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Synopsis The paper reports on a new crystallographic method to refine a spin-resolved atomic 

orbital model against X-ray and polarized neutron diffraction data. Radial extension of atomic 

orbitals, their orientations and populations are obtained for each atom in the 𝑌𝑇𝑖𝑂  perovskite crystal. 

Abstract A new crystallographic method is proposed in order to refine a spin-resolved atomic 

orbital model against X-ray and polarized neutron diffraction data. This atomic orbital model is 

applied to the 𝑌𝑇𝑖𝑂  perovskite crystal, where orbital ordering has previously been observed by 

several techniques: X-ray, polarized neutron diffraction and nuclear magnetic resonance. This method 

gives radial extension, orientation and population of outer atomic orbitals for each atom. The 

interaction term between Ti3+, Y3+ cations and O2- ligands can be estimated. The refinement qualities 

obtained by means of the orbital is compared to that obtained by multipole models previously 

published.  

Keywords: atomic orbital model; polarized neutrons diffraction; X-ray diffraction; perovskite; 
spin density; charge density.  



Acta Crystallographica Section A    research papers 

2 

 

 

1. Introduction 

The representation of experimentally derived electron density plays an important role in the 

characterization of chemical interactions; this density may be described by a set of model parameters 

or by numerical values on a 3D grid. The former is the most suitable for electrostatic calculations and 

topological analysis since all properties can be calculated analytically. 

The multipole model was developed and widely used for the analysis of charge density distribution 

measured by X-ray diffraction (XRD) (Bentley & Stewart, 1973; Stewart, 1969; Hansen & Coppens, 

1978). It was later extended to spin density (Brown, et al., 1979). In this case, electron density is 

expressed as a linear combination of spherical harmonics. Such a model has been remarkably 

successful in estimating various electrostatic physical quantities such as electrostatic fields, 

electrostatic potentials and electrostatic moments (Jelsch, et al., 2005). When the system possesses 

magnetic properties, knowledge of the electron spin density distribution is needed. The polarized 

neutron diffraction (PND) method provides the spin distribution at the atomic scale. A spin-resolved 

multipole model combining information from XRD and PND experiments was developed in our 

laboratories and implemented in the ``MOLLYNX'' program (Deutsch, et al., 2012). It has been 

successfully applied to organic radicals (Voufack, et al., 2017), coordination compounds (Deutsch, et 

al., 2014) and inorganic perovskites (Voufack, et al., 2019). 

However, the multipole model is not suitable for retrieving some fundamental quantities such as first-

order density matrices or the orbital representation of wave functions. Nevertheless, the multipole 

model deduced from charge density analysis does not provide the populations of atomic orbitals, 

when they are approximately estimated by the Holladay’s method (Holladay, et al., 1983). It should 

be noted that an atomic orbital model refinement was previously developed for spin density analysis 

only. In this model the atomic wave function is constructed as a linear combination of the atomic 

orbitals localized on each atom which are supposed to carry unpaired electrons, the populations of 

which are refined on the basis of the PND data (Schweizer & Ressouche, 2001). 

The present model is based on quantum mechanical orbitals, proposed by K. Tanaka for charge 

density analysis, and provides the aforementioned physical quantities (Tanaka, 1988). Tanaka’s model 

gives access to molecular or atomic orbitals from the structure factors measured by XRD. 

Nevertheless, the difficulty in implementing this model lies in the refinement of orthogonal wave 

functions 𝜓  defined for each electron in the system. Because the constraint conditions on the 

parameters of wave functions quadratically increase with the number of electrons, the least-squares 

refinement usually failed for large amount of non-linear constraints. The problem was circumvented 

by neglecting overlap between atomic orbitals located on different atoms (Tanaka, et al., 2008) , but it 
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does not allow a fully quantitative description of the inter-atomic interactions. Figgis and coworkers 

have also proposed such a model applied for example on a copper complex (Bytheway, et al., 2001). 

The objective of the paper is to describe a spin-resolved simplified atomic orbital model where 

interaction between atoms is accounted for. The model was implemented into our previously 

developed program ``MOLLYNX'' for joint XRD and PND refinement (Deutsch, et al., 2012). The 

following sections are considered in the paper: description of the atomic orbital model, calculation of 

the electron density, XRD and PND structure factors and refinement using non-linear least-squares 

refinement constraints. Then the validity of this spin-resolved atomic orbital is demonstrated using   

𝑌𝑇𝑖𝑂  perovskite’s XRD and PND. The refinement quality is compared to that obtained with the 

spin-resolved multipolar model (Voufack, et al., 2019). The contribution of the different atomic 

orbitals to the magnetization of the sample is discussed. 

2. Atomic orbital model  

2.1. Total electron density  

In this model, the total electron density 𝜌 𝑟  is represented as a sum of two terms: the density of 

electrons centered on atoms and that lying on the bonds 𝜌 𝑟 . The first term is itself a sum of 

spherical ``core'' term 𝜌 𝑟  and non-spherical external ``valence'' terms 𝜌 𝑟 : 

𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 . (1) 

To construct ``core'' terms the radial function 𝑅 𝑟  for each shell has to be defined with electron 

populations 𝑝  on the shell 𝑖  for all A atoms; 

𝜌 𝑟
1

4𝜋
⋅ 𝑝 𝑅 |𝑟 𝑟 |

 

. (2) 

The radial functions (Ri) implemented into the ``MOLLYNX'' program (Deutsch, et al., 2012)  are 

described in the following subsection. The populations 𝑝  are respectively equal to 2, 6 and 10 for 𝑠, 

𝑝 and 𝑑 full core shells.  

The ``valence'' term can be represented through atomic orbitals 𝜙 , which are linear combinations, 

with 𝑐  coefficients, of orthonormal basis functions 𝜒  

                                                             𝜙 ∑ 𝑐 𝜒 . 

Although the orbitals 𝜙  can arbitrarily be defined, orthonormal atomic orbitals are used to reduce 

the multiplicity in representation of density 𝜌 𝑟 . 

