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Abstract

The inspection of sizeable plate-based metal structures such as storage tanks or marine vessel hulls is a significant stake
in the industry, which necessitates reliable and time-efficient solutions. Although Lamb waves have been identified as
a promising solution for long-range non-destructive testing, and despite the substantial progress made in autonomous
navigation and environment sensing, a Lamb-wave-based robotic system for extensive structure monitoring is still lacking.
Following previous work on ultrasonic Simultaneous Localization and Mapping (SLAM), we introduce a method to
achieve plate geometry inference without prior knowledge of the material propagation properties, which may be lacking
during a practical inspection task in challenging and outdoor environments. Our approach combines focalization to
adjust the propagation model parameters and beamforming to infer the plate boundaries location by relying directly
on acoustic measurements acquired along the mobile unit trajectory. For each candidate model, the focusing ability of
the corresponding beamformer is assessed over high-pass filtered beamforming maps to further improve the robustness
of the plate geometry estimates. We then recover the optimal space-domain beamformer through a simulated annealing
optimization process. We evaluate our method on three sets of experimental data acquired in different conditions and
show that accurate plate geometry inference can be achieved without any prior propagation model. Finally, the results
show that the optimal beamformer outperforms the beamformer resulting from the predetermined propagation model in

non-nominal acquisition conditions.
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1. Introduction

During their lifetime, marine vessels are continuously
deployed on the seas for goods shipping. This inexorably
leads to the deterioration of the hull due, for example, to
the formation of biofouling on the surface, or due to the
salinity of the water that can favor the formation of de-
fects such as cracks or corrosion patches. Other large metal
structures such as storage tanks deteriorate over time due
to their operational conditions, and the underpinning de-
fects may not always be detectable with the bare eye [1].
Thus, in the marine and petrochemical industries, the in-
spection of large-scale metal structures — which are usu-
ally made of metal panels assembled out together — must
rely on efficient solutions that can seamlessly integrate into
their day-to-day operation.

Standard inspection methods are time-consuming as
they often require the intervention of trained operators,
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causing a significant financial impact. Moreover, these
methods work for localized inspection areas; thus, the en-
tire surface cannot be inspected in a reasonable amount of
time. For ship hulls inspection, for example, either human
operators or robots such as magnetic crawlers [2] can apply
acoustic probes on the structure surface to perform thick-
ness measurements, and detect corrosion patches. How-
ever, only the surface directly covered by the probe is ef-
fectively controlled with a single measurement.

The inspection of structures over long ranges is being
actively investigated in the literature. Lamb waves, in
particular, are being integrated into modern Non Destruc-
tive Testing (NDT)-capable devices. These waves can be
emitted in plate materials by piezoelectric transducers and
can propagate radially over long distances in a direction
parallel to the surface. What makes them appealing is
that they are sensitive to material integrity. Usually, they
are deployed on static networks of sensors that are perma-
nently attached to the structure. Thus, defect detection
and localization can be achieved through the triangulation
of acoustic scatterers from residual signals [3, 4, 5, 6, 7],
or by using baseline-free methods [8, 9, 10, 11].

Besides, the interest in the development of a robotic
system for long-range inspection is steadily growing, as it

December 20, 2021



holds tremendous potential for industrial applications, and
its feasibility is being demonstrated by recent works [12,
13, 14]. Yet, deploying acoustic imaging techniques on
a robotic system necessitates precise localization of the
transducers, which is critical for accurate inspection re-
sults. Contrary to standard Structural Health Monitoring
(SHM) technology where the positions of the sensors are
known accurately, these positions need to be estimated in
the framework of a robotic application due to kinematics
modeling errors, and due to the imprecise wheel displace-
ment and rotation data provided by the wheels’ encoders.

When induced by a source excitation, Lamb waves can
reflect on the metal plate boundaries, usually without
mode conversion when the excitation frequency is sufhi-
ciently appropriate [15]. As the resulting acoustic mea-
surements contain such reflections, they provide range-
only information between the source position and the
plate edges which may be useful for accurate localization,
in combination with other measurement systems. Lamb
wave-based localization has been demonstrated for a pulse-
echo setup on a rectangular and isotropic metal panel,
but with prior knowledge of the structure geometry [16].
Hence, determining precisely the sensor position on a large
structure is intrinsically connected to building a map of
the environment (4.e mapping the environment) which can
rapidly become a tedious task if not made automatically
[17]. Furthermore, from a robotic perspective, defect de-
tection and localization may be interpreted as a mapping
problem as well. Overall, the mapping of acoustic scat-
terers (whether they be plate boundaries or defects) by a
mobile unit is a major issue that needs to be addressed to
enable the emergence of a viable robotic inspection system.

In the literature, the problem of defect detection and
localization using acoustic reflections on the structure
boundaries has been widely studied [18, 19, 20, 21]. Fur-
thermore, approaches to detect the boundaries of a rect-
angular panel [22], to identify structural features such as
stiffeners [23], or to localize an acoustic source [24, 25]
have been investigated. Yet, they are deployed on static
networks of sensors. A recent work [26] proposes a Lamb
wave-based approach to map a rectangular metal panel
using a pair of mobile sensors, along with an exploration
strategy. Yet, the work is dedicated to pitch-catch config-
urations, the Time of Flights (ToF) readings are not done
automatically, the mapping is only based on the edge echo
that arrives first, and the final map may eventually be er-
roneous due to gridlock situations that are not predictable.

Recent works from the authors address Lamb wave
based Simultaneous Localization and Mapping (SLAM),
where the geometry of the plate and the position of a co-
located emitter/receiver pair of piezoelectric transducers
are jointly estimated. A method based on Li-regularized
Least-squares for echo detection and on a FastSLAM algo-
rithm [27] has been presented in first instance [28]. Subse-
quently, propagation models to account for the dispersive
nature of guided waves in metal plates and space domain
Delay-And-Sum (DAS) beamforming [29] have been inte-

grated into a FastSLAM algorithm for the exclusive map-
ping of rectangular shapes [30]. Results proved to be accu-
rate on two different metal panels. However, no solutions
were proposed to limit the detrimental effect of interfer-
ence on the mapping results which is a well-known issue
inherent to DAS beamforming [29]. Besides, the approach
requires prior knowledge of the propagation model.

