f1 ≤ f1*(1+ε), with ε a relaxation coefficient. In this study, we vary the value 593 
of this coefficient until we reduce f2 to zero. For that purpose, we fixed the value of α at 0.8, the 594 
value for which we observed the most the proactive effect in the last sub section. The results 595 
we have obtained are given in the Table 6.  596 

Table 6. Optimal solution of number of altered jobs, with f1 ≤ f1
*(1+ε). 597 

(1) TWWT: Total Weighted Waiting Times ∑ �����∈��  598 
(2) TWCTD: Total Weighted Completion Time Deviation ∑ �	(�

	
− �	)�∈�  599 

(3)  f1*(1+ε) 600 
(4) f2: ∑ �����∈�  601 

 602 
ε (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 
 2nd Schedule 3rd Schedule 4th Schedule 5th Schedule 

0 5 2 4,4 0 8 2 6,8 0 13 3 11 0 16 3 13,4 0 
 6th Schedule 7th Schedule 8th Schedule 9th Schedule 

0 19 3 15,8 0 25 4 20,8 0 28 4 23,2 0 29 5 24,2 0 
 10th Schedule 11th Schedule 12th Schedule 13th Schedule 

0 30 5 25 0 32 7 27 0 36 8 30,4 1 42 7 35 0 
0.01 - - - - - - - - 36 8 30.7 1 - - - - 
0.02 - - - - - - - - 36 8 31.0 1 - - - - 
0.03 - - - - - - - - 36 8 31.3 1 - - - - 
0.04 - - - - - - - - 36 8 31.6 1 - - - - 
0.05 - - - - - - - - 38 7 31.9 0 - - - - 

 14th Schedule 15th Schedule 16th Schedule 17th Schedule 
0 44 7 0 0 46 9 38.6 0 48 9 40.2 0 53 11 44.6 0 
 18th Schedule 19th Schedule 20th Schedule 21th Schedule 

0 57 11 47.8 0 59 12 49.4 0 62 15 52.6 1 64 17 54.6 0 
0.01 - - - - - - - - 62 15 53.1 1 - - - - 
0.02 - - - - - - - - 63 16 53.6 0 - - - - 

As can be seen in Table 6, from the 2nd schedule until the 11th, the model reduced the value 603 
of f2 to zero, with ε = 0. For the 12th schedule, we have increased the value of ε up to 0.05 to 604 
obtain f2 = 0, and f1* becomes f1*(1+ ε). For the 13th schedule, we proceed in the same way, 605 
considering the last solution obtained in the previous schedule. 606 

Among the 20 schedules, we varied ε in only two of them. It means that, in the majority of 607 
cases, we can minimize f2 without impacting f1*. However, when we reduce f2 to zero by varying 608 
ε, the value of f1*(1+ ε) increases as well as the values of TWWT and TWCTD. This causes an 609 
increase in f1* in the following iterations, as in the 13th schedule for example, in which f1* = 35 610 
compared to its value in Table 3, where f1* = 32.4. 611 

6.3 Computing time study 612 

In this study, we tested on 10 different instances the Maximum Duration of Iteration (MDI) 613 
and the Computing Time (CT) for the execution of all iterations. The sets of tested instances 614 
contain respectively 5 and 7 initial jobs. They are disrupted by the arrival of new jobs over a 615 
horizon of T = 24 ut and α = 0.8. We varied the appearance probability pθ with different values 616 
(0.2; 0.5; 0.8; 1) to analyze its impact on the MDI and CT. Then, we calculated the minimum, 617 
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maximum, average and standard deviation of MDI and CT. The obtained results are respectively 618 
presented in Table 7 and Table 8. 619 

Table 7 Maximum Duration of Iteration 620 

Initial jobs pθ Min MDI (s) Max MDI (s) Avg MDI (s) Std dev MDI (s) 

5 

0.2 0.12 0.26 0.17 0.05 
0.5 0.13 0.38 0.21 0.07 
0.8 0.21 1.14 0.44 0.31 
1 0.24 112 19.25 38.4 

