N

N
N

HAL

open science

Requirement elicitation for adaptive standards
development

Marion Toussaint, Sylvere Krima, Allison Barnard Feeney, Hervé Panetto

» To cite this version:

Marion Toussaint, Sylvere Krima, Allison Barnard Feeney, Hervé Panetto. Requirement elicita-

tion for adaptive standards development.

17th IFAC Symposium on Information Control Prob-

lems in Manufacturing, INCOM 2021, Jun 2021, Budapest (virtual), Hungary. pp.863-868,

10.1016/j.ifacol.2021.08.101 . hal-03253786

HAL Id: hal-03253786
https://hal.science/hal-03253786

Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03253786
https://hal.archives-ouvertes.fr

Requirement elicitation for adaptive
standards development

Marion Toussaint *** Sylvere Krima ***
Allison Barnard Feeney **** Herve Panetto **

* Associate, NIST, 100 Bureau Drive, Gaithersburg, MD, 20899, USA,
(e-mail: marion.toussaint@nist.gov)

** Unigversité de Lorraine, CNRS, CRAN, 54000 Nancy, France
** Engisis LLC, 10411 Motor City Dr Ste 750, Bethesda, MD,
20817-1289, USA, (email: sylvere.krima@engisis.com)

e NIST, 100 Bureau Drive, Gaithersburg, MD, 20899, USA

Abstract: The recent digitization of manufacturing, also referred to as the fourth industrial
revolution (or Industry 4.0), heavily relies on information standards for the exchange and
integration of digital data across manufacturers and their partners. Standards are complex
projects with a long lifecycle, often developed in a predictive environment, which no longer
aligned with a fast paced industry. Adaptive environments have been proven to be an answer
to this problem, but most project requirements management solutions have not evolved to
support this shift. In this paper, we discuss the new challenges brought by a shift to adaptive
environments, and introduce a solution to offer better requirement elicitation during standards
development management with increased traceability and visibility.

Keywords: information standards, requirement elicitation, requirement model, agile, adaptive

development

1. INTRODUCTION

Information standards are powerful tools for innovation
and productivity in many domains (Gallaher et al., 2004;
Blind, 2009; Guasch et al., 2007). When it comes to
manufacturing, information standards are seen as a key
enabler to the digitization of the manufacturing industry
(Fischer et al., 2015; Helu et al., 2017; Hedberg et al.,
2016). But standards development is relatively complex.
It is a long process that includes many stakeholders, from
different organizations, geographically dispersed, and on
a volunteer basis, making their contribution and partic-
ipation irregular. The human resources available depend
on the experts’ schedules and their organizations’ needs,
which makes it difficult to have continuity and consistency
in standards development. Moreover, because their partici-
pation is irregular, it becomes difficult for every member of
the standard development process to keep up with the past
and current activities of the development. To summarize,
the standard development process is long, irregular, and
difficult to plan.

Information standards are mainly developed using the
predictive or waterfall model for project management.
The waterfall model is a sequential development model,
in which each phase of the development must be com-
pleted in order to proceed to the next phase (Balaji and
Murugaiyan, 2012). In predictive models such as the wa-
terfall model, the project requirements and deliverables
are defined at the beginning of the project (PMI, 2017),
and if some requirements need to be changed or added,
they will most likely not be implemented in the cur-
rent development iteration (Balaji and Murugaiyan, 2012).

According to ISO, standards development iterations last
between 18 and 48 months (ISO, 2017), which means
that: i) in the best-case scenario, new requirements will be
addressed up to 18 months after being identified, ii) in the
worst-case scenario, new requirements will be addressed
up to 48 months after being identified. The current length
and management of standards development iterations are
not necessarily adapted to the needs of the industry. In
the industry, strong market competition leads to a short
product life cycle (Sapp et al., 2021) and requirements
change often and faster than the development of standard
iterations. Besides, during the long development iterations,
new technologies, processes, and needs are developed, po-
tentially making the published standards at odds with the
industrial reality.