Prior knowledge of the physical properties of isotropic
metal structures is in general sufficient for acoustic lo-
calization and mapping in well controlled environments.
However, the hypothesis that the propagation model is
known a priori may not be realistic for a practical inspec-
tion task on a large metal structure due to a wide variety
of external perturbations that can significantly affect the
acoustic signals, and to a lack of knowledge of the struc-
ture physical condition (which is the reason why it is being
inspected). Potential perturbations may include but may
not be limited to temperature variations which are already
known to affect acoustic measurements substantially [31],
pressure due to the neighboring metal plates which are
welded altogether, moisture, the varying thickness of the
coating, or the effect of the coupling (namely water in the
case of acoustic inspection with a robotic system). Conse-
quently, adaptive methods that automatically calibrate the
propagation model by relying directly on data acquired on
the field may be necessary to achieve accurate localization
and mapping results, without any human intervention.

Recent works in the literature either address the prob-
lem of extracting the dispersion characteristics of mate-
rials from ultrasonic data [32, 33, 34, 35], or investigate
acoustic localization techniques that can also recover the
propagation properties [25, 36, 37]. However, simultane-
ous acoustic localization and propagation characterization
from pulse-echo ultrasonic measurements acquired by a
mobile unit has not been thoroughly studied. In the liter-
ature of beamforming, adaptive methods have been elabo-
rated to compensate for inaccurate knowledge of the prop-
erties of the propagation media for underwater acoustic
source localization purposes [38], or more generally, for
Matched Field Processing [39]. Beamforming has been
combined with focalization [40], an approach that consid-
ers the propagation environment as an acoustic lens, and
which seeks, through an optimization process, to adjust
the propagation parameters so that the focalization capa-
bility of beamforming is maximized. It has also been stud-
ied for joint acoustic signal separation and source localiza-
tion [42]. The potential of focalization has been success-
fully demonstrated in simulation for underwater acoustic
localization, and may provide an interesting approach for
Lamb waves. Yet, this has not yet been demonstrated.

This paper proposes an approach that combines focaliza-
tion and DAS beamforming to achieve Lamb wave-based
mapping of a plate-like structure by a mobile unit, so that
accurate mapping results can be achieved during an in-
spection task without prior knowledge of the propagation
properties of the material. For the sake of simplicity, the
localization problem is not addressed here. The proposed



approach combines focalization to adjust the parameters
of propagation models that are derived from the Helmholtz
equation, and beamforming to localize the plate edges.
The focalization capability of a candidate beamformer is
assessed over high-pass filtered beamforming maps, so that
the detrimental effects of interference and high-order re-
flections are lowered. A simulated annealing optimization
process is then implemented so that the optimal beam-
former can be recovered based directly on data. Results
acquired on experimental data in three different scenar-
ios show that the proposed approach is effective. Fur-
thermore, mapping the plate geometry with the optimal
beamformer is found to be more efficient than mapping
with a predetermined propagation model in non-nominal
acquisition conditions.

The outline of the present article is as follows. First,
the general theory on Lamb waves propagation in metal
panels is briefly presented. Next, the approach based on
DAS beamforming for mapping the plate edges with a sin-
gle mobile platform by leveraging the acoustic reflections
is recalled. The choice of the propagation parameters to
search for, namely, the plate thickness, the longitudinal
and transverse velocities, is then discussed, and the simu-
lated annealing process is presented. Finally, experimental
results and discussions conclude the article.

2. Lamb wave-based mapping

In what follows, we briefly recall the essential princi-
ples of the theory on Lamb waves propagation in metal
plates, namely, the Rayleigh-Lamb equations. We then in-
troduce a simple propagation model based on approximate
solutions of the Helmholtz equation to account for disper-
sive propagation under the hypothesis of a linear model
and an isotropic material. Next, we summarize the map-
ping strategy to localize the plate boundaries based on a
known propagation model and a space-domain delay-and-
sum beamformer [30]. These elements will be the basis of
the core contribution of this paper, which is plate mapping
without prior knowledge of the propagation model.

2.1. Lamb waves propagation in a metal plate

The theory on Lamb wave propagation in an isotropic
and homogeneous wave guide is well established [41]. Ac-
cording to the Rayleigh-Lamb equations:

4k*qp }a

(kZ _ q2)2 (1)
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where h denotes the half-thickness of the plate, k = 27 /)

is the wavenumber, A is the wavelength, and the following
equations define p and ¢:
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In the above equation, w is the pulsation, and ¢y, and cr
are respectively the longitudinal and transverse velocities
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Figure 1: Dispersion curves for several low order symmetric and anti-
symmetric Lamb wave modes in a 6mm thick aluminum plate. The
top figure depicts the group velocities while the bottom plot shows
the wavenumbers.

related to the material. For a = 1, the equation yields
the physical properties of symmetric modes, whereas for
a = —1, the properties of anti-symmetric modes are stip-
ulated. The resolution of the equation, using dichotomy
algorithms for example [3], yields a dispersion relation
k(w-d) (or k(w) for a fixed d), where d = 2h is the plate
thickness. One particularity is that each equation always
admits at least one positive real-valued solution, and the
number of solutions increases with frequency. Hence, at
least the two fundamental modes AO and SO propagate
within the material, while higher-order modes propagate
when the excitation frequency exceeds their respective cut-
off frequency. Fig. 1 depicts dispersion curves for symmet-
ric and anti-symmetric modes for a 6mm thick aluminum
plate. In practice, a low excitation frequency is used to
avoid multi-modal propagation, and one mode is often pre-
dominant over the other fundamental mode. Also, as their
velocities are frequency-dependent, these modes are dis-
persive, resulting in wavepacket distortion and spreading
in the signal when the propagation distance increases.
Finite Element Methods (FEM) are often used to simu-
late Lamb waves propagation [44], but their heavy compu-
tational load makes them impractical to use for acoustic
localization operations. Instead, one can rely on computa-
tionally efficient and relatively accurate propagation mod-
els given by the solutions of the Helmholtz equation, for
which the wavenumber abides by the dispersion relation of
the mode assumed to exist in the material. When a signal
s is used to excite Lamb waves in a metal plate, under the



hypotheses of linear propagation and isotropic media, the
vertical component u of the displacement field abides by:

V2u(r,w) + k*(w) - u(r,w) = —s(w)

where r is the propagation distance from the excitation
point. It is known that the solution, i.e. the acoustic
transfer function g(r,w), can be expressed with the Hankel
function of 0 order and of the first kind yielding the scalar
field: u(r,w) = g(r,w) - s(w) = H} (k(w)r) - s(w). The
transfer function is often simply reduced to:

9(r,w) = exp(—jk(w)r)//k(w)r. (2)

The use of this acoustic model is widespread in the litera-
ture of guided waves, primarily to achieve defect detection
and localization purposes [45, 46].

