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Sign Consistency of the Generalized Elastic Net
Estimator

Wencan Zhu, Eric Adjakossa, Céline Lévy-Leduc, Nils Ternès

Abstract

In this paper, we propose a novel variable selection approach in the framework of high-
dimensional linear models where the columns of the design matrix are highly correlated.
It consists in rewriting the initial high-dimensional linear model to remove the correlation
between the columns of the design matrix and in applying a generalized Elastic Net crite-
rion since it can be seen as an extension of the generalized Lasso. e properties of our
approach called gEN (generalized Elastic Net) are investigated both from a theoretical and
a numerical point of view. More precisely, we provide a new condition called GIC (Gen-
eralized Irrepresentable Condition) which generalizes the EIC (Elastic Net Irrepresentable
Condition) of [1] under which we prove that our estimator can recover the positions of
the null and non null entries of the coecients when the sample size tends to innity. We
also assess the performance of our methodology using synthetic data and compare it with
alternative approaches. Our numerical experiments show that our approach improves the
variable selection performance in many cases.

Key words: Lasso; Model selection consistency; Irrepresentable Condition; General-
ized Lasso; Elastic Net.

1 Introduction
Variable selection has become an important and actively used task for understanding or
predicting an outcome of interest in many elds such as medicine [2, 3, 4, 5], social media
[6, 7, 8], or nance [9, 10, 11]. rough decades, numerous variable selection methods have
been developed such as subset selection [12] or regularization techniques [13].

Subset selection methods achieve sparsity by selecting the best subset of relevant vari-
ables using the Akaike information criterion [14] or the Bayesian information criterion [15]
but are shown to be NP-hard and could be unstable in practice [16, 17].

e regularized variable selection techniques have become popular for their capability
to overcome the above diculties [18, 19, 20, 21]. Among them, the Lasso approach [18]
is one of the most popular and can be dened as follows. Let y satisfy the following linear
model

y = X𝜷★ + 𝝐, (1)
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where y = (𝑦1, . . . , 𝑦𝑛)
′ ∈ R𝑛 is the response variable, ′ denoting the transposition, X =

(X1, . . . ,X𝑝) is the designmatrixwith𝑛 rows of observations on 𝑝 covariates, 𝜷★ = (𝛽★1 , . . . , 𝛽★𝑝 )
′ ∈

R𝑝 is a sparse vector, namely contains a lot of null components, and 𝝐 is a Gaussian vector
with zero-mean and a covariance matrix equal to 𝜎2I𝑛 , I𝑛 denoting the identity matrix in
R𝑛 . e Lasso approach estimates 𝜷★ with a sparsity enforcing constraint by minimizing
the following penalized least-squares criterion:

𝐿𝐿𝑎𝑠𝑠𝑜
𝜆

(𝜷) = ‖y − X𝜷 ‖22 + 𝜆 ‖𝜷 ‖1 , (2)

where ‖𝑎‖1 =
𝑝∑︁

𝑘=1
|𝑎𝑘 | denotes the ℓ1 norm of the vector (𝑎1, . . . , 𝑎𝑝) ′, ‖𝑏‖22 =

𝑛∑︁
𝑘=1

𝑏2
𝑘
denotes

the ℓ2 norm of the vector (𝑏1, . . . , 𝑏𝑛) ′, and 𝜆 is a positive constant corresponding to the reg-
ularization parameter. e Lasso popularity largely comes from the fact that the resulting
estimator

�̂�
𝐿𝑎𝑠𝑠𝑜

(𝜆) = Argmin
𝜷 ∈R𝑝

𝐿𝐿𝑎𝑠𝑠𝑜
𝜆

(𝜷)

is sparse (has only a few nonzero entries), and sparse models are oen preferred for their
interpretability [22]. Moreover, �̂�

𝐿𝑎𝑠𝑠𝑜
(𝜆) can be proved to be sign consistent under some

assumptions, namely there exists 𝜆 such that

lim
𝑛→∞
P

(
𝑠𝑖𝑔𝑛

(
�̂�
𝐿𝑎𝑠𝑠𝑜

(𝜆)
)
= 𝑠𝑖𝑔𝑛(𝜷★)

)
= 1,

where sign(𝑥) = 1 if 𝑥 > 0, -1 if 𝑥 < 0 and 0 if 𝑥 = 0. Before giving the conditions under
which [22] prove the sign consistency of �̂�

𝐿𝑎𝑠𝑠𝑜
, we rst introduce some notations. Without

loss of generality, we shall assume as in [22] that the rst 𝑞 components of 𝜷★ are non null
(i.e. the components that are associated to the active variables, and denoted as 𝜷★

1 ) and the
last 𝑝 − 𝑞 components of 𝜷★ are null (i.e. the components that are associated to the non
active variables, and denoted as 𝜷★

2 ). Moreover, we shall denote by X1 (resp. X2) the rst 𝑞
(resp. the last 𝑝 − 𝑞) columns of X. Hence,𝐶𝑛 = 𝑛−1X′X, which is the empirical covariance
matrix of the covariates, can be rewrien as follows:

𝐶𝑛 =

[
𝐶𝑛
11 𝐶𝑛

12
𝐶𝑛
21 𝐶𝑛

22

]
,

with 𝐶𝑛
11 = 𝑛−1X

′
1X1, 𝐶𝑛

12 = 𝑛−1X
′
1X2, 𝐶𝑛

21 = 𝑛−1X
′
2X1, 𝐶𝑛

22 = 𝑛−1X
′
2X2. It is proved by

Zhao and Yu in [22] that �̂�
𝐿𝑎𝑠𝑠𝑜

(𝜆) is sign consistent when the following Irrepresentable
Condition (IC) is satised:��� (𝐶𝑛

21(𝐶𝑛
11)−1sign(𝜷★

1 )
)
𝑗

��� ≤ 1 − 𝛼, for all 𝑗, (3)

where 𝛼 is a positive constant. In the case where 𝑝 � 𝑛, Wainwright develops in [23] the
necessary and sucient conditions, for both deterministic and random designs, on 𝑝 , 𝑞, and
𝑛 for which it is possible to recover the positions of the null and non null components of
𝜷★, namely its support, using the Lasso.