The density 𝜌 𝑟  is the sum over all the square modulus of valence orbitals 𝜙  having population 𝑛 : 
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𝜌 𝑟 𝑛 𝑐 𝑐 𝜒 𝑟 𝑟 𝜒 𝑟 𝑟

 

,

  

. (3) 

Here 𝐴 runs over the number of atoms, 𝑖 over the number of valence atomic orbitals and 𝜇, 𝜈 run over 

basis functions 𝜒 .  

To describe the total electron density, the density 𝜌 𝑟  of bonded pairs of atomic orbitals 𝜙 and 𝜙  

centered on different interacting atoms 𝐴 and 𝐵 is used (two-center orbital product): 

𝜌 𝑟
𝑛
𝑁

𝑐 𝑐 𝜒 𝑟 𝑟 𝜒 𝑟 𝑟

 

,

 

,

 

. (4) 

The parameter 𝑛  characterizes the electron population of the orbital product 𝜙 𝜙 . The 

normalization constant 𝑁  is the orbital overlap: 𝑁 𝜙 𝑟 𝑟 𝜙 𝑟 𝑟 𝑑 𝑟. Zero constant 

𝑁  corresponds to orthogonal orbitals, for which the orbital product cannot be populated. This term is 

supposed to be large for covalent bonds. 

2.2. Basis functions  

For hydrogen-like orbitals (s, p, d and so on), the orbital basis functions may be expressed as the 

product of radial 𝑅 𝑟  and real spherical harmonics 𝑌 𝜃, 𝜙  functions: 

𝜒 𝑟, 𝜃, 𝜙 𝑅 𝑟 𝑌 𝜃, 𝜙 . (5) 

Several functions have been proposed to describe the radial function (Stewart, 1969; Bonham, 1965; 

Stewart, et al., 1965). Here we use the following description: according to Clementi (Clementi & 

Roetti, 1974) the radial function for orbitals of isolated atoms can be expressed as a sum of Slater 

functions (STO):  

𝑅 𝑟 𝑝
2𝜁 ⁄

2𝑛 !
𝑟 𝑒 . (6) 

The expansion of the radial part on Gaussian functions is widely used in ab-initio calculations and 

radial function can also be described via Gaussian type orbitals (GTO). The analytical expression is: 

𝑅 𝑟
2 ⁄ 𝑟

𝜋 ⁄ 2𝑛 1 !!
𝑝 𝛼 𝑒 . (7) 

GTO have proved to be more convenient for computing two-center integrals than STO and have thus 

become more popular for many numerical applications. 

The parameters 𝑝 , 𝜁 , 𝛼  are tabulated values which can be found in handbooks (Clementi & Roetti, 

1974; Schuchardt, et al., 2007) for both models for each neutral atom shell. 
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The extension of atomic orbitals depends on the nature of chemical bonding between neighboring 

atoms. The radial function can be modified by means of the expansion contraction coefficient 

𝜅 (called also scaling parameter) which is a multiplying factor of the radius 𝑟. 

2.3. Spin and charge structure factors 

The interpretation of XRD and PND experiments requires an accurate estimation of electronic and 

magnetic structure factors, which are Fourier transforms of the charge and spin densities, respectively. 

As the Fourier transform is a linear operation, structure factors can also be separated into ``core'' 

𝐹 𝐻 , ``valence'' 𝐹 𝐻  and ``bond'' terms 𝐹 𝐻 .  

The Fourier transform of ``core'' electron density is expressed as: 

𝐹 𝐻 𝑇
𝑝
4𝜋

𝑅 𝑟 𝑗 2𝜋𝐻𝑟 𝑑𝑟

 

𝐹

 

, (8) 

where 𝑗 2𝜋𝐻𝑟  is a zeroth-order spherical Bessel function. 𝑇  is the Debye-Waller factor of atom 

𝐴 (Shmueli, 2001). The complex value 𝐹  is the anomalous scattering part of atom 𝐴 in the case of X-

rays only. The integral in (8) has an analytical solution when the radial function 𝑅  is expressed 

through STO (Avery & Watson, 1977) or GTO orbitals (Chandler & Spackman, 1978).  

The ``valence'' component of the structure factor includes the contribution from the outer orbitals 

located on the same atom: 

𝐹 𝐻 𝑇 𝑛 𝑐 𝑐 𝜒 𝜒 𝑒 ⃗⋅ ⃗𝑑 𝑟
,

  

. (9) 

The integral 𝜒 𝜒 𝑒 ⃗⋅ ⃗𝑑 𝑟 has a simple analytical solution for STO and GTO orbitals (Stewart, 

1969; Tanaka, 1988; Chandler & Spackman, 1978; Shmueli, 2001; Tanaka, et al., 2008). Note that the 

one-center orbital product can be represented as a radial function multiplied by a sum over spherical 

harmonic functions weighted by Clebsch-Gordan coefficients. It follows that the modeled density is 

formally equivalent to the multipole model description extended up to 4th-order spherical functions 

for the valence shell p, and up to 6th-order spherical functions for the valence shell d. 

The ``bond'' term describes electrons shared by two neighboring atoms. Therefore, the Fourier 

transforms of two-center orbital products have to be calculated. If the radial function is expressed 

through GTO orbitals, the Fourier transform has an analytical expression (Avery & Watson, 1977). 

Therefore, as the integral solution for STO orbitals is expressed through generalized hypergeometric 

functions (Niehaus, et al., 2008; Vuković & Dmitrović, 2010), in the present work the ``bond'' 

structure factor is calculated using GTO orbitals which is less complicated that STOs. 
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Nevertheless, STO orbitals are better suited than GTO orbitals to represent electron wave functions. 

The expansion over STO orbitals is therefore used for the structure factor calculations of ``core'' and 

``valence'' terms, while GTO orbitals are applied only for the ``bond'' term calculations.  

X-ray diffraction allows reconstructing the total electron distribution, while polarized neutron 

diffraction provides information about the spin density, i.e. the unpaired electron distribution. These 

two quantities can be expressed in terms of spin-resolved populations of atomic orbitals, respectively 

representing the sum and the difference between spin up 𝑛↑, 𝑛↑  and spin down 𝑛↓, 𝑛↓  populations. 