7 

0.2 1.37 2.88 1.97 0.51 
0.5 1.58 3.66 2.03 0.69 
0.8 4.37 542 64.1 167 
1 403 6324 3606 2069 

 621 

When pθ increases, the set of jobs that have to be executed at each iteration increases too 622 
much, as well as the average of MDI. As well, the average MDI increases also when the set of 623 
initial jobs is bigger. 624 

In the rescheduling system, we have to establish a planning after each disruption. This one 625 
should be made as soon as possible, and at latest before the appearance of another disruption. 626 
In our study, according to the time discretization, the disruption can be possible at each Δt. 627 
Thus, if the MDI exceeds Δt, it is unacceptable. In our case, based on the assumption that Δt is 628 
equivalent to 15 minutes, and according to Table 7, the proposed model is effective in solving 629 
the problems of 7 initial jobs subject to disruptions which appear at each period by a probability 630 
with up to 0.8. It is equivalent to 27 jobs in the total on average.      631 

Table 8. Computing time 632 

Initial jobs pθ Min CT (s) Max CT (s) Avg CT (s) Std dev CT (s) 

5 

0.2 0.27 0.51 0.35 0.07 
0.5 0.42 0.69 0.51 0.07 
0.8 1.01 2.31 1.57 0.4 
1 2.39 460 65 142 

7 

0.2 3.98 6.12 4.96 0.68 
0.5 5.71 9.86 6.52 1.2 
0.8 16.48 8012 829 2523 
1 1231 20945 10622 6933 

 633 

We can remark that the computing time depends on the set of initial jobs and the appearance 634 
frequency of jobs. If these ones are bigger, the average and the standard deviation of CT 635 
increase, which makes difficult to estimate the computing time for solving the proposed model. 636 

As mentioned previously, the set of jobs that have to be rescheduled at each step contains 637 
the unexecuted jobs combined with the new ones. Thus, when a job with a long processing time 638 
occupies the machine, if disruptions still appears during this period, the set of jobs that have to 639 
be rescheduled increases, because it will contain a lot of unexecuted jobs that are waiting since 640 
the machine is busy. This matter appears when the disruptions coincide with a long processing 641 
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time’s job. This explains the big values of the average and standard deviation of CT when pθ = 642 
0.8 and pθ = 1, observed in Table 8. 643 

7. Conclusion and perspectives  644 

In this paper, we have proposed a new multi criterion objective function for a parallel 645 
machine rescheduling problem. The proposed measure combines simultaneously efficiency 646 
represented by total weighted waiting times, and stability as the weighted completion time 647 
deviation. This multi criterion has never been studied in the literature before, and it can be a 648 
very helpful and significant criterion in industrial and hospital environments. We also measured 649 
the number of jobs processed on different machines after disruption. To tackle this problem, we 650 
adopted a predictive-reactive strategy which consists in updating at each time the schedules, in 651 
response to a disruption caused by the arrival of new jobs. Consequently, we developed a mixed 652 
integer linear programming model, as well as an iterative methodology to solve the rescheduling 653 
problem. The resolution of the problem provides, for each step, an optimal solution. The 654 
numerical results we have presented in this paper allow us to observe that: 655 

− The stability criterion can generate a proactive effect, when α is between 0.7 and 0.9, 656 
providing better results compared to a mono-criterion considering only efficiency. 657 

− Using the lexicographic optimization, in the majority of cases, we can minimize the 658 
number of jobs which are processed on different machines after disruption without 659 
impacting the principal objective function. 660 

− The computing time and maximum duration of iteration depend on the set of initial 661 
jobs and on the appearance frequency of the new arrival jobs. When these ones are 662 
bigger, CT and MDI increase. 663 

These research works can help decision makers to provide, at each step, an optimal schedule 664 
in response to a disruption caused by the arrival of new jobs in a parallel machines scheduling 665 
problem. Although the proposed model provides optimal solutions, it is limited in terms of 666 
number of jobs. Therefore, in our future works, we intend to propose heuristics that allow to 667 
browse more jobs in a short time. We also intend to take interest in flowshop rescheduling 668 
problem.  669 

  670 
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