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Abstract
The inspection of sizeable plate-based metal structures such as storage tanks or marine vessel hulls is a significant
stake in the industry, which necessitates reliable and time-efficient solutions. Although Lamb waves have been
identified as a promising solution for long-range non-destructive testing, and despite the substantial progress made
in autonomous navigation and environment sensing, a Lamb-wave-based robotic system for extensive structure
monitoring is still lacking. Following previous work on ultrasonic Simultaneous Localization and Mapping (SLAM), we
introduce a method to achieve plate geometry inference without prior knowledge of the material propagation properties,
which may be lacking during a practical inspection task in challenging and outdoor environments. Our approach
combines focalization to adjust the propagation model parameters and beamforming to infer the plate boundaries
location by relying directly on acoustic measurements acquired along the mobile unit trajectory. For each candidate
model, the focusing ability of the corresponding beamformer is assessed over high-pass filtered beamforming maps to
further improve the robustness of the plate geometry estimates. We then recover the optimal space-domain beamformer
through a simulated annealing optimization process. We evaluate our method on three sets of experimental data
acquired in different conditions and show that accurate plate geometry inference can be achieved without any prior
propagation model. Finally, the results show that the optimal beamformer outperforms the beamformer resulting from
the predetermined propagation model in non-nominal acquisition conditions.
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Introduction
During their lifetime, marine vessels are continuously
deployed on the seas for goods shipping. This inexorably
leads to the deterioration of the hull due, for example, to the
formation of biofouling on the surface, or due to the salinity
of the water that can favor the formation of defects such
as cracks or corrosion patches. Other large metal structures
such as storage tanks deteriorate over time due to their
operational conditions, and the underpinning defects may not
always be detectable with the bare eye1. Thus, in the marine
and petrochemical industries, the inspection of large-scale
metal structures – which are usually made of metal panels
assembled out together – must rely on efficient solutions that
can seamlessly integrate into their day-to-day operation.

Standard inspection methods are time-consuming as they
often require the intervention of trained operators, causing
a significant financial impact. Moreover, these methods
work only for inspection areas that are very localized;
thus, the entire surface cannot be inspected in a reasonable
amount of time. To evaluate the health of ship hulls, for
example, either human operators or robots such as magnetic
crawlers2 can apply acoustic probes on the structure surface
to perform thickness measurements and detect corrosion
patches. However, only the surface directly covered by the
probe is effectively controlled with a single measurement.

The inspection of structures over long ranges is being
actively investigated in the literature. Lamb waves, in

particular, are being integrated into modern Non Destructive
Testing (NDT)-capable devices. These waves can be emitted
in plate materials by piezoelectric transducers and can
propagate radially over long distances in a direction parallel
to the surface. What makes them appealing is that they are
sensitive to material integrity. Usually, they are deployed on
static networks of sensors that are permanently attached to
the structure. Thus, defect detection and localization can be
achieved through the triangulation of acoustic scatterers from
residual signals, which are constructed by subtracting the
baseline signals acquired when the material is healthy to the
measurements acquired during the inspection3–7. Besides,
alternative methods have been elaborated to alleviate the
need for baseline signals8–11. Yet, most of the developed
methods are dedicated to sensors integrated into the
structure. Hence, to the best of the authors’ knowledge, Lamb
wave-based approaches have not yet been integrated into a
mobile platform to inspect large metal structures.
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The interest in the development of a robotic system
for long-range inspection is steadily growing, as it holds
tremendous potential for industrial applications. Deploying
acoustic tomography techniques on a robotic system
necessitates precise localization of the transducers which is
critical for accurate inspection results. Contrary to standard
Structural Health Monitoring (SHM) technology where
the positions of the sensors are known accurately, these
positions need to be estimated in the framework of a robotic
application due to the imprecise wheel displacement and
rotation data provided by the wheels’ encoders.

When induced by a source excitation, Lamb waves can
reflect orthogonally on the metal plate boundaries, usually
without mode conversion when the excitation frequency
is sufficiently appropriate12. As the resulting acoustic
measurements contain such reflections, they provide range-
only information between the source position and the plate
edges which is useful to solve the localization problem
accurately. This has been demonstrated for a pulse-echo
setup on a rectangular and isotropic metal panel, but
with prior knowledge of the structure geometry13. Hence,
as is often the case in robotics, determining precisely
the sensor position on a large structure is intrinsically
connected to building a map of the environment (i.e mapping
the environment) which can rapidly become a tedious
task if not made automatically14. Furthermore, from a
robotic perspective, defect detection and localization may
be interpreted as a mapping problem as well. Overall, the
mapping of acoustic scatterers (may be plate edges or
defects) by a mobile unit is a major issue that needs to
be tackled to enable the emergence of a viable robotic
inspection system.

In the literature, the problem of defect detection and
localization using acoustic reflections on the structure
boundaries has been widely studied, but is still leveraging
prior knowledge of the structure geometry15–17 or baseline
measurements18. From the mapping perspective, approaches
to detect the boundaries of a rectangular panel19 or to
identify structural features such as stiffeners20 have been
investigated. Yet, they are deployed on static networks
of sensors. Hence, only little work on Lamb wave-based
mapping for structure geometry inference with a single
mobile unit has been conducted. Recently, a mapping
method to identify areas that are inside a rectangular
metal panel along with an exploration strategy based
on frontier exploration with a pair of moving sensors
has been elaborated21. Yet, the work uses a pitch-catch
configuration, the Time of Flights (ToF) readings are not
done automatically, the mapping is only based on the edge
echo that arrives first, and the final map may eventually be
erroneous due to gridlock situations that are not predictable.

Thus, Simultaneous Localization and Mapping (SLAM)
based on ultrasonic guided waves has mostly been studied
our team where the geometry of the plate and the
position of a co-located emitter/receiver pair of piezoelectric
transducers are jointly estimated. A method based on
L1-regularized Least-squares for echo detection and on
a FastSLAM algorithm22 has been presented in first
instance23. Consequently, propagation models to account for
the dispersive nature of guided waves in metal plates and
space domain delay-and-sum (DAS) beamforming24 have

been subsequently integrated into a FastSLAM algorithm
for the exclusive mapping of rectangular shapes25. Results
proved to be accurate on two different metal panels.
However, no solutions were proposed to limit the detrimental
effect of interference on the mapping results which is a well-
known issue inherent to DAS beamforming24. Besides, the
approach requires prior knowledge of the propagation model.

