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Introduction

The representation of experimentally derived electron density plays an important role in the characterization of chemical interactions; this density may be described by a set of model parameters or by numerical values on a 3D grid. The former is the most suitable for electrostatic calculations and topological analysis since all properties can be calculated analytically.

The multipole model was developed and widely used for the analysis of charge density distribution measured by X-ray diffraction (XRD) [START_REF] Bentley | Two-center calculations for X-ray scattering[END_REF][START_REF] Stewart | Generalized X-Ray Scattering Factors[END_REF][START_REF] Hansen | Testing aspherical atom refinements on small-molecule data sets[END_REF]. It was later extended to spin density [START_REF] Brown | Spin densities in free radicals[END_REF]. In this case, electron density is expressed as a linear combination of spherical harmonics. Such a model has been remarkably successful in estimating various electrostatic physical quantities such as electrostatic fields, electrostatic potentials and electrostatic moments [START_REF] Jelsch | Advances in protein and small-molecule charge-density refinement methods using MoPro[END_REF]. When the system possesses magnetic properties, knowledge of the electron spin density distribution is needed. The polarized neutron diffraction (PND) method provides the spin distribution at the atomic scale. A spin-resolved multipole model combining information from XRD and PND experiments was developed in our laboratories and implemented in the ``MOLLYNX'' program [START_REF] Deutsch | Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data[END_REF]. It has been successfully applied to organic radicals [START_REF] Voufack | When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical[END_REF], coordination compounds [START_REF] Deutsch | First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments[END_REF] and inorganic perovskites [START_REF] Voufack | Spin resolved electron density study of YTiO 3 in its ferromagnetic phase: signature of orbital ordering[END_REF].

However, the multipole model is not suitable for retrieving some fundamental quantities such as firstorder density matrices or the orbital representation of wave functions. Nevertheless, the multipole model deduced from charge density analysis does not provide the populations of atomic orbitals, when they are approximately estimated by the Holladay's method [START_REF] Holladay | Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data[END_REF]. It should be noted that an atomic orbital model refinement was previously developed for spin density analysis only. In this model the atomic wave function is constructed as a linear combination of the atomic orbitals localized on each atom which are supposed to carry unpaired electrons, the populations of which are refined on the basis of the PND data [START_REF] Schweizer | MagnetoScience -From Molecules to Materials[END_REF].

The present model is based on quantum mechanical orbitals, proposed by K. Tanaka for charge density analysis, and provides the aforementioned physical quantities [START_REF] Tanaka | X-ray analysis of wavefunctions by the least-squares method incorporating orthonormality[END_REF]). Tanaka's model gives access to molecular or atomic orbitals from the structure factors measured by XRD.

Nevertheless, the difficulty in implementing this model lies in the refinement of orthogonal wave functions 𝜓 defined for each electron in the system. Because the constraint conditions on the parameters of wave functions quadratically increase with the number of electrons, the least-squares refinement usually failed for large amount of non-linear constraints. The problem was circumvented by neglecting overlap between atomic orbitals located on different atoms (Tanaka, et al., 2008) , but it does not allow a fully quantitative description of the inter-atomic interactions. Figgis and coworkers have also proposed such a model applied for example on a copper complex [START_REF] Bytheway | Charge density in Cu(glygly)(OH2)2ꞏH2O at 10[END_REF].

The objective of the paper is to describe a spin-resolved simplified atomic orbital model where interaction between atoms is accounted for. The model was implemented into our previously developed program ``MOLLYNX'' for joint XRD and PND refinement [START_REF] Deutsch | Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data[END_REF]. The following sections are considered in the paper: description of the atomic orbital model, calculation of the electron density, XRD and PND structure factors and refinement using non-linear least-squares refinement constraints. Then the validity of this spin-resolved atomic orbital is demonstrated using 𝑌𝑇𝑖𝑂 perovskite's XRD and PND. The refinement quality is compared to that obtained with the spin-resolved multipolar model [START_REF] Voufack | Spin resolved electron density study of YTiO 3 in its ferromagnetic phase: signature of orbital ordering[END_REF]. The contribution of the different atomic orbitals to the magnetization of the sample is discussed.

Atomic orbital model

Total electron density

In this model, the total electron density 𝜌 𝑟 ⃗ is represented as a sum of two terms: the density of electrons centered on atoms and that lying on the bonds 𝜌 𝑟 ⃗ . The first term is itself a sum of spherical ``core'' term 𝜌 𝑟 ⃗ and non-spherical external ``valence'' terms 𝜌 𝑟 ⃗ :

𝜌 𝑟 ⃗ 𝜌 𝑟 ⃗ 𝜌 𝑟 ⃗ 𝜌 𝑟 ⃗ . (1) 
To construct ``core'' terms the radial function 𝑅 𝑟 for each shell has to be defined with electron populations 𝑝 on the shell 𝑖 for all A atoms;

𝜌 𝑟 ⃗ 1 4𝜋 ⋅ 𝑝 𝑅 |𝑟 ⃗ 𝑟 ⃗ | . (2) 
The radial functions (R i ) implemented into the ``MOLLYNX'' program [START_REF] Deutsch | Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data[END_REF] are described in the following subsection. The populations 𝑝 are respectively equal to 2, 6 and 10 for 𝑠, 𝑝 and 𝑑 full core shells.

The ``valence'' term can be represented through atomic orbitals 𝜙 , which are linear combinations, with 𝑐 coefficients, of orthonormal basis functions 𝜒 𝜙 ∑ 𝑐 𝜒 .

Although the orbitals 𝜙 can arbitrarily be defined, orthonormal atomic orbitals are used to reduce the multiplicity in representation of density 𝜌 𝑟 ⃗ .

The density 𝜌 𝑟 ⃗ is the sum over all the square modulus of valence orbitals 𝜙 having population 𝑛 :

𝜌 𝑟 ⃗ 𝑛 𝑐 𝑐 𝜒 𝑟 ⃗ 𝑟 ⃗ 𝜒 𝑟 ⃗ 𝑟 ⃗ , . (3) 
Here 𝐴 runs over the number of atoms, 𝑖 over the number of valence atomic orbitals and 𝜇, 𝜈 run over basis functions 𝜒 .

