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In this paper, we propose a novel variable selection approach in the framework of highdimensional linear models where the columns of the design matrix are highly correlated. It consists in rewriting the initial high-dimensional linear model to remove the correlation between the columns of the design matrix and in applying a generalized Elastic Net criterion since it can be seen as an extension of the generalized Lasso.

 under which we prove that our estimator can recover the positions of the null and non null entries of the coe cients when the sample size tends to in nity. We also assess the performance of our methodology using synthetic data and compare it with alternative approaches. Our numerical experiments show that our approach improves the variable selection performance in many cases.

Introduction

Variable selection has become an important and actively used task for understanding or predicting an outcome of interest in many elds such as medicine [START_REF] Lu | Variable selection for optimal treatment decision[END_REF][START_REF] Gunter | Variable selection for qualitative interactions in personalized medicine while controlling the family-wise error rate[END_REF][START_REF] Gu | Bayesian two-step lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints[END_REF][START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF], social media [START_REF] Tufekci | Big questions for social media big data: Representativeness, validity and other methodological pitfalls[END_REF][START_REF] Lin | What does social media say about your stress?[END_REF][START_REF] Tomeny | Geographic and demographic correlates of autism-related anti-vaccine beliefs on twi er, 2009-15[END_REF], or nance [START_REF] Sermpinis | Modelling market implied ratings using lasso variable selection techniques[END_REF][START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF][START_REF] Uniejewski | Understanding intraday electricity markets: Variable selection and very short-term price forecasting using lasso[END_REF]. rough decades, numerous variable selection methods have been developed such as subset selection [START_REF] Norman | Applied regression analysis[END_REF] or regularization techniques [START_REF] Peter | Regularization in statistics[END_REF].

Subset selection methods achieve sparsity by selecting the best subset of relevant variables using the Akaike information criterion [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] or the Bayesian information criterion [START_REF] Schwarz | Estimating the dimension of a model[END_REF] but are shown to be NP-hard and could be unstable in practice [START_REF] William | Algorithmic complexity: three np-hard problems in computational statistics[END_REF][START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF].

e regularized variable selection techniques have become popular for their capability to overcome the above di culties [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Hastie | Statistical Learning with Sparsity: e Lasso and Generalizations[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Tong Tong Wu | Genomewide association analysis by lasso penalized logistic regression[END_REF]. Among them, the Lasso approach [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] is one of the most popular and can be de ned as follows. Let y satisfy the following linear model y = X𝜷 ★ + 𝝐,

where y = (𝑦 1 , . . . , 𝑦 𝑛 ) ∈ R 𝑛 is the response variable, denoting the transposition, X = (X 1 , . . . , X 𝑝 ) is the design matrix with 𝑛 rows of observations on 𝑝 covariates, 𝜷 ★ = (𝛽 ★ 1 , . . . , 𝛽 ★ 𝑝 ) ∈ R 𝑝 is a sparse vector, namely contains a lot of null components, and 𝝐 is a Gaussian vector with zero-mean and a covariance matrix equal to 𝜎 2 I 𝑛 , I 𝑛 denoting the identity matrix in R 𝑛 . e Lasso approach estimates 𝜷 ★ with a sparsity enforcing constraint by minimizing the following penalized least-squares criterion:

𝐿 𝐿𝑎𝑠𝑠𝑜 𝜆 (𝜷) = y -X𝜷 2 2 + 𝜆 𝜷 1 , (2) 
where

𝑎 1 = 𝑝 ∑︁ 𝑘=1
|𝑎 𝑘 | denotes the ℓ 1 norm of the vector (𝑎 1 , . . . , 𝑎 𝑝 ) , 𝑏 2 2 = 𝑛 ∑︁ 𝑘=1 𝑏 2 𝑘 denotes the ℓ 2 norm of the vector (𝑏 1 , . . . , 𝑏 𝑛 ) , and 𝜆 is a positive constant corresponding to the regularization parameter. e Lasso popularity largely comes from the fact that the resulting estimator 𝜷

𝐿𝑎𝑠𝑠𝑜 (𝜆) = Argmin 𝜷 ∈R 𝑝 𝐿 𝐿𝑎𝑠𝑠𝑜 𝜆 (𝜷)
is sparse (has only a few nonzero entries), and sparse models are o en preferred for their interpretability [START_REF] Zhao | On model selection consistency of lasso[END_REF]. Moreover, 𝜷 𝐿𝑎𝑠𝑠𝑜 (𝜆) can be proved to be sign consistent under some assumptions, namely there exists 𝜆 such that lim

𝑛→∞ P 𝑠𝑖𝑔𝑛 𝜷 𝐿𝑎𝑠𝑠𝑜 (𝜆) = 𝑠𝑖𝑔𝑛(𝜷 ★ ) = 1,
where sign(𝑥) = 1 if 𝑥 > 0, -1 if 𝑥 < 0 and 0 if 𝑥 = 0. Before giving the conditions under which [START_REF] Zhao | On model selection consistency of lasso[END_REF] prove the sign consistency of 𝜷 𝐿𝑎𝑠𝑠𝑜 , we rst introduce some notations. Without loss of generality, we shall assume as in [START_REF] Zhao | On model selection consistency of lasso[END_REF] that the rst 𝑞 components of 𝜷 ★ are non null (i.e. the components that are associated to the active variables, and denoted as 𝜷 ★ 1 ) and the last 𝑝 -𝑞 components of 𝜷 ★ are null (i.e. the components that are associated to the non active variables, and denoted as 𝜷 ★

2 ). Moreover, we shall denote by X 1 (resp. X 2 ) the rst 𝑞 (resp. the last 𝑝 -𝑞) columns of X. Hence, 𝐶 𝑛 = 𝑛 -1 X X, which is the empirical covariance matrix of the covariates, can be rewri en as follows:

𝐶 𝑛 = 𝐶 𝑛 11 𝐶 𝑛 12 𝐶 𝑛 21 𝐶 𝑛 22 , with 𝐶 𝑛 11 = 𝑛 -1 X 1 X 1 , 𝐶 𝑛 12 = 𝑛 -1 X 1 X 2 , 𝐶 𝑛 21 = 𝑛 -1 X 2 X 1 , 𝐶 𝑛 22 = 𝑛 -1 X 2 X 2 .
It is proved by Zhao and Yu in [START_REF] Zhao | On model selection consistency of lasso[END_REF] that 𝜷 𝐿𝑎𝑠𝑠𝑜 (𝜆) is sign consistent when the following Irrepresentable Condition (IC) is satis ed:

𝐶 𝑛 21 (𝐶 𝑛 11 ) -1 sign(𝜷 ★ 1 ) 𝑗 ≤ 1 -𝛼, for all 𝑗, (3) 
where 𝛼 is a positive constant. In the case where 𝑝 𝑛, Wainwright develops in [START_REF] Martin | Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (lasso)[END_REF] the necessary and su cient conditions, for both deterministic and random designs, on 𝑝, 𝑞, and 𝑛 for which it is possible to recover the positions of the null and non null components of 𝜷 ★ , namely its support, using the Lasso.

When there are high correlations between covariates, especially the active ones, the 𝐶 𝑛 11 matrix may not be invertible, and the Lasso estimator fails to be sign consistent. To 2 circumvent this issue, Zou and Hastie [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] introduced the Elastic Net estimator de ned by:

𝜷 𝐸𝑁 (𝜆, 𝜂) = Argmin 𝜷 ∈R 𝑝 𝐿 𝐸𝑁 𝜆,𝜂 (𝜷), (4) 
where 𝐿 𝐸𝑁 𝜆,𝜂 (𝜷) = y -X𝜷 2 2 + 𝜆 𝜷 1 + 𝜂 𝜷 2 with 𝜆, 𝜂 > 0. Yuan and Lin prove in [START_REF] Yuan | On the nonnegative garrote estimator[END_REF] that when the following Elastic Net Condition (EIC) is satis ed the Elastic Net estimator de ned by ( 4) is sign consistent when 𝑝 and 𝑞 are xed: there exist positive 𝜆 and 𝜂 such that

𝐶 𝑛 21 𝐶 𝑛 11 + 𝜂 𝑛 I 𝑞 -1 sign(𝜷 ★ 1 ) + 2𝜂 𝜆 𝜷 ★ 1 𝑗 ≤ 1 -𝛼, for all 𝑗 . (5) 
Moreover, when 𝑝, 𝑞, and 𝑛 go to in nity with 𝑝 𝑛, Jia and Yu prove in [START_REF] Jia | On model selection consistency of the elastic net when 𝑝 𝑛[END_REF] that the sign consistency of the Elastic Net estimator holds if additionally to Condition (5) 𝑛 goes to in nity at a rate faster than 𝑞 log(𝑝 -𝑞).

In the case where the active and non active covariates are highly correlated, IC (3) and EIC ( 5) may be violated. To overcome this issue several approaches were proposed: the Standard PArtial Covariance (SPAC) method [START_REF] Xue | Variable selection for highly correlated predictors[END_REF] and preconditioning approaches among others. Xue and [25] developed the so-called SPAC-Lasso which enjoys strong sign consistency in both nite-dimensional (𝑝 < 𝑛) and high-dimensional (𝑝 𝑛) se ings. However, the authors mentioned that the SPAC-Lasso method only selects the active variables that are not highly correlated to the non active ones, which may be a weakness of this approach. e preconditioning approaches consist in transforming the given data X and y before applying the Lasso criterion. For example, [START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] and [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed to le -multiply X, y and thus 𝝐 in Model (1) by speci c matrices to remove the correlations between the columns of X. A major drawback of the la er approach, called HOLP (High dimensional Ordinary Least squares Projection), is that the preconditioning step may increase the variance of the error term and thus may alter the variable selection performance.

Recently, [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF] proposed another strategy under the following assumption:

(A1) X is assumed to be a random design matrix such that its rows (𝒙 𝑖 ) 1≤𝑖 ≤𝑛 are i.i.d. zero-mean Gaussian random vectors having a covariance matrix equal to 𝚺.

More precisely, they propose to rewrite Model (1) in order to remove the correlation existing between the columns of X. Let 𝚺 -1/2 := 𝑼 𝑫 -1/2 𝑼 𝑇 where 𝑼 and 𝑫 are the matrices involved in the spectral decomposition of the symmetric matrix 𝚺 given by: 𝚺 = 𝑼 𝑫𝑼 𝑇 , then, denoting X = X𝚺 -1/2 , (1) can be rewri en as follows:

y = X 𝜷 ★ + 𝝐, (6) 
where

𝜷 ★ = 𝚺 1/2 𝜷 ★ := 𝑼 𝑫 1/2 𝑼 𝑇 𝜷 ★ .
With such a transformation, the covariance matrix of the 𝑛 rows of X is equal to identity and the columns of X are thus uncorrelated. e advantage of such a transformation with respect to the preconditioning approach proposed by [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] is that the error term 𝝐 is not modi ed thus avoiding an increase of the noise which can overwhelm the bene ts of a well conditioned design matrix. eir approach then consists in minimizing the following criterion with respect to 𝜷:

y -X 𝜷 2 2 + 𝜆 Σ -1/2 𝜷 1 , (7) 
where X = X𝚺 -1/2 in order to ensure a sparse estimation of 𝜷 ★ thanks to the penalization by the ℓ 1 norm. is criterion actually boils down to the Generalized Lasso proposed by [START_REF] Tibshirani | e solution path of the generalized lasso[END_REF]:

𝐿 𝑔𝑒𝑛𝑙𝑎𝑠𝑠𝑜 𝜆 ( 𝜷) = y -X 𝜷 2 2 + 𝜆 𝐷 𝜷 1 , with 𝜆 > 0 ( 8 
)
and 𝐷 = Σ -1/2 . Since, as explained in [START_REF] Tibshirani | e solution path of the generalized lasso[END_REF], some problems may occur when the rank of the design matrix is not full, we will consider in this paper the following criterion:

𝐿 𝑔𝐸𝑁 𝜆,𝜂 ( 𝜷) = y -X 𝜷 2 2 + 𝜆 Σ -1/2 𝜷 1 + 𝜂 𝜷 2 2
, with 𝜆, 𝜂 > 0.