In situations where the environment is well controlled or
where sources of disturbance are limited, prior knowledge
of the physical properties of isotropic metal structures may
be sufficient to account for guided wave propagation and
to perform acoustic localization and mapping. However,
during a practical inspection task on a metal structure, the
hypothesis that the propagation model is known a priori may
not be realistic due to a wide variety of external perturbations
that can significantly affect the acoustic signals, as well
as due to a lack of knowledge of the plate physical
condition (which is the reason why it is being inspected).
Potential perturbations may include but may not be limited
to temperature variations which are already known to
affect acoustic measurements substantially26, pressure due
to the neighboring metal plates which are welded altogether,
moisture, the effect of the coupling (water in the case of
acoustic inspection with a robotic system), or the filtering
effect of the transducers. Consequently, adaptive methods
that automatically recover the propagation model by relying
directly on data acquired on the field may be necessary
to achieve accurate localization and mapping results. Such
methods can be all the more beneficial as they may not
require the intervention of a human expert to calibrate the
propagation parameters.

Compensation methods have been investigated in the
SHM literature, mostly to alleviate the predominant effect
of temperature variation between baseline and current
measurements. To name a few, Optimal Baseline Selection
(OBS) was proposed to select the most appropriate
measurement within a set of baseline signals acquired
for different temperature conditions27. Data-driven signal
stretching methods leveraging the hypothesis of small
temperature variation were investigated28, as well as
Dynamic Time Warping29 (DTW) for non-linear temporal
alignment of the signals30. However, all the mentioned
works rely on the baseline measurements, typical to SHM
applications, which won’t be available in the case of a
practical robotic inspection task.

In the literature of beamforming, adaptive methods have
been elaborated to compensate for inaccurate knowledge
of the properties of the propagation media for underwater
acoustic source localization purposes31, or more generally,
for Matched Field Processing32. Beamforming has been
combined with focalization33, an approach that considers
the propagation environment as an acoustic lens, and
which seeks, through an optimization process, to adjust the
propagation parameters so that the focalization capability of
beamforming is maximized. It has also been studied for joint
acoustic signal separation and source localization34. The
potential of focalization has been successfully demonstrated
in simulation for underwater acoustic localization, and may
provide an interesting approach for Lamb waves. Yet, this
has not yet been demonstrated.
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This paper proposes an approach that combines focaliza-
tion and DAS beamforming to achieve Lamb wave-based
mapping of a plate-like structure by a mobile unit, so that
accurate mapping results can be achieved during an inspec-
tion task without prior knowledge of the propagation proper-
ties of the material. The approach combines focalization to
adjust the parameters of propagation models that are derived
from the Helmholtz equation, and beamforming to localize
the plate edges. The focalization capability of a candidate
beamformer is assessed over high-pass filtered beamforming
maps so that the detrimental effects of interference and
high-order reflections are lowered. A simulated annealing
optimization process is then implemented so that the optimal
beamformer can be recovered based directly on data. Results
acquired on experimental data in three different scenarios
show that the proposed approach is effective. Furthermore,
mapping the plate geometry with the optimal beamformer
is found to be more efficient than mapping with a pre-
determined propagation model in non-nominal acquisition
conditions.

The outline of the present article is as follows. First,
the general theory on Lamb waves propagation in metal
panels is briefly presented. Next, the approach based on
DAS beamforming for mapping the plate edges with a
single mobile platform by leveraging the acoustic reflections
is recalled. The choice of the propagation parameters to
search for, namely the plate thickness, the longitudinal and
transverse velocities, is then discussed, and the simulated
annealing process is presented. Finally, experimental results
and discussions conclude the article.

Lamb wave-based mapping
Due to the complexity of the acoustic measurements
acquired by a mobile platform using pulse-echo sensing,
Lamb wave-based mapping shall rely on a wave propagation
theory that is representative enough so that echoes can be
efficiently detected and retrieved from measurements. Also,
a specific spatial inference strategy is required to fuse the
information acquired at different positions so that recovering
the plate geometry and the location of the sensors on the
structure becomes feasible.

In what follows, we briefly recall the essential principles
of the theory on Lamb waves propagation in metal plates,
namely, the Rayleigh-Lamb equations, which account for
the Lamb waves’ dispersive nature and their multi-modal
propagation. We then introduce a simple propagation model
based on approximate solutions of the Helmholtz equation to
account for dispersive propagation under the hypothesis of a
linear model and an isotropic material. Next, we summarize
the mapping strategy to estimate the location of the plate
boundaries by relying on a propagation model assumed
known as a priori and a space-domain Delay And Sum (DAS)
beamformer25. These elements will be the basis of the core
contribution of this paper, which is plate mapping without
prior knowledge of the propagation model.

Lamb waves propagation in a metal plate
Sound in a waveguide, such as a metal plate, is typically
modelled by transverse, or shear, and longitudinal, or
dilatational, plane wave expressions, representing sound

bouncing up and down through the thickness while
propagating in the plate’s parallel direction.3. To account
for the amplitude and phase of each involved waves, the
boundary conditions are invoked, such as the stress-free
assumption on a metal plate in a vacuum or air. The result
is often referred to as the standing wave approximation
and yields well-known Rayleigh-Lamb equations for Lamb
waves in a perfectly isotropic and homogeneous plate:

tanh qh

tanh ph
= −

[
4k2qp

(k2 − q2)2

]α
(1)

where h denotes the half-thickness of the plate, k = 2π/λ
is the wavenumber, λ is the wavelength, and the following
equations define p and q:

p2 =
ω2

c2L
− k2; q2 =

ω2

c2T
− k2.

In the above equation, ω is the pulsation, and cL and cT
are respectively the longitudinal and transverse velocities
related to the material. Hence, Eq. (1) constrains the Lamb
waves that can exist in the waveguide and classify them
under two types. For α = 1, the equation yields the physical
properties of symmetric modes, whereas for α = −1, the
properties of anti-symmetric modes are stipulated. It is
possible to solve the equation with varying pulsation values
and derive a dispersion relation k(ω · d), where d = 2h is
the plate thickness, or k(ω) more simply in the case of a
fixed thickness. Dispersion relations can be found by using
dichotomy algorithms for example3. One particularity is that
each equation always admits at least one solution, and the
number of possible solutions increases with the frequency.
Hence, at least two modes propagate within the material.
These are the fundamental modes A0 (anti-symmetric) and
S0 (symmetric). Higher-order modes can propagate when
the frequency is increased and exceeds their respective cut-
off frequency. Fig. 1 depicts dispersion curves for symmetric
and anti-symmetric modes for a steel plate with respect to the
product frequency × thickness. In practice, a low excitation
frequency is used to avoid multi-modal propagation, and
one mode (usually A0) is often predominant over the other
fundamental mode.

The second particularity is that the propagation in a
waveguide is dispersive. It means that the wave velocity
varies with the signal frequency35. The consequence is
that the wavepacket distorts and spreads in the signal
when the propagation distance increases. Fig. 1 depicts
the evolution of the group velocity for several symmetric
and anti-symmetric modes in a steel plate. All modes are
globally dispersive as the group velocities are not constant.
Nevertheless, the effect of dispersion can be limited if the
signal frequency bandwidth lies in a non-dispersive region.