2.2. Space-domain beamforming for plate geometry infer-
ence with a single mobile unit

We are considering a mobile platform equipped with
an emitter /receiver pair of piezoelectric transducers nearly
co-located. At the " scanning position, the emitter ex-
cites the Lamb waves in the plate material with the pulse
s(t). Simultaneously, the receiver collects the acoustic re-
sponse z;(t) which contains the reflections on the plate
boundaries, and it will be assumed that the excitation
signal is chosen adequately so that the A0 mode is pre-
dominant (while the propagation of SO is negligible). The
objective is to infer the plate geometry and the sensors’
acquisition positions in the plate frame. In robotics, this
is known as a mapping problem because the displacement
between each acquisition position (i.e odometry data) is
assumed to be known flawlessly. Even though a solution
for simultaneous localization and mapping has been pro-
posed [30], the localization problem is disregarded in this
paper for the sake of simplicity.

In the considered setup, the acoustic measurements es-
sentially consist of a superposition of the acoustic reflec-
tions. Under the assumption that the material is homo-
geneous, isotropic and the propagation linear, a standard
measurement model to reverberation is the image source
model [47]. Tt states that each reflection from the plate
boundaries can be considered as a signal originating from
a fictional source, deducted from the actual source posi-
tion and reverberant media geometry. In metal plates, the
image source model can be leveraged to account for first
order as well as higher-order reflections, resulting in the
following measurements in the time domain:

S gllx - xil,6) # s(0)

XEL(x;)

where x; = [x;, y;] is the position of the robot during time
step i, Z(x;) the set of the image sources positions when
the real source is in x;, g(|x — x;|,t) the acoustic transfer
function associated to the predominant A0 mode, and *
denotes the convolution operation. An example of a clean
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Figure 2: Example of an acoustic signal acquired on an aluminum
plate (top plot) and the correlation signal obtained from the measure-
ment along with its envelope (bottom plot). The ranges relative to
the first-order reflections (8, 37, 52 cm) can be successfully retrieved
from the local maxima. The echo at nearly 45 cm corresponds to a
higher-order reflection.

acoustic measurement acquired on an aluminum plate can
be seen in Fig. 2, where the transducers have been placed
on a 600x450x6mm aluminum plate, and at 8cm of the two
edges of a corner.

To retrieve the ranges from the sensors to the plate edges
from data z;(t), we determine the correlation signal:

where 2(r,t) = §(2r,t) * s(t) is the expected signal for the
incident wave reflecting at a distance r from the trans-
ducers, and (., .) denotes the scalar product in the domain
of continuous signals: (u(t),v(t)) = _Jr;o u(r)v(r)dr. To
alleviate the oscillations present in z], we retrieve its en-
velope e;(r) with:

ei(r) = |zi(r) + jH (=) (r)]

where H denotes the Hilbert transform operator. Thus,
the resulting signal e; yields the distances of the transduc-
ers to the metal plate edges with the position of its local
maxima. This principle is illustrated in the bottom plot
of Fig. 2. Besides, it is noteworthy that a single measure-
ment cannot provide enough information to determine an
edge without ambiguity, as all the lines tangent to the cir-
cle with radius r and centered at the position of the sensor
may equally account for the correlation measurement.
The plate geometry to be recovered is represented by
a set of lines: M = {r,6;},_, , where the parameters
(r1,6;) define the line equation in the 2D plane with:

x-cosb+y-sinf—r; =0
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Figure 3: Representation of lines in a 2-dimensional plane with (r, 8)
coordinates.

in a non-mobile frame with respect to the plate, as illus-
trated in Fig. 3. The origin O of the reference frame can
be taken as the initial position of the mobile unit while
on the metal panel. Moreover, for convenience, the plate
geometry is restricted to rectangular shapes.

Next, given a robot trajectory {z;,v;}i=1.. n (assumed
to be flawlessly provided by odometry for the mapping
problem), the beamforming map £y is computed to assess
the likelihood of existence of any line (r,§) with:

N
Ly(r,0) =Y ei(di(r,0)) (3)
i=1
where d;(r,0) = |z; - cosf + y; - sin@ — r| is the distance
between the robot during measurement step ¢ and the hy-
pothetical line being considered. In the equation, all the
correlation values add up constructively along with all the
observations if an edge is indeed present. Also, it can be
noted that only first-order reflections are taken into ac-
count, as we reason on individual lines. One major ad-
vantage of this approach is that £y (r, ) can be computed
recursively when an additional measurement ey is made
available, as Ly (r,0) = Ly_1(r,0) + en(|Jzn - cosb + yn -
sin@ — r|). This is beneficial for a robotic task meant to
be performed in real time, as a map estimate is available
at any time, and the computational load of one update is
low. Finally, to infer the most plausible plate geometry
from Ly, we solve the following optimization problem:

4
M = Ln(M) = Ln(r1,0 4
arg max ~(M) argmﬁx; N (71, 61) (4)
where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First,
one can determine the most plausible line with:

(71,61) = argmanEN(r, 0).
s
Next, assuming that 6, provides the most reliable estima-

tion of the plate orientation w.r.t. the robot, the determi-
nation of the other lines reduces to solving independent

and straightforward one-dimensional optimization prob-
lems:

1 )
% ;7 =argmax Ln(r,0;)

él = é1 +
for [ = 2,3,4. Solving the plate geometry inference with
this approach gives accurate results in laboratory condi-
tions [30]. However, this approach has some limitations.
The fact that an infinity of lines can equally account for
one reflection causes interference, which is a well-known is-
sue encountered when relying on standard DAS beamform-
ing. The effect of interference is further exacerbated by the
high order reflections which are not considered in Eq.(3),
whereas their presence cannot be neglected as shown by
Fig. 2-b). The consequence is that beamforming maps are
fuzzy, which can make the estimation ambiguous, as it
will be illustrated later. Also, the method relies on prior
knowledge of the propagation model g to obtain accurate
results, whereas such a hypothesis may not be realistic for
a practical inspection task in challenging outdoor environ-
ments, where the structure state is truly unknown.

3. Optimal beamforming for model learning

In this section, we present an adaptive method to re-
cover a metal plate geometry without the assumption of
a known model. It is based on focalization in the param-
eter space (i.e. the propagation model is adjusted) and
beamforming for localizing the plate boundaries. First,
the parametrization of propagation models using solutions
of the Helmholtz equation is presented. Next, we intro-
duce and apply a simple high-pass filter to the beamform-
ing maps to limit the detrimental effect of interference and
high-order reflections. A loss function is then designed to
assess the focusing capability of a candidate beamformer
which should maximize spatial coherency (i.e. the energy
that is focused at the geometry estimate on the beam-
forming map) in the case when the propagation model is
appropriate. Finally, an optimizer based on simulated an-
nealing [48] is presented to recover optimal propagation
parameters by minimizing the loss in a limited number of
iterations. The efficiency of such an approach has been
successfully demonstrated for underwater source localiza-
tion purposes [40, 42].