To describe the total electron density, the density 𝜌 𝑟 ⃗ of bonded pairs of atomic orbitals 𝜙 and 𝜙 centered on different interacting atoms 𝐴 and 𝐵 is used (two-center orbital product):

𝜌 𝑟 ⃗ 𝑛 𝑁 𝑐 𝑐 𝜒 𝑟 ⃗ 𝑟 ⃗ 𝜒 𝑟 ⃗ 𝑟 ⃗ , , . (4) 
The parameter 𝑛 characterizes the electron population of the orbital product 𝜙 𝜙 . The normalization constant 𝑁 is the orbital overlap: 𝑁 𝜙 𝑟 ⃗ 𝑟 ⃗ 𝜙 𝑟 ⃗ 𝑟 ⃗ 𝑑 𝑟 ⃗. Zero constant 𝑁 corresponds to orthogonal orbitals, for which the orbital product cannot be populated. This term is supposed to be large for covalent bonds.

Basis functions

For hydrogen-like orbitals (s, p, d and so on), the orbital basis functions may be expressed as the product of radial 𝑅 𝑟 and real spherical harmonics 𝑌 𝜃, 𝜙 functions:

𝜒 𝑟, 𝜃, 𝜙 𝑅 𝑟 𝑌 𝜃, 𝜙 .

(5)

Several functions have been proposed to describe the radial function [START_REF] Stewart | Generalized X-Ray Scattering Factors[END_REF][START_REF] Bonham | The Evaluation of Two Center Integrals Involved in the Calculation of the Intensity of Diffracted Electrons and X-Rays from Molecules[END_REF][START_REF] Stewart | Coherent X-Ray Scattering for the Hydrogen Atom in the Hydrogen Molecule[END_REF]. Here we use the following description: according to Clementi [START_REF] Clementi | Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54[END_REF] the radial function for orbitals of isolated atoms can be expressed as a sum of Slater functions (STO):

𝑅 𝑟 𝑝 2𝜁 ⁄ 2𝑛 ! 𝑟 𝑒 . (6) 
The expansion of the radial part on Gaussian functions is widely used in ab-initio calculations and radial function can also be described via Gaussian type orbitals (GTO). The analytical expression is:

𝑅 𝑟 2 ⁄ 𝑟 𝜋 ⁄ 2𝑛 1 !! 𝑝 𝛼 𝑒 . (7) 
GTO have proved to be more convenient for computing two-center integrals than STO and have thus become more popular for many numerical applications.

The parameters 𝑝 , 𝜁 , 𝛼 are tabulated values which can be found in handbooks [START_REF] Clementi | Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54[END_REF][START_REF] Schuchardt | Basis Set Exchange: A Community Database for Computational Sciences[END_REF] for both models for each neutral atom shell.

The extension of atomic orbitals depends on the nature of chemical bonding between neighboring atoms. The radial function can be modified by means of the expansion contraction coefficient 𝜅 (called also scaling parameter) which is a multiplying factor of the radius 𝑟.

Spin and charge structure factors

The interpretation of XRD and PND experiments requires an accurate estimation of electronic and magnetic structure factors, which are Fourier transforms of the charge and spin densities, respectively.

As the Fourier transform is a linear operation, structure factors can also be separated into ``core''

𝐹 𝐻 ⃗ , ``valence'' 𝐹 𝐻 ⃗ and ``bond'' terms 𝐹 𝐻 ⃗ .

The Fourier transform of ``core'' electron density is expressed as:

𝐹 𝐻 ⃗ 𝑇 𝑝 4𝜋 𝑅 𝑟 𝑗 2𝜋𝐻𝑟 𝑑𝑟 𝐹 , (8) 
where 𝑗 2𝜋𝐻𝑟 is a zero th -order spherical Bessel function. 𝑇 is the Debye-Waller factor of atom 𝐴 [START_REF] Shmueli | International Tables for Crystallography[END_REF]. The complex value 𝐹 is the anomalous scattering part of atom 𝐴 in the case of Xrays only. The integral in (8) has an analytical solution when the radial function 𝑅 is expressed through STO [START_REF] Avery | Generalized X-ray scattering factors. Simple closed-form expressions for the one-centre case with Slater-type orbitals[END_REF] or GTO orbitals [START_REF] Chandler | Fourier transforms of Gaussian orbital products[END_REF].

The ``valence'' component of the structure factor includes the contribution from the outer orbitals located on the same atom:

𝐹 𝐻 ⃗ 𝑇 𝑛 𝑐 𝑐 𝜒 𝜒 𝑒 ⃗ ⋅ ⃗ 𝑑 𝑟 ⃗ , . (9) 
The integral 𝜒 𝜒 𝑒 ⃗ ⋅ ⃗ 𝑑 𝑟 ⃗ has a simple analytical solution for STO and GTO orbitals [START_REF] Stewart | Generalized X-Ray Scattering Factors[END_REF][START_REF] Tanaka | X-ray analysis of wavefunctions by the least-squares method incorporating orthonormality[END_REF][START_REF] Chandler | Fourier transforms of Gaussian orbital products[END_REF][START_REF] Shmueli | International Tables for Crystallography[END_REF]Tanaka, et al., 2008). Note that the one-center orbital product can be represented as a radial function multiplied by a sum over spherical harmonic functions weighted by Clebsch-Gordan coefficients. It follows that the modeled density is formally equivalent to the multipole model description extended up to 4th-order spherical functions for the valence shell p, and up to 6th-order spherical functions for the valence shell d.

The ``bond'' term describes electrons shared by two neighboring atoms. Therefore, the Fourier transforms of two-center orbital products have to be calculated. If the radial function is expressed through GTO orbitals, the Fourier transform has an analytical expression [START_REF] Avery | Generalized X-ray scattering factors. Simple closed-form expressions for the one-centre case with Slater-type orbitals[END_REF].