Finite Element Methods (FEM) are often used to simulate
Lamb waves propagation36, but their heavy computational
load makes them impractical to use for acoustic localization
operations. Instead, one can rely on computationally
efficient and relatively accurate propagation models given
by the solutions of the Helmholtz equation, for which
the wavenumber abides by the dispersion relation of the
mode assumed to exist in the material. When a signal s
is used to excite Lamb waves in a metal plate, under the
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Figure 1. Dispersion curves for several low order symmetric
(continuous lines) and anti-symmetric (discontinuous lines)
Lamb wave modes in a steel plate with respect to the product
frequency × plate thickness. The top figure depicts the group
velocities while the bottom plot shows the wavenumbers.

hypothesis of linear propagation and isotropic media, the
vertical component u of the displacement field abides by:

∇2u(r, ω)− k(ω) · u(r, ω) = −s(ω)

where r is the propagation distance from the excitation
point. It is known that the solution, i.e. the acoustic transfer
function g(r, ω), can be expressed with the Hankel function
of 0 order and of the first kind yielding: u(r, ω) = g(r, ω) ·
s(ω) = H1

0 (k(ω)r) · s(ω). The transfer function is often
simply reduced to:

ĝ(r, ω) ≈ exp(−jk(ω)r)/
√
k(ω)r. (2)

The use of this acoustic model is widespread in the literature
of guided waves, primarily to achieve defect detection and
localization purposes37,38.

Space-domain beamforming for plate geometry
inference with a single mobile unit
We are considering a mobile platform equipped with an
emitter/receiver pair of piezoelectric transducers nearly co-
located. At the ith scanning position, the emitter excites
the Lamb waves in the plate material with the pulse s(t).
Simultaneously, the receiver collects the acoustic response
zi(t) which contains the reflections on the plate boundaries,

Figure 2. Example of an acoustic signal acquired on an
aluminum plate (top plot) and the correlation signal obtained
from the measurement along with its envelope (bottom plot).
The ranges relative to the first-order reflections (8, 37, 52 cm)
can be successfully retrieved from the local maxima. The echo
at nearly 45 cm corresponds to a higher-order reflection.

and it will be assumed that the excitation signal is chosen
adequately so that only the A0 mode propagates. The
objective is to infer the plate geometry and the sensors’
acquisition positions in the plate frame. In robotics, this
is known as a mapping problem because the displacement
between each acquisition position (i.e odometry data) is
assumed to be known flawlessly.

In this setup, the acoustic measurements essentially
consist of a superposition of the acoustic reflections. Under
the assumption that the material is isotropic, the propagation
linear, and the reflections on the edges are orthogonal, a
standard measurement model to reverberation is the image
source model39. It states that each reflection from the plate
boundaries can be considered a signal originating from a
fictional source, deducted from the actual source position
and reverberant media geometry. In metal plates, the image
source model can be leveraged to account for first order as
well as higher-order reflections, resulting in the following
measurements in the time domain:

zi(t) =
∑

x∈I(xi)

g(|x− xi|, t) ∗ s(t)

where xi = [xi, yi] is the position of the robot during time
step i, I(xi) the set of the image sources positions when
the real source is in xi, g(|x− xi|, t) the acoustic transfer
function associated to the A0 mode as the propagation is
assumed to be uni-modal, and ∗ denotes the convolution
operation. An example of a clean acoustic measurement on
acquired an aluminum plate can be seen in Fig. 2, where the
transducers have been placed on a 600x450x6mm aluminium
plate, and at 8cm of the two edges of a corner.

To retrieve the ranges from the sensors to the plate edges
from data zi(t), we determine the correlation signal:

z′i(r) =
〈zi(t), ẑ(r, t)〉√

〈zi(t), zi(t)〉〈ẑ(r, t), ẑ(r, t)〉
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Figure 3. Representation of lines in a 2-dimensional plane with
(r, θ) coordinates.

where ẑ(r, t) = ĝ(2r, t) ∗ s(t) is the expected signal for the
incident wave reflecting at a distance r from the transducers,
and 〈., .〉 denotes the scalar product in the domain
of continuous signals: 〈u(t), v(t)〉 =

∫ +∞
−∞ u(τ)v(τ)dτ . To

alleviate the oscillations present in z′i, we retrieve its
envelope ei(r) with:

ei(r) = |z′i(r) + jH(z′i)(r)|

where H denotes the Hilbert transform operator. Thus, the
resulting signal ei yields the distances of the transducers to
the metal plate edges with the position of its local maxima.
This principle is illustrated in the bottom plot of Fig. 2.
Besides, it is noteworthy that a single measurement cannot
provide enough information to determine an edge without
ambiguity, as all the lines tangent to the circle with radius
r and centered at the position of the sensor may equally
account for the correlation measurement.

The plate geometry to be recovered is represented by a
set of lines: M = {rl, θl}l=1...4 where the parameters (rl, θl)
define the line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0

in a non-mobile frame with respect to the plate, as illustrated
in Fig. 3. The origin O of the reference frame can be taken
as the initial position of the mobile unit while on the metal
panel. Moreover, for convenience, the plate geometry is
restricted to rectangular shapes.

Next, given a robot trajectory {xi, yi}i=1...N (assumed
to be flawlessly provided by odometry for the mapping
problem), the beamforming map LN is computed to assess
the likelihood of existence of any line (r, θ) with:

LN (r, θ) =

N∑
i=1

ei(di(r, θ)) (3)

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance
between the robot during measurement step i and the
hypothetical line being considered. In the equation, all the
correlation values add up constructively along with all the
observations if an edge is indeed present. Also, it can be
noted that only first-order reflections are taken into account,
as we reason on individual lines. One major advantage of
this approach is that LN (r, θ) can be computed recursively
when an additional measurement eN is made available,

as LN (r, θ) = LN−1(r, θ) + eN (|xN · cos θ + yN · sin θ −
r|). This is beneficial for a robotic task meant to be
performed in real time, as a map estimate is available at
any time, and the computational load of one update is low.
Finally, to infer the most plausible plate geometry from LN ,
we solve the following optimization problem:

M̂ = arg max
M
LN (M) = arg max

M

4∑
l=1

LN (rl, θl) (4)

where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First, one
can determine the most plausible line with:

(r̂1, θ̂1) = arg max
r,θ
LN (r, θ).

