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Abstract
Continuous-time stochastic processes play an important role in the description of

random phenomena, it is therefore of prime interest to study particular variables de-
pending on their paths, like stopping time for example. One approach consists in point-
ing out explicit expressions of the probability distributions, an other approach is rather
based on the numerical generation of the random variables. We propose an algorithm in
order to generate the first passage time through a given level of a one-dimensional jump
diffusion. This process satisfies a stochastic differential equation driven by a Brownian
motion and subject to random shocks characterized by an independent Poisson process.
Our algorithm belongs to the family of rejection sampling procedures, also called exact
simulation in this context: the outcome of the algorithm and the stopping time under
consideration are identically distributed. It is based on both the exact simulation of
the diffusion at a given time and on the exact simulation of first passage time for con-
tinuous diffusions. It is therefore based on an extension of the algorithm introduced
by Herrmann and Zucca [16] in the continuous framework. The challenge here is to
generate the exact position of a continuous diffusion conditionally to the fact that the
given level has not been reached before. We present the construction of the algorithm
and give numerical illustrations, conditions on the recurrence of jump diffusions are
also discussed.
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Introduction
Describing precisely the time needed by a diffusion process to first overcome a given thresh-
old is a interesting challenge in several fields: economics [21], finance [23, 28], queueing,
reliability theory [34], neuroscience [6, 38] and many others. The first passage time can for
instance be related to the evaluation of a default risk in mathematical finance. Since this
stopping time permits in practice to take important decisions, it is crucial either to obtain
an explicit expression of the corresponding probability distribution either to point out ef-
ficient algorithms used for the random variable generations. An explicit expression of the
density, often based on series expansions, is a source of valuable information. Unfortunately
it is available only for particular stochastic models and cannot be used for wide classes of
applications. We propose here a numerical approach: the challenge is therefore to generate
the first passage times using efficient algorithms.

In many applications, modeling the behaviour of an experimental random value as time
elapses consists in choosing a suitable one-dimensional diffusion process (Xt, t ≥ 0) and the
corresponding first passage time through a given threshold L is then defined by

τL := inf{t ≥ 0 : Xt ≥ L}. (0.1)

For simplicity, we just assume that the starting value X0 = y0 < L is deterministic. In
the continuous paths framework, the diffusion is represented by the solution of a stochastic
differential equation driven by a Brownian motion. Different approaches have been proposed
in order to generate τL. One way is to use numerical approximations of the paths and to
deduce the approximation of the passage time as a by-product. Most of the studies are
based on improvements of the classical Euler scheme (see for instance [4], [13], [14]). We also
refer,in this framework of time splitting procedure, to the important work [25].

Another way is to use the exact simulation techniques introduced by Beskos and Roberts
and based on the Girsanov transformation. Indeed we know exactly the distribution of the
Brownian paths and in the way the exact distribution of their passage time. Using the
Girsanov transformation permits to build a rejection sampling procedure: one generates a
Brownian path and accepts or rejects it with a probability depending on the whole path.
Beskos and Roberts [1, 2, 3] first proposed such an approach in order to simulate the diffusion
trajectory on a given time interval [0,T]. The procedure requires particular conditions on the
drift and diffusion coefficients whose alleviation led to several mathematical improvements.
Let us mention in particular the interesting localization argument developed by Chen and
Huang [10]. Splitting the state space R into small intervals permits to observe the diffusion
paths inbetween two exit times. Since the trajectory stays in a specific interval during this
random time slot, the conditions associated with the exact simulation can be weakened.
This does not happen without compensation: instead of using Brownian paths as proposal
objects in the rejection sampling, Chen and Huang consider Brownian meanders. The basic
elements used in the algorithm are therefore more complicated since they also require a
rejection procedure to be generated: the algorithm is finally build as a double layer rejection
sampling. Consequently the simulation of first exit times appears as a by-product of the
so-called localization argument. Let us also note that Casella and Roberts [7] extended the
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initial work of Beskos and Roberts for the simulation of the conditional diffusion value at
some fixed time given that the process never exit from an specific interval before. Both
approaches are quite different.

In the particular first passage time framework, an alternative approach proposed by
Herrmann and Zucca [16] permits to adapt the initial algorithm of Beskos and Roberts in
order to generate τL in an exact way. The outcome of the algorithm has the same distribution
than τL, there is no approximation error term. The aim was not to weaken the conditions of
the diffusion under consideration but rather to deal directly with an unbounded time interval.
In that case, the proposal variable in the rejection procedure was the Brownian first passage
time through the given threshold, that is an inverse Gaussian variate, and the weight used in
order to accept the proposal depends on a suitable Bessel process, a very convenient process
for simulation purposes. Let us also mention that Herrmann and Zucca proposed algorithms
based on the Girsanov transformation for the exit time generation [18, 17].

Of course all applications cannot be concerned by one-dimensional continuous diffusion
processes. A natural question that arises is to propose a new simulation approach in the jump
diffusion framework. These processes are driven by both a Brownian motion and a Poisson
random measure, they are indeed special cases of one-dimensional Lévy processes. In finance,
for instance, the stock exchange evolution can be represented by a diffusion with jumps. In
this particular case, the jumps represent possible events that can occur and produce strong
impacts on the asset prices [26].

For such particular stochastic processes, several available results concern the approxi-
mation of the diffusion trajectory on some given time interval. The simulation of the first
passage time is then obtained as a by-product, similarly to the already used procedure in
the continuous case. In particular, for diffusions which are driven by Wiener processes and
Poisson random measures, the basic idea of the Euler method can be adapted. Platen [35],
Maghsoodi [30, 29] and Gardon [11] introduced explicit time-discretization schemes based
on the Itô-Taylor expansion in order to obtain interesting convergence results in the mean-
square sense. Several studies permit to understand how to adapt the time grid to the jump
times and reduce, by the way, the approximation error. Other kinds of stochastic convergence
have been analyzed for the numerical approximation. Let us also mention other challenging
research directions: introducing schemes based on semi-implicit Euler–Maruyama methods
in [19, 20] or Runge-Kutta methods as in [5] is of particular interest. Our purpose is not
to write an exhaustive overview of the literature on numerical analysis since our approach
for the generation of the first passage time is not based at all on an approximation proce-
dure. So we prefer to refer to the monograph [36], and the references therein, for additional
information on the approximation methods.

The objective of the paper is rather to focus our attention on the so-called exact simu-
lation method. It is important to extend the classical simulation procedure introduced by
Beskos and Roberts to that framework. As already presented in the continuous diffusion
case, two different approaches can be chosen: one based on the localization argument and
using Brownian meanders and the other one based on Bessel processes. The first method
has already been adapted to the jump diffusions (see [8], [15] and [37]) and consequently
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permits to generate exactly the first exit time from a given interval [12] using this double
layer rejection method. We propose here to adapt the second method based on the Bessel
processes to the jump diffusions. We propose thereby to avoid both the space splitting and
the generation of meanders without looking for the minimal conditions. The algorithm is
finally simpler and more efficient but only available for the generation of first passage times.

The study presented here concerns the exact simulation of the first passage time τL defined
by (0.1) where (Xt, t ≥ 0) stands for a jump diffusion process. The material is organized as
follows: first we end the introduction by defining the jump diffusion as the unique solution of
a stochastic differential equation, then we recall the exact simulation techniques introduced
for continuous paths in Section 1, proposing new proofs. In Section 2, we focus our attention
to the jump diffusion framework and propose an efficient algorithm in order to generate
τL ∧ T where T > 0 is a fixed time. This particular situation permits to deal with the
stopped diffusion and consequently to consider a wide class of diffusions. In Section 3, we
propose to reduce the study to the particular situation: τL < ∞. Of course such context
requires additional conditions on the process but permits also to simulate directly τL in an
exact way. The last section presents numerical illustrations.