Therefore, as the integral solution for STO orbitals is expressed through generalized hypergeometric functions [START_REF] Niehaus | Efficient evaluation of the Fourier transform over products of Slater-type orbitals on different centers[END_REF][START_REF] Vuković | Extremely compact formulas for the Fourier transform of a product of two-centre Slater-type orbitals[END_REF], in the present work the ``bond'' structure factor is calculated using GTO orbitals which is less complicated that STOs.

Nevertheless, STO orbitals are better suited than GTO orbitals to represent electron wave functions.

The expansion over STO orbitals is therefore used for the structure factor calculations of ``core'' and ``valence'' terms, while GTO orbitals are applied only for the ``bond'' term calculations.

X-ray diffraction allows reconstructing the total electron distribution, while polarized neutron diffraction provides information about the spin density, i.e. the unpaired electron distribution. These two quantities can be expressed in terms of spin-resolved populations of atomic orbitals, respectively representing the sum and the difference between spin up 𝑛 ↑ , 𝑛 ↑ and spin down 𝑛 ↓ , 𝑛 ↓ populations.

The charge and spin structure factors are thus calculated as:

𝐹 𝐹 𝐹 ↑ 𝐹 ↓ 𝐹 ↑ 𝐹 ↓ , (10) 
𝐹 𝐹 ↑ 𝐹 ↓ 𝐹 ↑ 𝐹 ↓ , (11) 
where each spin-dependent component is calculated using the corresponding spin dependent populations 𝑛 and 𝑛 .

The relations between the corresponding structure factors and the diffraction intensities (in the case of XRD) or flipping ratios (in the case of PND) can be found in the literature [START_REF] Stewart | Coherent X-Ray Scattering for the Hydrogen Atom in the Hydrogen Molecule[END_REF][START_REF] Gillon | Magnetization Densities in Material Science[END_REF].

Constraints over model parameters

The described model is fitted against the XRD and PND data by a least-squares refinement procedure.

As usual, several constraints must be applied to the refined parameters.

To ensure the electroneutrality of the unit cell, the total number of electrons is required to remain unchanged in the unit cell:

𝑛 ↑ 𝑛 ↓ 𝑛 ↑ 𝑛 ↓ , 𝑐𝑜𝑛𝑠𝑡. (12) 
A similar constraint concerns the conservation of the magnetic moment, i.e. the number of unpaired electrons in the unit cell. It is written as:

𝑛 ↑ 𝑛 ↓ 𝑛 ↑ 𝑛 ↓ , 𝑐𝑜𝑛𝑠𝑡. (13) 
The refinement of the orthonormal atomic orbitals 𝜙 leads to additional constraints on the orientation parameters 𝑐 :

𝑐 𝑐 𝛿 , (14) 
for each pair of orbitals 𝜙 and 𝜙 located on the same atom. 𝛿 is the Kronecker delta piecewise function. The cross-term 𝑐 𝑐 is absent in ( 14) due to the mutual orthogonality of the orbital basis functions 𝜒 and 𝜒 .

The electroneutrality and spin constraints are of linear type. There are several methods devoted to the implementation of such constraints in the least-squares refinement procedure [START_REF] Raymond | Application of constraints to derivatives in least-squares refinement[END_REF][START_REF] Hamilton | Statistical Methods in the Physical Sciences[END_REF]. One of the usual methods in crystallography is the Hamilton method [START_REF] Hamilton | Statistical Methods in the Physical Sciences[END_REF]. In order to introduce non-linear constraints (orthonormal atomic orbitals 𝜙 ) the classical

Hamilton method has been extended. The mathematical description is given in the appendix A.

Spin resolved electron density in 𝒀𝑻𝒊𝑶 𝟑

The performance and validity of this new method is evaluated on the 𝑌𝑇𝑖𝑂 perovskite crystal ; its charge and spin densities are decomposed into "core'', ``valence'' and ``bond'' contributions. Figure 1 shows the structure of YTiO 3 (orthorhombic, space group Pnma). The Ti 3+ ion sits on the center of a centrosymmetric distorted oxygen octahedron. The Y 3+ ion sits on a mirror plane and is coordinated by eight oxygen atoms forming a distorted square antiprism.

This perovskite was intensively studied by means of various experimental and theoretical methods such as nuclear magnetic resonance [START_REF] Itoh | Orbital ordering in YTiO3 observed by NMR[END_REF], polarized [START_REF] Akimitsu | Direct Observation of Orbital Ordering in YTiO 3 by Means of the Polarized Neutron Diffraction Technique[END_REF] and unpolarized [START_REF] Ulrich | Magnetic Order and Dynamics in an Orbitally Degenerate Ferromagnetic Insulator[END_REF] neutron diffraction, inelastic neutron scattering [START_REF] Li | Dynamic Distortions in the YTiO3 Ferromagnet[END_REF], resonant X-ray scattering [START_REF] Nakao | Quantitative determination of the atomic scattering tensor in orbitally ordered YTiO3 by using a resonant x-ray scattering technique[END_REF], soft X-ray linear dichroism [START_REF] Iga | Determination of the Orbital Polarization in YTiO3 by Using Soft X-Ray Linear Dichroism[END_REF]), X-ray magnetic diffraction (XMD) [START_REF] Ito | Observation of ordered orbital of YTIO3 by the X-ray magnetic diffraction experiments[END_REF], Compton scattering [START_REF] Tsuji | Magnetic Compton Profile Study of Orbital Ordering State of 3d Electrons in YTiO3[END_REF] and elastic Xray scattering [START_REF] Hester | Electron Density in YTiO3[END_REF]. Such interest is mainly due to the existence of an antiferromagnetic orbital ordering in the ferromagnetic state of 𝑌𝑇𝑖𝑂 (its Curie temperature is 30 K).