Next, assuming that θ̂1 provides the most reliable estimation
of the plate orientation w.r.t. the robot, the determination
of the other lines reduces to solving independent and
straightforward one-dimensional optimization problems:

θ̂l = θ̂1 +
π(l − 1)

2
; r̂l = arg max

r
LN (r, θ̂l)

for l = 2, 3, 4. Solving the plate geometry inference with this
approach gives accurate results in laboratory conditions25.
However, this approach has some limitations. The fact that
an infinity of lines can equally account for a reflection
causes interference which is a standard issue encountered
when relying on the standard DAS beamforming. The effect
of interference is further exacerbated by the high order
reflections which are not considered in (3), whereas their
presence cannot be neglected as shown by Fig. 2-b). The
consequence is that beamforming maps are fuzzy which
can make the estimation ambiguous, as it will be illustrated
later. Also, the method relies on prior knowledge of the
propagation model g to obtain accurate results, whereas such
a hypothesis may not be realistic for a practical inspection
task in challenging outdoor environments where the structure
state is truly unknown.

Optimal beamforming for model learning
In this section, we present an adaptive method to recover
a metal plate geometry without the assumption of a known
model. It is based on focalization in the parameter space
(i.e the propagation model is adjusted) and beamforming
for localizing the plate boundaries. First, the parametrization
of propagation models using solutions of the Helmholtz
equation is presented. Next, we introduce and apply
a simple high-pass filter to the beamforming maps to
limit the detrimental effect of interference and high-order
reflections. A loss function is then designed to assess the
focusing capability of a candidate beamformer which should
maximize spatial coherency (i.e the energy that is focused
at the geometry estimate on the beamforming map) in the
case when the propagation model is appropriate. Finally,
an optimizer based on simulated annealing40 is presented
to recover optimal propagation parameters by minimizing
the loss in a limited number of iterations. The efficiency
of such an approach has been successfully demonstrated for
underwater source localization purposes33,34.

Prepared using sagej.cls



6 Journal Title XX(X)

Parametrization of the propagation model
With the hypothesis of linear and isotropic propagation, we
aim at recovering both a propagation model ĝ(r, t) and the
plate geometry expressed as a set of lines M̂ = {r̂l, θ̂l}l=1..4.

For candidate propagation models, we keep relying on the
(approximate) solutions of the Helmholtz equation. Hence,
estimating the propagation model reduces to the estimation
of only three parameters which are the longitudinal velocity
cL, the transverse velocity cT and the plate thickness d, and
that we will gather in the variable Ω = {cL, cT , d}. This
choice is convenient as we constrain the propagation models
to be physically plausible while limiting the search space for
the propagation model parameters to a low dimension, which
will facilitate the optimization process. As the complete state
of the structure may be unknown during the inspection,
adapting these wave parameters may be relevant. Indeed,
plate thickness may not be known accurately for each surface
plate as the structural integrity is unknown. Besides, the
effects of variation of temperature, pressure, moisture may
be interpreted as variations of the effective velocities. For
more complex sources of disturbances such as the effect
of coupling or structure irregularities, we are not seeking
to strictly compensate for their effect with such a simple
model, yet sufficiently enough to predict the plate boundaries
location accurately. Next, given candidate values Ω for the
model parameters, the dispersion equation for the A0 mode
given in Eq. (1) is numerically solved and is used to infer the
propagation model ĝΩ(r, t) with Eq. (2).

Design of the loss function
Compared to plate geometry reconstruction with a known
propagation model, inferring the plate geometry and prop-
agation parameters simultaneously requires the determina-
tion of a larger number of unknowns. Consequently, an
appropriate loss function that ideally prevents irregular cost
surfaces with many local minima is needed to facilitate the
optimization process.

Here, we introduce a loss function to assess the ability
of a candidate beamformer (related to candidate parameter
values Ω) to focus the energy of the wave packets contained
in the measurements at the plate geometry estimate so that
minimizing the loss function w.r.t. the model parameter
search space improves the spatial coherency achieved with
the beamformer. For candidate propagation parameters, the
beamforming map LΩ(r, θ) is constructed as in Eq. (3),
allowing a plate geometry estimate M̂Ω to be retrieved from
it with the same optimization process as in Eq. (4). We then
evaluate the total energy focused at the estimate M̂Ω over
the beamforming map that has been high-pass filtered to
limit the effect of interference and high-order reflections. The
filtered map value at each line (r, θ) is simply defined by the
difference between its initial energy value and the minimum
of energy in its vicinity that is to be appropriately defined:

L̃Ω(r, θ) = LΩ(r, θ)− min
(r′,θ′)∈V (r,θ)

LΩ(r′, θ′). (5)

where V (r, θ) refers to the set of lines in the vicinity
of (r, θ). Compared to the standard LΩ(r, θ), the filtered
map L̃Ω, while being inexpensive to compute, has the
advantage to present fewer areas where the intensity is

high but homogeneous (such a situation occurs due to
the combination of high-order reflections and interference).
Hence, it is more compatible with Eq.(4) for the
determination of the location of the edges. Thus, using
Eq. (5) may appropriately filter ”fuzzy” areas where the
energy is spread homogeneously (i.e not focused at a single
point) due to interference on the beamforming maps, and
may isolate correct intensity peaks. This will be illustrated
next with experimental data.

To simultaneously recover propagation parameters and
the plate geometry, performing a joint search in both the
propagation model space and the geometry space would be
computationally expansive. Instead, we rely on an optimal
beamforming formulation: the loss is only evaluated over
candidate model parameters Ω, and for the corresponding
geometry estimate M̂Ω retrieved from the high-pass filtered
beamforming map L̃Ω with Eq.(4). The loss value l(Ω) that
we will seek to minimize is then taken as minus the sum of
the intensity levels evaluated at the retrieved edges:

l(Ω) = −
∑

(r,θ)∈M̂Ω

L̃Ω(r, θ) (6)

so that the energy focused at the plate geometry estimate can
be maximized, while the detrimental effects of interference
and high-order reflections can be minimized. The geometry
estimate provided by the optimal beamformer is expected
to match closely the ground truth geometry due to the
maximum of spatial coherency as long as measurements have
been acquired on a sufficient portion of the plate surface.
Besides, to highlight the benefit of using high-pass filtered
beamforming maps, propagation model selection based on
the loss evaluated using the regular beamforming map
LΩ(r, θ) will also be carried out in the following sections,
and the mapping results will be compared.

Optimization with simulated annealing
An optimization process is needed to adjust the wave propa-
gation parameters (longitudinal and transverse velocities and
the plate thickness) through the minimization of the loss
function. Due to the implicit definition of the propagation
models, first-order methods such as gradient descent are
impractical to use for our problem.

Simulated annealing40 is efficient for estimating a global
minimum of a cost function, even when the number
of unknowns is large34. This metaheuristic is inspired
from metallurgy where, to form a perfect crystal (which
corresponds to the state of minimal energy), a pure
liquid substance is slowly cooled. At each iteration of the
optimization process, a random perturbation is applied to
the current point value. The perturbation is systematically
accepted if the energy is decreased. To escape local minima,
the perturbation is accepted according to a Boltzmann
probability distribution if the energy is increased. The
temperature, which is a hyperparameter, is decreased slightly
after each iteration so that the probability to increase
the energy goes to zero. Hence, the major controllable
parameters of simulated annealing are the distribution of the
perturbation and the profile of the temperature cooling.