The charge and spin structure factors are thus calculated as: 

𝐹 𝐹 𝐹↑ 𝐹↓ 𝐹↑ 𝐹↓, (10) 

𝐹 𝐹↑ 𝐹↓ 𝐹↑ 𝐹↓, (11) 

where each spin-dependent component is calculated using the corresponding spin dependent 

populations 𝑛  and 𝑛 . 

The relations between the corresponding structure factors and the diffraction intensities (in the case of 

XRD) or flipping ratios (in the case of PND) can be found in the literature (Stewart, et al., 1965; 

Gillon & Becker, 2011). 

2.4. Constraints over model parameters 

The described model is fitted against the XRD and PND data by a least-squares refinement procedure. 

As usual, several constraints must be applied to the refined parameters.  

To ensure the electroneutrality of the unit cell, the total number of electrons is required to remain 

unchanged in the unit cell: 

𝑛↑ 𝑛↓

 

𝑛↑ 𝑛↓

,

𝑐𝑜𝑛𝑠𝑡. (12) 

A similar constraint concerns the conservation of the magnetic moment, i.e. the number of unpaired 

electrons in the unit cell. It is written as: 

𝑛↑ 𝑛↓

 

𝑛↑ 𝑛↓

,

𝑐𝑜𝑛𝑠𝑡. (13) 

The refinement of the orthonormal atomic orbitals 𝜙  leads to additional constraints on the 

orientation parameters   𝑐 : 
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𝑐 𝑐

 

𝛿 , (14) 

for each pair of orbitals 𝜙  and 𝜙  located on the same atom. 𝛿  is the Kronecker delta piecewise 

function. The cross-term 𝑐 𝑐  is absent in (14) due to the mutual orthogonality of the orbital basis 

functions 𝜒  and 𝜒 .  

The electroneutrality and spin constraints are of linear type. There are several methods devoted to the 

implementation of such constraints in the least-squares refinement procedure (Raymond, 1972; 

Hamilton, 1964). One of the usual methods in crystallography is the Hamilton method (Hamilton, 

1964). In order to introduce non-linear constraints (orthonormal atomic orbitals 𝜙 ) the classical 

Hamilton method has been extended. The mathematical description is given in the appendix A. 

3. Spin resolved electron density in 𝒀𝑻𝒊𝑶𝟑 

The performance and validity of this new method is evaluated on the 𝑌𝑇𝑖𝑂  perovskite crystal ; its 

charge and spin densities are decomposed into “core'', ``valence'' and ``bond'' contributions. Figure 1 

shows the structure of YTiO3 (orthorhombic, space group Pnma). The Ti3+ ion sits on the center of a 

centrosymmetric distorted oxygen octahedron. The Y3+ ion sits on a mirror plane and is coordinated 

by eight oxygen atoms forming a distorted square antiprism. 

This perovskite  was intensively studied  by means of various experimental and theoretical methods 

such as nuclear magnetic resonance (Itoh & Tsuchiya, 2001), polarized (Akimitsu, et al., 2001) and 

unpolarized (Ulrich, et al., 2002) neutron diffraction, inelastic neutron scattering (Li, et al., 2014), 

resonant X-ray scattering (Nakao, et al., 2002), soft X-ray linear dichroism (Iga, et al., 2004), X-ray 

magnetic diffraction (XMD) (Ito, et al., 2004), Compton scattering (Tsuji, et al., 2008) and elastic X-

ray scattering (Hester, et al., 1997). Such interest is mainly due to the existence of an 

antiferromagnetic orbital ordering in the ferromagnetic state of 𝑌𝑇𝑖𝑂 (its Curie temperature is 30 K). 

Theoretical studies using unrestricted Hartree-Fock calculations and density functional theory with 

generalized gradient approximation predicted the wave function of the 3d electrons of titanium atoms 

to be a linear combination of |𝑥𝑧〉  and |𝑦𝑧〉 orbitals in the 𝑡  state (Mochizuki & Imada, 2004). The 

experimental estimation of the atomic orbitals orientation from PND and XMD data (Akimitsu, et al., 

2001; Ito, et al., 2004; Kibalin, et al., 2017)  was performed within the approximation of a single 

unpaired electron located on the  |3𝑑〉 orbitals of the octahedrally coordinated titanium atom. The 

results are in good agreement with the theoretical predictions (Kibalin, et al., 2017). 
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Figure 1 Crystal structure of 𝑌𝑇𝑖𝑂  (orthorhombic, space group Pnma) 

In this paper we investigate beyond the limitation of one unpaired electron and take advantage of 

the spin-resolved atomic orbital model explained above to perform a combined analysis of charge and 

spin densities. 

3.1. Experiments 

The charge density analysis was made using synchrotron diffraction data (SPRING8 beamline 

BL02B2) on a single crystal (0.021 0.100 0.109 mm3) at 20 K in the ferromagnetic phase. A 

short wavelength (0.353 Å) was used to reduce absorption and extinction effects. The details of 

experimental conditions are given in our previous paper (Voufack, et al., 2019). 

The polarized neutron diffraction measurements were performed at the thermal polarized neutron 

lifting-counter diffractometer 6T2 and the hot polarized neutron two-axis diffractometer 5C1 (LLB-

Orphée, Saclay). The data were obtained at 5 K, in the ferromagnetic phase, under an applied 

magnetic field of 5 T, respectively parallel to the a-, b- and c-axes of single-crystalline sample, with 

two neutron wavelengths, 1.4 Å (6T2 diffractometer) and 0.84 Å (5C1 diffractometer). The 

incomplete beam polarization and extinction effects were corrected for. The details of neutron 

measurements are provided in (Kibalin, et al., 2017). 

3.2. Model parameters 

To specify the orbital model, ``core'', ``valence'' and ``bond'' terms have to be defined. The parameters 

characterizing the ``core'' term are not refined, in contrast to the other two terms.  