Theoretical studies using unrestricted Hartree-Fock calculations and density functional theory with generalized gradient approximation predicted the wave function of the 3d electrons of titanium atoms to be a linear combination of |𝑥𝑧〉 and |𝑦𝑧〉 orbitals in the 𝑡 state [START_REF] Mochizuki | Orbital physics in the perovskite Ti oxides[END_REF]). The experimental estimation of the atomic orbitals orientation from PND and XMD data [START_REF] Akimitsu | Direct Observation of Orbital Ordering in YTiO 3 by Means of the Polarized Neutron Diffraction Technique[END_REF][START_REF] Ito | Observation of ordered orbital of YTIO3 by the X-ray magnetic diffraction experiments[END_REF][START_REF] Kibalin | Spin density in YTiO3: I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering[END_REF] was performed within the approximation of a single unpaired electron located on the |3𝑑〉 orbitals of the octahedrally coordinated titanium atom. The results are in good agreement with the theoretical predictions [START_REF] Kibalin | Spin density in YTiO3: I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering[END_REF]. In this paper we investigate beyond the limitation of one unpaired electron and take advantage of the spin-resolved atomic orbital model explained above to perform a combined analysis of charge and spin densities.

Experiments

The charge density analysis was made using synchrotron diffraction data (SPRING8 beamline BL02B2) on a single crystal (0.021 0.100 0.109 mm 3 ) at 20 K in the ferromagnetic phase. A short wavelength (0.353 Å) was used to reduce absorption and extinction effects. The details of experimental conditions are given in our previous paper [START_REF] Voufack | Spin resolved electron density study of YTiO 3 in its ferromagnetic phase: signature of orbital ordering[END_REF].

The polarized neutron diffraction measurements were performed at the thermal polarized neutron lifting-counter diffractometer 6T2 and the hot polarized neutron two-axis diffractometer 5C1 (LLB-Orphée, Saclay). The data were obtained at 5 K, in the ferromagnetic phase, under an applied magnetic field of 5 T, respectively parallel to the a-, b-and c-axes of single-crystalline sample, with two neutron wavelengths, 1.4 Å (6T2 diffractometer) and 0.84 Å (5C1 diffractometer). The incomplete beam polarization and extinction effects were corrected for. The details of neutron measurements are provided in [START_REF] Kibalin | Spin density in YTiO3: I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering[END_REF].

Model parameters

To specify the orbital model, ``core'', ``valence'' and ``bond'' terms have to be defined. The parameters characterizing the ``core'' term are not refined, in contrast to the other two terms.

The populations of the ``core'' shells 𝑝 in equation ( 8) have been taken as in [Kr], [Ar] and [He] for yttrium, titanium and oxygen atoms, respectively. The radial function is expanded over Slater functions for each shell. The radial function parameters 𝑝 , 𝜁 can be found in [START_REF] Clementi | Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54[END_REF].

The ``valence'' orbitals have been chosen for each atom as 4d, 5s for yttrium, 3d, 4s for titanium and 2s, 2p for oxygen using Slater type radial functions of ``valence'' orbitals [START_REF] Clementi | Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54[END_REF].

The refined parameters are: the linear combination coefficients 𝑐 , the spin-dependent partial orbitals populations 𝑛 ↑ , 𝑛 ↓ and the expansion contraction coefficient (𝜅 , which modulates the radial function of valence orbital shells ( in equation ( 6) and ( 7)).

The refinement was first carried out without the ``bond'' term. The ``bond'' terms which account for titanium-oxygen and yttrium-oxygen couplings were modeled in a second stage; O----O couplings were neglected. As explained above, GTO expansions were used to describe the STO radial functions only for this bond contribution. The expansion parameters are defined as the best approximation of the corresponding radial function of ``valence'' orbitals. The comparison of the radial functions for ``valence'' orbitals and ``bond'' term is shown in figure S1 in supplementary material together with the expansion parameters (tables S1-S3 of supplementary material).

The positions of atoms and their harmonic Debye-Waller factors were simultaneously refined for XRD and PND data using UNIT weighting scheme. For a discussion on the weighting scheme see [START_REF] Deutsch | Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data[END_REF]. For X-ray data, anharmonicity effects have been taken into account (Gram-Charlier expansion) as in our previous work [START_REF] Voufack | Spin resolved electron density study of YTiO 3 in its ferromagnetic phase: signature of orbital ordering[END_REF].

Agreement factors

The experimental data were described in the framework of two different atomic orbital models, including or not the ``bond'' term. In order to assess the quality of the refinements a comparison with the widely used multipole model is given. The X-rays goodness-of-fits for reflections grouped in 0.1 Å -1 range of sin 𝜃 𝜆 ⁄ clearly show only very tiny differences in data description by the multipole and orbital models (figure 2). The orbital model yields larger values of 𝜒 and 𝜒 than the multipole model, as the latter has higher flexibility (ie a higher number of parameters). The distribution of reflections over sin 𝜃 𝜆 ⁄ is shown on the same figure by a histogram. Small discrepancies between the two models lie in the sinθ/λ range [0.2 -0.35 Å -1 ] as it corresponds to the largest d electron scattering (see figure 3). The description of the highorder experimental X-ray data (sin 𝜃 𝜆 ⁄ >0.8 Å -1 ) is independent of the model used. The refinement of atomic positions and Debye-Waller factors has the strongest influence on the intensity of high-order reflections, which are found to be similar for the multipole and orbital models (tables S4-S6 in supplementary material). In conclusion, on the sole basis of least-square statistical indices, it is not possible to decide which model is the best. The orbital model describes experimental data with smaller number of physically meaningful parameters than the multipole model. The introduction of ``bond'' terms slightly improves the description of the low-order reflections (see figure S3 in supplementary material). The small contribution of the ``bond'' terms is related to the small covalent contribution between the Ti and O atoms. We expect the impact of "bond" terms to be more visible for a crystal-like pyrite or a molecular crystal where covalency is the leading term. In the present paper we then decided to discuss the atomic orbital model where the ``bond'' term is excluded The residual charge density has a random distribution in the other planes (see figure S4 in supplementary material) proving that the atomic-orbital model correctly describes the experimental data. Note that the residual density is larger in the Y-O 1 -O 1 plane as it is a mirror plane.