An alternative to the waterfall model for project man-
agement is to use an adaptive method (also known as
Agile) (Shameem et al., 2018; Thummadi et al., 2011).
Unlike waterfall, Agile follows an iterative and incremental
approach. This model consists of short iterative release
cycles, which requires more transparency and visibility,
stakeholders to be more involved and notified more reg-
ularly of the progress of the project (Edeki, 2015). Agile
is mainly used to achieve high quality projects in short
periods, better collaboration between all stakeholders, and
reduced time to market (Kumar and Bhatia, 2012). Agile
can be implemented through many frameworks such as
Scrum, XP, or Lean Kanban (Stellman and Greene, 2013).
Most Agile frameworks are designed for small development
teams. However, standards development often requires sev-
eral (large) teams to work together. The SAFe Framework

by Scaled Agile (Agile, 2019) is a viable alternative for
standards development due to its support of large, multi-
disciplinary, and distributed teams. SAFe methods can
bring benefits to the development teams of model-based
standards, as demonstrated in (Sapp et al., 2021). The
report (Sapp et al., 2021) demonstrates the benefits of
adopting an agile framework and tool-chain in support of
the standards development processes, illustrated with ISO
10303 (Pratt, 2005), a large and complex standard widely
used in the manufacturing industry.

While becoming agile can bring many benefits to standards
development processes, it also creates some challenges.
Because requirements are defined, analyzed, and processed
on a more frequent basis, properly capturing, tracking, and
managing them becomes crucial, more time consuming,
and more complex. While the different phases of require-
ments engineering present many challenges (Besrour et al.,
2016), most of the literature focuses on conflict manage-
ment (Shah and Patel, 2014; Davis et al., 2006; In and
Roy, 2001; Gambo et al., 2015; Decker et al., 2007) and
predictive environment, leaving out requirements elicita-
tion, a key step to their management (PMI, 2017). In this
paper, we present a solution for requirements elicitation in
an adaptive information standards development environ-
ment that enables maximal transparency, traceability, and
visibility of the project activities.

2. RELATED WORK

Requirements elicitation is a critical step in project de-
velopment and is sometimes considered a complex process
(Sharma and Pandey, 2013; Fernandes et al., 2012). Many
methods have been developed to capture and represent
requirements to facilitate this process. In this section, we
present some of the most representative methods of the
state of the art.

The Requirements Interchange Format, also known as
ReqlF, is a standardized XML-based format aimed to
support the exchange of requirements, as well as their
associated metadata, between different management tools
(Adedjouma et al., 2011). This nonproprietary format
satisfies the industry needs for exchanging requirements
data between different companies without having to share
the same management tools (OMG, 2016). ReqIF is sup-
ported by almost all existing requirements management
tools and is widely used. A ReqlF model is composed of
specification objects, called SpecObject, to represent the
requirements. These objects contain multiple user-defined
attributes and the relationships between different objects
are also represented.

The Systems Modeling Language (SysML) is a modeling
language for the specification, analysis, design, and verifi-
cation of a broad range of complex systems (SysML, 2019).
SysML includes different types of diagrams, one of which
is used to represent text-based requirements. This diagram
can effectively capture functional as well as non-functional
requirements. This SysML diagram captures the relation-
ship between requirements, system models, and test cases
(Hause, 2006). A SysML requirement is mainly defined
by a unique identifier and a text-based definition, but
other properties can be included such as priority, status, or
verification status (Roques, 2015). An example of a SysML

roq [Package] | Automotile System Requremants]]

~requiramant-
Autamobile Specification

IBOIETENTs
Passenger and Baggage
Load

requiramant-
Reliability

JE—
Top Speed

~mequiremant-
Braking Distance

aroquiramants
Fusel Efficiency

FEREN

Text = "The vehicke shal

achieve a minimum af
25 miles per pallan
under specifed driving
conmlions *

Turning Radius

Fig. 1. Example of a SysML requirements diagram for the
Automobile System Specification. (S. Friedenthal and
Steiner, 2015)

Parson
Organization
| Select |
.

| Requirement
Link between requirements
ERuEEa ==
Link between versions.