The populations of the ``core'' shells 𝑝  in equation (8) have been taken as in [Kr], [Ar] and [He] for 

yttrium, titanium and oxygen atoms, respectively. The radial function is expanded over Slater 

functions for each shell. The radial function parameters 𝑝 , 𝜁  can be found in (Clementi & Roetti, 

1974). 
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The ``valence'' orbitals have been chosen for each atom as 4d, 5s for yttrium, 3d, 4s for titanium and 

2s, 2p for oxygen using Slater type radial functions of ``valence'' orbitals (Clementi & Roetti, 1974). 

The refined parameters are: the linear combination coefficients 𝑐 , the spin-dependent partial 

orbitals populations 𝑛↑, 𝑛↓  and the expansion contraction coefficient (𝜅 , which modulates the 

radial function of valence orbital shells ( in equation (6) and (7)). 

The refinement was first carried out without the ``bond'' term. The ``bond’’ terms which account for 

titanium-oxygen and yttrium-oxygen couplings were modeled in a second stage; O----O couplings 

were neglected. As explained above, GTO expansions were used to describe the STO radial functions 

only for this bond contribution. The expansion parameters are defined as the best approximation of 

the corresponding radial function of ``valence'' orbitals. The comparison of the radial functions for 

``valence'' orbitals and ``bond'' term is shown in figure S1 in supplementary material together with the 

expansion parameters (tables S1-S3 of supplementary material).  

The positions of atoms and their harmonic Debye-Waller factors were simultaneously refined for 

XRD and PND data using UNIT weighting scheme. For a discussion on the weighting scheme see 

(Deutsch, et al., 2012). For X-ray data, anharmonicity effects have been taken into account (Gram-

Charlier expansion) as in our previous work (Voufack, et al., 2019). 

3.3. Agreement factors 

The experimental data were described in the framework of two different atomic orbital models, 

including or not the ``bond'' term. In order to assess the quality of the refinements a comparison with 

the widely used multipole model is given. The statistical agreement factors for multipole and orbital 

models are provided in table 1. The agreement factors and goodness-of-fit for all models have similar 

values. In all cases, the agreement factors 𝑅 𝐹  for XRD data are lower than 1.5% showing 

a very reliable description of electron density. The agreement factors for PND data are higher, which 

is typical for spin density analysis where weighted agreement factors 𝑅 |𝑅 1|  usually amount to 

10%. 

Table 1 Statistical agreement factors for joint refinement procedure of XRD and PND data 

in the framework of the multipole model, the atomic-orbital model without the ``bond'' term 

(orbital I) and with the ``bond'' term (orbital II). The spherical atom model is given for 

comparison. Agreement factors are calculated on 𝐹 and |𝑅  1| for XRD and PND 

data, respectively. 

Parameters multipole orbital I orbital II spherical data 

 𝑅 %  1.40 1.39 1.39 1.47 XRD 
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 𝑤𝑅 %  1.12 1.12 1.11 1.27 Nhkl = 4521 

 𝜒 𝑁⁄  1.18 1.18 1.18 1.34  

 𝑅 %  17.21 19.47 19.47 57.83 PND 

 𝑤𝑅 %  8.84 9.21 9.20 29.55 Nhkl = 291 

 𝜒 𝑁⁄  4.14 4.31 4.31 13.8  

 

The X-rays goodness-of-fits for reflections grouped in 0.1 Å-1 range of sin 𝜃 𝜆⁄  clearly show only very 

tiny differences in data description by the multipole and orbital models (figure 2). The orbital model 

yields larger values of 𝜒  and 𝜒  than the multipole model, as the latter has higher flexibility (ie 

a higher number of parameters). The distribution of reflections over sin 𝜃 𝜆⁄  is shown on the same 

figure by a histogram.  Small discrepancies between the two models lie in the sinθ/λ range [0.2 -0.35 

Å-1] as it corresponds to the largest d electron scattering (see figure 3). The description of the high-

order experimental X-ray data (sin 𝜃 𝜆⁄ >0.8 Å-1) is independent of the model used. The refinement of 

atomic positions and Debye-Waller factors has the strongest influence on the intensity of high-order 

reflections, which are found to be similar for the multipole and orbital models (tables S4-S6 in 

supplementary material). In conclusion, on the sole basis of least-square statistical indices, it is not 

possible to decide which model is the best. The orbital model describes experimental data with 

smaller number of physically meaningful parameters than the multipole model. 

 

Figure 2 The goodness-of-fit of reflections grouped in 0.1 Å-1 ranges of sin 𝜃 𝜆⁄  (XRD and PND) 

for multipole (circles with solid line) and orbital models without the ``bond'' term (triangles with 

dotted line). The histogram shows a distribution of reflections (in hundreds for XRD) over sin 𝜃 𝜆⁄ . 
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Figure 3 Normalized valence scattering factors 5s and 4d of Y (top) and 4s and 3d of Ti (bottom). 

The introduction of ``bond'' terms slightly improves the description of the low-order reflections (see 

figure S3 in supplementary material). The small contribution of the ``bond’’ terms is related to the 

small covalent contribution between the Ti and O atoms. We expect the impact of “bond” terms to be 

more visible for a crystal-like pyrite or a molecular crystal where covalency is the leading term. In the 

present paper we then decided to discuss the atomic orbital model where the ``bond'' term is excluded 

(model I).  

Model I and model II show similar residual densities as the multipolar model. In all cases, the largest 

residual charge densities are observed around the titanium and yttrium atoms. Most undescribed 

residual density is directed along the [100] direction (dotted lines on figure 4). We suppose that this 

noise is due to insufficient absorption corrections for XRD data. It is a common problem when the 

studied sample has a complex shape. Any uncertainty in the correction increases the residual density 

around the most significant scatterers along the same direction. 

 

Figure 4  Residual charge density around titanium and yttrium atoms. Contours are 0.10 e/Å3. Green 

dotted contours are zero level, red ones are negative, blue ones are positive. The [100] direction is 

shown by black dotted lines. sin 𝜃 𝜆⁄ 1.2Å . 
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The residual charge density has a random distribution in the other planes (see figure S4 in 

supplementary material) proving that the atomic-orbital model correctly describes the experimental 

data. Note that the residual density is larger in the Y-O1-O1 plane as it is a mirror plane. 