For Lamb-wave based mapping without a prior propaga-
tion model, the parameter search is reduced to the optimiza-
tion over the value of Ω as the geometry is directly deduced
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using Eq. (4) when Ω is fixed. Our implementation of the
optimizer is similar to that used in articles dealing with the
underwater localization problem33. The major difference lies
in the cost function design. First, we initialize the propaga-
tion parameters with uniform distributions within predefined
intervals which are plausible regarding the application:

c0L ∼ U([cmin, cmax]); c0T ∼ U([cmin, c
0
L −m])

d0 ∼ U([dmin, dmax]).

The value of cT is drawn below the value of cL, with a small
marginm > 0, as it cannot physically be higher (i.e there are
no solutions to the Rayleigh-Lamb equation).

At each iteration of the algorithm, the parameters are
randomly disturbed using the following perturbations:

ct+1
L = min

{
max{ctL + ∆c · χ3

0, cmin}, cmax
}

ct+1
T = min

{
max{ctT + ∆c · χ3

1, cmin}, ct+1
L −m

}
dt+1 = min

{
max{dt + ∆d · χ3

2, dmin}, dmax
}
.

Using the min-max formulation enables to leverage prior
information by constraining the parameter values within
plausible intervals. Similarly to the initialization step, ct+1

T is
restricted to be lower than ct+1

L with the same margin m. χ0,
χ1, χ2 are independent random values between -1 and 1, and
are drawn from uniform distributions: χ1,2,3 ∼ U([−1, 1]).
They are raised to power 3 so that small variations are
more likely. Still, large variations can be possible to explore
regions of the search space that are far occasionally when the
values of ∆c and ∆d are chosen to be large enough.

Next, for the new parameter values Ωt+1, the dispersion
relation kΩt+1(ω) is determined by solving the Raleigh-
Lamb equations. As the relation is computed numerically at
each iteration of the optimization process, the computational
load can be quite demanding. A trick to save computational
time is to determine the wavenumber only for a restricted set
of pulsation values ω1, ..., ωK and to use linear interpolation
to determine the wavenumber for other frequencies.

Next, the acoustic transfer function ĝΩt+1(r, ω) is
determined with the Helmholtz model given in Eq. (2). The
beamforming map LΩt+1(r, θ) is then computed and a plate
geometry estimate M̂Ωt+1 is retrieved from it, allowing the
determination of the loss value l(Ωt+1) with Eq. (6).

The variation of energy between the previous and
disturbed parameters is ∆E = l(Ωt+1)− l(Ωt). In the
context of simulated annealing, the disturbed parameter
value is not systematically kept. It is the case only when:

χ < exp

{
−∆E

γT

}
where γ is a strictly positive scaling parameter, T is the
temperature at the iteration t, and χ is drawn randomly
and uniformly between 0 and 1. Consequently, when
the energy is decreased, the disturbed parameters are
systematically kept. Otherwise, the acceptance rate is
given by the Boltzmann distribution which yields lower
acceptance rates for more significant increases of energy.
The temperature parameter is often chosen to decrease
inverse logarithmically. To enable fast convergence of
simulated annealing, we will decrease the temperature

inverse linearly. Trials and errors are used to determine
appropriate parameters for the optimizer: the values that
empirically demonstrate a lower likelihood for the optimizer
to be stuck in local maxima while maintaining a sufficient
convergence speed are retained.

As it has already been highlighted, the cost function
may be heavy to assess, in particular when the number
of considered measurements is high. Indeed, each iteration
of the optimizer requires solving the Rayleigh-Lamb
equation for a set of frequency values, then computing
the beamforming map using the N measurements, and
recovering a plate geometry estimate with the optimization.
For a robotic application, a few seconds might be needed
to achieve convergence with around 100 measurements and
using a linear decrease of the temperature. Thus, our method
cannot be used in real time. Yet, this is not an issue, as it
could be considered, during a practical robotic inspection
task, to stop the robot for a few seconds to run the optimizer
occasionally, and restrict the maximum number of acoustic
measurements used to perform the optimization.

Experimental setup
We test our approach on experimental acoustic data that
have been acquired in three different scenarios. To generate
the datasets, an emitter/receiver pair of contact piezoelectric
V103-RM U8403008 transducers is moved at different
positions on a regular grid on the plate surface in each
scenario. The transducers are placed one beside the other to
approximate a pulse-echo setup. The excitation signal used to
emit the waves in the material corresponds to two tone bursts
of a sinusoidal wave at 100 kHz, with an amplitude of 100
Volts peak to peak. This frequency is chosen as it has been
experimentally observed that the predominant propagation
mode was A0 for all the scenarios, and the others modes are
almost nonexistent.

Different operations are performed next on the measure-
ments. For Scenario 1 and 2 only, 10 scans are acquired per
acquisition position and are averaged to improve the signal-
to-noise ratio. This operation is performed although it is not
critical in a laboratory environment. In addition, the high
frequencies of the signals are filtered out. Also, the beginning
of each measurement is smoothly removed. Indeed, it is not
desirable to keep the first wave packet resulting from the
direct transmission of the excitation between the emitter and
the receiver, as it does not correspond to a reflection on a
plate boundary. The counterpart is that transducers cannot be
brought too close to an edge, otherwise, the first reflection on
it would be removed as well.

For Scenario 1, the transducers are moved by hand
manually on an aluminum plate of size 600x450x6 mm. In
total, N1 = 108 measurements are acquired, each of them
containing M1 = 500 samples collected at a sampling rate
of 1.25 MHz. The signals are acquired with a National
Instruments USB 6356 data acquisition device. For Scenario
2, the data is collected with an oscilloscope on a steel plate
of dimensions 1700x1000x6 mm. With these data, we can
test our approach on a different material and show that it
is still applicable to a larger surface. A total of N2 = 117
measurements are collected with a sampling frequency of
6 MHz. The total number of samples per measurement is
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a) Scenario 1 b) Scenario 2 c) Scenario 3

Figure 4. Pictures showing the different experimental setups for the three scenarios.