Requirement
T Requir
Vien

i
racing
Requirement Requirement
Collection
Relationship

Link between requirements

String Value
Valua WithUnit
Text based L

Property based requirement ’
requirement

Select type
 (examplel
Ve (i ple)

| | mdividuat
Part

Requirement
Source

Requirement
View

Breakdown

Requirament \L
Satisfaction -
Assertion
Requiremen

DateAndPerson
Orgarnization

Requirement
Decemposition
Relationship

Date and Person who assert

Fig. 2. STEP AP 242 Requirements model. (AP242, 2013)

requirement diagram for an Automobile System is shown
in Figure 1. This example illustrates the capture of text-
based requirements and the relations between them.

ISO 10303, also known as the Standard for the Exchange
of Product data (STEP), is a widely adopted standard
that aims to provide a complete and unambiguous de-
scription of manufacturing products, usable throughout
their life cycle, regardless of the IT support used. STEP
enables manufacturing applications to exchange and share
data regardless of the specificities of the different systems
that exchange and share information. STEP AP242 (ISO,
2020) includes a model for requirements management, as
illustrated in Figure 2. This model focuses principally on
capturing requirements definitions, as well as their rela-
tionships, validation criteria, and source (AP242, 2013).

These models focus mainly on a limited and textual defi-
nition of the requirements, and the relationships between
them. These models were designed to support the repre-
sentation and exchange of requirements and not meant to
support advanced requirements management and planning
activities (PMI, 2017) in an adaptive environment. As
discussed previously, in transitioning from a waterfall to

an adaptive project management approach, requirements
management takes a different and more important role,
and requires more information and more visibility, to be
executed properly (Institute, 2017). Besides, working with
distributed teams and volunteer human resources requires
better traceability and visibility of both decisions and con-
tributions. An ideal solution should focus on defining the
information to capture in order to overcome the following
challenges (Sapp et al., 2021):

e (N1) It should ensure the traceability (and visibility)
of resources: 1) to associate people to work items
and tasks to which they contribute or supervise (i.e.,
their level of engagement), 2) to link people to the
meetings they attend, and 3) to link work items to
meetings during which they are discussed or to follow
the progress of the work items;

e (N2) It should ensure the traceability (and visibility)
of decisions: 1) by linking people to the decision
they make, 2) by linking decisions to the meetings
during which they are taken, and 3) by following
the evolution of decisions regarding work items and
requirements as the meetings progress;

e (N3) It should ensure requirements definition man-
agement by linking requirements to their source and
a context in order to be able to validate them with
their owner.

3. PRESENTATION OF THE MODEL

None of the models presented in the previous section
captures enough information to overcome the challenges
we presented because they lack a (precise) definition of 1)
the requirements’ context and source, 2) the requirement
ownership information, 3) the associated resource(s) man-
agement, 4) the associated work breakdown, 5) key deci-
sions, and 6) tracking information between requirements
and associated deliverables. Consequently, we developed
our own requirements elicitation model. This model can
be used on its own or as an extension to the previously
introduced solutions (i.e., ReqlF, SysML, and AP242).
Figure 3 illustrates this elicitation model we propose. Our
model is a UML Class diagram and is composed of six
classes (Meeting, Requirement, Work Item, Task, Member,
and Decision) in response to our three main needs: require-
ments definition management and traceability, decisions
traceability, and commitment and resources traceability.
This model supports our needs as shown in Table 1.

The objective of the proposed model is to keep track of
decisions and requirements throughout the development
of a project, which is crucial for long projects involving
different distributed stakeholders. This model can be used
to understand the level of engagement of the different
stakeholders and thus be able to more easily manage the
available resources. Moreover, this model allows us to
record all decisions taken during meetings, making that
information available to people who could not attend. It
also allows us to ensure the traceability of requirements
from their creation to their implementation in order to
validate them directly with the people who had expressed
these needs in the first place.