Spin-resolved electron density analysis

XRD is highly sensitive to the radial distribution of atomic orbitals. It allows an estimation of their size via the expansion contraction coefficient. The 𝜅 parameters of Y and Ti atoms ``valence'' orbitals (4𝑑 for yttrium and4𝑠, 3𝑑 for titanium) are far from unity (see table 2). This corresponds to the shrinking of outer electronic orbitals, as yttrium and titanium are giving away their electrons to oxygen atoms. Opposite changes are found for oxygen atoms where the p-shell 𝜅 parameter is less than one. Thus, the O electronic orbitals are more diffuse compared to the neutral atom as oxygen accepts additional electrons coming from titanium and yttrium.

The ``valence'' charge and spin populations of all atoms are summarized in table 2 together by integration over Bader atomic basins ("Atoms in molecules" [START_REF] Bader | Atoms in Molecules -A Quantum Theory[END_REF])) (respectively +1.47 and -1.05); probably due to small covalency in this perovskite.

The total magnetization per titanium atom is 0.90(1) 𝜇 .The unpaired electron is mostly localized on the titanium atom. The obtained magnetic moments are in line with those calculated from the multipole model. Small magnetic moments previously observed on 𝑌 and 𝑂 [START_REF] Voufack | Spin resolved electron density study of YTiO 3 in its ferromagnetic phase: signature of orbital ordering[END_REF][START_REF] Kibalin | Spin density in YTiO3: I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering[END_REF], are in the order of one sigma in the present study. In this model the estimated error bars are significantly larger than the parameter value for 𝑌 and 𝑂 . It is a consequence of the contribution of errors from both XRD and PND experiments but also of the large correlation between the parameters of atomic orbitals used for the charge and spin density analysis. The redistribution of electrons in comparison with non-interacting neutral IAM atoms is shown on the static charge deformation density (figure 5). The negative difference density around titanium is directed towards the positive distribution around the oxygen atoms: the depopulation of titanium 𝑒 orbitals faces the oxygen p-filled orbitals. Titanium 𝑡 orbitals are more populated than those of the isolated neutral atom (blue contours around titanium in figure 5). The orientations and populations of atomic orbitals of titanium are given in table 3. A first remark is that the standard deviations obtained on the wave functions coefficients are large for 𝜙 𝜙 , 𝜙 and 𝜙 ; very few refined coefficients are statistically non zero. Orbitals 𝜙 , 𝜙 and 𝜙 are oriented mostly towards the ligands and are less populated.

The spin density distribution of the titanium, 𝑛 ↑ 𝑎𝑛𝑑 𝑛 ↓ shows that the spin up contribution mostly originates from the electrons located on two atomic orbitals 𝜙 and 𝜙 when the spin down electrons arise from 𝜙 and 𝜙 (mostly |𝑥𝑦⟩). The resulting magnetic moment is due to the |4𝑠⟩ orbital and to the linear combinations of |𝑧𝑥⟩ and |𝑦𝑧⟩ basis orbitals. The orientation coefficients of orbital 𝜙 are not surprising and are in line with [START_REF] Akimitsu | Direct Observation of Orbital Ordering in YTiO 3 by Means of the Polarized Neutron Diffraction Technique[END_REF]. It agrees with our previous work as the multipole model refinement also showed a high spherical contribution to the magnetic moment localized on titanium atom (Voufack, 2018).

Table 3 Linear combination coefficients of the basis functions and populations of ``valence'' atomic orbitals of titanium atom. The model 3D spin-density distribution in the unit cell is presented in figure 6. The contribution of the aspherical orbital 𝜙 of titanium to spin density is clearly visible. The spherical contribution of orbital 𝜙 is not visible on figure 6 as the maximal density localized on the center of titanium decreases quadratically with increasing distance from titanium. The presence of some regions with very weak negative spin distribution could be linked to artifacts in experimental data. 

𝜙 𝜙 𝜙 𝜙 𝜙 𝜙 |4𝑠⟩ 1 0 0 0 0 0 |3𝑑 ⟩ 0 -0.03(1) -0.2(1) -0.5(2) 0.22(8) -0.8(2) |3𝑑 ⟩ 0 0.62(1) -0.2(3) -0.

Conclusion

We have shown that the spin-resolved atomic-orbital model is a reliable tool for analyzing charge and spin electron densities. It allows the characterization of the radial extension of atomic orbitals and directly provides their orientation and population. The atomic orbital and multipolar models are statistically equivalent to describe the electronic structure from experimental data.

When applied to the 𝑌𝑇𝑖𝑂 perovskite, the atomic orbital model confirms the origin of the spin density which is mainly located on the titanium atom. It evidences that not only 𝑡 orbitals are responsible for the magnetic moment but also the |4𝑠〉 orbital of the titanium atom. The contribution of other orbitals to the magnetic moment is significantly weaker. For this mostly ionic crystal, the obtained net charges are close to the integrated charges over the Bader atomic basins.

Introducing ``bond'' terms did not statistically improve the data refinement as 𝑌𝑇𝑖𝑂 is mostly ionic.

No significant spin contribution arising from the O1 atom was found contrary to the results obtained from the PND and XMD data analysis [START_REF] Kibalin | Spin density in YTiO3: I. Joint refinement of polarized neutron diffraction and magnetic x-ray diffraction data leading to insights into orbital ordering[END_REF].

𝑄 𝜕𝐶 𝜕𝑝 ⃗ . (17) 
For linear type of constraints, the matrix Q is constant for any model parameter 𝑝 ⃗. Therefore, the derivatives calculated at the starting point 𝑝 ⃗ are equal to the derivatives calculated at the final point 𝑝 ⃗ . For a non-linear type of constraints, the solution of equation ( 16) taking into account (17) has to be found.