Jump diffusions: definition and model reduction

Usually and historically, diffusions with jumps are introduced in the following way: we
consider a probability space (Ω,F ,P) and a mark space (E , B(E)) where E ⊂ R \ {0}. This
mark space can be interpreted as the space of jumps amplitudes. On this state space we
define a F -adapted Poisson measure on E × [0, T ] for a given T denoted by pφ(dv×dt) whose
intensity measure is given by φ(dv)dt, φ being a non negative σ-finite measure. We denote
by λ = φ(E). This measure permits to generate a sequence of random points (Ti, ξi)1≤i≤PT
where (Pt)t≥0 is the stochastic process counting the number of jumps until time t. This
sequence represents each jump time and the amplitude of the corresponding jump.

A jump diffusion X with jump rate j is defined as follows:

dXt = µ(t,Xt−) dt+ σ(t,Xt−) dBt +

∫
E
j(t,Xt−, v)pφ(dv × dt), t ≥ 0, (0.2)

with the initial position X0 = y0. Here (Bt, t ≥ 0) stands for a one-dimensional Brownian
motion. Let us just mention that we choose in this work homogeneous Poisson measures,
in other words the function φ only depends on the space variable. The result can easily be
extended to the time-dependent case by using the thinning procedure, see for instance [9]
for the description of the general approach.

For the present study, the representation (0.2) is actually not so handy. We prefer the
following representation. We start the construction with the jump rate (jump function)
j : R+ × R × E → R. No specific assumption concerning the jump rate is required at
the moment. Let us denote by Ti the i-th jump time. We mention that the time spent
between two consecutive jumps is exponentially distributed, therefore Ti =

∑i
k=1Ek with

Ek exponentially distributed random variables with average 1/λ. The initial position of the
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diffusion is given by Y0 = y0. Between two jumps, the stochastic process satisfies a stochastic
differential equation:

dYt = µ(t, Yt) dt+ σ(t, Yt) dBt, for Ti < t < Ti+1, i ∈ N, (0.3)

and the jumps modify the trajectories as follows:

YTi = YTi− + j(Ti, YTi−, ξi), ∀i ∈ N. (0.4)

As already defined, (ξi)i≥1 stands for a sequence of independent random variables with
distribution function φ/λ. This sequence has to be independent of the Brownian motion
(Bt)t≥0. It is quite obvious to observe that (Xt)t≥0 solution of (0.2) has the same path
distribution than (Yt)t≥0 defined by (0.3)–(0.4). The aim of our study is to simulate the
first passage time of some given level L for this jump diffusion. For our discussion we shall
assume that y0 < L (it is straightforward to deduce the general case). Therefore the second
representation plays a crucial role: it suffices to simulate exactly the trajectory of a SDE
solution inbetween two successive jumps. The simulation of the first passage time should be
based on the following intuitive procedure: on one hand we simulate exactly the trajectory
of the stochastic process satisfying the SDE without jump and keep in mind its first passage
time through the level L denoted by τL. On the other independent hand, we simulate the first
exponentially distributed jump time T1. If τL ≤ T1, then τL corresponds to the first passage
time of the jump diffusion. In the other case, we simulate the position of the diffusion after
the first jump using

YT1 = YT1− + j(T1, YT1−, ξ1).

We distinguish two likely different cases: if YT1 ≥ L then τL = T1 otherwise we know that
τL > T1. The strong Markov property of the jump diffusion permits to start a new jump
diffusion with the initial position YT1 < L and initial time T1. So we repeat the procedure
just presented, inbetween T1 and T2, and so on... An important tool for the simulation is
therefore the exact generation of continuous diffusion paths. In [16], the authors propose an
efficient method based on both a rejection sampling and the Girsanov transformation.

Remark 0.1. In order to simplify the study, we assume that σ(t, x) ≡ σ(x) and µ(t, x) ≡
µ(x). Moreover we consider Lamperti’s approach which consists in transforming the SDE

dXt = µ(Xt)dt+ σ(Xt)dBt, t ≥ 0, (0.5)

with initial condition X0 = x0 into the following equation

dZt = α(Zt)dt+ dBt, t ≥ 0. (0.6)

This well-known transformation corresponds to

Zt = ν(Xt) =

∫ Xt

ξ

1

σ(x)
dx and α(x) =

µ ◦ ν−1(x)

σ ◦ ν−1(x)
− 1

2
σ′ ◦ ν−1(x), ∀x ∈ R.
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Of course the jump times are not changed at all by the function ν: we still work with the
sequence (Ti)i≥1 whereas the jump amplitudes are modified. Hence the transport property
permits to obtain

ZTi = ZTi− + ̂(t, ZTi−, ξ), i ∈ N, (0.7)

with
̂(t, z, v) := ν(ν−1(z) + j(t, ν−1(z), v))− ν(ν−1(z)).

1 Simulation of the first passage time for a stopped con-
tinuous diffusion

Let us fix some time parameter T > 0. In this section, we shall focus our attention on the
exact simulation of the continuous diffusion paths on the interval [0,T]. Generating a random
object in an exact way consists in generating an object using a stochastic algorithm such that
both objects have the same distribution. Roberts and Beskos [1] already proposed an efficient
algorithm in order to exactly simulate a continuous diffusion path on the interval under
consideration: [0,T]. Of course we are not able to generate the whole paths numerically, the
exact simulation consists therefore in simulating a sequence of random points belonging to
the trajectory of the diffusion.

Herrmann and Zucca [16] proposed an adaptation of the algorithm introduced by Roberts
and Beskos in order to exactly generate τL, the first passage time through the level L for a
continuous diffusion. This approach presented in the next paragraph mainly differs from the
localization procedure introduced in [10] and based on the generation of Brownian meanders.
In order to deal with jump diffusions (next section), we need also to simulate exactly the
couple (τL ∧ T, YτL∧T) where (Yt)t≥0 stands for a continuous diffusion. Our technique differs
from the method proposed by Casella and Roberts [7] who studied the exact simulation of
killed diffusions introducing conditions on Brownian bridges.

1.1 Diffusion without any jump: the exact simulation method

Let us first consider continuous diffusion processes and propose a numerical approach for the
generation of their paths, we recall in this section the famous approach introduced by Beskos
and Roberts in order to fix the notations and propose simplified proofs. As already seen in
the introduction, we can restrict the study to the reduced model, the generalization being
obtained by the Lamperti transformation. That’s why we consider, on a given probability
space (Ω,F ,P), the following SDE on the fixed time interval [0,T]:

dYt = α(t, Yt) dt+ dBt, Y0 = y0, (1.1)

where (Bt)t≥0 is a standard one-dimensional Brownian motion. The direct generation of a
diffusion path is quite a hard task, that’s why we need to point out the link between the
diffusion and the standard Brownian motion using the famous Girsanov formula. The goal
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of this formula is to find a probability space in which the considered diffusion is a Brownian
motion. Then we generate a Brownian motion path and do an acceptance/rejection algorithm
using the weight enlightened by the Girsanov formula.

The Girsanov transformation: consequences for simulation purposes

First we recall the statement of the Girsanov transformation and the associated Novikov
condition (for a reference about Girsanov’s transformation, see for instance [32]).

Assumption 1.1 (Novikov’s condition). We say that Novikov’s condition is satisfied if

EP

[
exp

(
1

2

∫ T

0

α2(s, y0 +Bs) ds

)]
<∞. (1.2)

Let us note that this particular condition is satisfied if the growth of the drift term α is
at most linear (see Corollary 5.16 p.200 in [24]): there exists a constant CT > 0 such that

|α(t, x)| ≤ CT(1 + |x|), ∀(t, x) ∈ [0,T]× R.