8.1. Parametrization of the propagation model

With the hypothesis of linear and isotropic propaga-
tion, we aim at recovering both a propagation model
g(r,t) and the plate geometry expressed as a set of lines
M = {7,601 }1=1..4.

For candidate propagation models, we keep relying on
the (approximate) solutions of the Helmholtz equation.
Hence, estimating the propagation model reduces to the
estimation of only three parameters which are the lon-
gitudinal velocity ¢y, the transverse velocity c¢p and the
plate thickness d, and that we will gather in the variable



Q = {cr,cr,d}. This choice is convenient as we constrain
the propagation models to be physically plausible while
limiting the search space for the propagation model pa-
rameters to a low dimension, which will facilitate the op-
timization process. As the complete state of the structure
may be unknown during the inspection, adapting these
wave parameters may be relevant. Indeed, plate thick-
ness may not be known accurately for each surface plate
as the structural integrity is unknown. Besides, the ef-
fects of variation of temperature, pressure, moisture may
be interpreted as variations of the effective velocities. For
more complex sources of disturbances such as the effect
of coupling or structure irregularities, we are not seeking
to strictly compensate for their effect with such a simple
model, yet sufficiently enough to predict the plate bound-
aries location accurately. Next, given candidate values )
for the model parameters, the dispersion equation for the
A0 mode given in Eq. (1) is numerically solved and is used
to infer the propagation model gq(r,t) with Eq. (2).

3.2. Design of the loss function

Compared to plate geometry reconstruction with a
known propagation model, inferring the plate geometry
and propagation parameters simultaneously requires the
determination of a larger number of unknowns. Conse-
quently, an appropriate loss function that ideally prevents
irregular cost surfaces with many local minima is needed
to facilitate the optimization process.

Here, we introduce a loss function to assess the ability of
a candidate beamformer (related to candidate parameter
values 2) to focus the energy of the wave packets contained
in the measurements at the plate geometry estimate so
that minimizing the loss function w.r.t. the model param-
eter search space improves the spatial coherency achieved
with the beamformer. For candidate propagation param-
eters, the beamforming map Lq(r,0) is constructed as in
Eq. (3), allowing a plate geometry estimate M, to be re-
trieved from it with the same optimization process as in
Eq. (4). We then evaluate the total energy focused at the
estimate Mg, over the beamforming map that has been
high-pass filtered to limit the effect of interference and
high-order reflections. The filtered map value at each line
(r,0) is simply defined by the difference between its initial
energy value and the minimum of energy in its vicinity
that is to be appropriately defined:

La(r,0) = Lo(r,0) —  min

La(r',0). 5
(r",0") eV (r,0) Q(’I" ) ( )

where V(r,0) refers to the set of lines in the vicinity of
(r,0). Compared to the standard Lq(r, ), the filtered map
L, while being inexpensive to compute, has the advan-
tage to present fewer areas where the intensity is high but
homogeneous (such a situation occurs due to the combi-
nation of high-order reflections and interference). Hence,
it is more compatible with Eq.(4) for the determination
of the location of the edges. Thus, using Eq. (5) may ap-
propriately filter ”fuzzy” areas where the energy is spread

homogeneously (i.e. not focused at a single point) due to
interference on the beamforming maps, and may isolate
correct intensity peaks. This will be illustrated next with
experimental data.

To simultaneously recover propagation parameters and
the plate geometry, performing a joint search in both the
propagation model space and the geometry space would be
computationally expansive. Instead, we rely on an optimal
beamforming formulation: the loss is only evaluated over
candidate model parameters (2, and for the corresponding
geometry estimate M, retrieved from the high-pass filtered
beamforming map Lg with Eq.(4). The loss value [(2) that
we will seek to minimize is then taken as minus the sum
of the intensity levels evaluated at the retrieved edges:

()=~ > Lalr0) (6)

(r,0)EMq

so that the energy focused at the plate geometry estimate
can be maximized, while the detrimental effects of inter-
ference and high-order reflections can be minimized. The
geometry estimate provided by the optimal beamformer is
expected to match closely the ground truth geometry due
to the maximum of spatial coherency as long as measure-
ments have been acquired on a sufficient portion of the
plate surface. Besides, to highlight the benefit of using
high-pass filtered beamforming maps, propagation model
selection based on the loss evaluated using the regular
beamforming map Lq(r, ) will also be carried out in the
following sections, and the mapping results will be com-
pared.

3.3. Optimization with simulated annealing

An optimization process is needed to adjust the wave
propagation parameters (longitudinal and transverse ve-
locities and the plate thickness) through the minimization
of the loss function. Due to the implicit definition of the
propagation models, first-order methods such as gradient
descent are impractical to use for our problem.

Simulated annealing [48] is efficient for estimating a
global minimum of a cost function, even when the number
of unknowns is large [42]. This metaheuristic is inspired
from metallurgy where, to form a perfect crystal (which
corresponds to the state of minimal energy), a pure lig-
uid substance is slowly cooled. At each iteration of the
optimization process, a random perturbation is applied
to the current point value. The perturbation is system-
atically accepted if the energy is decreased. To escape
local minima, the perturbation is accepted according to
a Boltzmann probability distribution if the energy is in-
creased. The temperature, which is a hyperparameter, is
decreased slightly after each iteration so that the prob-
ability to increase the energy goes to zero. Hence, the
major controllable parameters of simulated annealing are
the distribution of the perturbation and the profile of the
temperature cooling.



For Lamb-wave based mapping without a prior propa-
gation model, the parameter search is reduced to the op-
timization over the value of € as the geometry is directly
deduced using Eq. (4) when Q is fixed. Our implemen-
tation of the optimizer is similar to that used in articles
related to the underwater localization problem [40]. The
major difference lies in the cost function design. First,
we initialize the propagation parameters with uniform dis-
tributions within predefined intervals which are plausible
regarding the application:

C% ~ u([cminycmax]); C(j)“ ~ u([cminvc% - m])

do ~ u([dmina dmax])-

The value of ¢t is drawn below the value of ¢y, with a small
margin m > 0, as it cannot physically be higher (i.e there
are no positive real-valued solutions to the Rayleigh-Lamb
equation).