3.4. Spin-resolved electron density analysis  

 XRD is highly sensitive to the radial distribution of atomic orbitals. It allows an estimation of their 

size via the expansion contraction coefficient. The 𝜅 parameters of Y and Ti atoms ``valence'' orbitals 

(4𝑑 for yttrium and4𝑠, 3𝑑 for titanium) are far from unity (see table 2). This corresponds to the 

shrinking of outer electronic orbitals, as yttrium and titanium are giving away their electrons to 

oxygen atoms. Opposite changes are found for oxygen atoms where the p-shell 𝜅  parameter is less 

than one. Thus, the O electronic orbitals are more diffuse compared to the neutral atom as oxygen 

accepts additional electrons coming from titanium and yttrium. 

The ``valence'' charge and spin populations of all atoms are summarized in table 2 together with the 

expansion coefficients 𝜅 of the ``valence'' orbitals. The formal number of electrons on the ``valence'' 

orbitals for neutral and fully ionized atoms is also reported. Clearly the estimated net atomic charges 

have intermediate values between neutral and fully ionized states, which is a typical situation in 

charge density analysis. However, the Ti and O net charges obtained by the wave function model I 

largely differ from those obtained using the multipole model: the titanium is more positively charged 

(1.5+) giving more electrons to the O1 and O2 atoms (1.0-) in model I. It is in line with the expansion 

contraction coefficients as the wave function models give larger 𝜅 than the multipole ones (table2). It 

can be noted that the charges obtained from model I (and model II) are very close to those calculated 

by integration over Bader atomic basins (“Atoms in molecules” (Bader, 1990))  (respectively +1.47 

and -1.05); probably due to small covalency in this perovskite. 

The total magnetization per titanium atom is 0.90(1) 𝜇 .The unpaired electron is mostly localized on 

the titanium atom. The obtained magnetic moments are in line with those calculated from the 

multipole model. Small magnetic moments previously observed on 𝑌 and 𝑂  (Voufack, et al., 2019; 

Kibalin, et al., 2017), are in the order of one sigma in the present study. In this model the estimated 

error bars are significantly larger than the parameter value for 𝑌 and 𝑂 . It is a consequence of the 

contribution of errors from both XRD and PND experiments but also of the large correlation between 

the parameters of atomic orbitals used for the charge and spin density analysis.  

 

 

Table 2 Valence and spin populations of ``valence'' term. 𝜅  and 𝜅  are the radial expansion 

contraction  factors for 5s, 4s, 2s  and 4d, 3d, 2p shells of Y, Ti, O, respectively. The last two columns 

are the number of electrons on ``valence'' orbitals for neutral and fully ionized atoms, respectively. 
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When no error bar is given, the parameter was fixed during the refinement procedure. These values 

are compared to those obtained from the joint refinement multipole model (*) and Bader integration 

(Voufack, et al., 2019) (**) 

atom Pval  Net charge spin 𝜅  𝜅  neutral ion 

Y 1.4(5) 1.6(5) 0.0(5) 1.0 1.54(2) 3 0 

Y* 1.53(7) 1.47(7) -0.03(7) 1.03(8) 1.49(6)   

Y**  1.80 0.066     

Ti 2.47(8) 1.53(8) 1.05(8) 1.535(4) 1.196(2) 4 1 

Ti* 3.40(6) 0.60(6) 1.04(6) 1.14(2) 0.90(3)   

Ti**  1.47 0.628     

O1 6.95(9) -0.95(9) 0.00(9) 1.0 0.934(1) 6 8 

O1* 6.66(3) -0.66(3) 0.02(3) 0.964(4) 0.88(7)   

O1**  -1.06 0.112     

O2 7.07(7) -1.07(7) -0.05(7) 1.0 0.921(1) 6 8 

O2* 6.70(2) -0.70(2) 0.00(2) 0.968(2) 0.98(7)   

O2**  -1.05 0.097     

 

The redistribution of electrons in comparison with non-interacting neutral IAM atoms is shown on the 

static charge deformation density (figure 5). The negative difference density around titanium is 

directed towards the positive distribution around the oxygen atoms: the depopulation of titanium 𝑒  

orbitals faces the oxygen p-filled orbitals. Titanium 𝑡  orbitals are more populated than those of the 

isolated neutral atom (blue contours around titanium in figure 5). 

 

Figure 5  Static charge deformation density around the titanium atom in the  𝑥𝑦, 𝑥𝑧 and 𝑦𝑧 planes of 

Ti octahedron. Contours level are 0.05 e/Å3: green dotted contours are zero level, red ones are 

negative, blue ones are positive 
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The orientations and populations of atomic orbitals of titanium are given in table 3. A first remark is 

that the standard deviations obtained on the wave functions coefficients are large for 𝜙  𝜙 , 𝜙  and 

𝜙  ; very few refined coefficients are statistically non zero. Orbitals 𝜙 , 𝜙  and 𝜙  are oriented 

mostly towards the ligands and are less populated. 

The spin density distribution of the titanium, 𝑛↑ 𝑎𝑛𝑑 𝑛↓ shows that the spin up contribution mostly 

originates from the electrons located on two atomic orbitals 𝜙  and 𝜙  when the spin down electrons 

arise from 𝜙   and 𝜙  (mostly |𝑥𝑦⟩). The resulting magnetic moment is due to the |4𝑠⟩ orbital and to 

the linear combinations of |𝑧𝑥⟩ and |𝑦𝑧⟩ basis orbitals. The orientation coefficients of orbital 𝜙  are 

not surprising and are in line with (Akimitsu, et al., 2001). It agrees with our previous work as the 

multipole model refinement also showed a high spherical contribution to the magnetic moment 

localized on titanium atom (Voufack, 2018).  

Table 3 Linear combination coefficients of the basis functions and populations of ``valence'' atomic 

orbitals of titanium atom. 