Then the following transformation holds.

Theorem 1.1. Assume that α satisfies Novikov’s condition. Let us define the martingale
(Mt)t≥0 by

Mt = exp

(∫ t

0

α(s, y0 +Bs) dBs −
1

2

∫ t

0

α2(s, y0 +Bs)ds

)
, t ≤ T, (1.3)

and the measure Q on (Ω,FT):
dQ = MT dP. (1.4)

Then under Q, the stochastic process
(
Bt−

∫ t
0
α(s, Bs) ds

)
0≤t≤T

is a one dimensional standard

Brownian motion. In other words, (y0 + Bt)0≤t≤T under Q has the same distribution than
(Yt)0≤t≤T under P.

The Radon-Nikodym derivative pointed out in the previous statement is going to corre-
spond to the weight necessary for the use of an acceptance/rejection sampling. We use the
Girsanov formula as follows: let us consider (Yt)t≥0, the solution of the SDE (1.1), and f
any measurable functional depending on the paths of Y observed on the time interval [0,T],
then

EP[f(Y·)] = EQ[f(y0 +B·)] = EP[f(y0 +B·) ·MT]

= EP

[
f(y0 +B·) exp

(∫ T

0

α(s, y0 +Bs)dBs −
1

2

∫ T

0

α2(s, y0 +Bs)ds

)]
,
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where (Bt)t≥0 is a standard Brownian motion under the probability measure P. We introduce
two different functions which shall also play a crucial role in the numerical algorithm. Let
us define

β(t, x) :=

∫ x

y0

α(t, y) dy and γ(t, x) =
∂β

∂t
(t, x) +

1

2

(∂α
∂x

(t, x) + α2(t, x)
)
. (1.5)

Using Itô’s formula applied to the process (β(t, y0 +Bt))t≥0, we obtain

EP[f(Y·)] = EP[f(y0 +B·) · M̂T] with M̂T := eβ(T,y0+BT)−
∫ T
0 γ(t,y0+Bs) ds. (1.6)

General hypotheses for continuous diffusion processes

We recall that, through all our study, the diffusion (1.1) starts in y0 satisfying y0 < L. Let
us present now different hypotheses concerning the drift coefficient α in (1.1). They permit
to describe a typical framework for the introduction of efficient algorithms. The aim is not
at this stage to precisely emphasize the most general situation which permits the use of the
exact simulation technique, several studies were already introduced in order to successively
extend these conditions (see Beskos, Papaspiliopoulos and Roberts [1]...). The aim is rather
to focus our attention on a convenient context where the crucial arguments used in the study
of the continuous diffusions can easily be translated to jump diffusions. First of all, we need
a classical regularity property in order to use Itô’s formula.

Assumption 1.2. The drift coefficient α is a C1,1(R+ × R)-continuous function.

Of course the regularity property of α immediately implies that β and γ defined by (1.5) are
well-defined and continuous functions. According to the simulation goals, we need additional
conditions like the boundedness of β or of γ. If the aim is to generate YT we need the following

Assumption 1.3. The function γ defined in (1.5) is non negative and satisfies: there exists
a constant κ s.t.

0 ≤ γ(t, x) ≤ κ, ∀(t, x) ∈ [0,T]× R. (1.7)

Assumption 1.4. The function β defined in (1.5) is upper bounded at time T: there exists
a constant β+ > 0 s.t.

β(T, x) ≤ β+, ∀x ∈ R. (1.8)

The assumption concerning β can be weaken in particular situations when we just need an
integration property.

Assumption 1.5. The function ΓT : R→ R defined by

ΓT(x) := exp
{
β(T, y0 + x)− x2

2T

}
, x ∈ R,

with β introduced in (1.5) is integrable: ΓT ∈ L1(R).
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Assumption 1.3, 1.4 and 1.5 essentially concern the simulation of YT, T being a fixed time
value. If we are rather interested in the first passage time through the level L, we shall focus
our attention on the space subset ]−∞, L].

Assumption 1.6. The function γ defined in (1.5) is non negative and satisfies: there exists
a constant κ s.t.

0 ≤ γ(t, x) ≤ κ, (t, x) ∈ R+×]−∞, L]. (1.9)

Assumption 1.7. The function β defined in (1.5) is upper bounded: there exists a constant
β+ > 0 s.t.

β(t, x) ≤ β+, ∀(t, x) ∈ R+×]−∞, L]. (1.10)

Let us note that all these assumptions take new shapes as soon as the drift coefficient α in
equation (1.1) is time homogeneous. Most of the results presented in previous studies ([1],
[16]) concern this restrictive context but the generalization is a quite simple task.

The approach developed by Beskos and Roberts

Beskos and Roberts proposed in [1] a simulation approach for the exact generation of diffusion
paths on some given interval [0,T]. Their study is based on the Girsanov transformation
on one hand and on an acceptance/rejection sampling on the other hand. The procedure
therefore consists in the introduction of a Poisson process independent of the diffusion (1.1)
and whose realization shall permit to obtain the required weight appearing in the rejection
method (1.6). Their approach is not so easy to adapt to a jump diffusion since they do
not use at all the Markov property of the diffusion process. That is why we propose an
alternative presentation of their result (and the corresponding proof) and laid by that way
the foundations of the study in the general jump diffusion context. For a clear and succinct
presentation of the issue, we prefer just to introduce the exact simulation of YT where (Yt)t≥0
corresponds to the solution of (1.1).

Exact simulation of YT – Algorithm (BR)1T

1. Let (Gn)n≥1 be independent random variables with Gaussian distribution N (0, 1)

2. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.

3. Let (Un)n≥1 be independent uniformly distributed random variables on [0, 1].
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The sequences (Gn)n≥1, (En)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: n = 0.
Step 1. Set Z = y0, T = 0.

Step 2. While T < T do:

• set n← n+ 1

• Z ← Z +
√

min(T + En,T)− T Gn and T ← min(T + En,T)

• If (T < T and κUn < γ(T , Z)) then go to Step 1.

• If (T = T and Uneβ+ > eβ(T,Z)) then go to Step 1.

Outcome: the random variable Z.

Proposition 1.2. Under the assumptions 1.2, 1.3 and 1.4. both the outcome Z of Algorithm
(BR)1T and YT, the value at time T of the diffusion process (1.1), have the same distribution.

Remark 1.3. An adaptation of Algorithm (BR)1T should permit to obtain more than just the
random variable Z which has the same distribution than YT. Indeed denoting by n1 the value
of n throughout the last visit of Step number one, n2 the value of the increment variable when
the algorithm stops, Zn (respectively Tn) the successive values of Z (resp. T ), we obtain that{

(0, y0), (Tn1+1, Zn1+1), . . . , (Tn2−1, Zn2−1), (T, Zn2)
}

is a set of points which has the same distribution than points belonging to the diffusion
trajectory.

Proof. Let us denote by N the number of necessary repetitions of the step number one
and let ψ a non negative measurable function. Since the algorithm is based on an accep-
tance/rejection sampling, we get

E[ψ(Z)] =
E[ψ(Z)1{N=1}]

P(N = 1)
=
ν(ψ)

ν(1)
where ν(ψ) := E[ψ(Z)1{N=1}].

We use now the notations (Tn)n≥0 and (Zn)n≥0 introduced in Remark 1.3 and define the
event An := {Tn−1 < T ≤ Tn−1 + En = Tn}, for any n ≥ 1, which describes the number of
random intervals necessary to cover [0,T]. We observe that

ν(ψ) =
∑
n≥1

E
[
ψ(Zn)1{κU1>γ(T1,Z1), ..., κ Un−1>γ(Tn−1,Zn−1)}1{Un≤eβ(T,Zn)−β+}1An

]
.