When there are high correlations between covariates, especially the active ones, the
𝐶𝑛
11 matrix may not be invertible, and the Lasso estimator fails to be sign consistent. To
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circumvent this issue, Zou and Hastie [20] introduced the Elastic Net estimator dened by:

�̂�
𝐸𝑁

(𝜆, 𝜂) = Argmin
𝜷 ∈R𝑝

𝐿𝐸𝑁
𝜆,𝜂

(𝜷), (4)

where
𝐿𝐸𝑁
𝜆,𝜂

(𝜷) = ‖y − X𝜷 ‖22 + 𝜆 ‖𝜷 ‖1 + 𝜂 ‖𝜷 ‖2 with 𝜆, 𝜂 > 0.

Yuan and Lin prove in [24] that when the following Elastic Net Condition (EIC) is satised
the Elastic Net estimator dened by (4) is sign consistent when 𝑝 and 𝑞 are xed: there exist
positive 𝜆 and 𝜂 such that�����(𝐶𝑛

21

(
𝐶𝑛
11 +

𝜂

𝑛
I𝑞

)−1 (
sign(𝜷★

1 ) +
2𝜂
𝜆
𝜷★
1

))
𝑗

����� ≤ 1 − 𝛼, for all 𝑗 . (5)

Moreover, when 𝑝 , 𝑞, and 𝑛 go to innity with 𝑝 � 𝑛, Jia and Yu prove in [1] that the
sign consistency of the Elastic Net estimator holds if additionally to Condition (5) 𝑛 goes
to innity at a rate faster than 𝑞 log(𝑝 − 𝑞).

In the case where the active and non active covariates are highly correlated, IC (3) and
EIC (5) may be violated. To overcome this issue several approaches were proposed: the
Standard PArtial Covariance (SPAC) method [25] and preconditioning approaches among
others. Xue and  [25] developed the so-called SPAC-Lasso which enjoys strong sign
consistency in both nite-dimensional (𝑝 < 𝑛) and high-dimensional (𝑝 � 𝑛) seings.
However, the authors mentioned that the SPAC-Lasso method only selects the active vari-
ables that are not highly correlated to the non active ones, which may be a weakness of this
approach. e preconditioning approaches consist in transforming the given data X and y
before applying the Lasso criterion. For example, [26] and [27] proposed to le-multiply
X, y and thus 𝝐 in Model (1) by specic matrices to remove the correlations between the
columns of X. A major drawback of the laer approach, called HOLP (High dimensional
Ordinary Least squares Projection), is that the preconditioning step may increase the vari-
ance of the error term and thus may alter the variable selection performance.

Recently, [5] proposed another strategy under the following assumption:

(A1) X is assumed to be a random design matrix such that its rows (𝒙𝑖)1≤𝑖≤𝑛 are i.i.d.
zero-mean Gaussian random vectors having a covariance matrix equal to 𝚺.

More precisely, they propose to rewrite Model (1) in order to remove the correlation exist-
ing between the columns of X. Let 𝚺−1/2 := 𝑼𝑫−1/2𝑼𝑇 where 𝑼 and 𝑫 are the matrices
involved in the spectral decomposition of the symmetric matrix 𝚺 given by: 𝚺 = 𝑼𝑫𝑼𝑇 ,
then, denoting X̃ = X𝚺−1/2, (1) can be rewrien as follows:

y = X̃�̃�
★ + 𝝐, (6)

where �̃�
★
= 𝚺

1/2𝜷★ := 𝑼𝑫1/2𝑼𝑇 𝜷★. With such a transformation, the covariance matrix of
the 𝑛 rows of X̃ is equal to identity and the columns of X̃ are thus uncorrelated. e advan-
tage of such a transformation with respect to the preconditioning approach proposed by
[27] is that the error term 𝝐 is not modied thus avoiding an increase of the noise which can
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overwhelm the benets of a well conditioned design matrix. eir approach then consists
in minimizing the following criterion with respect to �̃� :y − X̃�̃�

2
2
+ 𝜆

Σ−1/2�̃�

1
, (7)

where X̃ = X𝚺−1/2 in order to ensure a sparse estimation of 𝜷★ thanks to the penalization
by the ℓ1 norm. is criterion actually boils down to the Generalized Lasso proposed by
[28]:

𝐿
𝑔𝑒𝑛𝑙𝑎𝑠𝑠𝑜

𝜆
(�̃�) =

y − X̃�̃�
2
2
+ 𝜆

𝐷 �̃�

1
, with 𝜆 > 0 (8)

and 𝐷 = Σ−1/2.
Since, as explained in [28], some problems may occur when the rank of the design

matrix is not full, we will consider in this paper the following criterion:

𝐿
𝑔𝐸𝑁

𝜆,𝜂
(�̃�) =

y − X̃�̃�
2
2
+ 𝜆

Σ−1/2�̃�

1
+ 𝜂

�̃�2
2
, with 𝜆, 𝜂 > 0. (9)

Since it consists in adding an 𝐿2 penalty part to the Generalized Lasso as in the Elastic Net,
we will call it generalized Elastic Net (gEN). We prove in Section 2 that under Assumption
(A1) and the Generalized Irrepresentable Condition (GIC) (12) given below among others,
�̂� is a sign-consistent estimator of 𝜷★ where �̂� is dened by

�̂� = 𝚺
−1/2̂̃𝜷, (10)

with ̂̃𝜷 = Argmin
�̃�

𝐿
𝑔𝐸𝑁

𝜆,𝜂

(
�̃�
)
, (11)