The solution can be established by applying an iterative procedure. The model parameters shift calculated in the previous iteration Δ𝑝 ⃗ is used for estimating the matrix 𝑄 with the subsequent calculation of the shift of the model parameters for the next iteration Δ𝑝 ⃗ :

𝑄 𝜕𝐶 𝜕𝑝 ⃗ , (18) 
𝛥𝑝 ⃗ 𝛥𝑝 ⃗ 𝛥𝑝 ⃗ 𝑄 𝑄 𝐻 ⃗ 𝑄 𝑄 𝐻 ⃗ , (19) 
𝑝 ⃗ 𝑝 ⃗ Δ𝑝 ⃗ . (20) 
This procedure works well with linear and non-linear types of constraints. It has been introduced into the `` MOLLYNX'' program [START_REF] Deutsch | Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data[END_REF] to perform the least-squares refinement procedure under constraint conditions. 

S2. Refinement in frame of orbital and multipole models

The figure S2 shows the definition of local Cartesian coordinate system for each atom in asymmetric unit cell. Y has axis "Y" to O1 (closest), axis "Z" along "b" axis; Ti has axis "Z" to O 2 (more distant), axis "X" to O 1 ; O 1 has axis "X" to Y (closest), axis "Z" along "b"; O 2 has axis "X" to Ti (more distant), axis "Y" to O 1 .

Figure S2

Definition of Cartesian local coordinate system for each atom in asymmetric unit cell. 

O 2s O 2p

Figure 1

 1 Figure 1 Crystal structure of 𝑌𝑇𝑖𝑂 (orthorhombic, space group Pnma)

Figure 2

 2 Figure 2 The goodness-of-fit of reflections grouped in 0.1 Å -1 ranges of sin 𝜃 𝜆 ⁄ (XRD and PND) for multipole (circles with solid line) and orbital models without the ``bond'' term (triangles with dotted line). The histogram shows a distribution of reflections (in hundreds for XRD) over sin 𝜃 𝜆 ⁄ .

Figure 3

 3 Figure 3 Normalized valence scattering factors 5s and 4d of Y (top) and 4s and 3d of Ti (bottom).

(

  model II show similar residual densities as the multipolar model. In all cases, the largest residual charge densities are observed around the titanium and yttrium atoms. Most undescribed residual density is directed along the [100] direction (dotted lines on figure4). We suppose that this noise is due to insufficient absorption corrections for XRD data. It is a common problem when the studied sample has a complex shape. Any uncertainty in the correction increases the residual density around the most significant scatterers along the same direction.

Figure 4

 4 Figure 4 Residual charge density around titanium and yttrium atoms. Contours are 0.10 e/Å 3 . Green dotted contours are zero level, red ones are negative, blue ones are positive. The [100] direction is shown by black dotted lines. sin 𝜃 𝜆 ⁄ 1.2Å .

  with the expansion coefficients 𝜅 of the ``valence'' orbitals. The formal number of electrons on the ``valence'' orbitals for neutral and fully ionized atoms is also reported. Clearly the estimated net atomic charges have intermediate values between neutral and fully ionized states, which is a typical situation in charge density analysis. However, the Ti and O net charges obtained by the wave function model I largely differ from those obtained using the multipole model: the titanium is more positively charged (1.5+) giving more electrons to the O1 and O2 atoms (1.0-) in model I. It is in line with the expansion contraction coefficients as the wave function models give larger 𝜅 than the multipole ones (table2). It can be noted that the charges obtained from model I (and model II) are very close to those calculated

Figure 5

 5 Figure 5 Static charge deformation density around the titanium atom in the 𝑥𝑦, 𝑥𝑧 and 𝑦𝑧 planes of Ti octahedron. Contours level are 0.05 e/Å 3 : green dotted contours are zero level, red ones are negative, blue ones are positive

Figure 6

 6 Figure 6 Spin density distribution. Isosurface is 0.40 e/Å 2 (blue is positive, yellow is negative).Detailed information about population and orientation of atomic orbitals of the ``valence'' shell for yttrium and oxygen atoms is given in tables S7-S9. Figure7presents the Yttrium static charge deformation density in the (010) plane. The |5𝑠⟩ electrons are redistributed between the|4𝑑⟩ orbital of yttrium and the p-orbital of O 1 facing Y. This is also in agreement with the multipole model.

Figure 7

 7 Figure 7 Static charge deformation density on the yttrium atom in the (010) plane. Contour level is 0.05 e/Å 3 , red contours are negative, blue contours are positive, dotted green is zero.

Figure S1

 S1 Figure S1 Radial function weighted on r ² expressed through Slater (solid line) and Gaussian functions (dotted line) for titanium, yttrium and oxygen. Multiplied by ten the difference between models is shown below.

Figure S3

 S3 Figure S3The goodness-of-fit of reflections grouped in 0.1 Å-1 ranges of sinθ/λ (XRD and PND data) for multipole (circles with solid line) and orbital model with and without out "interaction" term (black open and blue closed triangles).

Figure

  Figure S4 Low-order residual densities around titanium and yttrium atoms Ti-O 1 -O 2 , Ti-O 1 -O 2 ', Y-O 1 -axis "b". Contours are 0.10 el./Å 3 . sin 𝜃 𝜆 ⁄ 1.2Å .

Table 1

 1 Statistical agreement factors for joint refinement procedure of XRD and PND data in the framework of the multipole model, the atomic-orbital model without the ``bond'' term

	(orbital I) and with the ``bond'' term (orbital II). The spherical atom model is given for
	comparison. Agreement factors are calculated on 𝐹	and |𝑅 1| for XRD and PND
	data, respectively.				
	Parameters multipole	orbital I	orbital II	spherical	data
	𝑅 % 1.40	1.39	1.39	1.47	XRD

The statistical agreement factors for multipole and orbital models are provided in table 1. The agreement factors and goodness-of-fit for all models have similar values. In all cases, the agreement factors 𝑅 𝐹 for XRD data are lower than 1.5% showing a very reliable description of electron density. The agreement factors for PND data are higher, which is typical for spin density analysis where weighted agreement factors 𝑅 |𝑅 1| usually amount to 10%.