Taking the integral with respect to the independent uniform variates (Un)n≥1 leads to

ν(ψ) =
∑
n≥1

κ1−nE
[
ψ(Zn)(κ− γ(T1, Z1)) . . . (κ− γ(Tn−1, Zn−1))eβ(T,Zn)−β+1An

]
.

10



We note that (T1, . . . , Tn−1), given An, has the same distribution than (V (1), . . . , V (n−1)) an
ordered (n − 1)-tuple of uniform random variables (V1, . . . , Vn−1) on [0,T]. Moreover the
probability of the event An is linked to the Poisson distribution of parameter κT. Finally
(Z1, . . . Zn) is a Gaussian vector and has the same distribution than

(y0 +BV (1) , . . . , y0 +BV (n−1) , y0 +BT)

with (Bt)t≥0 a standard Brownian motion independent of the (n − 1)-tuple (V1, . . . , Vn−1),
since the Brownian motion has Gaussian independent increments. Hence

ν(ψ) =
∑
n≥1

E
[
ψ(Zn)(κ− γ(T1, Z1)) . . . (κ− γ(Tn−1, Zn−1))eβ(T,Zn)−β+

∣∣∣An] Tn−1

(n− 1)!
e−κT

=
∑
n≥1

E
[
ψ(y0 +BT)

n−1∏
j=1

(κ− γ(V (j), y0 +BV (j))eβ(T,y0+BT)−β+
] Tn−1

(n− 1)!
e−κT

=
∑
n≥1

E
[
ψ(y0 +BT)

n−1∏
j=1

(κ− γ(Vj, y0 +BVj))e
β(T,y0+BT)−β+

] Tn−1

(n− 1)!
e−κT.

Taking the expectation with respect to the uniformly distributed variates Vj, we have

ν(ψ) =
∑
n≥1

E
[
ψ(y0 +BT)

(
κ− 1

T

∫ T

0

γ(s, y0 +Bs) ds
)n−1

eβ(T,y0+BT)−β+
] Tn−1

(n− 1)!
e−κT

= E
[
ψ(y0 +BT) exp

{
β(T, y0 +BT)− β+ −

∫ T

0

γ(s, y0 +Bs) ds
}]

= E[ψ(y0 +BT) · M̂T] e−β+ ,

where (M̂t)t≥0 is the martingale defined in (1.6). The martingale property leads to ν(1) =

E[M̂0]e
−β+ = e−β+ . The Girsanov transformation permits to conclude the proof:

E[ψ(Z)] =
ν(ψ)

ν(1)
= E[ψ(y0 +BT) · M̂T] = E[ψ(YT)].

Under Assumptions 1.2, 1.3 and 1.4, the algorithm pointed out in Proposition 1.2 has
a convenient and intuitive expression. However the boundedness of the function β(T, ·) is
rather a restrictive assumption and it is important to propose an alternative approach. To
that end, Beskos and Roberts proposed an integrability condition for the function ΓT, written
here in Assumption 1.5. Since ΓT is a non negative function, the integrability condition sum-
marized in the identity ΓT(R) :=

∫
R ΓT(x) dx <∞ ensures that ΓT(·)/ΓT(R) is a probability

distribution function. This crucial property permits to present the following algorithm. Let
us just mention that we use the following notation x+ = min(x, 0).
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Exact simulation of YT – Algorithm (BR)2T

1. Let (Rn)n≥1 be independent random variables with density ΓT(·)/ΓT(R).

2. Let (Gn)n≥1 be independent random variables with Gaussian distribution N (0, 1)

3. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.

4. Let (Un)n≥1 be independent uniformly distributed random variables on [0, 1].

The sequences (Rn)n≥1, (Gn)n≥1, (En)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: k = 0, n = 0.
Step 1. Set k ← k + 1 then Z = y0, W = y0 +Rk and T = 0.

Step 2. While T < T do:

• set n← n+ 1

• Z ← Z +
En

T− T
W +

√
En(T− T − En)+

T− T
Gn and T ← min(T + En,T)

• If (T < T and κUn < γ(T , Z)) then go to Step 1.

Outcome: the random variable W .

The procedure proposed in this second algorithm is mainly different from the first one.
Indeed the crucial idea of Algorithm (BR)1T is to simulate a Brownian motion on the interval
[0,T] and to accept or reject the trajectory using the weight probability issued from the
Girsanov transformation. The acceptance depends strongly on the whole path of the process
and leads to the outcome y0 +BT, the endpoint of the Brownian path. In Algorithm (BR)2T
the approach is different: we consider a random variable W with the proposal distribution
ΓT(·)/ΓT(R) translated by y0. This variate shall be accepted or rejected using a weight
probability based on the whole path of a Brownian bridge starting in y0 and ending at time
T with the value W . The main difference is therefore to replace the Brownian motion by
the Brownian bridge. We obtain the following statement.

Proposition 1.4. Under the assumptions 1.2, 1.3 and 1.5. both the outcomeW of Algorithm
(BR)2T and YT, the value at time T of the diffusion process (1.1), have the same distribution.

The proof of Proposition 1.4 is quite similar to the proof of Proposition 1.2. We refer to
the PhD thesis manuscript of Massin [31] for this adapted proof. The conditions concerning
the drift coefficient of the diffusion (1.1) can be weaken using the so-called localization
procedure [10] but we don’t intend to develop such an approach in this study as already
mentioned.
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The algorithm introduced by Herrmann and Zucca

The procedure of the exact simulation was adapted by Herrmann and Zucca [16] in order to
generate the first passage time of continuous diffusion processes. We focus now our attention
on the first time passage of the diffusion Y , starting in y0, through the level L. This algorithm
is also based on the Girsanov formula on one hand, and on the other hand, it requires the
construction of a skeleton of a 3-dimensional Bessel process.

We first recall that in the particular case of the Brownian motion, the first passage time
through the level L denoted by τL satisfies τL ∼ (L− y0)2/G2 where G ∼ N (0, 1). The main
idea is therefore to first generate a Brownian passage time and secondly to accept or reject
this variate proposal using the Girsanov weight. The construction of this algorithm looks
very much like the algorithms presented by Beskos and Roberts. The main difference is to
replace the Brownian paths (or Brownian bridge paths) appearing in the rejection sampling
by Bessel paths. The explanation of such a modification is related to the observation: once
the Brownian first passage time τL is generated, the Brownian motion constrained to stay
under the level L on [0, τL] can be related to a 3-dimensional Bessel process. The algorithm
proposal is the following.

Exact simulation of τL for continuous diffusions – Algorithm (HZ)

1. Let (Gn)n≥1 be independent standard 3-dimensional Gaussian vectors.

2. Let (en)n≥0 be independent exponentially distributed r.v. with average 1/κ.

3. Let (Vn)n≥1 be independent uniformly distributed r.v. on [0, 1].

4. Let (gn)n≥1 be independent standard Gaussian r.variables.

The sequences (Gn)n≥1, (en)n≥0, (Vn)n≥1 and (gn)n≥1 are assumed to be independent.

Initialization: k = 0, n = 0.
Step 1. k ← k + 1, δ = (0, 0, 0), W = 0, Tk ← (L− y0)2/g2k, E0 = 0 and E1 = en.

Step 2. While E1 ≤ Tk do:

• set n← n+ 1

• δ ← Tk − E1
Tk − E0

δ +

√
(Tk − E1)(Tk − E0)

Tk − E0
Gn

• If κVn ≤ γ(E1, L− ‖ E1(L− y0)(1, 0, 0)/Tk + δ ‖) then W ← 1 else W ← 0

• E0 ← E1 and E1 ← E1 + en

Step 3. If W = 0 then Y ← Tk otherwise go to Step 1.
Outcome: the random variable Y .