𝐿
𝑔𝐸𝑁

𝜆,𝜂

(
�̃�
)
being dened in Equation (9). e Generalized Irrepresentable Condition (GIC)

can be stated as follows: ere exist 𝜆, 𝜂, 𝛼, 𝛿4 > 0 such that for all 𝑗 ,

P

(�����((𝐶𝑛
21 +

𝜂

𝑛
Σ21) (𝐶𝑛

11 +
𝜂

𝑛
Σ11)−1

(
sign(𝜷★

1 ) +
2𝜂
𝜆
𝜷★
1

)
− 2𝜂

𝜆
Σ21𝜷

★
1

)
𝑗

����� ≤ 1 − 𝛼

)
= 1−𝑜

(
𝑒−𝑛

𝛿4
)
.

(12)
Note that GIC coincides with EIC when X is not random and Σ = I𝑝 . Moreover, GIC does
not require𝐶𝑛

11 to be invertible. Since EIC and IC are both particular cases of GIC, if the IC
or EIC holds, then there exist 𝜆 or 𝜂 such that the GIC holds.

e rest of the paper is organized as follows. Section 2 is devoted to the theoretical
results of the paper. More precisely, we prove that under some mild conditions �̂� dened in
(10) is a sign-consistent estimator of 𝜷★. To support our theoretical results, some numerical
experiments are presented in Section 3. e proofs of our theoretical results can be found
in Section 5.

2 eoretical results
e goal of this section is to establish the sign consistency of the Generalized Elastic Net
estimator dened in (10). To prove this result, we shall use the following lemma.
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Lemma 2.1. Let y satisfying Model (1) under Assumption (A1) and �̂� be dened in (10). en,

P
(
𝑠𝑖𝑔𝑛

(
�̂�
)
= 𝑠𝑖𝑔𝑛(𝜷★)

)
≥ P (𝐴𝑛 ∩ 𝐵𝑛) , (13)

where

𝐴𝑛 :=
{����(C 𝑛,𝚺

11

)−1
𝑊𝑛 (1)

���� < √
𝑛

(��𝜷★
1
�� − 𝜆

2𝑛

����(C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
���� − 𝜂

𝑛

����(C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

����)} ,
𝐵𝑛 :=

{����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −𝑊𝑛 (2)

���� ≤ 𝜆

2
√
𝑛

− 𝜆

2
√
𝑛

����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

����} ,
and

C 𝑛,𝚺
11 = 𝐶𝑛

11 +
𝜂

𝑛
𝚺11, C 𝑛,𝚺

21 = 𝐶𝑛
21 +

𝜂

𝑛
𝚺21, 𝑊𝑛 =

1
√
𝑛
X′𝝐 =

[
𝑊𝑛 (1)
𝑊𝑛 (2)

]
, (14)

with
𝑊𝑛 (1) =

1
√
𝑛
X′
1𝝐 and𝑊𝑛 (2) =

1
√
𝑛
X′
2𝝐 .

e proof of Lemma 2.1 is given in Section 5.
e following theorem gives the conditions under which the sign consistency of the

generalized Elastic Net estimator �̂� dened in (10) holds.

eorem 2.2. Assume that y satises Model (1) under Assumption (A1) with 𝑝 = 𝑝𝑛 is such
that 𝑝𝑛 exp

(
𝑛−𝛿

)
tends to 0 as 𝑛 tends to innity for all positive 𝛿 . Assume also that there

exist some positive constants𝑀1,𝑀2,𝑀3 and 𝛼 satisfying

𝑀1 <
𝜷2
min
9𝜎2 and

√︁
2 +

√
2
√
𝑀3𝜎

𝛼
<

𝜷min
3𝑀2

√
𝑞
, (15)

and that there exist 𝜆 > 0 and 𝜂 > 0 such that (12) and

𝜆

𝑛
<

2𝜷min
3𝑀2

√
𝑞
, (16)

𝜆

𝑛
≥ 2

√︁
2 +

√
2
√
𝑀3𝜎

𝛼
, (17)

𝜂

𝑛
<

1
3𝑀2𝜆max (𝚺11)

×
𝜷min𝜷★

1

2
, (18)

hold as 𝑛 tends to innity, where 𝜷min = min
1≤ 𝑗≤𝑞

��� (𝜷★
1
)
𝑗

���. Suppose also that there exist some

positive constants 𝛿1, 𝛿2, 𝛿3 such that, as 𝑛 → ∞,

P
(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
≤ 𝑀1

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿1
)
, (19)
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P

(
𝜆max

((
C 𝑛,𝚺
11

)−1)
≤ 𝑀2

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿2
)
, (20)

P
(
𝜆max

(
𝐻𝐵𝐻

′
𝐵

)
≤ 𝑀3

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿3
)
, (21)

where 𝜆max(𝐴) denotes the largest eigenvalue of 𝐴,

𝐻𝐴 =
1
√
𝑛

(
C 𝑛,𝚺
11

)−1
X′
1 and 𝐻𝐵 =

1
√
𝑛

(
C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1
X′
1 − X′

2

)
,

C 𝑛,𝚺
11 and C 𝑛,𝚺

21 being dened in (14) and X1 (resp. X2) denoting the rst 𝑞 (resp. the last 𝑝 −𝑞)
columns of X. en,

P
(
𝑠𝑖𝑔𝑛

(
�̂�
)
= 𝑠𝑖𝑔𝑛(𝜷★)

)
→ 1, as 𝑛 → ∞,

where �̂� is dened in (10).

Note that Conditions (16) and (17) are consistent thanks to (15).
e proof of eorem 2.2 is given in Section 5 and a discussion on the assumptions of

eorem 2.2 is provided in Section 3.