M2 = 5000. For Scenarios 1 and 2, the transducers are in
contact with the surface during the acquisition. Coupling
gel is placed at their interface to ensure a good coupling.
For Scenario 3, the data are acquired on the same plate
as the one used for Scenario 1. However, a layer of water
of approximately 1 mm of thickness is put all over the
plate surface, and the transducers are not placed in contact
with the plate surface during the acquisition but are kept in
contact only with the water. The acquisitions are performed
using a customer-design five axes immersion scanner made
by Inspection Technology Europe BV. It is also used to
place the transducers (which still are kept one beside the
other) at specific positions on the measurement grid while
maintaining a constant distance between the plate surface
and the transducers. For this scenario, a total of N3 = 103
measurements are collected, the sampling frequency is 1.25
MHz, and the number of samples per measurement is M3 =
500. The data acquired in this setup are expected to be
representative of those that would be acquired on a real
structure by the robotic system where water may also be used
as coupling, and where the transducers may not be directly
in contact with the structure surface to avoid damaging
them by surface irregularities. Furthermore, this scenario will
also allow us to highlight the potential of our approach in
a slightly ”disturbed scenario” comparing to the nominal
acquisition conditions of scenarios 1 and 2. Pictures of the
experimental setups for the three scenarios are available in
Fig. 4.

Results
This section illustrates the efficiency of our approach for
mapping a rectangular metal panel using ultrasonic guided
waves in the three aforementioned scenarios. The benefit
of filtering the beamforming maps is first discussed and
highlighted based on the experimental data. Next, the
correlation between the designed loss function and the
reconstruction error is numerically assessed for the three
scenarios. The optimizer designed in the previous section
is run to simultaneously infer the plate geometry and

recover the propagation model while the resulting precision
is compared with that obtained using a predetermined
propagation model that will be used as a baseline. The overall
results demonstrate that this target objective is successfully
achieved with our method in nominal acquisition conditions
(Scenarios 1 and 2). Furthermore, our approach is also tested
in slightly disturbed conditions (Scenario 3) to illustrate that
our approach remains efficient in such situations. The results
are obtained using the full batch of measurements for each
scenario which would amount to having the robot covering
an important portion of the plate surface before calibrating
the propagation model. As this may not be a representative
scenario, the efficiency of our procedure is also assessed
with a varying number of measurements available following
a simulated lawn-mower robot trajectory.

It is to be noted that, in our experiments, two different
transducers are used, whereas our method assumes a
point-like and co-located emitter-receiver. This is not a
significant problem as the diameter of the transducers (1
cm approximately) and the distance between their centers
(around 2 cm) is not large compared to the wavelength of
the wave (around 2 cm). Thus, the difference induced by
this setup has little impact on the signals. Also, we are not
considering any imprecision on the sensor displacements.
Indeed, Simultaneous Localization and Mapping has been
studied elsewhere23,25, and the method presented is expected
to integrate these frameworks conveniently.

Mapping with a predetermined model
In Fig. 5, we show the mapping results for a lawn-mower
trajectory simulated with the data from Scenario 1, and
during measurement steps 1, 35 and 108. The geometry
estimates are determined at each measurement step from the
standard beamforming maps derived with Eq. (3), and based
on a predetermined propagation model which is built from
the Helmholtz equation and predetermined model parameters
(which are d = 6 mm, cL = 6420 m/s and cT = 3040 m/s
for our aluminium plate). It can be observed that, initially,
only the range to the closest edge is retrieved, but the
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Figure 5. Mapping results based on the standard DAS beamforming with a predetermined propagation model at different steps of
a simulated lawn-mower trajectory in Scenario 1. Measurements steps 1, 35 and 108 correspond to figures a), c) and e)
respectively where the geometry estimate is represented by the straight lines. The corresponding beamforming maps are given in
figures b), d) and f) along with the retrieved edges indicated by the rectangles.

orientation estimate is essentially random as only a single
measurement has been integrated. During Step 35, three
plate edges are correctly recovered but it is not the case
of the right boundary as it is further away. Eventually,
the geometry is fully recovered during Step 108, when all
the available measurements have been integrated. The final
average reconstruction error is close to zero degrees for the
orientation, and the average estimation error is 0.15 cm for
the lines range parameters. Overall, these results illustrate
the efficiency of space-domain delay and sum beamforming
combined with our grid search method for mapping the
plate geometry with a propagation model based on prior
knowledge of the mechanical properties of the material.

We now perform the experiment of plate geometry
estimation, but this time, directly with all the measurements
acquired on the larger steel plate (Scenario 2). This time,
the parameters for the propagation model are d = 6 mm,
cL = 5880 m/s and cT = 3250 m/s. The beamforming map
shown in Fig. 6-a) depicts two visible intensity peaks. The
two other peaks are much less visible due to their lower
intensity and can be easily mistaken with interference and
high-order reflections which cause areas of homogeneous
intensity. Although the estimation is correct in this case (the
average range error for the line estimation is approximately
0.5 cm), it may not be robust. To illustrate this, we sub-
sample in time the data by a rate of 4 and reconstruct the
beamforming map using the same propagation model. The
results can be seen on Fig. 6-b). The beamforming map is
very similar. However, all but one line are still correctly
recovered. The average error on the estimation of the line
ranges is around 17 cm as the ambiguity is too important.
Using high-pass filtered beamforming maps may increase the
robustness of the estimate as described earlier. Such a map is
shown Fig. 6-c) where V (r, θ) is chosen as the rectangular

area centered at (r, θ) with a size 6.5cm× 24◦. This window
is sufficiently large to encompass the intensity peaks on
the beamforming map, and sufficiently limited to make the
filtering effective. When relying on the filtered version of
the beamforming map, the estimation is made correct (the
range error is again approximately 0.5cm), even though we
cannot completely alleviate the effect of interference and
higher-order reflections. Hence, the filtering may provide
additional robustness which is to be leveraged to calibrate
the propagation model. It may be even more useful in the
presence of disturbances during the acquisition, as will be
illustrated in the following.

Correlation between the loss and the geometry
estimation error
We assess whether the designed loss is sufficiently correlated
with the reconstruction error to ensure that its minimization
yields an accurate plate geometry estimation. We create a
family of 40 propagation models based on the approximate
solutions to the Helmholtz equation Eq. (2) with values of
Ω = {cT , cL, d} uniformly distributed within the intervals
cT , cL ∈ [2500m/s, 6500m/s] and d ∈ [3mm, 7mm]. Then,
we determine the filtered beamforming map using each
model to obtain a plate geometry estimate in each of the three
scenarios under consideration. The results are displayed in
Fig. 7 as plots of the reconstruction error (both in range and
orientation) w.r.t. the loss value. To highlight the benefit of
the high-pass filter, we also display the same plots using
the geometry estimates and loss values obtained without
the filtering. Ideally, we would obtain errors that would
monotonically decrease with the loss value.