13



Proposition 1.5 (Herrmann-Zucca, 2019). Let us assume that τL <∞ almost surely where
τL stands for the first passage time of the diffusion (1.1) through the level L. Under the
assumptions 1.2 and 1.6, both the outcome Y of Algorithm (HZ) and τL have the same
distribution.

The detailed proof of Proposition 1.5 is presented in [16]. We do not present here the
sketch of the proof since most of the arguments are quite similar to those pointed out in the
proof of Proposition 1.2. Nevertheless we would like to say that Herrmann and Zucca didn’t
study a time-dependent drift term as appearing in equation (1.1), they focus their attention
on the homogeneous case. The statement of Proposition 1.5 is therefore an adaptation of
their result to the non-homogeneous case: here the function γ depends both on the time and
space variables.

Remark 1.6. The algorithm (HZ) can be adapted to the particular case of a continuous
diffusion process starting at time T0 > 0 with the value y. In this case, (Yt)t≥T0 is solution
of the following stochastic equation:

dYt = α(t, Yt) dt+ dBt, ∀t ≥ T0 and YT0 = y < L.

Moreover the definition of the first passage time is slightly modified τL becomes the first time
after T0 such that the diffusion hits the level L. The modification of the algorithm consists
in replacing y0 by y, γ(·, ·) by γ(T0 + ·, ·) and adding T0 to Y. We then denote (HZ)y,LT0

the
corresponding algorithm.

1.2 Stopped continuous diffusion

In the previous section, several procedures of exact simulation have been presented:

• simulation of YT: the value of the diffusion (1.1) at a fixed time T.

• simulation of the first passage time through the level L for the diffusion, denoted τL.

On one hand we are able to generate the position, on the other hand the exit time. In
order to complete the description, we introduce a suitable combination of the time and the
position which shall play an essential role in the sequel. We propose to build an algorithm
which permits to obtain the exact simulation of the random couple (τL ∧T, YτL∧T), linked to
the stopped diffusion. Here (Yt)t≥0 still stands for a continuous diffusion.

Let us first introduce a preliminary result concerning a particular diffusion process, the
standard Brownian motion (Bt)t≥0. Our aim is to generate a random variable which has the
same conditional distribution than BT given τL > T, where T is fixed and τL is the Brownian
first passage time (we shall assume that L > 0, the other case can be obtained by symmetry
arguments). We build the following algorithm.
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Conditional Brownian motion given τL > T – Algorithm (CBM)LT

1. Let (Gn)n≥1 a sequence of independent standard gaussian random variables

2. Let (Un)n≥1 a sequence of indep. uniformly distributed random variables on [0, 1].

The sequences (Gn)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: n = 1, Y = 0.
While

√
TGn > L or − T

2L
ln(Un) > L−

√
TGn do n← n+ 1.

Set Y ←
√
TGn.

Outcome: The random variable Y .

Proposition 1.7. Let (Bt)t≥0 be a standard Brownian motion. Then both the outcome Y of
Algorithm (CBM)LT and BT given τL > T have the same distribution.

Proof. The result is based on the classical acceptance/rejection sampling. Let us first de-
scribe the conditional distribution of BT given τL > T (see for instance Lerche [27])

u(T, x) dx := P(τL > T, BT ∈ dx) =

(
1√
T
φ

(
x√
T

)
− 1√

T
φ

(
x− 2L√

T

))
dx,

where φ denotes the distribution function of a standard Gaussian variate. We introduce Φ
the corresponding cumulative distribution. Then the previous expression leads to

fT(x) dx := P(BT ∈ dx|τL > T) =
1√
T
φ(x/

√
T)− φ((x− 2L)/

√
T)

Φ(L/
√
T)− Φ(−L/

√
T)

dx. (1.11)

We remark that the following upper-bound is satisfied

fT(x) ≤ c
φ(x/

√
T)√

TΦ(L/
√
T)

1]−∞,L](x) =: c gT(x) with c =
Φ(L/

√
T)

Φ(L/
√
T)− Φ(−L/

√
T)
.

It is obvious that gT(·) corresponds to a distribution function: a centered Gaussian dis-
tribution of variance T conditioned to stay under the value L. In the acceptance/rejection
procedure, we shall choose gT as the proposal distribution. So we generate a random variable
Z with distribution gT, this variate is then accepted if c UgT(Z) ≤ fT(Z) where U stands for
a uniformly distributed random variable, independent of Z. The condition just mentioned
is equivalent to

U ≤ 1− exp

(
2L

T
(Z − L)

)
.

If G stands for a standard Gaussian r.v., then it is obvious to relate the previous condition
to √

TG ≤ L or − T
2L

ln(1− U) ≥ L−
√
TG,

the acceptance condition appearing in Algorithm (CBM)LT.
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Figure 1: Trajectories of the conditioned diffusion

First we proposed in Proposition 1.7 the generation of the conditional Brownian motion.
As already pointed out in the previous section, we can relate distributions concerning the
Brownian paths to the diffusion ones using the classical Girsanov transformation. An inter-
esting application of this transformation is therefore to simulate a diffusion value at a fixed
time T given τL > T. In order to get a general statement, we consider a diffusion process
starting at time T0 < T with the value YT0 = y. It is therefore the unique strong solution of
the equation:

dYt = α(t, Yt) dt+ dBt, ∀t ≥ T0, and YT0 = y < L, (1.12)

where (Bt)t≥0 is a standard one-dimensional Brownian motion. The corresponding algorithm
is the following (see the illustration in Figure 1).

Conditioned diffusion YT given τL > T – Algorithm (CD)y,LT0,T

1. Let (Un)n≥1 be independent uniformly distributed random variables on [0, κ].

2. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.

The sequences (Un)n≥1 and (En)n≥1 are assumed to be independent.

Initialization: n = 1.
Step 1. Set Y = y, T = T0 and generate Z ∼ (CBM)L−YEn

.

Step 2. While T + En < T and Un > γ(T + En,Y + Z) do

• T ← T + En

• n← n+ 1

• Y ← Y + Z

• Generate Z ← (CBM)L−YEn
.
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Step 3. If T +En > T then generate Z ∼ (CBM)L−YT−T , set Y ← Y+Z and V ∼ U([0, 1])
independent of all other variates otherwise set n← n+ 1 and go to Step 1.
Step 4. If V · exp(β+) > exp(β(T,Y)) then set n← n+ 1 and go to Step 1.
Outcome: The random variable Y .

Proposition 1.8. Let us consider (Yt)t≥T0 the diffusion defined by (1.12) and τL the asso-
ciated first passage time through the level L:

τL := inf{t ≥ T0 : Yt ≥ L}. (1.13)

Under assumptions 1.2, 1.6 et 1.7, both the outcome Y of Algorithm (CD)y,LT0,T and YT given
τL > T have the same distribution.

Proof. The algorithm (CD)y,LT0,T is clearly based on a rejection sampling. The proof uses
therefore similar arguments than those pointed out in Proposition 1.2. Let us denote by Yn
(respectively Tn and Zn) the successive values of Y (resp. T and Z). We also introduce
a sequence of times (En)n≥1 defined by En+1 = En + En+1 with E0 = T0. We finally intro-
duce N the number of Step 1 used before the algorithm stops. Since the algorithm is a
acceptance/rejection sampling, we have for any non negative measurable function ψ:

E[ψ(Y)] =
E[ψ(Y)1{N=1}]

P(N = 1)
=
ν(ψ)

ν(1)
where ν(ψ) := E[ψ(Y)1{N=1}].

In the following computations, we denote by An the particular event: {En ≤ T < En+1} and
Pn shall correspond to the event:

Pn := {U1 > γ(E1,Y1 + Z1), . . . , Un > γ(En,Yn + Zn)}, for n ≥ 1 and P0 = Ω.