3 Numerical experiments
e goal of this section is to discuss the assumptions and illustrate the results of eorem
2.2. For this, we generated datasets from Model (1) where the matrix 𝚺 appearing in (A1)
is dened by

𝚺 =

[
𝚺11 𝚺12
𝚺
′
12 𝚺22

]
. (22)

In (22), 𝚺11 is the correlation matrix of the active variables having its o-diagonal entries
equal to 𝛼1, 𝚺22 is the correlation matrix of the non active variables having its o-diagonal
entries equal to 𝛼3 and 𝚺12 is the correlation matrix between the active and the non active
variables with entries equal to 𝛼2. In the numerical experiments, (𝛼1, 𝛼2, 𝛼3) = (0.3, 0.5, 0.7).
Moreover, 𝜷★ appearing in Model (1) has 𝑞 non zero components which are equal to 𝑏 and
𝜎 = 1. e number of predictors 𝑝 is equal to 200, 400, or 600 and the sample size 𝑛 takes
the same values for each value of 𝑝 .

3.1 Discussion on the assumptions of eorem 2.2
We rst show that GIC dened in (12) can be satised even when EIC and IC, dened in (5)
and (3) respectively, are not fullled. For this, we computed for dierent values of 𝜆 and 𝜂
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the following values:

IC = max
𝑗

(���(𝐶𝑛
21(𝐶𝑛

11)−1(sign(𝜷★
1 )

)
𝑗

���)
EIC = min

𝜆,𝜂
max

𝑗

(�����(𝐶𝑛
21(𝐶𝑛

11 +
𝜂

𝑛
I𝑞)−1(sign(𝜷★

1 ) +
2𝜂
𝜆
𝜷★
1 )

)
𝑗

�����
)

GIC = min
𝜆,𝜂

max
𝑗

(�����((𝐶𝑛
21 +

𝜂

𝑛
Σ21) (𝐶𝑛

11 +
𝜂

𝑛
Σ11)−1

(
sign(𝜷★

1 ) +
2𝜂
𝜆
𝜷★
1

)
− 2𝜂

𝜆
Σ21𝜷

★
1

)
𝑗

�����
)

(23)

and Figure 1 displays the boxplots of these criteria obtained from 100 replications. We can
see from these gures that in all the considered cases GIC is satised (i.e. all values are
smaller than 1) whereas EIC and IC are not. e values of 𝑝 and 𝑛 do not seem to have a big
impact on EIC and IC. However, contrary to 𝑝 , 𝑛 seems to have an inuence on GIC which
increases with 𝑛 when 𝑏 = 1 and decreases when 𝑛 increases when 𝑏 = 10.

Figures 2 and 3 show the behavior of 𝜆max
(
𝐻𝐴𝐻

′
𝐴

)
, 𝜆max

((
C 𝑛,𝚺
11

)−1)
and 𝜆max

(
𝐻𝐵𝐻

′
𝐵

)
appearing in (19), (20) and (21) with respect to 𝜂 for dierent values of 𝑛, 𝑝 and for 𝑞 = 5
or 10. ese plots thus provide lower bounds for𝑀1,𝑀2 and𝑀3 appearing in the previous
equations. Observe that (18) can be rewrien as:

𝜂𝑀2 <
𝑛

3𝜆max (𝚺11)
×

𝜷min𝜷★
1

2
. (24)

Based on the plots at the boom right of Figures 2 and 3, we can see that there exist 𝜂’s
satisfying Condition 24 and thus (18) and that the interval in which the adapted 𝜂’s lie is
larger when 𝑞 = 5 than when 𝑞 = 10.

Based on the average of 𝑀1 previously obtained, the le part of (15) is always satised
as soon as 𝑏 >

√
18. Based on the average of 𝑀2 and 𝑀3 previously obtained, the average

of le-hand side and of the right-hand side of the right part of Equation (15) are displayed
in Figures 4 and 5. We can see from these gures that it is only satised for large values of
𝑏. Moreover, it is more oen satised when 𝑞 = 5 than for 𝑞 = 10.

We will show in the next section that even if the cases where all the conditions of the
theorem are not fullled our method is robust enough to outperform the Elastic Net dened
in (4) even in these cases.

3.2 Comparison with other methods
To assess the performance of our approach (gEN) in terms of sign-consistency with respect
to other methods and to illustrate the results ofeorem 2.2, we computed the True Positive
Rate (TPR), namely the proportion of active variables selected, and the False Positive Rate
(FPR), namely the proportion of non active variables selected, of the Elastic Net and gEN
estimators dened in (4) and (10), respectively.

Figures 6 and 8 display the empirical mean of the largest dierence between the True
Positive Rate and False Positive Rate over the replications. It is obtained by selecting for
each replication the value of 𝜆 and 𝜂 achieving the largest dierence between the TPR and
FPR and by averaging these dierences. ey also display the corresponding TPR and FPR

7



Figure 1: Boxplot of values dened in (23) and obtained from 100 replications.
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Figure 2: Top le: Average of 𝜆max
(
𝐻𝐴𝐻

′
𝐴

)
in (19) as a function of 𝜂. Top right: Average of

𝜆max

((
C 𝑛,𝚺
11

)−1)
in (20) as a function of 𝜂. Boom le: Average of 𝜆max

(
𝐻𝐵𝐻

′
𝐵

)
in (21) as a

function of 𝜂. Boom right: Average of the le (resp. right) part of (24) in plain (resp. dashed)
line. e averages are obtained from 10 replications. Here 𝑞 = 5.

for gEN and Elastic Net for dierent values of 𝑛 and 𝑝 . We can see from these gures that
the gEN and the Elastic Net estimators have a TPR equal to 1 but that the FPR of gEN is
smaller than Elastic Net. We can see from these gures that the dierence between the
performance of gEN and Elastic Net is larger for high signal-to-noise ratios (𝑏 = 10). It has
to be noticed that when TPR=1 for our approach it also means that the signs of the non null
𝛽★𝑖 are also properly retrieved.