Table 2

 2 ValenceWhen no error bar is given, the parameter was fixed during the refinement procedure. These values are compared to those obtained from the joint refinement multipole model (*) and Bader integration

	(Voufack, et al., 2019) (**)					
	atom Pval	Net charge	spin	𝜅	𝜅	neutral ion
	Y 1.4(5)	1.6(5)	0.0(5)	1.0	1.54(2)	3	0
	Y* 1.53(7)	1.47(7)	-0.03(7)	1.03(8)	1.49(6)		
	Y**	1.80	0.066				
	Ti 2.47(8)	1.53(8)	1.05(8)	1.535(4)	1.196(2) 4	1
	Ti* 3.40(6)	0.60(6)	1.04(6)	1.14(2)	0.90(3)		
	Ti**	1.47	0.628				
	O1 6.95(9)	-0.95(9)	0.00(9)	1.0	0.934(1) 6	8
	O1* 6.66(3)	-0.66(3)	0.02(3)	0.964(4)	0.88(7)		
	O1**	-1.06	0.112				
	O2 7.07(7)	-1.07(7)	-0.05(7)	1.0	0.921(1) 6	8
	O2* 6.70(2)	-0.70(2)	0.00(2)	0.968(2)	0.98(7)		
	O2**	-1.05	0.097				

and spin populations of ``valence'' term. 𝜅 and 𝜅 are the radial expansion contraction factors for 5s, 4s, 2s and 4d, 3d, 2p shells of Y, Ti, O, respectively. The last two columns are the number of electrons on ``valence'' orbitals for neutral and fully ionized atoms, respectively.

Table S1 "

 S1 Valence" orbitals for titanium. Representation through Gaussian functions.

	𝑝 (4S)	𝛼 (4s)	𝑝 (3d)	𝛼 (3d)
	0.41318	0.10263	0.05680	0.26736
	0.71920	0.26404	0.22987	0.74234
	-0.47347	2.43669	0.40659	1.87259
	-0.05144	17.56035	0.38758	5.10434
	0.19515	28.28142	0.20989	14.17314
	-0.02649	160.61295	0.05842	45.53364
			0.00735	184.02337

Table S2 "

 S2 Valence" orbitals for yttrium. Representation through Gaussian functions.

	𝑝 (5S)	𝛼 (5s)	𝑝 (4d)	𝛼 (4d)
	0.35633	0.08021	0.02963	0.11163
	0.79646	0.19808	0.17752	0.25542
	-0.58090	1.66969	0.35183	0.58039
	0.23182	15.36098	0.40549	1.34636
	-0.09107	83.01756	0.27202	3.30473
	-0.04154	2613.08849	-0.12671	27.15014
	5.10332	3875.85660	-0.06503	91.91714
	-6.52741	4007.46230	-0.00953	392.73275
	1.48242	4419.97899		

Table S3 "

 S3 Valence" orbitals for oxygen. Representation through Gaussian functions.

	𝑝 (2S)	𝛼 (2s)	𝑝 (2p)	𝛼 (2p)
	0.12234	0.54255	0.10074	0.39333
	0.49402	1.33715	0.38465	1.14864
	0.49227	3.45871	0.45020	3.42993
	-0.25281	35.56531	0.25703	11.03848
	0.26109	146.98360	0.06450	42.45348
	-0.35469	154.77130	0.00675	237.74589
	-0.01208	1854.08720		
		Ti 4s		Ti 3d
		Y 5s		Y 4d

Table S4

 S4 Coordinates and harmonic vibration parameters for each atom after refinement in frame of multipole and orbital models.

			Multipole model	
		Ti	Y	O 1	O 2
	𝑥	0.5	0.574144(3)	0.457507(26)	0.309438(18)
	𝑦	0.0	0.25	0.25	0.057899(14)
	𝑧	0.0	0.522086(3)	0.121074(29)	-0.309518(20)
	𝑈 , Å	0.001994(9)	0.001883(5)	0.003884(33)	0.003632(25)
	𝑈 , Å	0.001444(8)	0.002137(4)	0.002624(32)	0.004072(25)
	𝑈 , Å	0.002498(7)	0.002112(4)	0.003743(37)	0.003676(26)
	𝑈 , Å	-0.000120(6)	0	0	-0.000622(20)
	𝑈 , Å	-0.000157(6)	0.000064(3)	-0.000633(28)	-0.000627(19)
	𝑈 , Å	-0.000005(5)	0	0	0.000430(20)
				Orbital model	
		Ti	Y	O 1	O 2
	𝑥	0.5	0.574147(3)	0.457512(27)	0.309449(18)
	𝑦	0	0.25	0.25	0.057893(14)
	𝑧	0	0.522075(4)	0.121029(30)	-0.309529(21)
	𝑈 , Å	0.002116(9)	0.001938(5)	0.003845(34)	0.003614(26)
	𝑈 , Å	0.001474(8)	0.002007(4)	0.002602(33)	0.004061(26)
	𝑈 , Å	0.002401(8)	0.002154(4)	0.003775(38)	0.003650(27)
	𝑈 , Å	0.000091(7)	0	0	-0.000613(21)
	𝑈 , Å	-0.000059(6)	0.000054(3)	-0.000661(29)	-0.000629(19)
	𝑈 , Å	0.000020(6)	0	0	0.000422(21)

Table S5

 S5 Parameters of anharmonicity for titanium atom.