(

) 9 
Since it consists in adding an 𝐿 2 penalty part to the Generalized Lasso as in the Elastic Net, we will call it generalized Elastic Net (gEN). We prove in Section 2 that under Assumption (A1) and the Generalized Irrepresentable Condition (GIC) [START_REF] Norman | Applied regression analysis[END_REF] given below among others, 𝜷 is a sign-consistent estimator of 𝜷 ★ where 𝜷 is de ned by

𝜷 = 𝚺 -1/2 𝜷, (10) 
with

𝜷 = Argmin 𝜷 𝐿 𝑔𝐸𝑁 𝜆,𝜂 𝜷 , (11) 
𝐿 𝑔𝐸𝑁 𝜆,𝜂
𝜷 being de ned in Equation ( 9). e Generalized Irrepresentable Condition (GIC) can be stated as follows: ere exist 𝜆, 𝜂, 𝛼, 𝛿 4 > 0 such that for all 𝑗,

P (𝐶 𝑛 21 + 𝜂 𝑛 Σ 21 ) (𝐶 𝑛 11 + 𝜂 𝑛 Σ 11 ) -1 sign(𝜷 ★ 1 ) + 2𝜂 𝜆 𝜷 ★ 1 - 2𝜂 𝜆 Σ 21 𝜷 ★ 1 𝑗 ≤ 1 -𝛼 = 1-𝑜 𝑒 -𝑛 𝛿 4 .
(12) Note that GIC coincides with EIC when X is not random and Σ = I 𝑝 . Moreover, GIC does not require 𝐶 𝑛 11 to be invertible. Since EIC and IC are both particular cases of GIC, if the IC or EIC holds, then there exist 𝜆 or 𝜂 such that the GIC holds.

e rest of the paper is organized as follows. Section 2 is devoted to the theoretical results of the paper. More precisely, we prove that under some mild conditions 𝜷 de ned in ( 10) is a sign-consistent estimator of 𝜷 ★ . To support our theoretical results, some numerical experiments are presented in Section 3. e proofs of our theoretical results can be found in Section 5.

eoretical results

e goal of this section is to establish the sign consistency of the Generalized Elastic Net estimator de ned in [START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF]. To prove this result, we shall use the following lemma.

Lemma 2.1. Let y satisfying Model (1) under Assumption (A1) and 𝜷 be de ned in [START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF]. en,

P 𝑠𝑖𝑔𝑛 𝜷 = 𝑠𝑖𝑔𝑛(𝜷 ★ ) ≥ P (𝐴 𝑛 ∩ 𝐵 𝑛 ) , (13) 
where

𝐴 𝑛 := C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) < √ 𝑛 𝜷 ★ 1 - 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) - 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 , 𝐵 𝑛 := C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) -𝑊 𝑛 (2) ≤ 𝜆 2 √ 𝑛 - 𝜆 2 √ 𝑛 C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 2𝜂 𝜆 𝚺 11 𝜷 ★ 1 - 2𝜂 𝜆 𝚺 21 𝜷 ★ 1 ,
and

C 𝑛,𝚺 11 = 𝐶 𝑛 11 + 𝜂 𝑛 𝚺 11 , C 𝑛,𝚺 21 = 𝐶 𝑛 21 + 𝜂 𝑛 𝚺 21 , 𝑊 𝑛 = 1 √ 𝑛 X 𝝐 = 𝑊 𝑛 (1) 𝑊 𝑛 (2) , (14) 
with

𝑊 𝑛 (1) = 1 √ 𝑛 X 1 𝝐 and 𝑊 𝑛 (2) = 1 √ 𝑛 X 2 𝝐.
e proof of Lemma 2.1 is given in Section 5. e following theorem gives the conditions under which the sign consistency of the generalized Elastic Net estimator 𝜷 de ned in (10) holds. eorem 2.2. Assume that y satis es Model (1) under Assumption (A1) with 𝑝 = 𝑝 𝑛 is such that 𝑝 𝑛 exp 𝑛 -𝛿 tends to 0 as 𝑛 tends to in nity for all positive 𝛿. Assume also that there exist some positive constants 𝑀 1 , 𝑀 2 , 𝑀 3 and 𝛼 satisfying 2 and

𝑀 1 < 𝜷 2 min 9𝜎
√︁ 2 + √ 2 √ 𝑀 3 𝜎 𝛼 < 𝜷 min 3𝑀 2 √ 𝑞 , (15) 
and that there exist 𝜆 > 0 and 𝜂 > 0 such that [START_REF] Norman | Applied regression analysis[END_REF] and

𝜆 𝑛 < 2𝜷 min 3𝑀 2 √ 𝑞 , ( 16 
)
𝜆 𝑛 ≥ 2 √︁ 2 + √ 2 √ 𝑀 3 𝜎 𝛼 , ( 17 
) 𝜂 𝑛 < 1 3𝑀 2 𝜆 max (𝚺 11 ) × 𝜷 min 𝜷 ★ 1 2 , ( 18 
)
hold as 𝑛 tends to in nity, where 𝜷 min = min 1≤ 𝑗 ≤𝑞 𝜷 ★ 1 𝑗 . Suppose also that there exist some positive constants 𝛿 1 , 𝛿 2 , 𝛿 3 such that, as 𝑛 → ∞,