4 Discussion
In this paper, we proposed a novel variable selection approach called gEN (generalized
Elastic Net) in the framework of linear models where the columns of the design matrix
are highly correlated and thus when the standard Lasso criterion usually fails. We proved
that under mild conditions, among which the GIC, which is valid when other standard
conditions like EIC or IC are not fullled, our method provides a sign-consistent estimator
of 𝜷★. For amore thorough discussion regarding the application of our approach in practical

9



Figure 3: Top le: Average of 𝜆max
(
𝐻𝐴𝐻

′
𝐴

)
in (19) as a function of 𝜂. Top right: Average of

𝜆max

((
C 𝑛,𝚺
11

)−1)
in (20) as a function of 𝜂. Boom le: Average of 𝜆max

(
𝐻𝐵𝐻

′
𝐵

)
in (21) as a

function of 𝜂. Boom right: Average of the le (resp. right) part of (24) in plain (resp. dashed)
line. e averages are obtained from 10 replications. Here 𝑞 = 10.

situations, we refer the reader to [5].

5 Proofs

5.1 Proof of Lemma 2.1
Note that (9) given by:

𝐿𝑔𝐸𝑁 (�̃�) =
y − X̃�̃�

2
2
+ 𝜆

Σ−1/2�̃�

1
+ 𝜂

�̃�2
2

can be rewrien as
𝐿𝑔𝐸𝑁 (�̃�) =

y∗ − X̃∗�̃�
2
2
+ 𝜆

𝚺−1/2�̃�

1
,

where

y∗ =
(
y
0

)
, X̃∗ =

(
X̃√
𝜂I𝑝

)
.

10



Figure 4: Average of the le-hand (resp. right-hand) side of the second part of (15) in red (resp.
blue) for 𝑞 = 5.

Figure 5: Average of the le-hand (resp. right-hand) side of the second part of (15) in red (resp.
blue) for 𝑞 = 10.

en, ̂̃𝜷 satises

X̃∗′
(
y∗ − X̃∗̂̃𝜷 )

=
𝜆

2
(𝚺−1/2) ′𝑧, (25)

where 𝐴′ denotes the transpose of the matrix 𝐴, and
𝑧 𝑗 = 𝑠𝑖𝑔𝑛

(
(𝚺−1/2̂̃𝜷) 𝑗 ) , if (𝚺−1/2̂̃𝜷) 𝑗 ≠ 0

𝑧 𝑗 ∈ [−1, 1], if (𝚺−1/2̂̃𝜷) 𝑗 = 0
.
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Figure 6: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and
Elastic Net (in blue) with 𝑝 = 200.

Figure 7: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and
Elastic Net (in blue) with 𝑝 = 400.
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Figure 8: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and
Elastic Net (in blue) with 𝑝 = 600.
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Equation (25) can be rewrien as:

X′y − (X′X + 𝜂𝚺) �̂� =
𝜆

2
𝑧

which leads to
X′X(𝜷★ − �̂�) + X′𝝐 − 𝜂𝚺�̂� =

𝜆

2
𝑧,

by using that y = X𝜷★ + 𝝐 . By using the following notations: û = �̂� − 𝜷★,

𝐶𝑛 =
1
𝑛
X′X and𝑊𝑛 =

1
√
𝑛
X′𝝐,

Equation (25) becomes (
𝐶𝑛 +

𝜂

𝑛
𝚺

) √
𝑛û + 𝜂

√
𝑛
𝚺𝜷★ −𝑊𝑛 = − 𝜆

2
√
𝑛
𝑧. (26)

With the following notations:

𝐶𝑛 =

(
𝐶𝑛
11 𝐶𝑛

12
𝐶𝑛
21 𝐶𝑛

22

)
, 𝚺 =

(
𝚺11 𝚺12
𝚺21 𝚺22

)
, û =

(
û1
û2

)
, 𝑊𝑛 =

(
𝑊𝑛 (1)
𝑊𝑛 (2)

)
, 𝜷★ =

(
𝜷★
1
0

)
,

the rst components of Equation (26) are:(
𝐶𝑛
11 +

𝜂

𝑛
𝚺11

) √
𝑛û1 +

(
𝐶𝑛
12 +

𝜂

𝑛
𝚺12

) √
𝑛û2 +

𝜂
√
𝑛
𝚺11𝜷

★
1 −𝑊𝑛 (1) = − 𝜆

2
√
𝑛
𝑠𝑖𝑔𝑛(𝜷★

1 ) . (27)

If û =

(
û1
0

)
, it can be seen as a solution of the generalized Elastic Net criterion where, by

Equation (27), û1 is dened by:
√
𝑛û1 =

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −

𝜂
√
𝑛

(
C 𝑛,𝚺
11

)−1
𝚺11𝜷1

★ − 𝜆

2
√
𝑛

(
C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷1

★), (28)

where we used (14).
Note that the event 𝐴𝑛 can be rewrien as follows:

√
𝑛

(
−

��𝜷★
1
�� + 𝜆

2𝑛

����(C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
���� + 𝜂

𝑛

����(C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

����)
<

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) <

√
𝑛

(��𝜷★
1
�� − 𝜆

2𝑛

����(C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
���� − 𝜂

𝑛

����(C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

����)
which implies

√
𝑛

(
−

��𝜷★
1
�� + 𝜆

2𝑛

(
C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
𝜂

𝑛

(
C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
<

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) <

√
𝑛

(��𝜷★
1
�� + 𝜆

2𝑛

(
C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
𝜂

𝑛

(
C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
,
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using that −|𝑥 | ≤ 𝑥 ≤ |𝑥 |, ∀𝑥 ∈ R. en, by using (28), we get that
√
𝑛 |û1 | <