For both Scenarios 1 and 2 in Fig. 7-a)-d), we observe
that the range errors globally diminish for lower loss values.
It can also be observed that models with close loss values
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Figure 6. Different beamforming maps computed using the data from Scenario 2 and the retrieved edges. a) shows the standard
beamforming map, which yields correct estimates. b) depicts the map obtained with the same data sub-sampled in time. One edge
is not correctly estimated. c) shows the high-pass filtered beamforming map obtained from the sub-sampled data. The correct plate
geometry is recovered, while the fuzzy areas due to interference and higher-order reflections have been partially filtered out.

can yield completely different reconstruction errors, or that
models with high loss values can provide an accurate
estimate (e.g the plot of the range error in Fig. 7-c)). Yet,
these tendencies are not critical, as the major requirement
for our approach to be effective is that the best estimation
results are achieved for the lower losses as this is what will
be minimized. The variations of the orientation error present
a different aspect. There is no strict decrease in the error
for lower losses. Also, the discretization of the orientation
value is visible due to the resolution of the beamforming
map that is limited for the sake of computational efficiency.
Yet, it is still possible to achieve an accuracy in the
order of one degree which is sufficient for our application.
Also, the limited resolution is not a significant problem for
propagation model learning, as low orientation errors are
achieved for the lower loss values.

We notice a more divergent behavior for the two losses
in Scenario 3, which corresponds to our slightly disturbed
scenario. Regarding Fig. 7-f) where the beamforming
maps are not filtered, the reconstruction error presents a
tendency to decrease for lower loss values. However, the
minimum reconstruction error is achieved for a loss value
of approximately l(Ωmin) = −80 and increases if the loss
is even lower. This is not the desired behavior, as it would
result in poorer estimation results if the loss minimization
is effective. This tendency is not visible when the loss
values and the geometry estimates are obtained from the
high-pass filtered beamforming maps (Fig. 7-e), where the
lowest reconstruction errors are globally obtained for the

lower losses. Hence, these results support the benefit of
high-pass filtering the DAS beamforming maps for mapping
and propagation model adaptation. It provides additional
robustness due to its ability to lower the detrimental effect
of high-order reflection and interference.

Model learning and plate mapping in nominal
acquisition conditions
To assess the performance of our approach of opti-
mal beamforming for Lamb wave-based mapping, we
run it 10 times for Scenario 1 and 2, with random
initial parameter values for each repetition. The sim-
ulated annealing is set with the following parameter
values: ∆c = 7000m/s,∆d = 2cm, cmin = 1500m/s, cmax =
8000m/s,m = 500m/s, γ = 1, T = T0/t where T0 = 200,
dmin = 3mm and dmax = 1cm. Besides, the performance
of our approach is compared with the results achieved
when using predetermined propagation models based on
prior knowledge of the plate thickness, the longitudinal and
transversal velocities in nominal conditions. These prede-
termined models will serve as a baseline for comparison.
Fig. 8 depicts the evolution of the minimum loss value and
the corresponding reconstruction errors achieved during the
optimization process. The upper and lower bounds of the
filled areas represent the minimum and maximum values
over the 10 runs, at each iteration step while the solid blue
lines account for the mean values. For comparison, the loss
values and reconstruction errors achieved when using the
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a) Scenario 1 with filtering b) Scenario 1 without filtering

c) Scenario 2 with filtering d) Scenario 2 without filtering

e) Scenario 3 with filtering f) Scenario 3 without filtering

Figure 7. 2D plots showing the correlation and loss values achieved using each of the propagation models from the predefined
model set, and for the three scenarios. On the left, the loss value and geometry estimates are determined from the high-pass
filtered beamforming maps. On the right, they are determined from the standard maps without filtering.

predetermined propagation models for the two scenarios are
also displayed.

In both scenarios, the achieved minimum loss decreases
monotonically until it reaches a plateau. The final loss
value is always lower than the loss value achieved with
the predetermined model in Scenario 1 and significantly
lower in Scenario 2. In terms of reconstruction error, the
final average range error is comparable to that achieved

with the predetermined model, which is a few millimeters
for Scenario 1. It is slightly above the estimation error
value obtained with the predetermined model (approx. 1 cm)
for Scenario 2. Besides, the reconstruction errors rapidly
decrease to zero for all the runs, achieving the same precision
as that achieved with the baseline predetermined models in
the two scenarios.
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Figure 8. Evolution of the loss value and reconstruction errors for 10 repetitions of the optimization process with simulated
annealing, and using the data from Scenario 1 (a) and Scenario 2 (b). The solid lines represent the mean values. The upper and
lower bounds of the filled areas represent the minimum and maximum values respectively during each iteration. For comparison,
the values achieved with the predetermined propagation model for each scenario are displayed as horizontal lines. The scale along
the y-axis is logarithmic for the range error plots only.

Figure 9. Loss value computed on the high-pass filtered beamforming maps with respect to the longitudinal and transverse
velocities. The data from Scenario 1 are used for the plot on a) while the data from Scenario 2 are used for the plot on b).

Altogether, these experiments demonstrate that a prop-
agation model can be efficiently recovered to estimate a
plate geometry through optimal beamforming by relying
directly on data, regardless of the plate size and material,
and as long as the measurements have been acquired on a
sufficient portion of the surface. This is of high interest for
a robotic inspection task in challenging outdoor conditions,
where propagation models could be automatically calibrated
without the intervention of an expert.

Model learning and plate mapping in
non-nominal acquisition conditions
We perform the same experiments using the data from
Scenario 3 which have been acquired in slightly disturbed

conditions due to the layer of water that is placed at the
interface between the transducers and the plate surface.
The evolution of the loss and the reconstruction errors
for 10 repetitions of the optimization process with random
initial parameter values are shown in Fig. 10. It can be
observed that the loss function rapidly decreases under
a value lower than that achieved with the predetermined
model. Regarding the reconstruction error, the average range
error, after convergence, reaches a few millimeters while the
error is about 2 cm when using the predetermined model
for the geometry reconstruction. Furthermore, the orientation
error rapidly decreases to a value close to zero.

Altogether, we ultimately achieve better geometry
reconstruction with our approach which calibrates the
propagation model based on data in this disturbed scenario
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Figure 10. Evolution of the loss value and reconstruction errors
for 10 repetitions of the optimization process with simulated
annealing and using the data from Scenario 3. The blue lines
represent the mean values. The upper and lower bounds of the
colored areas represent the minimum and maximum values
respectively during each iteration. For comparison, the values
achieved with the predetermined propagation model are
displayed as horizontal red lines. The scale along the y-axis is
logarithmic for the range error plot only.

than when using the predetermined propagation model,
which may not fit the data, as illustrated by Fig. 8. These
results are promising as the propagation in the thin layer of
water has not been modeled explicitly. This further shows
the significant potential of our approach which adapts the
propagation model to achieve accurate plate reconstruction
in conditions that may drastically vary, as it is expected to
happen for a robotic inspection task on large structures in
challenging outdoor environments, and without the need to
take into account potential sources of disturbance explicitly
in the propagation models.