 𝜙  𝜙  𝜙  𝜙  𝜙  𝜙  

|4𝑠⟩ 1 0 0 0 0 0

|3𝑑 ⟩ 0 -0.03(1) -0.2(1) -0.5(2) 0.22(8) -0.8(2)

|3𝑑 ⟩ 0 0.62(1) -0.2(3) -0.34(5) -0.67(8) 0.1(1)

3𝑑  0 0.78(1) 0.3(3) 0.19(6) 0.53(9) -0.07(9)

3𝑑  0 0.02(1) -0.5(2) -0.5(1) 0.5(2) 0.5(2)

3𝑑  0 -0.09(1) 0.76(3) -0.63(4) 0.0(3) 0.1(2)

𝑛↑ 0.60(5) 0.83(1) 0.02(1) 0.18(1) 0.01(1) 0.12(1)

 0.14(5) -0.01(1) 0.16(1) 0.11(1) 0.22(1) 0.09(1)

 

 

The model 3D spin-density distribution in the unit cell is presented in figure 6. The contribution of the 

aspherical orbital 𝜙  of titanium to spin density is clearly visible. The spherical contribution of orbital 

𝜙 is not visible on figure 6 as the maximal density localized on the center of titanium decreases 

quadratically with increasing distance from titanium. The presence of some regions with very weak 

negative spin distribution could be linked to artifacts in experimental data. 
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Figure 6 Spin density distribution. Isosurface is 0.40 e/Å2 (blue is positive, yellow is negative). 

Detailed information about population and orientation of atomic orbitals of the ``valence'' shell for 

yttrium and oxygen atoms is given in tables S7-S9. Figure 7 presents the Yttrium static charge 

deformation density in the (010) plane. The |5𝑠⟩ electrons are redistributed between the|4𝑑⟩ orbital of 

yttrium and the p-orbital of O1 facing Y. This is also in agreement with the multipole model. 

 

Figure 7 Static charge deformation density on the yttrium atom in the (010) plane. Contour level is 

0.05 e/Å3, red contours are negative, blue contours are positive, dotted green is zero. 

4. Conclusion 

We have shown that the spin-resolved atomic-orbital model is a reliable tool for analyzing charge and 

spin electron densities. It allows the characterization of the radial extension of atomic orbitals and 

directly provides their orientation and population. The atomic orbital and multipolar models are 

statistically equivalent to describe the electronic structure from experimental data.  

When applied to the 𝑌𝑇𝑖𝑂  perovskite, the atomic orbital model confirms the origin of the spin 

density which is mainly located on the titanium atom. It evidences that not only 𝑡  orbitals are 

responsible for the magnetic moment but also the |4𝑠〉 orbital of the titanium atom. The contribution 
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of other orbitals to the magnetic moment is significantly weaker. For this mostly ionic crystal, the 

obtained net charges are close to the integrated charges over the Bader atomic basins.  

Introducing ``bond’’ terms did not statistically improve the data refinement as 𝑌𝑇𝑖𝑂  is mostly ionic. 

No significant spin contribution arising from the O1 atom was found contrary to the results obtained 

from the PND and XMD data analysis (Kibalin, et al., 2017). 
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Appendix A. Modified Hamilton method 

The Hamilton method was modified to apply linear and non-linear constraints during the least-squares 

refinement procedure. The constraints on the refined parameters, described in section 2D, can be 

written in a vector form with the equality: 

𝐶 �⃗� 0⃗, (15) 

where �⃗� is the vector of model parameters, 𝐶 is the vector of constrained functions. 

In the classical Hamilton method (Hamilton, 1964) the change of the model parameters 𝛥�⃗� , which 

satisfies the linear constraints, is calculated as: 

𝛥�⃗� 𝛥�⃗� 𝛥�⃗� ⋅ 𝑄 𝑄𝐻 ⃗ 𝑄 𝑄𝐻 ⃗ , (16) 

where 𝐻 ⃗is the Hessian over 𝜒 , 𝛥�⃗� is the shift of model parameters without any restrictions on the 

refined parameters. The constraint matrix 𝑄 is estimated as 



Acta Crystallographica Section A    research papers 

19 

 

𝑄
𝜕𝐶
𝜕𝑝

⃗

. (17) 

For linear type of constraints, the matrix Q is constant for any model parameter �⃗�. Therefore, the 

derivatives calculated at the starting point �⃗�  are equal to the derivatives calculated at the final point 

�⃗� . For a non-linear type of constraints, the solution of equation (16) taking into account (17) has to 

be found.  

The solution can be established by applying an iterative procedure. The model parameters shift 

calculated in the previous iteration Δ�⃗�  is used for estimating the matrix 𝑄  with the subsequent 

calculation of the shift of the model parameters for the next iteration Δ�⃗� : 

𝑄
𝜕𝐶
𝜕𝑝

⃗

,  (18) 

𝛥�⃗� 𝛥�⃗� 𝛥�⃗� 𝑄 𝑄 𝐻 ⃗ 𝑄 𝑄 𝐻 ⃗ ,  (19) 

�⃗� �⃗� Δ�⃗� .  (20) 

This procedure works well with linear and non-linear types of constraints. It has been introduced into 

the `` MOLLYNX'' program (Deutsch, et al., 2012) to perform the least-squares refinement procedure 

under constraint conditions. 
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Supporting information  

S1. Representation of radial functions through expansion over Gaussian functions for 

titanium, yttrium and oxygen 

The expansion parameters of GTO functions (eq. 7) which is used to describe the STO radial function 

of “valence” orbitals for titanium, yttrium and oxygen is presented in tables S1, S2, S3. The 

comparison of the radial functions described by STO and GTO functions for “valence” orbitals is 

presented on the figure S1 for corresponding atoms. 

Table S1 “Valence” orbitals for titanium. Representation through Gaussian functions.  