√
𝑛 |𝜷★

1 | and
thus |û1 | < |𝜷★

1 |. Notice that |û1 | < |𝜷★
1 | implies that �̂�1 ≠ 0 and that 𝑠𝑖𝑔𝑛(�̂�1) = 𝑠𝑖𝑔𝑛(𝜷★

1 ).
Moreover, since û2 = 0, we get that 𝑠𝑖𝑔𝑛(�̂�) = 𝑠𝑖𝑔𝑛(𝜷★).

e last components of (26) satisfy:(
𝐶𝑛
21 +

𝜂

𝑛
𝚺21

) √
𝑛û1 +

(
𝐶𝑛
22 +

𝜂

𝑛
𝚺22

) √
𝑛û2 +

𝜂
√
𝑛
𝚺21𝜷

★
1 −𝑊𝑛 (2) = − 𝜆

2
√
𝑛
𝑧2,

where by (25), |𝑧2 | ≤ 1. Hence,����(𝐶𝑛
21 +

𝜂

𝑛
𝚺21

) √
𝑛û1 +

𝜂
√
𝑛
𝚺21𝜷

★
1 −𝑊𝑛 (2)

���� ≤ 𝜆

2
√
𝑛
,

which can be rewrien as follows by using (28):����C21

(
C 𝑛,𝚺
11

)−1 (
𝑊𝑛 (1) −

𝜂
√
𝑛
𝚺11𝜷

★
1 − 𝜆

2
√
𝑛
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
+ 𝜂
√
𝑛
𝚺21𝜷

★
1 −𝑊𝑛 (2)

���� ≤ 𝜆

2
√
𝑛
. (29)

When the event 𝐵𝑛 is satised:

− 𝜆

2
√
𝑛
+ 𝜆

2
√
𝑛

����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) −
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

����
≤ C 𝑛,𝚺

21

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −𝑊𝑛 (2)

≤ 𝜆

2
√
𝑛
− 𝜆

2
√
𝑛

����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

���� . (30)

By using that −|𝑥 | ≤ 𝑥 ≤ |𝑥 | for all 𝑥 in R, we get that it implies that����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −𝑊𝑛 (2) −

𝜆

2
√
𝑛
C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
+ 𝜂
√
𝑛
𝚺21𝜷

★
1

���� ≤ 𝜆

2
√
𝑛
,

which corresponds to (29). us, if𝐴𝑛 and 𝐵𝑛 are satised, we get that 𝑠𝑖𝑔𝑛
(
�̂�
)
= 𝑠𝑖𝑔𝑛 (𝜷),

which concludes the proof.

5.2 Proof of eorem 2.2
By Lemma 2.1,

P
(
𝑠𝑖𝑔𝑛

(
�̂�
)
= 𝑠𝑖𝑔𝑛(𝜷★)

)
≥ P (𝐴𝑛 ∩ 𝐵𝑛) ≥ 1 − P

(
𝐴𝑐
𝑛

)
− P

(
𝐵𝑐𝑛

)
,

where 𝐴𝑐
𝑛 and 𝐵𝑐𝑛 denote the complementary of 𝐴𝑛 and 𝐵𝑛 , respectively. us, to prove the

theorem it is enough to prove that P
(
𝐴𝑐
𝑛

)
→ 0 and P

(
𝐵𝑐𝑛

)
→ 0 as 𝑛 → ∞.

Recall that

𝐴𝑛 :=
{����(C 𝑛,𝚺

11

)−1
𝑊𝑛 (1)

���� < √
𝑛

(��𝜷★
1
�� − 𝜆

2𝑛

����(C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
���� − 𝜂

𝑛

����(C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

����)} .
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Let 𝜻 and 𝝉 be dened by

𝜻 =

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) and 𝝉 =

√
𝑛

(��𝜷★
1
�� − 𝜆

2𝑛

����(C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
���� − 𝜂

𝑛

����(C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

����) .
en,

P(𝐴𝑛) = P
(
∀𝑗, |𝜁 𝑗 | < 𝜏 𝑗

)
.

us,

P(𝐴𝑐
𝑛) = P

(
∃ 𝑗, |𝜁 𝑗 | ≥ 𝜏 𝑗

)
≤

𝑞∑︁
𝑗=1
P

(
|𝜁 𝑗 | ≥ 𝜏 𝑗

)
.

Note that

P( |𝜁 𝑗 | ≥ 𝜏 𝑗 ) = P
(
|𝜁 𝑗 | ≥

√
𝑛

(��(𝜷★
1 ) 𝑗

�� − 𝜆

2𝑛

�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� − 𝜂

𝑛

�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

�����
))

= P

(
|𝜁 𝑗 | +

𝜆

2
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� + 𝜂
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

����� ≥ √
𝑛
��(𝜷★

1 ) 𝑗
��)

≤ P
(
|𝜁 𝑗 | ≥

√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
+ P

(
𝜆

2
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� ≥ √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
+ P

(
𝜂
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

����� ≥ √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
. (31)

Observe that
𝜻 =

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) =

1
√
𝑛

(
𝐶𝑛
11 +

𝜂

𝑛
𝚺11

)−1
X′
1𝝐 = 𝐻𝐴𝝐,

where
𝐻𝐴 =

1
√
𝑛

(
𝐶𝑛
11 +

𝜂

𝑛
𝚺11

)−1
X′
1,

X1 denoting the columns of the design matrix X associated to the 𝑞 active covariates. us,
for all 𝑗 in {1, . . . , 𝑞},

𝜁 𝑗 =

𝑛∑︁
𝑘=1

(𝐻𝐴) 𝑗𝑘𝝐𝑘 .