Non uniqueness of the optimal model
parameters

Although we have shown that a propagation model can be
recovered based on data to achieve precise localization by
adapting the model parameters, our method cannot recover
the real values of the physical model parameters. Indeed,
different model parameters can yield similar loss values as
depicted by Fig. 9, where we represent the variation of the
loss w.r.t. the two velocity parameters for a fixed thickness
(d = 6mm), and using the data acquired on the two metal
plates considered in this study (Scenario 1 and 2). The
more specific explanation is that different model parameters
can lead to a similar dispersion relation after resolving the
Rayleigh-Lamb equations. Yet, the fact that the actual model
parameters cannot be recovered with our method is not
a significant issue, as our primary objective is to achieve
accurate mapping of the plate structure with a calibrated

Figure 11. Plate geometry reconstruction errors w.r.t. the
number of measurements considered to compute the loss
function using the data from Scenario 2. The error is evaluated
only for the model yielding the lower loss value for the two
cases (with and without filtering the beamforming maps). For
comparison, the errors achieved with the predetermined model
are also displayed.

model g, so that the wavepackets inside the measurements
can be appropriately accounted for.

Influence of the number of measurements
During a real robotic inspection task, measurements may
not have been acquired over a sufficient portion of the
surface during the calibration operation to fully recover
the plate geometry. To evaluate the robustness of our
approach in this scenario, we assess how the number of
measurements available during the optimization process
affects the propagation model selection for mapping. To
avoid running the optimizer every time, we consider the
previous family of 40 propagation models. We evaluate, for
each propagation model, the reconstruction errors obtained
with and without filtering the beamforming maps and select
the error relative to the propagation model, for every set
of measurements, that yields the lowest loss value. We
also assess the estimation errors when the predetermined
propagation model is used along with high-pass filtered
beamforming maps, for comparison. Results are displayed
in Fig. 11 using the data acquired on the large steel plate
(Scenario 2) to consider a large surface. The data are
collected along a simulated lawn-mower robot path.

When a few measurements are available, the average
range errors are relatively high for the three considered
cases because the sensors need to pass by a border
sufficiently closely to detect it. The most accurate results
are achieved when all the measurements are taken into
account. In between, we can see that the range error
decreases faster when the beamforming maps have been
filtered, which highlights again the benefits of this approach.
Besides, the range error remains slightly higher than that
obtained with the predetermined model for a small number
of measurements. Yet, the decrease is in fine similar.
This shows that optimizing over the propagation model
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parameters may yield similar performance (if not better in
non-nominal acquisition conditions) than that obtained with
a predetermined and appropriate propagation model, even
when only a small portion of the surface has been covered
by the mobile unit.

Discussions
The method presented here restricts the propagation models
to be approximate solutions of the Helmholtz equation
with dispersion relations derived from the Rayleigh-
Lamb equation. With this approach, the actual model
parameters (velocities and plate thickness) cannot be
recovered, yet a propagation model ĝ can be determined
to achieve accurate mapping results through beamforming.
Whether this approach remains appropriate in more realistic
conditions is still subject to investigation. It is, expected
that this parametrization would be sufficient as long as
the first-order wave-packets are sufficiently energetic within
the measurements and that the major hypothesis on the
propagation model (linear propagation, isotropic material)
approximately holds.

The case of multi-modal propagation is not considered
here, whereas it is likely if the frequency is not sufficiently
adequate to the material in a -presumably- unknown
state. Having at least A0 and S0 modes propagating
simultaneously is the most frequent scenario. The algorithm
could be easily extended to integrate this possibility by
extending to a maximum 5 parameters for the dispersion
relations of the two modes plus one tri-state unknown
specifying which hypothesis (bi-modal, A0-only, or S0-
only propagation) is the most plausible based on data.
However, integrating more complex interactions such as
mode conversion, diffraction due, for example, to complex
structural features such as stiffeners, holes... would be more
challenging. We expect isotropic propagation to be prevalent,
as these complex wave interactions may be scarce and have
a sufficiently small incidence on the signals to not affect the
mapping results.

Besides, our method as presented here is restricted to
rectangular geometries. This hypothesis facilitates edge
retrieval from the beamforming map, whereas more complex
geometries shall be expected on a large and complex
structure such as a ship hull. Still, we think that our approach
could be extended for such situations where the model
parameters that maximize the energy focused at the retrieved
geometry estimate are sought after. One could also imagine
adapting our approach to more conventional applications
in SHM where, for example, the propagation model could
be automatically calibrated by maximizing the energy at
the estimated defect location on the imaging results, or by
relying on the reflections on the plate edges with an approach
similar to ours.

Conclusion
In this paper, we introduce a method to accurately recover
the geometry of a metal plate by relying on ultrasonic
measurements acquired by a mobile unit and without using a
predetermined propagation model. Our approach is based on
focalization in the model parameter space and beamforming

for localization of the plate boundaries. We restrict the
propagation model to be an approximate solution of the
Helmholtz equation and parameterize it with only three
physical values. We introduce a loss function assessed on
the high-pass filtered beamforming maps to quantify the
focusing ability of a candidate beamformer (i.e., candidate
model parameters). Eventually, we find optimal model
parameters with a simulated annealing optimization process.

We demonstrate the performance of our method on three
sets of experimental acoustic data acquired on two metal
plates of different sizes and different materials. The results
first illustrate the relevance of filtering the beamforming
maps to reduce the impact of interference and high-order
reflections. Next, we show that a propagation model enabling
accurate boundary localization can be efficiently recovered
with simulated annealing, as long a sufficient portion of
the surface has been covered. For the two undisturbed
scenarios, the precision of the localization is found to
be similar to that achieved with the model built from
prior knowledge on the plate material. In contrast, the
precision of the optimal beamforming is superior to that
achieved with the predetermined model in non-nominal
acquisition conditions. This highlights the very potential of
our method for Lamb wave-based localization and mapping
on a large metal structure, where the wave propagation
conditions may not be known a priori. The benefit of
this approach is real for practical industrial inspection
tasks where the propagation models could be automatically
calibrated without the intervention of an expert. Eventually,
we assess the performance of our approach using the acoustic
data collected on the larger plate with a varying number of
measurements considered for model selection and simulating
a lawn-mower path for the robot trajectory. The results show
that our approach yields a similar error decrease with an
increasing number of measurements than the predetermined
and appropriate model. In contrast, the error is lower than
that obtained when the propagation model is selected using
the loss obtained with unfiltered beamforming maps. This
further supports the relevance of our approach for the final
application. We believe that this approach can be adapted
to other and more conventional applications in SHM to
calibrate the wave propagation model automatically.

In future work, we will relax the hypothesis of
rectangular plate geometries and integrate more complex
wave propagation conditions into our model, such as
multi-modal propagation, diffraction, or mode conversion.
Moreover, we will test the method in more realistic
conditions, and use a real robotic platform such as a magnetic
crawler to acquire the signals.
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