At each iteration of the algorithm, the parameters are
randomly disturbed using the following perturbations:

¢ = min {max{c!, + Ac- X3, cmin}, Cmax }

i = min {max{ch + Ac- X}, cmin}, 5 —m}
dtt! = min {max{dt + Ad - X3, dmin } dmax} )

Using the min-max formulation enables to leverage prior
information by constraining the parameter values within
plausible intervals. Similarly to the initialization step, ctT+1
is restricted to be lower than ctLJrl with the same mar-
gin m. xo, X1, X2 are independent random values be-
tween -1 and 1, and are drawn from uniform distributions:
X1,2,3 ~ U([—1,1]). They are raised to power 3 so that
small variations are more likely. Still, large variations can
be possible to explore regions of the search space that are
far occasionally when the values of Ac and Ad are chosen
to be large enough.

Next, for the new parameter values Q**!, the dispersion
relation kqe+1(w) is determined by solving the Raleigh-
Lamb equations. As the relation is computed numerically
at each iteration of the optimization process, the compu-
tational load can be quite demanding. A trick to save
computational time is to determine the wavenumber only
for a restricted set of pulsation values wy,...,wx and to
use linear interpolation to determine the wavenumber for
other frequencies.

Next, the acoustic transfer function go:+1(r, w) is deter-
mined with the Helmholtz model given in Eq. (2). The
beamforming map Lqge+1(r,0) is then computed and a
plate geometry estimate Mgt+1 is retrieved from it, al-
lowing the determination of the loss value [(Q2+1) with
Eq. (6).

The variation of energy between the previous and dis-
turbed parameters is AE = [(Q!F1) —1(02). In the context
of simulated annealing, the disturbed parameter value is
not systematically kept. It is the case only when:

N
X <exp =T

Figure 4: Pictures showing the experimental setups for Scenario 1
(left) and Scenario 3 (right).

where v is a strictly positive scaling parameter, T' is the
temperature at the iteration ¢, and x is drawn randomly
and uniformly between 0 and 1. Consequently, when the
energy is decreased, the disturbed parameters are system-
atically kept. Otherwise, the acceptance rate is given by
the Boltzmann distribution which yields lower acceptance
rates for more significant increases of energy. The temper-
ature parameter is often chosen to decrease inverse loga-
rithmically. To enable fast convergence of simulated an-
nealing, we will decrease the temperature inverse linearly.
Trials and errors are used to determine appropriate param-
eters for the optimizer: the values that empirically demon-
strate a lower likelihood for the optimizer to be stuck in
local maxima while maintaining a sufficient convergence
speed are retained.

As it has already been highlighted, the cost function may
be heavy to assess, in particular when the number of con-
sidered measurements is high. Indeed, each iteration of the
optimizer requires solving the Rayleigh-Lamb equation for
a set of frequency values, then computing the beamform-
ing map using the N measurements, and recovering a plate
geometry estimate with the optimization. For a robotic
application, a few seconds might be needed to achieve con-
vergence with around 100 measurements and using a linear
decrease of the temperature. Thus, our method cannot be
used in real time. Yet, this is not an issue, as it could be
considered, during a practical robotic inspection task, to
stop the robot for a few seconds to run the optimizer oc-
casionally, and restrict the maximum number of acoustic
measurements used to perform the optimization.

4. Experimental setup

We test our approach on experimental acoustic data
that have been acquired in three different scenarios. To
generate the datasets, an emitter/receiver pair of contact
piezoelectric V103-RM U8403008 transducers is moved at
different positions on the plate surface, in each scenario.
These transducers are used because, at the time of the
experiment, it was the best solution available to the au-
thors to generate and receive Lamb waves, although it may
not be optimal. During the acquisition, the transducers
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Figure 5: Acquisition positions on the aluminum plate for Scenarios 1 and 3 (left), and on the steel plate (right).

are placed one beside the other to approximate a pulse-
echo setup. The excitation signal used to emit the waves
in the material corresponds to two tone bursts of a sinu-
soidal wave at 100 kHz, with an amplitude of 100 Volts
peak to peak. This frequency is chosen as it has been ex-
perimentally observed that the predominant propagation
mode was A0 for all the scenarios, and the others modes
are almost nonexistent. It is to be noted that, in our ex-
periments, two different transducers are used, whereas our
method is based on a point-like and co-located emitter-
receiver assumption that we assimilate to the center be-
tween the transducers. This is not a significant problem
as the diameter of the transducers (1.7cm), and thus the
distance between their centers is not large compared to the
wavelength (2 cm) for the considered excitation frequency.
Thus, the difference induced by this setup has negligible
impact on the signals.

Different operations are performed next on the measure-
ments. For Scenario 1 and 2 only, 10 scans are acquired
per acquisition position and are averaged to improve the
signal-to-noise ratio. This operation is performed although
it is not critical in a laboratory environment. In addi-
tion, the high frequencies (> 400 kHz) of the signals are
filtered out. Also, the equivalent of twice the excitation
duration is smoothly removed at the beginning of each
measurement with a sigmoid window. Indeed, it is not
desirable to keep the first wave packet resulting from the
direct transmission of the excitation between the emitter
and the receiver, as it does not correspond to a reflection
on a plate boundary. The counterpart is that transducers
cannot be brought closer to an edge than the dead-zone
distance (which amounts here to 2 to 4 wavelengths), oth-
erwise, the first reflection on it would be removed as well.

For Scenario 1, the transducers are moved by hand man-
ually on an aluminum plate of size 600x450x6 mm that
contains artificial holes of different thicknesses and depths
as shown in Fig.4-a). In total, N; = 108 measurements
are acquired, each of them containing M; = 500 samples
collected at a sampling rate of 1.25 MHz. The signals are
acquired with a National Instruments USB 6356 data ac-
quisition device. For Scenario 2, the data is collected with
an oscilloscope on a steel plate of dimensions 1700x1000x6
mm. With these data, we can test our approach on a

different material and show that it is still applicable to
a larger surface. A total of Ny = 117 measurements are
collected with a sampling frequency of 6 MHz. The total
number of samples per measurement is My = 5000. For
Scenarios 1 and 2, the transducers are in contact with the
surface during the acquisition. Coupling gel is placed at
their interface to ensure a good coupling. For Scenario 3,
the data are acquired on the same plate as the one used
for Scenario 1. However, a thin layer of water of approxi-
mately 1 mm of thickness is put all over the plate surface,
and the transducers are not placed in contact with the
plate surface during the acquisition, but are kept in con-
tact with the water only. The acquisitions are performed
using a customer-design five axes immersion scanner made
by Inspection Technology Europe BV. It is also used to
place the transducers (that are kept one beside the other)
at specific positions on the measurement grid while main-
taining a constant distance between the plate surface and
the transducers. Due to the plastic holder, the distance be-
tween the centers of the transducers rises to 2.5cm which is
not an issue, as the distance is not large comparing to the
wavelength. For this scenario, a total of N3 = 108 mea-
surements are collected at the same positions than those
used for Scenario 1, the sampling frequency is 1.25 MHz,
and the number of samples per measurement is M3z = 500.
The data acquired in this setup are expected to be repre-
sentative of those that would be acquired on a real struc-
ture by the robotic system, where water may also be used
as coupling, and where the transducers may not be directly
in contact with the structure surface to avoid damaging
them by surface irregularities. Furthermore, this scenario
will also allow us to highlight the potential of our approach
in a slightly ”disturbed scenario” comparing to the nom-
inal acquisition conditions of Scenarios 1 and 2. Pictures
of the experimental setups are available in Fig. 4, and all
the acquisition positions are provided in Fig.5.