8.1 Meeting Class

The Meeting class represents the different properties that
characterize a meeting and contains several properties to
keep track of all the details of the meeting:

e The id property uniquely identifies the meeting;

e The event property defines the event during which the
meeting took place, but this property is not manda-
tory because meetings are not necessarily included in
a particular event;

e The place, date and time properties correspond re-
spectively to the place, the date, and the time at
which the meeting was held;

e The type property defines if the meeting is in person
or virtual. If the meeting is virtual, the place property
is left empty;

e The subject property defines the main subject of the
meeting from a high-level point of view, while the
topic property represents the agenda of the meeting
which is the list of items that need to be discussed
during the meeting;

e The goal property represents the objective of the
meeting;

e The future points property represents topics that will
have to be discussed during the next meeting.

The Meeting class has relationships with some of the other
classes. Firstly, the Meeting class is linked to the Member
class: several people can attend a meeting. Secondly,
there are two relationships between the Meeting and
Requirement classes: requirements are created during a
meeting, and requirements can be discussed and updated
during one or more meetings. Thirdly, the Meeting class is
linked to the Work item class: work items can be planned
during one or more meetings.

3.2 Member Class

The Member class represents the characteristics of a stake-
holder. A member can be anyone involved in the project
such as a manager, a developer, or a client. A member
contains two properties, the name of the person and the
organization to which that person belongs. The Member
class is linked to the following classes:

e To the Meeting class: several persons can present one
or more topics during a meeting, but the presenter(s)
must be one of the meeting’s attendees;

e To the Decision class: every member can express an
opinion about requirements or a work item;

e To the Requirement class: a requirement has one or
more authors;

e To the Work item class across two different relation-
ships: one relation represents the work item’s supervi-
sor while the other one represents the team members
working on it. We considered that a supervisor con-
tributes to the work item that he supervises and that
it is not necessary to create multiple relation links
between a member and the same work item. Several
work items can have the same supervisor and one or
more team members working on it;

e To the Tuask class: one or more persons can contribute
to some tasks.

Table 1. List of the UML classes from our

Needs

elicitation model and the needs they meet

Model Classes

Requirements definition management and traceability (N3)

Member, Meeting and Requirements classes

Decisions traceability (N2)

Decision, Member and Meeting classes

Commitment and resources traceability (N1)

Requirement, Work Item, Task, Meeting and Member classes

+taken during

Decision o

0" I~Opinion: string

+present

+decision | +lustification: string

+presenter +Status: Status 0.r

+attended_by

+issue

+attendee | 1.0 |1

0.4 +decision
1

Member

+member +express

+Name: string
o sting | *worker

p

o= +author

+requirements

1.5 create 0.*
+eetin|

Requirements

+id: string
+Title: string
+Author: string[1.."]

+meeting), 1 L +requirements | +Creation meeting id: string

+supervisor | 1

)
| +team_member

+validate

Meeting +7] sLastmeeting d: sting

tion: string
+Goal: string
+Validation criteria: string

+id: string

+Event: string
+Place: string
+Date: date

+Time: time

+Type: MeetingType
+Subject: string
+Goal: string

0. 1<rrequnemems

1.+ |+work_item

“+supervise|

Work item L1

+contribufe
“+contribfite

+Topic: string[1.]

+Future points: string[L.*] ‘+Subject: string

+Deadline: date
+Progress: Progress

+wol_item

+work_item 0.4, +ask
10

Task

+Priority: Priority

+work_item
1

+Subject: string
» | +Deadline: date

+subject

+work_item +ask | +Deliverable: Deliverable

+Progress: Progress | *Previous

0.

+URL: string

“next [0.7

+validate

MeetingType Deliverable Progress

Priority

Status

Virtual Paper ToDo
Physical InProgress

Medium
information model | | Done High

Approved
Need more work
Rejected

Bugs

Fig. 3. Requirements elicitation model (UML Class Diagram)

3.8 Decision Class

During a meeting, each attendee is free to express an
opinion on the different topics discussed. The objective
of the Decision class is to keep track of the decisions
expressed during a meeting. This class contains three
properties to characterize these decisions. An attendee’s
opinion on a particular requirement or work item and its
justification are respectively represented by the opinion
and justification properties. The last property defines the
status of the decision and this property can currently only
take one of the following three values: Approved, Need more
word, or Rejected.