P 𝜆 max 𝐻 𝐴 𝐻 𝐴 ≤ 𝑀 1 = 1 -𝑜 𝑒 -𝑛 𝛿 1 , (19) 
P 𝜆 max C 𝑛,𝚺 11 -1 ≤ 𝑀 2 = 1 -𝑜 𝑒 -𝑛 𝛿 2 , (20) 
P 𝜆 max 𝐻 𝐵 𝐻 𝐵 ≤ 𝑀 3 = 1 -𝑜 𝑒 -𝑛 𝛿 3 , (21) 
where 𝜆 max (𝐴) denotes the largest eigenvalue of 𝐴,

𝐻 𝐴 = 1 √ 𝑛 C 𝑛,𝚺 11 -1 X 1 and 𝐻 𝐵 = 1 √ 𝑛 C 𝑛,𝚺 21 C 𝑛,𝚺 11 -1 X 1 -X 2 ,
C 𝑛,𝚺 11 and C 𝑛,𝚺 21 being de ned in ( 14) and X 1 (resp. X 2 ) denoting the rst 𝑞 (resp. the last 𝑝 -𝑞) columns of X. en,

P 𝑠𝑖𝑔𝑛 𝜷 = 𝑠𝑖𝑔𝑛(𝜷 ★ ) → 1, as 𝑛 → ∞,
where 𝜷 is de ned in [START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF].

Note that Conditions ( 16) and ( 17) are consistent thanks to [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. e proof of eorem 2.2 is given in Section 5 and a discussion on the assumptions of eorem 2.2 is provided in Section 3.

3 Numerical experiments e goal of this section is to discuss the assumptions and illustrate the results of eorem 2.2. For this, we generated datasets from Model [START_REF] Jia | On model selection consistency of the elastic net when 𝑝 𝑛[END_REF] where the matrix 𝚺 appearing in (A1) is de ned by

𝚺 = 𝚺 11 𝚺 12 𝚺 12 𝚺 22 . (22) 
In [START_REF] Zhao | On model selection consistency of lasso[END_REF], 𝚺 11 is the correlation matrix of the active variables having its o -diagonal entries equal to 𝛼 1 , 𝚺 22 is the correlation matrix of the non active variables having its o -diagonal entries equal to 𝛼 3 and 𝚺 12 is the correlation matrix between the active and the non active variables with entries equal to 𝛼 2 . In the numerical experiments, (𝛼 1 , 𝛼 2 , 𝛼 3 ) = (0.3, 0.5, 0.7). Moreover, 𝜷 ★ appearing in Model (1) has 𝑞 non zero components which are equal to 𝑏 and 𝜎 = 1. e number of predictors 𝑝 is equal to 200, 400, or 600 and the sample size 𝑛 takes the same values for each value of 𝑝.

Discussion on the assumptions of eorem 2.2

We rst show that GIC de ned in ( 12) can be satis ed even when EIC and IC, de ned in ( 5) and (3) respectively, are not ful lled. For this, we computed for di erent values of 𝜆 and 𝜂 the following values:

IC = max 𝑗 𝐶 𝑛 21 (𝐶 𝑛 11 ) -1 (sign(𝜷 ★ 1 ) 𝑗 EIC = min 𝜆,𝜂 max 𝑗 𝐶 𝑛 21 (𝐶 𝑛 11 + 𝜂 𝑛 I 𝑞 ) -1 (sign(𝜷 ★ 1 ) + 2𝜂 𝜆 𝜷 ★ 1 ) 𝑗 GIC = min 𝜆,𝜂 max 𝑗 (𝐶 𝑛 21 + 𝜂 𝑛 Σ 21 ) (𝐶 𝑛 11 + 𝜂 𝑛 Σ 11 ) -1 sign(𝜷 ★ 1 ) + 2𝜂 𝜆 𝜷 ★ 1 - 2𝜂 𝜆 Σ 21 𝜷 ★ 1 𝑗 (23) 
and Figure 1 displays the boxplots of these criteria obtained from 100 replications. We can see from these gures that in all the considered cases GIC is satis ed (i.e. all values are smaller than 1) whereas EIC and IC are not. e values of 𝑝 and 𝑛 do not seem to have a big impact on EIC and IC. However, contrary to 𝑝, 𝑛 seems to have an in uence on GIC which increases with 𝑛 when 𝑏 = 1 and decreases when 𝑛 increases when 𝑏 = 10.

Figures 2 and3 show the behavior of

𝜆 max 𝐻 𝐴 𝐻 𝐴 , 𝜆 max C 𝑛,𝚺 11 
-1
and 𝜆 max 𝐻 𝐵 𝐻 𝐵 appearing in ( 19), ( 20) and ( 21) with respect to 𝜂 for di erent values of 𝑛, 𝑝 and for 𝑞 = 5 or 10. ese plots thus provide lower bounds for 𝑀 1 , 𝑀 2 and 𝑀 3 appearing in the previous equations. Observe that ( 18) can be rewri en as:

𝜂𝑀 2 < 𝑛 3𝜆 max (𝚺 11 ) × 𝜷 min 𝜷 ★ 1 2 . ( 24 
)
Based on the plots at the bo om right of Figures 2 and3, we can see that there exist 𝜂's satisfying Condition 24 and thus [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and that the interval in which the adapted 𝜂's lie is larger when 𝑞 = 5 than when 𝑞 = 10. Based on the average of 𝑀 1 previously obtained, the le part of ( 15) is always satis ed as soon as 𝑏 > √ 18. Based on the average of 𝑀 2 and 𝑀 3 previously obtained, the average of le -hand side and of the right-hand side of the right part of Equation [START_REF] Schwarz | Estimating the dimension of a model[END_REF] are displayed in Figures 4 and5. We can see from these gures that it is only satis ed for large values of 𝑏. Moreover, it is more o en satis ed when 𝑞 = 5 than for 𝑞 = 10.

We will show in the next section that even if the cases where all the conditions of the theorem are not ful lled our method is robust enough to outperform the Elastic Net de ned in (4) even in these cases.

Comparison with other methods

To assess the performance of our approach (gEN) in terms of sign-consistency with respect to other methods and to illustrate the results of eorem 2.2, we computed the True Positive Rate (TPR), namely the proportion of active variables selected, and the False Positive Rate (FPR), namely the proportion of non active variables selected, of the Elastic Net and gEN estimators de ned in (4) and [START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF], respectively.