𝑝  (4S) 𝛼  (4s) 𝑝  (3d) 𝛼  (3d) 

0.41318 0.10263 0.05680 0.26736 

0.71920 0.26404 0.22987 0.74234 

-0.47347 2.43669 0.40659 1.87259 

-0.05144 17.56035 0.38758 5.10434 

0.19515 28.28142 0.20989 14.17314 

-0.02649 160.61295 0.05842 45.53364 

  0.00735 184.02337 

 

Table S2 “Valence” orbitals for yttrium. Representation through Gaussian functions.  

𝑝  (5S) 𝛼  (5s) 𝑝  (4d) 𝛼  (4d) 

  0.35633     0.08021  0.02963   0.11163 

  0.79646     0.19808  0.17752   0.25542 

 -0.58090     1.66969  0.35183   0.58039 

  0.23182    15.36098  0.40549   1.34636 

 -0.09107    83.01756  0.27202   3.30473 

 -0.04154  2613.08849 -0.12671  27.15014 

  5.10332  3875.85660 -0.06503  91.91714 

 -6.52741  4007.46230 -0.00953 392.73275 

  1.48242  4419.97899   
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Table S3 “Valence” orbitals for oxygen. Representation through Gaussian functions.  

𝑝  (2S) 𝛼  (2s) 𝑝  (2p) 𝛼  (2p) 

0.12234 0.54255 0.10074 0.39333 

0.49402 1.33715 0.38465 1.14864 

0.49227 3.45871 0.45020 3.42993 

-0.25281 35.56531 0.25703 11.03848 

0.26109 146.98360 0.06450 42.45348 

-0.35469 154.77130 0.00675 237.74589 

-0.01208 1854.08720   

 

 

 

Ti 4s Ti 3d 

Y 5s Y 4d 



Acta Crystallographica Section A    research papers 

22 

 

 

Figure S1 Radial function weighted on r² expressed through Slater (solid line) and Gaussian 

functions (dotted line) for titanium, yttrium and oxygen. Multiplied by ten the difference between 

models is shown below.  

S2. Refinement in frame of orbital and multipole models 

The figure S2 shows the definition of local Cartesian coordinate system for each atom in asymmetric 

unit cell. Y has axis “Y” to O1 (closest), axis “Z” along “b” axis; Ti has axis “Z” to O2 (more distant), 

axis “X” to O1 ; O1 has axis “X” to Y (closest), axis “Z” along “b”; O2 has axis “X” to Ti (more 

distant), axis “Y” to O1.  

 

 

 

Figure S2 Definition of Cartesian local coordinate system for each atom in asymmetric unit cell. 

O 2s O 2p 
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Table S4 Coordinates and harmonic vibration parameters for each atom after refinement in frame 

of multipole and orbital models.  

 Multipole model 

 Ti Y O1 O2 

𝑥 0.5 0.574144(3) 0.457507(26) 0.309438(18) 

𝑦 0.0 0.25 0.25 0.057899(14) 

𝑧 0.0 0.522086(3) 0.121074(29) -0.309518(20) 

𝑈 , Å 0.001994(9) 0.001883(5) 0.003884(33) 0.003632(25) 

𝑈 , Å 0.001444(8) 0.002137(4) 0.002624(32) 0.004072(25) 

𝑈 , Å 0.002498(7) 0.002112(4) 0.003743(37) 0.003676(26) 

𝑈 , Å ‐0.000120(6) 0 0 -0.000622(20) 

𝑈 , Å ‐0.000157(6) 0.000064(3) -0.000633(28) -0.000627(19) 

𝑈 , Å ‐0.000005(5) 0 0 0.000430(20) 

 Orbital model 

 Ti Y O1 O2 

𝑥 0.5 0.574147(3) 0.457512(27) 0.309449(18) 

𝑦 0  0.25 0.25 0.057893(14) 

𝑧 0 0.522075(4) 0.121029(30) -0.309529(21) 

𝑈 , Å 0.002116(9) 0.001938(5) 0.003845(34) 0.003614(26) 

𝑈 , Å 0.001474(8) 0.002007(4) 0.002602(33) 0.004061(26) 

𝑈 , Å 0.002401(8) 0.002154(4) 0.003775(38) 0.003650(27) 

𝑈 , Å 0.000091(7) 0  0  -0.000613(21) 

𝑈 , Å ‐0.000059(6) 0.000054(3) -0.000661(29) -0.000629(19) 

𝑈 , Å 0.000020(6) 0 0 0.000422(21) 

 

Table S5 Parameters of anharmonicity for titanium atom.  

4th order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 
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1111 2(3) -6(3) 1122  5(5) -7(5) 1233 -4(10) -29(10)  

2222 1.4(7) 0.9(7) 1123  -8(9) 14(8) 1333 -12(7) -44(7) 

3333 31(3) 43(2) 1133  -11(9) -2(9) 2223 11(2) -3(2) 

1112 12(6) -1(5) 1222  9(3) -15(3) 2233 -8(5) -2(5) 

1113 -1(6) -26(6) 1223  6(6) 25(6) 2333 4(5) 12(5) 

  

6th order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 

111111  -1.0(9) -2.2(8) 111233 7(5) 2(5) 122333  -4(3) -1(3) 

222222  0.4(1) 0.3(1) 111333 -2(4) -14(3) 123333  -1(4) -5(4) 

333333  3(1) 5(1) 112222 3(1) 2(1) 133333  -2(3) -9(3) 

111112  3(2) 2(2) 112223 2(2) 3(2) 222223  1.1(4) 0.1(4) 

111113  1(2) -4(2) 112233 -14(4) -13(4) 222233  -2.5(9) -1.9(9) 

111122  8(2) 5(2) 112333 -3(5) 6(4) 222333  3(1) 2(1) 

111123  -3(4) 3(3) 113333 9(4) 14(3) 223333  6(2) 9(2) 

111133  5(4) 6(3) 122222 1.3(5) -1.4(4) 233333  2(2) 4(2) 

111222  4(1) -2(1) 122223 2(1) 5(1)    

111223  4(3) 7(3) 122233 -4(3) -12(3)    

  

Table S6 Parameters of anharmonicity for yttrium atom.  