In the next, we do not assume any imprecision on the
sensor displacements. Indeed, Simultaneous Localization
and Mapping has been studied elsewhere [28, 30], and
the method presented here is expected to integrate these
frameworks conveniently.
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Figure 6: Mapping results based on the standard DAS beamforming with a predetermined propagation model at different steps of a simulated
lawn-mower trajectory in Scenario 1. Measurements steps 1, 35 and 108 correspond to figures a), ¢) and e) respectively where the geometry
estimate is represented by the straight lines. The corresponding beamforming maps are given in figures b), d) and f) along with the retrieved

edges indicated by the rectangles.

5. Results

This section illustrates the efficiency of our approach for
mapping a rectangular metal panel using ultrasonic guided
waves in the three aforementioned scenarios. The benefit
of filtering the beamforming maps is first discussed and
highlighted based on the experimental data. Next, the cor-
relation between the designed loss function and the recon-
struction error is numerically assessed. The optimizer de-
signed in the previous section is run to simultaneously in-
fer the plate geometry and recover the propagation model.
The resulting precision is compared with that obtained us-
ing a predetermined propagation model that will be used
as a baseline. The overall results demonstrate that this
target objective is successfully achieved with our method
in nominal acquisition conditions (Scenarios 1 and 2). Our
approach is also tested in slightly disturbed conditions
(Scenario 3) to illustrate that it remains efficient. The
results are obtained using the full batch of measurements
in each scenario, which would amount to having the robot
covering an important portion of the plate surface before
calibrating the propagation model. As this may not be a
representative scenario, the efficiency of our procedure is
also assessed with simulated robot paths with acquisition
points that are more sparse, and with a varying number
of measurements available during the calibration.

5.1. Mapping with a predetermined propagation model

In Fig. 6, we show the mapping results for a lawn-mower
trajectory simulated with the data from Scenario 1, and

during measurement steps 1, 35 and 108. The geometry
estimates are determined at each measurement step from
the standard beamforming maps derived with Eq. (3), and
based on a predetermined propagation model which is built
using Eq.2 and predetermined model parameters (d = 6
mm, ¢y, = 6420 m/s and ep = 3040 m/s for our aluminium
plate which were validated by comparing the theoretical
and experimental dispersion curves). It can be observed
that, initially, only the range to the closest edge is re-
trieved, but the orientation estimate is essentially random
as only a single measurement has been integrated. During
Step 35, three plate edges are correctly recovered but it is
not the case of the right boundary as it is further away.
Eventually, the geometry is fully recovered during Step
108, when all the available measurements have been inte-
grated. The final average reconstruction error is less than
one degree for the orientation, and the average estimation
error is 0.15cm for the lines range parameters. Overall,
these results illustrate the efficiency of space-domain de-
lay and sum beamforming combined with our grid search
method for mapping the plate geometry with a propaga-
tion model based on prior knowledge of the mechanical
properties of the material. This method is efficient despite
the artificial holes that are present in the plate.

We now perform the experiment using all the measure-
ments acquired on the larger steel plate (Scenario 2). This
time, the parameters for the propagation model are d = 6
mm, ¢z, = 5880 m/s and ¢r = 3250 m/s. The beamform-
ing map shown in Fig. 7-a) depicts two visible intensity
peaks. The two other peaks are much less visible due to
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Figure 7: Different beamforming maps computed using the data from Scenario 2 and the retrieved edges. a) shows the standard beamforming
map, which yields correct estimates. b) depicts the map obtained with the same data sub-sampled in time. One edge is not correctly
estimated. c) shows the high-pass filtered beamforming map obtained from the sub-sampled data. The correct plate geometry is recovered,
while the fuzzy areas due to interference and higher-order reflections have been partially filtered out.

their lower intensity, and can be easily mistaken with in-
terference and high-order reflections which cause areas of
homogeneous intensity. Although the estimation is correct
in this case (the average range error for the line estima-
tion is approximately 0.5 cm), it may not be robust. To
illustrate this, we sub-sample in time the data by a rate
of 4 and reconstruct the beamforming map using the same
propagation model. The results can be seen in Fig. 7-b).
The beamforming map is very similar. However, all but
one line are still correctly recovered, causing the average
error on the estimation of the line ranges to rise to 17cm
as the ambiguity is too important. Using high-pass fil-
tered beamforming maps may increase the robustness of
the estimate as described earlier. Such a map is shown
Fig. 7-c) where V(r,0) is chosen as the rectangular area
centered at (r,0) with a size 6.5cm x 24°. This window is
sufficiently large to encompass the intensity peaks on the
beamforming map, and sufficiently limited to make the
filtering effective. When relying on the filtered version of
the beamforming map, the estimation is made correct (the
range error is again 0.5cm), even though we cannot com-
pletely alleviate the effect of interference and higher-order
reflections. Hence, the filtering may provide additional ro-
bustness which is to be leveraged to calibrate the propaga-
tion model. It may be even more useful in the presence of
disturbances during the acquisition, as will be illustrated
in the following.

5.2. Correlation between the loss and the geometry esti-
mation error

We assess whether the designed loss is sufficiently cor-
related with the reconstruction error to ensure that its
minimization yields an accurate plate geometry estima-
tion. We create a family of 40 propagation models based
on the approximate solutions to the Helmholtz equation
Eq. (2) with values of Q {er,cr,d} uniformly dis-
tributed within the intervals cr, ¢, € [2500m/s, 6500m/s]
and d € [3mm,7mm]. Then, we determine the filtered
beamforming map using each model to obtain a plate ge-
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ometry estimate in each of the three scenarios under con-
sideration. The results are displayed in Fig. 8 as plots of
the reconstruction error (both in range and orientation)
w.r.t. the loss value. We also display the same plots us-
ing the geometry estimates and loss values obtained with-
out the filtering, for comparison. Ideally, we would obtain
reconstruction errors that would monotonically decrease
with the loss value.