We therefore obtain that

ν(ψ) =
∑
n≥0

E
[
ψ(Yn+2)1Pn1{V ·exp(β+)<exp(β(T,Yn+2))}1An

]
.

Integrating with respect to all uniformly distributed random variables (Un) and with respect
to V leads to

ν(ψ) =
∑
n≥0

1

κn
E
[
ψ(Yn+2)

n∏
k=1

(κ− γ(Ek,Yk + Zk)) exp(β(T,Yn+2)− β+)1An

]
We note that (E1−T0, . . . , En−T0), given An, has the same distribution than (V (1), . . . , V (n))
an ordered n-tuple of uniform random variables (V1, . . . , Vn) on [0,T − T0]. Moreover the
probability of the event An is linked to the Poisson distribution of parameter κ(T − T0).
Finally on the event An, (Y1,Y2, . . .Yn+2) has the same distribution than

(y, y +BV (1) , . . . , y +BV (n) , y +BT−T0) given τBL−y := inf{t ≥ 0 : Bt ≥ L− y} > T− T0
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with (Bt)t≥0 a standard Brownian motion independent of the n-tuple (V1, . . . , Vn). Hence

ν(ψ) =
∑
n≥0

1

κn
E
[
ψ(y +BT−T0)

n∏
k=1

(
κ− γ(T0 + V (k), y +BV (k))

)
× exp(β(T, y +BT−T0)− β+)

∣∣∣τBL−y > T− T0

]κn(T− T0)
n

n!
e−κ(T−T0)

=
∑
n≥0

E
[
ψ(y +BT−T0)

n∏
k=1

(
κ− γ(T0 + Vk, y +BVk)

)
× exp(β(T, y +BT−T0)− β+)

∣∣∣τBL−y > T− T0

](T− T0)
n

n!
e−κ(T−T0).

Taking the expectation with respect to the uniformly distributed variates Vk leads to

ν(ψ) =
∑
n≥0

E
[
ψ(y +BT−T0)

(
κ− 1

T− T0

∫ T−T0

0

γ(T0 + s, y +Bs) ds
)n

× exp(β(T, y +BT−T0)− β+)
∣∣∣τBL−y > T− T0

](T− T0)
n

n!
e−κ(T−T0)

= E
[
ψ(y +BT−T0) exp

(
−
∫ T−T0

0

γ(T0 + s, y +Bs) ds
)

× exp(β(T, y +BT−T0)− β+)
∣∣∣τBL−y > T− T0

]
.

Since (y + Bt)t≥0 given τBL−y > T − T0 has the same distribution than (Bt)t≥T0 given both
BT0 = y and τBL ◦ θT0 > T, where θ stands for the translation operator, we obtain

ν(ψ) = E
[
ψ(BT) exp

(
−
∫ T

T0

γ(s, Bs) ds+ β(T, BT)− β+
)∣∣∣BT0 = y, τBL ◦ θT0 > T

]
.

Let us now modify the expression under review. We introduce

ν̂(ψ) := E
[
ψ(BT)1{Bt<L, ∀t∈[T0,T]} exp

(
−
∫ T

T0

γ(s, Bs) ds+ β(T, BT)− β(T0, y)
)∣∣∣BT0 = y

]
.

It is obvious that
E[ψ(Y)] =

ν(ψ)

ν(1)
=
ν̂(ψ)

ν̂(1)
. (1.14)

Moreover since (Mt)t≥0 defined by

Mt := exp
(
−
∫ T0+t

T0

γ(s, Bs) ds+ β(T0 + t, BT0+t)− β(T0, y)
)
,

is the exponential martingale appearing in the Girsanov transformation, we obtain by the
change of measure procedure:

ν̂(ψ) = E
[
ψ(YT)1{Yt<L, ∀t∈[T0,T]}

]
,

18



Figure 2: Two typical trajectories of the continuous diffusion.

where (Yt)t≥T0 stands for the diffusion (1.12). The ratio defined by (1.14) then permits to
conclude the proof

E[ψ(Y)] = E[ψ(YT)|τL > T],

the stopping time τL being introduce in the statement (1.13).

Finally we are able to produce an algorithm which generates exactly the distribution of
the couple (τL∧T, YτL∧T) where (Yt)t≥T0 stands for the continuous diffusion defined in (1.12)
and τL, the first passage time defined in (1.13) (see the illustration in Figure 2).

Stopped diffusion: (τL ∧ T, YτL∧T) – Algorithm (SD)y,LT0,T

Step 1. Generate T ∼ (HZ)y,LT0
(defined in Remark 1.6).

Step 2. If T < T then set Y ← L otherwise generate Y ∼ (CD)y,LT0,T and set T ← T.
Outcome: The random couple (T ,Y).

Proposition 1.9. Let us consider (Yt)t≥T0 the diffusion defined by (1.12) and τL the asso-
ciated first passage time (1.13). Under assumptions 1.2, 1.6 et 1.7, both the outcome (T ,Y)
of Algorithm (SD)y,LT0,T and (τL ∧ T, YτL∧T) have the same distribution.

Proof. The proof is straightforward. Either τL is smaller than T which corresponds to τL ∧
T = τL and YτL∧T = L or τL is larger than T and therefore the distribution of YτL∧T is the
conditional distribution of YT given τL > T.

2 Simulation of the first passage time for stopped jump
diffusions

The aim of this section is to generate the first passage time of a jump diffusion. This
challenging objective was already considered by Giesecke and Smelov [12] who adapted the
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localization approach introduced in [10] to that particular context. We propose here a
different method based on the work of Herrmann and Zucca [16] and on the generation of
Bessel processes. Let us just recall that the jump diffusion is characterized by the stochastic
differential equation between the jump times (0.3) and the jump height described in (0.4). In
the introduction, we discussed the possibility to reduce the considered model. Consequently
we shall first consider the following reduced model. Let us introduce (Tn)n≥1 the sequence of
jump times. We mention that the time spent between two consecutive jumps is exponentially
distributed, therefore Tn =

∑n
k=1Ek with (Ek)k≥1 a sequence of independent exponentially

distributed random variables with average 1/λ. The initial position of the diffusion is given
by Y0 = y0 and the jump diffusion under consideration moreover satisfies

dYt = α(t, Yt) dt+ dBt, for Tn < t < Tn+1, n ∈ N, (2.1)

the jumps modify the trajectories as follows:

YTn = YTn− + j(Tn, YTn−, ξn), ∀n ∈ N, (2.2)

where j : R+ × R × E → R denotes the jump function and (ξn)n≥1 stands for a sequence
of independent random variables with distribution function φ/λ (also independent of the
Brownian motion (Bt)t≥0 and of the sequence (Tn)n≥0). Let us associate to the stochastic
process defined by (2.1)–(2.2) the first passage time throught the level L (with L > y0):

τL := inf{t ≥ 0 : Yt ≥ L}. (2.3)

Since the jump times and the behaviour of the diffusion process inbetween the jump times
are independent, we can use the approach developped in the continuous diffusion case in order
to simulate jump diffusions. The crucial argument is that (t, Yt)t≥0 is a Markovian stochastic
process. Consequently the diffusion paths can be constructed in a piecewise Markovian way.
Let us present the algorithm for the generation of the stopped first passage time τL∧T where
T stands for a fixed time.

Stopped Jump diffusion (τL ∧ T) – Algorithm (SJD)y,LT

1. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/λ.

2. Let (ξn)n≥1 be independent r.v. with distribution function φ/λ.

The sequences (En)n≥1 and (ξn)n≥1 are assumed to be independent.
Initialization. n = 0, Ts = 0 (starting time), Tf = 0 (final time), Y = y, Z = y.
Step 1. While (Tf < T and Y < L and Z < L) do

• n← n+ 1
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• Ts ← Tf

• Tf ← Tf + En

• Generate (S,Z) ∼ (SD)Y,LTs,Tf

• Y ← Z + j(Tf ,Z, ξn)

Step 2.

