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Abstract: We propose a Bayesian Optimization-based algorithm to assess the optical parameters 

that are taken as input by the QoT computation tool. The method reduces the error in computed 

OSNR down to 0.07dB.  © 2021 The Author(s) 

 

1. Introduction 

The high-order modulation aims to push the optical transport technology to their limits. In such a system where every 

tenth of a dB is precious, an accurate calculation of the Quality of Transmission (QoT) becomes essential more than 

ever. The analytical tools for QoT estimation are based on models that assume idealized systems and are not general 

enough to model the high diversity of the optical transport networks [1]. Moreover, the assessment of optical 

parameters used as input of those analytical tools is based on values provided by the equipment vendor and does not 

take into account the actual field factors (e.g., aging). To cope with the inaccuracy of the QoT estimation, design 

margins are added by operators which lead to under-utilization of the available capacities. Recent studies have focused 

on Machine Learning (ML) to improve the accuracy of QoT estimation [2]. While the subject of some ML-based 

solutions has been to replace the existing analytical tools [3], others have focused on improving the accuracy of the 

analytical computation of the QoT. This could be done either by assessing nonlinear impairments that are complex to 

model analytically [4] or by reducing the error in the input parameters [5]. In this paper, we propose a Bayesian 

optimization-based algorithm to find a set of input parameters values that improve the accuracy of QoT estimation 

tools. The novelty in this work is that our approach is independent of the QoT estimation tool and can be applied to 

any uncertain parameter. Therefore, we formulate our approach as an optimization problem and we assume that its 

objective function is black box. Without a closed form expression of the QoT computation function, the gradient-

based algorithms cannot be used as in [5], so we have to use a search-based algorithm instead. 

2. Problem formulation and simulation set up 

We consider 𝐺 = (𝑁, 𝐿) as a graph that abstract the optical network where vertices N present the set of optical nodes 

and edges L present the set of links. We assume each node is composed of reconfigurable optical add and drop 

multiplexer (ROADM) and multiple transponders. Each link consists of several fiber spans. We denote the set of 

lightpaths that are deployed on the network as 𝑃 = {𝑝𝑖  | 𝑖 ∈ [0, 𝑛]}. We denote the real value (i.e., measured) of a QoT 

indicator for lightpath 𝑝𝑖  by 𝑄𝑖  and its estimated value using the analytical model by 𝑄̃𝑖. In this study, we suppose that 

the difference between 𝑄̃𝑖 and  𝑄𝑖  is only due to the inaccuracy in the values of some parameters. Therefore, we split 

the input parameters into two sets, certain C and uncertain 𝑋 = {𝑗 | 𝑗 ∈ [0, 𝑙]} where 𝑙 is the total number of uncertain 

parameter. We denote 𝑥𝑗 the real value of the parameter 𝑗, and 𝑥̃𝑗 its theoretical value. Reducing the difference between 

𝑥𝑗 and 𝑥̃𝑗  leads to a more exact modeling of the network state, and consequently reduces the difference |𝑄𝑖 − 𝑄̃𝑖| (i.e., 

more accurate QoT estimation). Accordingly, the problem of reducing the error in QoT estimation can be considered 

as a multi-objective general optimization problem with the goal to minimize the set of objective functions {𝑓𝑖(𝐶, 𝑋) =

|𝑄𝑖 − 𝑄̃𝑖|  | 𝑖 ∈ [0, 𝑛]}, where n is the total number of lightpaths. 
We consider three types of uncertain parameters: the amplifier Noise Figure (NF), the loss due to connectors (CL) 

and the loss due to fiber fusing (FL). In this paper, we focus on minimizing the OSNR error; nevertheless, the same 

model could be used to improve other QoT indicators. In order to reduce the complexity of the multi-objective 

optimization (i.e., one objective function per lightpath), we choose to aggregate all the objective functions into a single 

one using the root mean squared error (RMSE) operator. We use then the Bayesian optimization algorithm that is able 

to reduce the number of objective function evaluations needed to reach the optimum based on the cumulated 

knowledge during the iterations of the algorithm. To test this approach, we assume a five-node network topology as 

represented in Fig. 1 (c) and we use an analytical tool (the GNPy tool [6]) to both simulate the initial state of the 

network, as well as to compute the objective function after every iteration. We consider different lengths of fiber spans 



(50, 75, 80 and 100 km).  The amplifier gains are automatically set to compensate the fiber loss at the power optimum. 

Each fiber span is split into 4 fiber sections to take into account 3 FL parameters per span. 

3.  Learning process and results discussion 

In order to evaluate our Bayesian-based approach, the target values 𝑥𝑗 are first sampled according to a uniform 

distribution from fixed value intervals: for NF 𝑥𝑗 ∈ ∆𝑁𝐹 , for CL 𝑥𝑗 ∈ ∆𝐶𝐿and for FL𝑥𝑗 ∈ ∆𝐹𝐿 . Then, the initial 

uncertain values𝑥̃𝑗 are emulated by adding uniform noise around 𝑥𝑗 so that, for NF: 𝑥̃𝑗 ∈ [𝑥𝑗 − 2, 𝑥𝑗 + 2] ∩ ∆𝑁𝐹, for 

CL: 𝑥̃𝑗 ∈ [𝑥𝑗 − 1.5, 𝑥𝑗 + 1.5] ∩ ∆𝐶𝐿  and for FL:𝑥̃𝑗 ∈ [𝑥𝑗 − 1, 𝑥𝑗 + 1] ∩ ∆𝐹𝐿. The algorithm takes as input 𝑥̃𝑗 and its 

search bounds (i.e., corresponding interval). After every iteration, the objective function 𝑓(𝐶, 𝑋) is evaluated using 

GNPy. Taking into account the results from all previous iterations, the algorithm generates then a new set of 

parameters {𝑥̃𝑗| 𝑗 ∈ [0, 𝑙] } and tests it at the next iteration. We used 20 lightpaths for the learning process. 

We applied the algorithm in different scenarios in order to test its scalability by changing the number of spans per 

link (SPL) and the number of uncertain parameters per span (PPS) in the network. Fig.1 (a) shows the evolution of 

the OSNR error during the optimization in each scenario. After 500 iterations, the OSNR error is below 0.2dB in all 

cases. We represent in Fig.1 (c) the evolution of the error generated by the three parameters alongside the error in 

OSNR in the case of 1SPL and 5PPS (i.e., 70 parameters). After 500 iterations, the OSNR error becomes inferior to 

0.07dB, however the inaccuracy in the parameters remains high and the parameter error is evolving in random patterns 

and does not converge toward the target values. This means that the algorithm finds another global optimum that is 

different from the target one. As we suppose that no intermediate performance measurement is possible within the 

link, the Bayesian optimization provides alternative settings of parameters that generate the same QoT as the actual 

setting. As a result, our approach can improve QoT estimation accuracy, by providing an alternative set of parameters, 

and can be applied with a minimal number of QoT measurements. 

4.  Conclusion 

We proposed a Bayesian optimization learning process to improve the accuracy of QoT estimation by assessing the 

values of uncertain parameters of the optical network. Our method is QoT computation tool-agnostic and supports 

several uncertain parameters. In this paper, we considered a set of three uncertain parameters, namely, amplifier noise 

figures, fiber connector loss and fiber fused loss. Results showed that applying the algorithm to scenarios having 70 

uncertain parameters, the error in OSNR was reduced from 1dB to 0.07dB. 
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Fig.1. (a) 5-Node network topology used to test the learning process (b) Evolution of OSNR error throughout the 

optimization, (c) Evolution of OSNR and parameters errors in the case of 1 SPL and 5 PPS 
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