Figures 6 and8 display the empirical mean of the largest di erence between the True Positive Rate and False Positive Rate over the replications. It is obtained by selecting for each replication the value of 𝜆 and 𝜂 achieving the largest di erence between the TPR and FPR and by averaging these di erences. ey also display the corresponding TPR and FPR for gEN and Elastic Net for di erent values of 𝑛 and 𝑝. We can see from these gures that the gEN and the Elastic Net estimators have a TPR equal to 1 but that the FPR of gEN is smaller than Elastic Net. We can see from these gures that the di erence between the performance of gEN and Elastic Net is larger for high signal-to-noise ratios (𝑏 = 10). It has to be noticed that when TPR=1 for our approach it also means that the signs of the non null 𝛽 ★ 𝑖 are also properly retrieved.

Discussion

In this paper, we proposed a novel variable selection approach called gEN (generalized Elastic Net) in the framework of linear models where the columns of the design matrix are highly correlated and thus when the standard Lasso criterion usually fails. We proved that under mild conditions, among which the GIC, which is valid when other standard conditions like EIC or IC are not ful lled, our method provides a sign-consistent estimator of 𝜷 ★ . For a more thorough discussion regarding the application of our approach in practical situations, we refer the reader to [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF].

Proofs

Proof of Lemma 2.1

Note that [START_REF] Sermpinis | Modelling market implied ratings using lasso variable selection techniques[END_REF] given by:

𝐿 𝑔𝐸𝑁 ( 𝜷) = y -X 𝜷 2 2 + 𝜆 Σ -1/2 𝜷 1 + 𝜂 𝜷 2 2
can be rewri en as

𝐿 𝑔𝐸𝑁 ( 𝜷) = y * -X * 𝜷 2 2 + 𝜆 𝚺 -1/2 𝜷 1 ,
where en, 𝜷 satis es

y * = y 0 , X * = X √ 𝜂I 𝑝 .
X * y * -X * 𝜷 = 𝜆 2 (𝚺 -1/2 ) 𝑧, ( 25 
)
where 𝐴 denotes the transpose of the matrix 𝐴, and Equation ( 25) can be rewri en as:

         𝑧 𝑗 = 𝑠𝑖𝑔𝑛 (𝚺 -1/2 𝜷) 𝑗 , if (𝚺 -1/2 𝜷) 𝑗 ≠ 0 𝑧 𝑗 ∈ [-1, 1], if (𝚺 -1/2 𝜷) 𝑗 = 0 . allp200.pdf
X y -(X X + 𝜂𝚺) 𝜷 = 𝜆 2 𝑧 which leads to X X(𝜷 ★ -𝜷) + X 𝝐 -𝜂𝚺 𝜷 = 𝜆 2 𝑧,
by using that y = X𝜷 ★ + 𝝐. By using the following notations:

u = 𝜷 -𝜷 ★ , 𝐶 𝑛 = 1 𝑛 X X and 𝑊 𝑛 = 1 √ 𝑛 X 𝝐,
Equation ( 25) becomes

𝐶 𝑛 + 𝜂 𝑛 𝚺 √ 𝑛 u + 𝜂 √ 𝑛 𝚺𝜷 ★ -𝑊 𝑛 = - 𝜆 2 √ 𝑛 𝑧. ( 26 
)
With the following notations:

𝐶 𝑛 = 𝐶 𝑛 11 𝐶 𝑛 12 𝐶 𝑛 21 𝐶 𝑛 22 , 𝚺 = 𝚺 11 𝚺 12 𝚺 21 𝚺 22 , u = u 1 u 2 , 𝑊 𝑛 = 𝑊 𝑛 (1) 𝑊 𝑛 (2) , 𝜷 ★ = 𝜷 ★ 1 0 ,
the rst components of Equation ( 26) are:

𝐶 𝑛 11 + 𝜂 𝑛 𝚺 11 √ 𝑛 u 1 + 𝐶 𝑛 12 + 𝜂 𝑛 𝚺 12 √ 𝑛 u 2 + 𝜂 √ 𝑛 𝚺 11 𝜷 ★ 1 -𝑊 𝑛 (1) = - 𝜆 2 √ 𝑛 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ). ( 27 
)
If u = u 1 0 , it can be seen as a solution of the generalized Elastic Net criterion where, by Equation ( 27), u 1 is de ned by:

√ 𝑛 u 1 = C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) - 𝜂 √ 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 1 ★ - 𝜆 2 √ 𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 1 ★ ), (28) 
where we used [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Note that the event 𝐴 𝑛 can be rewri en as follows:

√ 𝑛 -𝜷 ★ 1 + 𝜆 2𝑛 C 𝑛,𝚺 11 -1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 𝜂 𝑛 C 𝑛,𝚺 11 -1 𝚺 11 𝜷 ★ 1 < C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) < √ 𝑛 𝜷 ★ 1 - 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) - 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 which implies √ 𝑛 -𝜷 ★ 1 + 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 < C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) < √ 𝑛 𝜷 ★ 1 + 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 , using that -|𝑥 | ≤ 𝑥 ≤ |𝑥 |, ∀𝑥 ∈ R.
en, by using (28), we get that

√ 𝑛| u 1 | < √ 𝑛|𝜷 ★ 1 | and thus | u 1 | < |𝜷 ★ 1 |. Notice that | u 1 | < |𝜷 ★ 1 | implies that 𝜷 1 ≠ 0 and that 𝑠𝑖𝑔𝑛( 𝜷 1 ) = 𝑠𝑖𝑔𝑛(𝜷 ★ 1 )
. Moreover, since u 2 = 0, we get that 𝑠𝑖𝑔𝑛( 𝜷) = 𝑠𝑖𝑔𝑛(𝜷 ★ ).

e last components of (26) satisfy:

𝐶 𝑛 21 + 𝜂 𝑛 𝚺 21 √ 𝑛 u 1 + 𝐶 𝑛 22 + 𝜂 𝑛 𝚺 22 √ 𝑛 u 2 + 𝜂 √ 𝑛 𝚺 21 𝜷 ★ 1 -𝑊 𝑛 (2) = - 𝜆 2 √ 𝑛 𝑧 2 ,
where by ( 25), |𝑧 2 | ≤ 1. Hence,

𝐶 𝑛 21 + 𝜂 𝑛 𝚺 21 √ 𝑛 u 1 + 𝜂 √ 𝑛 𝚺 21 𝜷 ★ 1 -𝑊 𝑛 (2) ≤ 𝜆 2 √ 𝑛 ,
which can be rewri en as follows by using (28):

C 21 C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) - 𝜂 √ 𝑛 𝚺 11 𝜷 ★ 1 - 𝜆 2 √ 𝑛 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 𝜂 √ 𝑛 𝚺 21 𝜷 ★ 1 -𝑊 𝑛 (2) ≤ 𝜆 2 √ 𝑛 . (29) 
When the event 𝐵 𝑛 is satis ed:

- 𝜆 2 √ 𝑛 + 𝜆 2 √ 𝑛 C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) - 2𝜂 𝜆 𝚺 11 𝜷 ★ 1 - 2𝜂 𝜆 𝚺 21 𝜷 ★ 1 ≤ C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) -𝑊 𝑛 (2) ≤ 𝜆 2 √ 𝑛 - 𝜆 2 √ 𝑛 C 𝑛,𝚺 21 C 𝑛,𝚺 11 -1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 2𝜂 𝜆 𝚺 11 𝜷 ★ 1 - 2𝜂 𝜆 𝚺 21 𝜷 ★ 1 . (30) 
By using that -|𝑥 | ≤ 𝑥 ≤ |𝑥 | for all 𝑥 in R, we get that it implies that

C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) -𝑊 𝑛 (2) - 𝜆 2 √ 𝑛 C 𝑛,𝚺 21 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 2𝜂 𝜆 𝚺 11 𝜷 ★ 1 + 𝜂 √ 𝑛 𝚺 21 𝜷 ★ 1 ≤ 𝜆 2 √ 𝑛
, which corresponds to [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF]. us, if 𝐴 𝑛 and 𝐵 𝑛 are satis ed, we get that 𝑠𝑖𝑔𝑛 𝜷 = 𝑠𝑖𝑔𝑛 (𝜷), which concludes the proof.

Proof of eorem 2.2

By Lemma 2.1,

P 𝑠𝑖𝑔𝑛 𝜷 = 𝑠𝑖𝑔𝑛(𝜷 ★ ) ≥ P (𝐴 𝑛 ∩ 𝐵 𝑛 ) ≥ 1 -P 𝐴 𝑐 𝑛 -P 𝐵 𝑐 𝑛 ,
where 𝐴 𝑐 𝑛 and 𝐵 𝑐 𝑛 denote the complementary of 𝐴 𝑛 and 𝐵 𝑛 , respectively. us, to prove the theorem it is enough to prove that P 𝐴 𝑐 𝑛 → 0 and P 𝐵 𝑐 𝑛 → 0 as 𝑛 → ∞. Recall that

𝐴 𝑛 := C 𝑛,𝚺 11 -1 𝑊 𝑛 (1) < √ 𝑛 𝜷 ★ 1 - 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) - 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 .
Let 𝜻 and 𝝉 be de ned by Note that

𝜻 = C 𝑛,𝚺
P(|𝜁 𝑗 | ≥ 𝜏 𝑗 ) = P |𝜁 𝑗 | ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 - 𝜆 2𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 - 𝜂 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 𝑗 = P |𝜁 𝑗 | + 𝜆 2 √ 𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 + 𝜂 √ 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 ≤ P |𝜁 𝑗 | ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 + P 𝜆 2 √ 𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 
+ P 𝜂 √ 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 . (31) 
Observe that

𝜻 = C 𝑛,𝚺 11 
-1 𝑊 𝑛 (1) = 1 √ 𝑛 𝐶 𝑛 11 + 𝜂 𝑛 𝚺 11 -1 X 1 𝝐 = 𝐻 𝐴 𝝐,
where

𝐻 𝐴 = 1 √ 𝑛 𝐶 𝑛 11 + 𝜂 𝑛 𝚺 11 -1 X 1 ,
X 1 denoting the columns of the design matrix X associated to the 𝑞 active covariates. us, for all 𝑗 in {1, . . . , 𝑞},

𝜁 𝑗 = 𝑛 ∑︁ 𝑘=1 (𝐻 𝐴 ) 𝑗𝑘 𝝐 𝑘 .
By using the Cauchy-Schwarz inequality,

|𝜁 𝑗 | = 𝑛 ∑︁ 𝑘=1 (𝐻 𝐴 ) 𝑗𝑘 𝝐 𝑘 ≤ 𝑛 ∑︁ 𝑘=1 (𝐻 𝐴 ) 2 𝑗𝑘 1/2 𝑛 ∑︁ 𝑘=1 𝝐 2 𝑘 1/2 = √︃ 𝐻 𝐴 𝐻 𝐴 𝑗 𝑗 × 𝝐 2 ≤ √︃ 𝜆 max 𝐻 𝐴 𝐻 𝐴 × 𝝐 2 .
Hence, the rst term in the r.h.s. of (31) satis es the following inequalities:

P |𝜁 𝑗 | ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P √︃ 𝜆 max 𝐻 𝐴 𝐻 𝐴 × 𝝐 2 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P 𝜆 max 𝐻 𝐴 𝐻 𝐴 × 𝝐 2 2 ≥ 𝑛 (𝜷 ★ 1 ) 2 𝑗 9 . (32) 
Since by [START_REF] Hastie | Statistical Learning with Sparsity: e Lasso and Generalizations[END_REF], there exist 𝑀 1 > 0 and 𝛿 1 > 0 such that