For both Scenarios 1 and 2 in Fig. 8-a)-d), we observe
that the range errors globally diminish for lower loss val-
ues. It can also be observed that models with close loss
values can yield completely different reconstruction errors,
or that models with high loss values can provide an accu-
rate estimate (e.g the plot of the range error in Fig. 8-
c)). Yet, these tendencies are not critical, as the major
requirement for our approach to be effective is that the
best estimation results are achieved for the lower losses
as this is what will be minimized. The variations of the
orientation error present a different aspect. There is no
strict decrease in the error for lower losses. Also, the dis-
cretization of the orientation value is visible due to the
resolution of the beamforming map that is limited for the
sake of computational efficiency. Yet, it is still possible to
achieve an accuracy in the order of one degree, which is
sufficient for our application. Also, the limited resolution
is not a significant problem for propagation model learn-
ing, as the best accuracies are also achieved for the lower
loss values.

We notice a slightly more divergent behavior for the two
losses in Scenario 3, which corresponds to our slightly dis-
turbed scenario. Regarding Fig. 8-f) where the beamform-
ing maps are not filtered, the reconstruction error presents
a tendency to decrease for lower loss values. However, the
minimum reconstruction error is achieved for a loss value
of approximately [(Qmin) = —86, and it becomes higher
for lower losses. This is not the desired behavior, as it
would result in poorer estimation results if the loss mini-
mization is effective. This tendency is not visible when the
loss values and the geometry estimates are obtained from
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error plots only.

the high-pass filtered beamforming maps (Fig. 8-¢), where
the lowest reconstruction errors are globally obtained for
the lower losses. Hence, these results support the bene-
fit of high-pass filtering the DAS beamforming maps for
mapping and propagation model adaptation. It provides
additional robustness due to its ability to lower the detri-
mental effect of high-order reflection and interference.

5.83. Model learning and plate mapping in nominal acqui-
sition conditions

To assess the performance of our approach for optimal
beamforming for Lamb wave-based mapping, we run it 10
times for Scenario 1 and 2, with random initial parame-
ter values for each repetition. The simulated annealing is
set with the following parameters: Ac = 7000m/s, Ad =
2cm, Cin = 1500m/s, ¢max = 8000m/s, m = 500m/s, v
1, T = Ty/t where Ty = 200, dpin = 3mm and dpax
lcm. Besides, the performance of our approach is com-
pared with the results achieved when using predetermined
propagation models based on prior knowledge of the plate
thickness, the longitudinal and transversal velocities in
nominal conditions. These predetermined models will
serve as a baseline for comparison. Fig. 9 depicts the
evolution of the minimum loss value and the correspond-
ing reconstruction errors achieved during the optimization
process. The upper and lower bounds of the filled areas
represent the minimum and maximum values over the 10
runs, at each iteration step, while the solid blue lines ac-
count for the mean values. For comparison, the loss values
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and reconstruction errors achieved when using the prede-
termined propagation models for the two scenarios are also
displayed.

In both scenarios, the achieved minimum loss decreases
monotonically until it reaches a plateau. The final loss
value is always lower than the loss value achieved with the
predetermined model in Scenario 1 and significantly lower
in Scenario 2. In terms of reconstruction error, the final
average range error is comparable to that achieved with
the predetermined model, which is 3mm for Scenario 1. It
is slightly above the estimation error value obtained with
the predetermined model (0.5cm) for Scenario 2. Besides,
the orientation errors rapidly decrease to zero for all the
runs, achieving the same precision as the predetermined
models in the two scenarios.

Altogether, these experiments demonstrate that a prop-
agation model can be efficiently recovered to estimate a
plate geometry through optimal beamforming by relying
directly on data, regardless of the plate size and material,
and as long as the measurements have been acquired on a
sufficient portion of the surface.

5.4. Model learning and plate mapping in non-nominal ac-
quisition conditions

We perform the same experiments using the data from
Scenario 3 which have been acquired in slightly disturbed
conditions due to the layer of water that is placed at the in-
terface between the transducers and the plate surface. The
evolution of the loss and the reconstruction errors for 10
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repetitions of the optimization process with random initial
parameter values are shown in Fig. 10. It can be observed
that the loss rapidly decreases to a value lower than that
achieved with the predetermined model. Regarding the
reconstruction error, the average range error, after con-
vergence, reaches lcm while the error is 2cm when using
the predetermined model for the geometry reconstruction.
Furthermore, the orientation error rapidly decreases to a
value lower than one degree.

Altogether, our approach, which automatically cali-
brates the propagation model based on data, yields better
geometry estimates in this disturbed scenario compared
to mapping with the predetermined propagation model,
as illustrated by Fig. 10. These results are promising
as the propagation in the thin layer of water has not
been modeled explicitly. This further shows the poten-
tial of our approach which adapts the propagation model
to achieve accurate plate reconstruction in varying condi-
tions, as it is expected to happen for a robotic inspection
task on large structures in challenging outdoor environ-
ments. Also, with our approach, there is potentially no
need to take into account slight sources of disturbance ex-
plicitly in the propagation models.

5.5. Non uniqueness of the optimal model parameters
Although we have shown that a propagation model can

be recovered based on data to achieve precise localization

by adapting the model parameters, our method cannot
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recover the real values of the physical model parameters.
Indeed, different model parameters can yield equivalent
loss values as depicted by Fig. 11, where we represent the
variation of the loss w.r.t. the two velocity parameters
for a fixed thickness (d = 6mm), and using the data ac-
quired on the two metal plates considered in this study
(Scenario 1 and 2). The more specific explanation is that
different model parameters may lead to similar dispersion
values in the considered frequency bandwidth, after re-
solving the Rayleigh-Lamb equations. Yet, the fact that
the actual model parameters cannot be recovered with our
method is not a significant issue, as our primary objective
is to achieve accurate mapping of the plate structure with
a calibrated model g, so that the wavepackets inside the
measurements can be appropriately accounted for.