3rd order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 

111 9(2) 10(2) 122 37(2) 37(2) 233 0.00 0.00 

222 0.00 0.0 113 10(4) 9(4) 123 0.00 0.00 

333 -7(2) -4(2) 133 6(4) 6(4)    

112 0.00 0.0 223 18(2) 18(2)    

 

4th order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 
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1111 21(1) 18(1) 1122 16(3) 20(3) 1233 0.00 0.0 

2222 4.4(4) 8.6(4) 1123 0.00 0.0 1333 -4(3) -2(3) 

3333 25(2) 24(2) 1133 -9(5) -29(5) 2223 0.00 0.0 

1112 0.00 0.0 1222 0.00 0.0 2233 -4(3) -4(3) 

1113 -4(3) 1(3) 1223 -6(3)   -7(3) 2333 0.00 0.0 

  

5th order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 

11111 1.1(5) 1.1(4) 11133 1(1) 1(1) 12233 3(1) 3(1) 

22222 0.00 0.0 11222 0.00 0.0 12333 0.00 0.0 

33333 -2.9(6) -2.5(5) 11223 0(1)   0(1) 13333  1(1)    1(1) 

11112 0.00 0.0 11233 0.00 0.0 22223  0.7(3) 0.8(3) 

11113  4(1) 3(1) 11333  1(1)  1(1) 22233 0.00 0.0 

11122  4.1(7) 4.0(7) 12222  3.1(3)  3.1(3) 22333 4.8(8) 5.1(7) 

11123 0.00 0.0 12223 0.00 0.0 23333 0.00 0.0 

  

6th order (the parameters are multiplied by 105) 

name orbital multipole name orbital multipole name orbital multipole 

111111  3.5(5) 3.1(5) 111233 0.00 0.0 122333 3(2) 2(1) 

222222  0.4(1) 0.8(1) 111333 -4(2) -3(2) 123333 0.00 0.0 

333333  3.1(6) 3.3(5) 112222  3.8(5) 4.9(6) 133333 -1(1) 1(1) 

111112 0.00 0.0 112223 0.00 0.0 222223 0.00 0.0 

111113  0(1) 1(1) 112233 -17(2) -19(2) 222233 -3.1(5) -2.6(5) 

111122 12.4(9) 12.7(9) 112333 0.00 0.0 222333 0.00 0.0 

111123 0.00 0.0 113333 8(2) 3(1) 223333 5(1) 4.9(9) 

111133 8(2) 3(2) 122222 0.00 0.0 233333 0.00 0.0 

111222 0.00 0.0 122223 -0.8(6) -1.1(6)    

111223 -4(2) -4(2) 122233 0.00 0.0    
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Figure S3 The goodness-of-fit of reflections grouped in 0.1 Å−1 ranges of sinθ/λ (XRD and PND 

data) for multipole (circles with solid line) and orbital model with and without out “interaction” term 

(black open and blue closed triangles).  

 

  

 

Figure S4 Low-order residual densities around titanium and yttrium atoms Ti-O1-O2, Ti-O1-O2’, Y-

O1-axis “b”. Contours are 0.10 el./Å3. sin 𝜃 𝜆⁄ 1.2Å . 
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S3. Orientation and population of “valence” atomic orbitals located on Y, O1, O2 

Table S7 “Valence” atomic orbitals located on yttrium.  

  𝜙   𝜙   𝜙   𝜙   𝜙   𝜙  

 |5𝑠⟩ 0 0 0 0 0 1 

 |4𝑑 ⟩ 0 ‐0.51(3) 0.17(43) 0 0.84(54) 0 

 |4𝑑 ⟩ ‐0.97(10) 0 0 ‐0.26(4) 0 0 

 4𝑑  ‐0.26(13) 0 0 0.97(2) 0 0 

 4𝑑  0 ‐0.75(3) 0.39(28) 0 ‐0.54(74) 0 

 4𝑑  0 ‐0.42(3) ‐0.90(13) 0 ‐0.07(132) 0 

 𝑛↑ 0.07(2) 0.01(2) 0.04(1) 0.21(2) 0.02(1) 0.40(33) 

 𝑛↓ 0.07(2) 0.15(2) 0.02(2) 0.10(2) 0.01(2) 0.35(33) 

charge 0.14(2) 0.16(3) 0.05(2) 0.32(2) 0.03(2) 0.75(47) 

spin 0.00(2) ‐0.15(3) 0.02(2) 0.11(2) 0.00(2) 0.05(48) 

 

Table S8 “Valence” atomic orbitals located on oxygen 1.  

  𝜙   𝜙   𝜙   𝜙  

 |2𝑠⟩ 1 0 0 0 

 |2𝑝 ⟩ 0 0.988(5) ‐0.15(25) 0 

 2𝑝  0 ‐0.155(25) ‐0.988(5) 0 

 |2𝑝 ⟩ 0 0 0 1.00 

 𝑛↑ 0.72(5) 0.93(2) 0.92(2) 0.90(2) 

 𝑛↓ 0.69(5) 0.95(2) 0.89(2) 0.95(2) 

charge 1.41(7) 1.88(3) 1.81(3) 1.84(3) 

spin 0.04(7) ‐0.02(3) 0.04(3) ‐0.05(3) 
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Table S9 “Valence” atomic orbitals located on oxygen 2.  

  𝜙   𝜙   𝜙   𝜙  

 |2𝑠⟩ 1 0 0 0 

 |2𝑝 ⟩ 0 0.95(1) ‐0.08(10) 0.31(2) 

 2𝑝  0 0.06(9) 1.00(1) 0.07(4) 

 |2𝑝 ⟩ 0 ‐0.31(2) ‐0.05(4) 0.95(1) 

 𝑛↑ 0.79(4) 0.93(2) 0.89(2) 0.91(2) 

 𝑛↓ 0.50(4) 1.07(2) 1.01(2) 0.99(2) 

charge 1.29(6) 1.99(2) 1.90(2) 1.90(2) 

spin 0.30(6) ‐0.14(2) ‐0.12(2) ‐0.08(2) 

 

 

 