P 𝜆 max 𝐻 𝐴 𝐻 𝐴 ≤ 𝑀 1 = 1 -𝑜 𝑒 -𝑛 𝛿 1 , as 𝑛 → ∞,
we have:

P 𝜆 max 𝐻 𝐴 𝐻 𝐴 × 𝝐 2 2 ≥ 𝑛 (𝜷 ★ 1 ) 2 𝑗 9 ≤ P 𝝐 2 2 ≥ 𝑛 (𝜷 ★ 1 ) 2 𝑗 9𝑀 1 + P 𝜆 max 𝐻 𝐴 𝐻 𝐴 > 𝑀 1 ≤ P 𝝐 2 2 𝜎 2 ≥ 𝑛𝜷 2 min 9𝑀 1 𝜎 2 + 𝑜 𝑒 -𝑛 𝛿 1 .
Using that 𝝐 2 2 𝜎 2 ∼ 𝜒 2 (𝑛), we get, by Lemma 1 of [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF], that 

P 𝜆 max 𝐻 𝐴 𝐻 𝐴 × 𝝐 2 2 ≥ 𝑛 (𝜷 ★ 1 ) 2 𝑗 9 ≤ exp - 𝑡 2 + 1 2 √︁ 𝑛 (2𝑡 -𝑛) + 𝑜 𝑒 -𝑛 𝛿 1 , (33) 
P |𝜁 𝑗 | > √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ exp - 𝑡 2 + 1 2 √︁ 𝑛 (2𝑡 -𝑛) + 𝑜 𝑒 -𝑛 𝛿 1 , (34) 
with 𝑡 =

𝑛𝜷 2 min 9𝑀 1 𝜎 2 > 𝑛 2 .
Let us now derive an upper bound for the second term in the r.h.s. of (31):

P 𝜆 2 √ 𝑛 C 𝑛,𝚺 11 
-1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 
.

By using the Cauchy-Schwarz inequality, we get that:

C 𝑛,𝚺 11 -1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 = 𝑞 ∑︁ 𝑘=1 C 𝑛,𝚺 11 -1 𝑗𝑘 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑘 ≤ 𝑞 ∑︁ 𝑘=1 C 𝑛,𝚺 11 
-1 2 𝑗𝑘 × 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 2 ≤ √︂ C 𝑛,𝚺 11 -2 𝑗 𝑗 × √ 𝑞 ≤ 𝜆 max C 𝑛,𝚺 11 
-1 × √ 𝑞.
en, 

P 𝜆 2 √ 𝑛 C 𝑛,𝚺 11 -1 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P 𝜆 2 √︂ 𝑞 𝑛 𝜆 max C 𝑛,𝚺 11 
-1 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P 𝜆 max C 𝑛,𝚺 11 
-1 ≥ 2𝑛 3𝜆 √ 𝑞 (𝜷 ★ 1 ) 𝑗 ≤ P 𝜆 max C 𝑛,𝚺 11 
-1 ≥ 2𝑛 3𝜆 √ 𝑞 𝜷 min = 𝑜 𝑒 -𝑛 𝛿 2 , as 𝑛 → ∞, (35) 
P 𝜂 √ 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 𝑗 > √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 
.

We have

C 𝑛,𝚺 11 -1 𝚺 11 𝜷 ★ 1 𝑗 = 𝑞 ∑︁ 𝑘=1 C 𝑛,𝚺 11 -1 𝚺 11 𝑗𝑘 𝜷 ★ 1 𝑘 ≤ 𝑞 ∑︁ 𝑘=1 C 𝑛,𝚺 11 
-1 𝚺 11 2 𝑗𝑘 × 𝜷 ★ 1 2 ≤ √︄ 𝜆 max C 𝑛,𝚺 11 -1 𝚺 2 11 C 𝑛,𝚺 11 
-1 × 𝜷 ★ 1 2 ≤ 𝜆 max C 𝑛,𝚺 11 -1 𝜆 max (𝚺 11 ) × 𝜷 ★ 1 2 .
us,

P 𝜂 √ 𝑛 C 𝑛,𝚺 11 
-1 𝚺 11 𝜷 ★ 1 𝑗 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P 𝜂 √ 𝑛 𝜆 max C 𝑛,𝚺 11 -1 𝜆 max (𝚺 11 ) 𝜷 ★ 1 2 ≥ √ 𝑛 (𝜷 ★ 1 ) 𝑗 3 ≤ P 𝜆 max C 𝑛,𝚺 11 
-1 ≥ 𝑛𝜷 min 3𝜂 𝜷 ★ 1 2 𝜆 max (𝚺 11 ) = 𝑜 𝑒 -𝑛 𝛿 2 , as 𝑛 → ∞, (36) 
since

𝑛𝜷 min 3𝜂 𝜷 ★ 1 2 𝜆 max (𝚺 11 )
> 𝑀 2 by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

By pu ing together Equations (34), ( 35) and (36), we get: [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. Equation (37) then implies that P 𝐴 𝑐 𝑛 → 0 as 𝑛 → ∞.

P 𝐴 𝑐 𝑛 ≤ 𝑞 exp - 𝑛 2 𝜅 - √ 2𝜅 -1 + 𝑞 × 𝑜 𝑒 -𝑛 𝛿 1 + 2𝑞 × 𝑜 𝑒 -𝑛 𝛿 2 , ( 37 
) with 𝜅 = 𝜷 2 min 9𝑀 1 𝜎 2 . Note that 𝜅 - √ 2𝜅 -1 > 0 since 𝜅 = 𝜷 2 min 9𝑀 1 𝜎 2 > 1 by
Let us now prove that P 𝐵 𝑐 𝑛 → 0 as 𝑛 → ∞. Recall that 

𝐵 𝑛 := C 𝑛,𝚺
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 182120 Figure 1: Boxplot of values de ned in (23) and obtained from 100 replications.
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 311120 Figure 3: Top le : Average of 𝜆 max 𝐻 𝐴 𝐻 𝐴 in (19) as a function of 𝜂. Top right: Average of 𝜆 max C 𝑛,𝚺11
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 4 Figure 4: Average of the le -hand (resp. right-hand) side of the second part of (15) in red (resp. blue) for 𝑞 = 5.