• If S > T then set S ← T

• If S ≤ T and Z < L then S ← Tf

Outcome: The random variable S.

Theorem 2.1. Let us consider (Yt)t≥0 the jump diffusion defined by (2.1)–(2.2) and τL the
associated first passage time (2.3). Under assumptions 1.2, 1.6 et 1.7, both the outcome S
of Algorithm (SJD)y0,LT and τL ∧ T have the same distribution.

Figure 3: Three typical paths representing different scenarios

Proof. The proof is based on the Markov property of the process (t, Yt)t≥0. We start an
iterated procedure. First we set Ts = 0 (starting time) and generate a random variable
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which represents the first jumping time T1. This r.v. is denoted Tf = E1 in the algorithm
(final time). Two situations can therefore be considered (see Figure 3).

1. First case: Tf > T (this means that Step 1 is only used once). Conditionally to the
event "the first jumping time is larger than T", the diffusion behaves like a continuous
diffusion process on the interval [0,T] that we shall denote (Ŷt). Hence Yt = Ŷt for any
t < Tf . Indeed the jumping times are independent of the Brownian motion driving
the diffusive part of the stochastic process. Consequently the results developed in the
previous section can be applied. The algorithm (SD)y0,LTs,Tf permits to obtain the random
couple (τ̂L ∧ Tf , Ŷτ̂L∧Tf ) where τ̂L stands for the first passage time of the continuous
diffusion (Ŷt) after time Ts. The random couple is denoted by (S,Z) in Algorithm
(SJD)y,LT . We observe then one of the following situation:

• τ̂L ∧ Tf > T which is equivalent to the condition S > T. In such a situation we
deduce easily that τ̂L ∧ T = T = τL ∧ T, since Tf > T, and therefore it suffices to
set S = T in the algorithm in order to obtain the distribution identity announced
in the statement of Theorem 2.1.

• τ̂L ∧ Tf ≤ T corresponding to (S ≤ T and Z ≥ L). Then obviously we get
τL ∧ T = τL = τL ∧ Tf = τ̂L ∧ Tf which is identically distributed as S.

2. Second case: Tf ≤ T. Here also the diffusion (Yt) corresponds to a continuous diffusion
(Ŷt) on the time interval [Ts, τ̂L ∧ Tf [. So the previous section permits to generate
(τ̂L ∧ Tf , Ŷτ̂L∧Tf ), denoted by (S,Z). Of course S ≤ T. We distinguish three different
situations:

• Z ≥ L: this means that S = τ̂L ∧ Tf = τ̂L = τL = τL ∧ T which corresponds to
the statement of Theorem 2.1.

• Z < L and Z + j(Tf ,Z, ξ1) ≥ L which implies that the diffusion doesn’t cross
the level L before the first jump whereas the first jump permits to observe this
first passage. In other words, the first passage time corresponds to the first jump.
Hence τL = Tf (this situation occurs in the algorithm in the second step as both
S ≤ T and Z < L).

• Z < L and Z + j(Tj,Z, ξ1) < L. In such a situation, the jump diffusion does not
reach any value larger than L on the interval [Ts, Tf ] = [0, E1]. Indeed Z < L
implies that τ̂L∧Tf = Tf , the only possibility to overcome the level L on the time
interval [Ts, Tf ] being to observe a suitable jump at time Tf . Unfortunately such
an event cannot happen since Z+j(Tj,Z, ξ1) < L. In conclusion the first passage
time is strictly larger than the first jump time. In order to generate the FPT, we
propose therefore to start again using the Markov property: we should observe a
jump diffusion starting at time Tf (becoming the starting time Ts) with the value
Z + j(Tj,Z, ξ1) < L. In that situation, the algorithm permits to repeat Step 1
with new initial values.
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Since τL∧T is finite a.s. only a finite number of repetition of Step 1 is observed, the iterative
procedure which is directly associated to the Markov property of the jump diffusion permits
then to conclude and to obtain the announced statement.

Theorem 2.1 concerns the generation of the finite stopping time τL ∧T associated to the
reduced model (2.1)–(2.2) (we recall that T is a fixed time). Using the Lamperti transfor-
mation presented in the introduction, it is possible to generalize the study (see [31], for more
details).

Particular models with τL < ∞ a.s.

If the considered first passage time is a.s. finite, we are able to extend the previous algorithm.
This new algorithm permits to generate the first passage time τL of the considered jump
diffusion through the level L: it suffices to set T = +∞. However it is not so easy in
general to determine if such a condition is satisfied. Let us focus our attention on particular
assumptions related to the diffusion characteristics (diffusion coefficient, drift term, jump
measure) which lead to the required event τL <∞.

In fact the condition can be related to usual tools for studying the transience or recurrence
of stochastic processes. The proofs of this kind of results are often based on Lyapunov func-
tions. Wee proposed an interesting study for the recurrence or transience of d-dimensional
jump diffusions [39]. We shall just present the arguments in the particular one-dimensional
case in order to point out conditions for the first passage time to be a.s. finite.

Let us recall the definition of the jump diffusion (0.2) in situations where the coefficient
are time-homogeneous:

dXt = µ(Xt−) dt+ σ(Xt−) dBt +

∫
E
j(Xt−, v)pφ(dv × dt), t ≥ 0, X0 = y0. (2.4)

Here pφ(dv × dt) stands for the Poisson measure of intensity φ(dv)dt. Let us introduce the
compensated Poisson measure

p̂φ(dv × dt) := pφ(dv × dt)− φ(dv)dt.

Equation (2.4) can easily be rewritten using p̂φ instead of pφ just by changing the drift term
of the diffusion process µ(·) by

µ̂(x) = µ(x) +

∫
E
j(x, v)φ(dv), ∀x ∈ R.

Let us recall that (Xt, t ≥ 0) has the same distribution than (Yt, t ≥ 0) defined by (0.3)–
(0.4) with time-homogeneous coefficients. So we shall focus our attention to the first passage
time problem for the diffusion (Xt, t ≥ 0). In the particular case E = R, we obtain the jump
diffusion introduced by Wee:

Xt = y0 +

∫ t

0

µ̂(Xs−) ds+

∫ t

0

σ(Xs−)dBs +

∫ t

0

∫
R
j(Xs−, v)p̂φ(dv × ds), t ≥ 0. (2.5)
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We shall denote by Py0 the probability distribution of such a solution. In order to state the
result concerning the first passage time that is Py0(τL <∞) = 1 for y0 < L (the symmetric
case can be handled with similar arguments), we need to introduce several assumptions. We
assume in particular that the coefficients are regular and the diffusion nondegenerate.
Assumption 2.2. Let us suppose that there exists a constant K > 0 such that

|µ̂(x)− µ̂(y)|2 + |σ(x)− σ(y)|2 +

∫
R
|j(x, v)− j(y, v)|2φ(dv) ≤ K|x− y|2 (2.6)

and
|µ̂(x)|2 + |σ(x)|2 +

∫
R
|j(x, v)|2φ(dv) ≤ K(1 + |x|2). (2.7)

Moreover there exists σ0 > 0 such that σ(x) ≥ σ0 for all x ∈ R.
Under Assumption 2.2, it is well known that (2.5) admits a unique strong solution which is

right-continuous with left-hand limits, see for instance Theorem 9.1 in [22] for homogeneous
coefficients and Theorem 1.19 in [33] in the general non homogeneous case. Let us introduce
two additional assumptions which are crucial in order to obtain almost sure finite times τL
when the initial value y0 satisfies y0 < L.
Assumption 2.3. There exists r > 0 such that:

• the following bound holds

sup
y≤−r

∫
R

(
ln

(
|y + j(y + L+ r, v)|

|y|

))2

φ(dv) =: κL,r <∞. (2.8)

• there exist ε > 0 and η > 0 satisfying

yµ̂(y + L+ r) +

∫
R

(
y2 ln

(
|y + j(y + L+ r, v)|

|y|

)
− yj(y + L+ r, v)

)
φ(dv)

<
(1− ε)

2
σ2(y + L+ r)− ηy2, (2.9)

for all y ≤ −r.
The first part of Assumption 2.3 requires that the jumps are not too large. The second

part corresponds to a kind of competition between the drift, the diffusion coefficient and the
jump measure. A careful reading of the proof of Theorem 1 in [39] permits to adapt the
statement to the situation just introduced above.
Theorem 2.4. Let Assumption 2.2 and Assumption 2.3 be satisfied, then Py0(τL <∞) = 1
for any y0 ≤ L, where τL is the first passage time through the level L for the diffusion (2.5).