By using the Cauchy-Schwarz inequality,

|𝜁 𝑗 | =
����� 𝑛∑︁
𝑘=1

(𝐻𝐴) 𝑗𝑘𝝐𝑘

����� ≤
(

𝑛∑︁
𝑘=1

(𝐻𝐴)2𝑗𝑘

)1/2 (
𝑛∑︁

𝑘=1
𝝐2
𝑘

)1/2
=

√︃(
𝐻𝐴𝐻

′
𝐴

)
𝑗 𝑗
× ‖𝝐 ‖2

≤
√︃
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
× ‖𝝐 ‖2.
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Hence, the rst term in the r.h.s. of (31) satises the following inequalities:

P

(
|𝜁 𝑗 | ≥

√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(√︃
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
× ‖𝝐 ‖2 ≥

√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
× ‖𝝐 ‖22 ≥ 𝑛

(𝜷★
1 )2𝑗
9

)
. (32)

Since by (19), there exist𝑀1 > 0 and 𝛿1 > 0 such that

P
(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
≤ 𝑀1

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿1
)
, as 𝑛 → ∞,

we have:

P

(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
× ‖𝝐 ‖22 ≥ 𝑛

(𝜷★
1 )2𝑗
9

)
≤ P

(
‖𝝐 ‖22 ≥ 𝑛

(𝜷★
1 )2𝑗

9𝑀1

)
+ P

(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
> 𝑀1

)
≤ P

(
‖𝝐 ‖22
𝜎2 ≥

𝑛𝜷2
min

9𝑀1𝜎2

)
+ 𝑜

(
𝑒−𝑛

𝛿1
)
.

Using that
‖𝝐 ‖22
𝜎2 ∼ 𝜒2(𝑛), we get, by Lemma 1 of [29], that

P

(
𝜆max

(
𝐻𝐴𝐻

′
𝐴

)
× ‖𝝐 ‖22 ≥ 𝑛

(𝜷★
1 )2𝑗
9

)
≤ exp

(
− 𝑡

2
+ 1
2
√︁
𝑛 (2𝑡 − 𝑛)

)
+ 𝑜

(
𝑒−𝑛

𝛿1
)
, (33)

since 𝑡 =
𝑛𝜷2

min
9𝑀1𝜎2 >

𝑛

2
using that

2𝜷2
min

9𝜎2 > 𝑀1 by (15).
By puing together Equations (32) and (33) we get

P

(
|𝜁 𝑗 | >

√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ exp

(
− 𝑡

2
+ 1
2
√︁
𝑛 (2𝑡 − 𝑛)

)
+ 𝑜

(
𝑒−𝑛

𝛿1
)
, (34)

with 𝑡 =
𝑛𝜷2

min
9𝑀1𝜎2 >

𝑛

2
.

Let us now derive an upper bound for the second term in the r.h.s. of (31):

P

(
𝜆

2
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� ≥ √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
.

By using the Cauchy-Schwarz inequality, we get that:�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� =
����� 𝑞∑︁
𝑘=1

((
C 𝑛,𝚺
11

)−1)
𝑗𝑘

(
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑘

�����
≤

√√√ 𝑞∑︁
𝑘=1

((
C 𝑛,𝚺
11

)−1)2
𝑗𝑘

× ‖𝑠𝑖𝑔𝑛(𝜷★
1 )‖2 ≤

√︂(
C 𝑛,𝚺
11

)−2
𝑗 𝑗

× √
𝑞

≤ 𝜆max

((
C 𝑛,𝚺
11

)−1)
× √

𝑞.
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en,

P

(
𝜆

2
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝑠𝑖𝑔𝑛(𝜷★

1 )
)
𝑗

����� ≥ √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(
𝜆

2

√︂
𝑞

𝑛
𝜆max

((
C 𝑛,𝚺
11

)−1)
≥
√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(
𝜆max

((
C 𝑛,𝚺
11

)−1)
≥ 2𝑛

3𝜆√𝑞
��(𝜷★

1 ) 𝑗
��)

≤ P

(
𝜆max

((
C 𝑛,𝚺
11

)−1)
≥ 2𝑛

3𝜆√𝑞𝜷min

)
= 𝑜

(
𝑒−𝑛

𝛿2
)
, as 𝑛 → ∞, (35)

since
2𝑛

3𝜆√𝑞𝜷min > 𝑀2 by (16). Let us now derive an upper bound for the third term in the

r.h.s. of (31):

P

(
𝜂
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

����� > √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
.

We have�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

����� =
����� 𝑞∑︁
𝑘=1

((
C 𝑛,𝚺
11

)−1
𝚺11

)
𝑗𝑘

(
𝜷★
1
)
𝑘

����� ≤
√√√ 𝑞∑︁

𝑘=1

((
C 𝑛,𝚺
11

)−1
𝚺11

)2
𝑗𝑘

×
𝜷★

1

2

≤

√︄
𝜆max

((
C 𝑛,𝚺
11

)−1
𝚺
2
11

(
C 𝑛,𝚺
11

)−1)
×

𝜷★
1

2 ≤ 𝜆max

((
C 𝑛,𝚺
11

)−1)
𝜆max (𝚺11) ×

𝜷★
1

2 .

us,

P

(
𝜂
√
𝑛

�����( (C 𝑛,𝚺
11

)−1
𝚺11𝜷

★
1

)
𝑗

����� ≥ √
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(
𝜂
√
𝑛
𝜆max

((
C 𝑛,𝚺
11

)−1)
𝜆max (𝚺11)

𝜷★
1

2 ≥

√
𝑛

��(𝜷★
1 ) 𝑗

��
3

)
≤ P

(
𝜆max

((
C 𝑛,𝚺
11

)−1)
≥

𝑛𝜷min

3𝜂
𝜷★

1

2 𝜆max (𝚺11)

)
= 𝑜

(
𝑒−𝑛

𝛿2
)
, as 𝑛 → ∞, (36)

since
𝑛𝜷min

3𝜂
𝜷★

1

2 𝜆max (𝚺11)

> 𝑀2 by (18).