Figure 5 :

 5 Figure 5: Average of the le -hand (resp. right-hand) side of the second part of (15) in red (resp. blue) for 𝑞 = 10.
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 6 Figure 6: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with 𝑝 = 200.
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 7 Figure 7: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with 𝑝 = 400.
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 8 Figure 8: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with 𝑝 = 600.

11 - 1 𝑊 𝑛 ( 1 )𝑗=1P

 1111 𝑛 ) = P ∀𝑗, |𝜁 𝑗 | < 𝜏 𝑗 . us, P(𝐴 𝑐 𝑛 ) = P ∃𝑗, |𝜁 𝑗 | ≥ 𝜏 𝑗 ≤ 𝑞 ∑︁ |𝜁 𝑗 | ≥ 𝜏 𝑗 .

21 C 𝑛,𝚺 11 - 1 𝑊 21 C 𝑛,𝚺 11 - 1 X 1 - 21 C

 2111121111121 𝑛 (1) -𝑊 𝑛 (2X 2 𝝐 =: 𝐻 𝐵 𝝐 and 𝑛,𝚺

  

  √︃ 𝐻 𝐵 𝐻 𝐵 𝑗 𝑗 × 𝝐 2 ≤ √︃ 𝜆 max (𝐻 𝐵 𝐻 𝐵 ) × 𝝐 2 ,(38)where𝐻 𝐵 𝐻 𝐵 = C 𝑛,𝚺By[START_REF] Tong Tong Wu | Genomewide association analysis by lasso penalized logistic regression[END_REF], there exist 𝑀 3 > 0 and 𝛿 3 > 0 such thatP 𝜆 max 𝐻 𝐵 𝐻 𝐵 ≤ 𝑀 3 = 1 -𝑜 𝑒 -𝑛 𝛿 3 , as 𝑛 → ∞.By the GIC condition[START_REF] Norman | Applied regression analysis[END_REF], there exist 𝛼 > 0 and 𝛿 4 > 0 such that for all 𝑗,-𝛼 = 1 -𝑜 𝑒 -𝑛 𝛿 4 . 𝜆 max (𝐻 𝐵 𝐻 𝐵 ) × 𝝐 2 2 > 𝜆 2 𝛼 2 4𝑛 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 𝜆 2 𝛼 2 4𝑛𝑀 3 𝜎 2 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 3 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 𝑛) + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 3 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 𝑞)𝑜 𝑒 -𝑛 𝛿 3 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4

	11 -1 C 𝑛,𝚺 -1 12 -C 𝑛,𝚺 𝑠𝑖𝑔𝑛(𝜷 ★ 1 ) + 21 C 𝑛,𝚺 11 1 ) + 11 C 𝑛,𝚺 P(𝐵 𝑐 -1 𝐶 𝑛 11 -1 𝑠𝑖𝑔𝑛(𝜷 ★ 2𝜂 𝜆 𝚺 11 𝜷 ★ 1 -2𝜂 𝜆 𝚺 21 𝜷 ★ 2𝜂 𝜆 -1 𝚺 11 𝜷 ★ 1 -𝐶 𝑛 12 -𝐶 𝑛 21 C 𝑛,𝚺 2𝜂 𝜆 𝚺 21 𝜷 ★ 1 . 11 -1 C 𝑛,𝚺 12 + 𝐶 𝑛 22 . P |𝜓 𝑗 | > 𝜇 𝑗 C 𝑛,𝚺 11 C 𝑛,𝚺 11 ∑︁ 21 P C 𝑛,𝚺 en, 21 P(𝐵 𝑐 𝑛 ) ≤ 𝑝 𝑗=𝑞+1 ≤ 𝑝 ∑︁ 𝑗=𝑞+1 P |𝜓 𝑗 | > 𝜆𝛼 2 √ 𝑛 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 ≤ 𝑝 ∑︁ 𝑗=𝑞+1 P √︃ 𝜆 max (𝐻 𝐵 𝐻 𝐵 ) × 𝝐 2 > 𝜆𝛼 2 √ 𝑛 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 , using Equation (38) ≤ 𝑝 ∑︁ 𝑗=𝑞+1 P ≤ 𝑝 ∑︁ 𝑗=𝑞+1 P 𝝐 2 2 𝜎 2 > ≤ (𝑝 -𝑞) exp -𝑠 2 + 1 2 √︁ 𝑛(2𝑠 -(39) with 𝑠 𝑛 = 𝜆 2 𝛼 2 4𝑛 2 𝑀 3 𝜎 2 since 𝜆 2 𝛼 2 4𝑛 2 𝑀 3 𝜎 2 ≥ 2 + √ 2 by (17). Finally, Equation (39) implies that 1 ≤ 1 us, we get that: P(𝐵 𝑐

𝑛 ) = P(∃𝑗, |𝜓 𝑗 | > 𝜇 𝑗 ) ≤ 𝑝 ∑︁ 𝑗=𝑞+1 P(|𝜓 𝑗 | > 𝜇 𝑗 ).

By using the Cauchy-Schwarz inequality, we get that:

|𝜓 𝑗 | = 𝑛 ∑︁ 𝑘=1 (𝐻 𝐵 ) 𝑗𝑘 𝝐 𝑘 ≤ 𝑛 ∑︁ 𝑘=1 (𝐻 𝐵 ) 2 𝑗𝑘 1/2 × 𝝐 2 = ≤ (𝑝 -𝑞) exp -𝑛 2 𝑠 𝑛 -√︂ 2 𝑠 𝑛 -1 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 3 + (𝑝 -𝑞)𝑜 𝑒 -𝑛 𝛿 4 ≤ (𝑝 -𝑞) exp -𝑛 2 + (𝑝 -𝑛 ) → 0, as 𝑛 → ∞,

which concludes the proof.