5.6. Evaluation of our approach with sparse measurements

During a real robotic inspection task, the acoustic mea-
surements may not have been acquired over a dense grid,
and over a sufficient portion of the surface during the cal-
ibration operation to fully recover the plate geometry. To
evaluate the performance of our approach in more realis-
tic scenarios, we assess how the quantity of measurements
available during the optimization process affects the prop-
agation model selection when the data are acquired along
more realistic trajectories. To avoid running the optimizer
every time, we consider the previous family of 40 propa-
gation models. We evaluate, for each propagation model,
the reconstruction errors obtained with and without filter-
ing the beamforming maps, and select the error relative
to the propagation model, for every set of measurements,
that yields the lowest loss value. We also assess the esti-
mation errors when the predetermined propagation model
is used along with high-pass filtered beamforming maps,
for comparison. We design two different trajectories (one
for each plate) that are provided in Fig.12. The results,
which are shown in Fig. 13, were obtained using the data
acquired on the large steel plate (Scenario 2) and using the
data acquired in the disturbed conditions (Scenario 3).

When only a few measurements are available, the aver-
age range errors are relatively high in all the cases, because
the sensors need to pass by a border closely enough to de-
tect it. The most accurate results are achieved when all
the measurements are taken into account. In the mid-
dle, we can see, in Fig. 13-a), that the minimum range
error is reached faster when the beamforming maps have
been filtered, and this minimum error is lower than the
error achieved with the predetermined model. Further-
more, both in Fig. 13-a) and b), the reconstruction errors
are seemingly lower when relying on model calibration for
the reconstruction. Overall, the results show that our ap-
proach is effective for mapping, and yields similar - if not
better - performance than that obtained with a predeter-
mined propagation model, even when the measurements
have been sparsely acquired by the mobile unit.
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Figure 12: Simulated robot paths used for the experiments on the
steel plate (left) and the aluminum plate (right). The path lengths
(i-e the number of acquisition positions) are respectively 36 and 26.

6. Discussions

The method presented here restricts the propagation
models to be approximate solutions of the Helmholtz equa-
tion with dispersion relations derived from the Rayleigh-
Lamb equation. This approach is not sufficient for recov-
ering the actual model parameters, and addressing this
in future work would be desirable for a complete NDT
method (the knowledge of plate thickness variation would
be of particular importance). Yet, the recovered propa-
gation model g is sufficient to achieve accurate mapping
results through beamforming. Whether this approach re-
mains appropriate in more realistic conditions (i.e on a
real ship hull for example) is still subject to investigation.
It is expected that this parametrization would be sufficient
as long as the first-order wave-packets are sufficiently en-
ergetic within the measurements, and that the major hy-
potheses on the propagation model (linear propagation,
homogeneous and isotropic material) approximately hold.
Due to the large size of the plates on a real structure and
the low reflectivity of weld joints, the signal-to-noise ratio
(SNR) is expected to be low. Hence, a study evaluating the
performance of our approach for various SNR conditions is
needed to assess how likely it would work in practice. Also,
it is to be noted that, in the present study, the sensor posi-
tions were measured accurately, whereas in practice, only
estimated positions will be available.

The case of multi-modal propagation is not considered

14

here, whereas it is likely if the frequency is not sufficiently
adequate to the material in a -presumably- unknown state,
or if mode conversion occurs. Having at least A0 and SO
modes propagating simultaneously is the most frequent
scenario. It is believed that the algorithm could be ex-
tended by considering several hypotheses (bi-modal, AO-
only, SO-only propagation, mode conversion for different
paths, see [4]) to determine which one is most likely based
on data. However, integrating more complex interactions
such as diffraction due, for example, to complex structural
features such as stiffeners, holes... would be more challeng-
ing. We expect isotropic propagation to be prevalent, as
these complex wave interactions may be scarce and have a
sufficiently small incidence on the signals to not affect the
mapping results.

Besides, our method, as presented here, is restricted to
rectangular geometries, as it facilitates edge retrieval from
the beamforming map. This constraint is not a limitation
for mapping storage tanks or ship hulls, as they are almost
entirely made of rectangular panels. Yet, our approach
could be extended in future work to make it applicable to
structures with more general geometries. One may also
want to adapt our approach to more conventional applica-
tions in SHM where, for example, the propagation model
could be automatically calibrated by maximizing the en-
ergy focused at the estimated defect location on the imag-
ing results, or by relying on the reflections on the sample
boundaries.

7. Conclusion

In this paper, we introduce a method to accurately re-
cover the geometry of a metal plate by relying on ultrasonic
measurements acquired by a mobile unit, in pulse-echo,
and without using a predetermined propagation model.
Our approach is based on focalization in the model param-
eter space and beamforming for localization of the plate
boundaries. We restrict the propagation model to be an
approximate solution of the Helmholtz equation and pa-
rameterize it with only three physical values. We introduce
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Figure 13: Reconstruction errors w.r.t. the number of measurements considered in the loss, and using the data from Scenario 2 (a) or from
Scenario 3 (b). The measurements are integrated one after the other in the loss, following the simulated paths. The error is only evaluated for
the model yielding the lower loss value for the two cases (model selection with and without filtering the beamforming maps). For comparison,
the errors achieved with the predetermined models are also displayed.

a loss function assessed on high-pass filtered beamforming
maps to quantify the focusing ability of a candidate beam-
former (i.e., candidate model parameters). Eventually, we
find optimal model parameters with a simulated annealing
optimization process.

We demonstrate the performance of our method on three
sets of experimental acoustic data acquired on a dense grid
on two metal plates of different sizes and different mate-
rials. The results illustrate the relevance of filtering the
beamforming maps to reduce the impact of interference
and high-order reflections. We also show that a propa-
gation model enabling accurate boundary localization can
be recovered with simulated annealing. For the two undis-
turbed scenarios, the precision of the localization is found
to be similar to that achieved with the model built from
prior knowledge on the plate material, but it is found to
be superior in non-nominal acquisition conditions. This
highlights the very potential of our method for Lamb wave-
based localization and mapping on a large metal structure,
where the wave propagation conditions may not be known
a priori. The benefit of this approach is real for practical
industrial inspection tasks, where the propagation models
could be automatically calibrated. Eventually, we assess
the performance of our approach using reduced numbers
of measurements acquired on the two plates, and follow-
ing more realistic robot trajectories. The results illustrate
that the proposed approach can recover the plate geom-
etry accurately even with sparse measurements, and out-
performs the mapping based on the predetermined propa-
gation model.

In future work, the method shall be integrated within
a simultaneous localization a mapping framework, as the
sensor positions need to be estimated as well. Also, the hy-
pothesis of rectangular plate geometries shall be relaxed,
and more complex wave phenomena such as anisotropic
and/or multi-modal propagation, diffraction, or mode con-
version are to be integrated in the model. The recovery of
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the real physical parameters, such as plate thickness, and
the mapping of defects shall be investigated to make pos-
sible a complete robotic NDT task. Finally, the method
shall be tested in more realistic conditions, with a real
robotic platform such as a magnetic crawler to acquire the
signals.
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