	1111	2(3)	-6(3)	1122	5(5)	-7(5)	1233	-4(10)	-29(10)
	2222	1.4(7)	0.9(7)	1123	-8(9)	14(8)	1333	-12(7)	-44(7)
	3333	31(3)	43(2)	1133	-11(9)	-2(9)	2223	11(2)	-3(2)
	1112	12(6)	-1(5)	1222	9(3)	-15(3)	2233	-8(5)	-2(5)
	1113	-1(6)	-26(6)	1223	6(6)	25(6)	2333	4(5)	12(5)
	6th order (the parameters are multiplied by 10 5 )					
	name	orbital	multipole name	orbital	multipole name	orbital	multipole
	111111	-1.0(9) -2.2(8)	111233	7(5)	2(5)	122333	-4(3)	-1(3)
	222222	0.4(1)	0.3(1)	111333	-2(4)	-14(3)	123333	-1(4)	-5(4)
	333333	3(1)	5(1)	112222	3(1)	2(1)	133333	-2(3)	-9(3)
	111112	3(2)	2(2)	112223	2(2)	3(2)	222223	1.1(4)	0.1(4)
	111113	1(2)	-4(2)	112233	-14(4)	-13(4)	222233	-2.5(9) -1.9(9)
	111122	8(2)	5(2)	112333	-3(5)	6(4)	222333	3(1)	2(1)
	111123	-3(4)	3(3)	113333	9(4)	14(3)	223333	6(2)	9(2)
	111133	5(4)	6(3)	122222	1.3(5)	-1.4(4)	233333	2(2)	4(2)
	111222	4(1)	-2(1)	122223	2(1)	5(1)			
	111223	4(3)	7(3)	122233	-4(3)	-12(3)			
	Table S6 Parameters of anharmonicity for yttrium atom.			
	3rd order (the parameters are multiplied by 105)				
	name	orbital	multipole name	orbital	multipole name	orbital	multipole
	111	9(2)	10(2)	122	37(2)	37(2)	233	0.00	0.00
	222	0.00	0.0	113	10(4)	9(4)	123	0.00	0.00
	333	-7(2)	-4(2)	133	6(4)	6(4)			
	112	0.00	0.0	223	18(2)	18(2)			
	4th order (the parameters are multiplied by 10 5 )					
	4th order (the parameters are multiplied by 10 5 )					
	name	orbital	multipole name	orbital	multipole name	orbital	multipole
	name	orbital	multipole name	orbital	multipole name	orbital	multipole

Table S7 "

 S7 Valence" atomic orbitals located on yttrium.

		𝜙	𝜙	𝜙	𝜙	𝜙	𝜙
	|5𝑠⟩	0	0	0	0	0	1
	|4𝑑 ⟩	0	-0.51(3)	0.17(43)	0	0.84(54)	0
	|4𝑑 ⟩	-0.97(10)	0	0	-0.26(4)	0	0
	4𝑑	-0.26(13)	0	0	0.97(2)	0	0
	4𝑑	0	-0.75(3)	0.39(28)	0	-0.54(74)	0
	4𝑑	0	-0.42(3)	-0.90(13)	0	-0.07(132)	0
	𝑛 ↑	0.07(2)	0.01(2)	0.04(1)	0.21(2)	0.02(1)	0.40(33)
	𝑛 ↓	0.07(2)	0.15(2)	0.02(2)	0.10(2)	0.01(2)	0.35(33)
	charge	0.14(2)	0.16(3)	0.05(2)	0.32(2)	0.03(2)	0.75(47)
	spin	0.00(2)	-0.15(3)	0.02(2)	0.11(2)	0.00(2)	0.05(48)

Table S8 "

 S8 Valence" atomic orbitals located on oxygen 1.

		𝜙	𝜙	𝜙	𝜙
	|2𝑠⟩	1	0	0	0
	|2𝑝 ⟩	0	0.988(5)	-0.15(25)	0
	2𝑝	0	-0.155(25)	-0.988(5)	0
	|2𝑝 ⟩	0	0	0	1.00
	𝑛 ↑	0.72(5)	0.93(2)	0.92(2)	0.90(2)
	𝑛 ↓	0.69(5)	0.95(2)	0.89(2)	0.95(2)
	charge	1.41(7)	1.88(3)	1.81(3)	1.84(3)
	spin	0.04(7)	-0.02(3)	0.04(3)	-0.05(3)

Table S9 "

 S9 Valence" atomic orbitals located on oxygen 2.

		𝜙	𝜙	𝜙	𝜙
	|2𝑠⟩	1	0	0	0
	|2𝑝 ⟩	0	0.95(1)	-0.08(10)	0.31(2)
	2𝑝	0	0.06(9)	1.00(1)	0.07(4)
	|2𝑝 ⟩	0	-0.31(2)	-0.05(4)	0.95(1)
	𝑛 ↑	0.79(4)	0.93(2)	0.89(2)	0.91(2)
	𝑛 ↓	0.50(4)	1.07(2)	1.01(2)	0.99(2)
	charge	1.29(6)	1.99(2)	1.90(2)	1.90(2)
	spin	0.30(6)	-0.14(2)	-0.12(2)	-0.08(2)
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Appendix A. Modified Hamilton method

The Hamilton method was modified to apply linear and non-linear constraints during the least-squares refinement procedure. The constraints on the refined parameters, described in section 2D, can be written in a vector form with the equality:

where 𝑝 ⃗ is the vector of model parameters, 𝐶 ⃗ is the vector of constrained functions.

In the classical Hamilton method [START_REF] Hamilton | Statistical Methods in the Physical Sciences[END_REF] the change of the model parameters 𝛥𝑝 ⃗ , which satisfies the linear constraints, is calculated as:

where 𝐻 ⃗ is the Hessian over 𝜒 , 𝛥𝑝 ⃗ is the shift of model parameters without any restrictions on the refined parameters. The constraint matrix 𝑄 is estimated as

Supporting information S1. Representation of radial functions through expansion over Gaussian functions for titanium, yttrium and oxygen

The expansion parameters of GTO functions (eq. 7) which is used to describe the STO radial function of "valence" orbitals for titanium, yttrium and oxygen is presented in tables S1, S2, S3. The comparison of the radial functions described by STO and GTO functions for "valence" orbitals is presented on the figure S1 for corresponding atoms.