We completed this section by emphasizing a particular situation which insures that τL <
∞ almost surely. It concerns a time-homogeneous jump diffusion process since the essential
tools used in the proof of Theorem 2.4 are based on the generator and on an explicit Lyapunov
function. Nevertheless the use of suitable comparison results should permit to point out
examples with almost surely finite first passage times associated to non-homogeneous jump
diffusions.
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3 Numerical illustrations
In this last section, we present two examples of jump diffusion processes and propose sim-
ulation experiments which illustrate the algorithms introduced in Section 2. Let us just
recall that the diffusion (Yt, t ≥ 0) satisfies (0.3)-(0.4) with a determinsistic starting value
Y0 = y0. In all examples and without loss of generality, we shall focus our attention to the
case y0 < L where L stands for the level the diffusion process should overcome (τL denotes
the first passage time).

Example of a stopped jump diffusion.

We consider the time-homogeneous jump diffusion (0.3)-(0.4) with coefficients µ(t, y) =
2 + sin(y) and σ(t, y) = 1. In other words the diffusion starting in y0 satisfies the following
SDE inbetween the jump times:

dYt = (2 + sin(Yt)) dt+ dBt, for Ti < t < Ti+1, i ∈ N, (3.1)

and the jumps satisfy
YTi = YTi− + j(Ti, YTi−, ξi), i ∈ N.

Let us just recall that Ti =
∑i

k=1Ek with Ek exponentially distributed random variables
with average 1/λ. We set λ = 1 in the whole section. Moreover (ξi)i≥1 is a sequence of i.i.d
variates with density φ which will be precised later on. We fix T > 0 and we aim to generate
τL ∧T using Algorithm (SJD)y,LT (see Theorem 2.1) and therefore we need to verify that the
assumptions 1.2, 1.6 and 1.7 hold.
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Figure 4: Histograms of the stopping time τL ∧ T for the jump diffusion (3.1) with j(t, y, z) =
−z sin(y). Here y0 = −1, L = 1, T = 3, λ = 1 and the size of the sample equals 100 000. The noise
used for the jump generation corresponds to φ(t) = e−t1{t≥0} (left) or φ(t) = 2 1[−1/4,1/4](t) (right).

The first assumption concerns the obvious regularity of α(t, y) = µ(t, y). The second
and third assumptions consist in pointing out bounds for both functions γ(t, y) and β(t, y)
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defined by (1.5). Here we observe that

β(t, y) =

∫ y

0

(2 + sin(x)) dx = 2y + 1− cos(y) ≤ 2L+ 2 =: β+, ∀y ≤ L.

and

0 ≤ γ(t, y) =
(2 + sin(y))2 + (2 + sin(y))′

2
=

(2 + sin(y))2 + cos(y)

2
≤ 5 =: κ, ∀y ≤ L.

Let us also describe the jump function: we choose j(t, y, z) = −z sin(y). The histograms
emphasizing the distribution of the first passage time τL∧T are represented in Figure 4. Let
us note that the exact generation is quite time-consuming: the sample associated to the left
figure requires about CPU 377 sec while the right one requires about CPU 150 sec.

Example of a jump diffusion which satisfies τL <∞.

Let us conclude the numerical illustrations with a jump diffusion starting in y0 < L and
satisfying τL < ∞. We introduce to that end a stochastic process which satisfies on one
hand assumptions 2.2 and 2.3 insuring the finiteness of τL (see Theorem 2.4) and on the
other hand assumptions 1.2, 1.6 et 1.7. All these assumptions permit to use Algorithm
(JD)y0,L for the generation of the stopping time τL. We consider (Yt)t≥0 the solution of
(3.1) between to consecutive jump times. The jumps are associated to a time-homogeneous
function j(y, v) = (L+ 1− y)v as follows:

YTi = YTi− + j(YTi−, ξi), i ∈ N.

This particular jump function drives the stochastic process towards the threshold L. Let
us just recall that Ti =

∑i
k=1Ek with Ek exponentially distributed random variables with

average 1. Moreover (ξi)i≥1 is a sequence of independent uniformly distributed variates with
density φ(v) = 1[0,1](v). This model satisfies the announced assumptions quite easily. Let us
just point out the arguments used for Assumption 2.3. First we observe that, for any r > 1,
v ∈]0, 1[ and y ≤ −r,

ln(1− v) ≤ ln

(
|y + j(y + L+ r, v)|

|y|

)
= ln

(
|y(1− v) + (1− r)v|

|y|

)
≤ ln(1− v

r
). (3.2)

This inequality leads to the condition (2.8) since∫
R

(
ln

(
|y + j(y + L+ r, v)|

|y|

))2

φ(dv) ≤
∫ 1

0

(ln(1− v))2 dv <∞.

Finally for the condition (2.9), we note on one hand that yα(y + L+ r) ≤ 0 for any y ≤ −r
and introduce on the other hand the constant

η := −
∫ 1

0

ln
(

1− v

r

)
dv.
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Then the definition of η and (3.2) imply∫
R
y2 ln

(
|y + j(y + L+ r, v)|

|y|

)
φ(dv) =

∫
R
y2 ln

(
|y(1− v) + (1− r)v|

|y|

)
φ(dv) ≤ −ηy2.

All the conditions presented in Assumption 2.3 are therefore satisfied. In conclusion, the first
passage time τL is almost surely finite. We use Algorithm (JD)y0,L in order to generate a
sample of this stopping time: the histogram in Figure 5 describes the probability distribution
of the random variables. The generation of a sample of size 100 000 requires a processing
time of about CPU 90 sec for the case y0 = −1 and CPU 1 000 sec for the case y0 = −3 (here
we used the C++ programming language). This large processing time is strongly related to
the nature of the algorithm which is based on an acceptance/rejection procedure.

0 2 41 3 50.5 1.5 2.5 3.5 4.5
0

1

0.2

0.4

0.6

0.8

1.2

0.1

0.3

0.5

0.7

0.9

1.1

F
irs

t p
as

sa
ge

 ti
m

e 
of

 th
e 

ju
m

p 
di

ffu
si

on

0 2 41 3 50.5 1.5 2.5 3.5 4.5
0

0.2

0.4

0.1

0.3

0.5

0.05

0.15

0.25

0.35

0.45

F
irs

t p
as

sa
ge

 ti
m

e 
of

 th
e 

st
op

pe
d 

di
ffu

si
on

Figure 5: Histograms of the stopping time τL for the jump diffusion (3.1) with j(t, y, z) = (L+1−
y)z. Here L = 1, the size of the sample equals 100 000 and y0 = −1or y0 = −3 (right). The noise
used for the jump generation corresponds to φ(t) = 1[0,1](t).
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