By puing together Equations (34), (35) and (36), we get:

P
(
𝐴𝑐
𝑛

)
≤ 𝑞 exp

[
−𝑛
2

(
𝜅 −

√
2𝜅 − 1

)]
+ 𝑞 × 𝑜

(
𝑒−𝑛

𝛿1
)
+ 2𝑞 × 𝑜

(
𝑒−𝑛

𝛿2
)
, (37)

with 𝜅 =
𝜷2
min

9𝑀1𝜎2 . Note that 𝜅 −
√
2𝜅 − 1 > 0 since 𝜅 =

𝜷2
min

9𝑀1𝜎2 > 1 by (15). Equation (37)
then implies that

P
(
𝐴𝑐
𝑛

)
→ 0 as 𝑛 → ∞.
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Let us now prove that P
(
𝐵𝑐𝑛

)
→ 0 as 𝑛 → ∞.

Recall that

𝐵𝑛 :=
{����C 𝑛,𝚺

21

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −𝑊𝑛 (2)

���� ≤ 𝜆

2
√
𝑛

− 𝜆

2
√
𝑛

����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

����} .
Let

𝝍 = C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1
𝑊𝑛 (1) −𝑊𝑛 (2) =

1
√
𝑛

(
C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1
X′
1 − X′

2

)
𝝐 =: 𝐻𝐵𝝐

and
𝝁 =

𝜆

2
√
𝑛
− 𝜆

2
√
𝑛

����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

���� .
en,

P(𝐵𝑐𝑛) = P(∃ 𝑗, |𝜓 𝑗 | > 𝜇 𝑗 ) ≤
𝑝∑︁

𝑗=𝑞+1
P( |𝜓 𝑗 | > 𝜇 𝑗 ).

By using the Cauchy-Schwarz inequality, we get that:

|𝜓 𝑗 | =
����� 𝑛∑︁
𝑘=1

(𝐻𝐵) 𝑗𝑘𝝐𝑘

����� ≤
(

𝑛∑︁
𝑘=1

(𝐻𝐵)2𝑗𝑘

)1/2
×‖𝝐 ‖2 =

√︃(
𝐻𝐵𝐻

′
𝐵

)
𝑗 𝑗
×‖𝝐 ‖2 ≤

√︃
𝜆max(𝐻𝐵𝐻

′
𝐵
)×‖𝝐 ‖2,

(38)
where

𝐻𝐵𝐻
′
𝐵 = C 𝑛,𝚺

21

(
C 𝑛,𝚺
11

)−1
𝐶𝑛
11

(
C 𝑛,𝚺
11

)−1
C 𝑛,𝚺
12 − C 𝑛,𝚺

21

(
C 𝑛,𝚺
11

)−1
𝐶𝑛
12 −𝐶𝑛

21

(
C 𝑛,𝚺
11

)−1
C 𝑛,𝚺
12 +𝐶𝑛

22.

By (21), there exist𝑀3 > 0 and 𝛿3 > 0 such that

P
(
𝜆max

(
𝐻𝐵𝐻

′
𝐵

)
≤ 𝑀3

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿3
)
, as 𝑛 → ∞.

By the GIC condition (12), there exist 𝛼 > 0 and 𝛿4 > 0 such that for all 𝑗 ,

P

(����C 𝑛,𝚺
21

(
C 𝑛,𝚺
11

)−1 (
𝑠𝑖𝑔𝑛(𝜷★

1 ) +
2𝜂
𝜆
𝚺11𝜷

★
1

)
− 2𝜂

𝜆
𝚺21𝜷

★
1

���� ≤ 1 − 𝛼

)
= 1 − 𝑜

(
𝑒−𝑛

𝛿4
)
.
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us, we get that:

P(𝐵𝑐𝑛) ≤
𝑝∑︁

𝑗=𝑞+1
P

(
|𝜓 𝑗 | > 𝜇 𝑗

)
≤

𝑝∑︁
𝑗=𝑞+1

P

(
|𝜓 𝑗 | >

𝜆𝛼

2
√
𝑛

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

≤
𝑝∑︁

𝑗=𝑞+1
P

(√︃
𝜆max(𝐻𝐵𝐻

′
𝐵
) × ‖𝝐 ‖2 >

𝜆𝛼

2
√
𝑛

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)
, using Equation (38)

≤
𝑝∑︁

𝑗=𝑞+1
P

(
𝜆max(𝐻𝐵𝐻

′
𝐵) × ‖𝝐 ‖22 >

𝜆2𝛼2

4𝑛

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

≤
𝑝∑︁

𝑗=𝑞+1
P

( ‖𝝐 ‖22
𝜎2 >

𝜆2𝛼2

4𝑛𝑀3𝜎2

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿3
)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

≤ (𝑝 − 𝑞) exp
(
− 𝑠
2
+ 1
2
√︁
𝑛(2𝑠 − 𝑛)

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿3
)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

≤ (𝑝 − 𝑞) exp
(
−𝑛
2

(
𝑠

𝑛
−

√︂
2
𝑠

𝑛
− 1

))
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿3
)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

≤ (𝑝 − 𝑞) exp
(
−𝑛
2

)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿3
)
+ (𝑝 − 𝑞)𝑜

(
𝑒−𝑛

𝛿4
)

(39)

with
𝑠

𝑛
=

𝜆2𝛼2

4𝑛2𝑀3𝜎2 since
𝜆2𝛼2

4𝑛2𝑀3𝜎2 ≥ 2 +
√
2 by (17). Finally, Equation (39) implies that

P(𝐵𝑐𝑛) → 0, as 𝑛 → ∞,

which concludes the proof.
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