The Decision class has relationships with three other
classes: the Meeting class, the Requirement class, and the
Work Item class. A decision is linked to the meeting during
which this decision was taken, and to the requirement or
work item to which this decision relates. Several decisions
can be taken during the same meeting and in the same way,
several decisions can be associated with one requirement
or work item.

3.4 Requirement Class

The Requirement class represents the different properties
that characterize a requirement. Thus, a requirement is
composed of several properties. Firstly, a requirement is
identified by a unique id. A requirement is also character-
ized by a title and an author. Besides, the Requirement
class contains the id of the meeting during which the
requirement was created and the id of the last meeting

during which the requirement was updated. When a re-
quirement is created, the creation meeting id and last
meeting id properties are identical. Finally, a requirement
is also characterized by its description, its goal, and its
validation criteria.

3.5 Work Item Class

A project is made up of several work items that represent
the different steps to reach the goal of the project. Work
items help to plan and manage projects. In our case, one
or more work items can be associated with a requirement.
The work item is characterized by a high-level subject,
a deadline, its progress, and a priority status. A work
item’s progress can either be To Do, In Progress, or Done,
while its priority can either be Low, Medium, or High.
The progress of a work item depends on the progress of
the tasks that compose it: indeed, a work item cannot be
marked as Done if all its tasks are not also marked as
Done.

3.6 Task Class

A work item is composed of one or more tasks. The Task
class can represent user stories, tasks, bugs, or issues. A
task is characterized by five properties: a subject which
defines the goal of the task, a deadline, its progress, whose
value is included among To Do, In Progress or Done;
the type of deliverable returned, and the url associated
with the commit corresponding to the task’s deliverable.
Currently, the deliverable of a task can be a Paper, an
Information model, some NDocs, or a Bug. When the task

has not yet started, the url property is left empty. In some
cases, the different tasks included in a work item need
to respect a certain order, represented by the relationship
between the tasks.

4. DEMONSTRATION OF THE MODEL

As presented in the previous section, this model allows us
to keep track of and share information regarding project
meetings, decisions, requirements, and work items. This
model also keeps all the stakeholders informed about
the progress of the project and the different topics dis-
cussed during the different project meetings. Moreover,
this model supports tracking traceability of the require-
ments by keeping track of their creation and their authors,
as well as any changes that may have been made and the
progress of the associated work items. This information is
key to better understand and follow the evolution of the
requirements over time and to validate them directly with
the people who expressed them in the first place.

The Figure 4 illustrates a virtual technical meeting at-
tended by five stakeholders. The main objective of this
project meeting is the project management methodology
with the transition to Agile. During this meeting, the
45e65d requirement on Agile as a project management
method was updated and two work items were discussed.
First, the “Agile” work item, associated with the 45e65d
requirement that is composed of four tasks. The first task
has been completed, the second is still in progress, while
the other two tasks were just added during this meeting.
As new tasks, they do not have contributors yet, they don’t
have an associated repository, and their deliverables are
not yet defined. Second, the work item concerning the
review of the issues log is still in progress. During the
meeting, the bugs were reviewed and their resolution was
planned.

Due to its design, our solution can be used on its own or
integrated to an existing model. For instance, to integrate
this solution to ReqlF, one would replace the SpecObject
element of the ReqlF model with our Requirement class
and/or replace the System Component element of ReqlF
with our Work Item class

5. CONCLUSION

In this paper, we discussed the role of information stan-
dards, a key enabler to the digitization of manufacturing,
and the inefficiencies in their current development process
that often relies on a predictive management approach. As
an alternative, we highlighted how an adaptive approach
that can overcome some of these inefficiencies also comes
with its own challenges, notably an increased need for
traceability and visibility of requirements, their elicitation,
their management, and their implementation. As this need
had not been addressed, we developed and proposed a new
requirement elicitation model that serves as a foundation
for providing requirements and decision traceability and
visibility, by recording and leveraging project meetings in
a formal way.

This information model, unlike existing traditional solu-
tions, has been designed for adaptive management and

captures all the information essential to properly imple-
ment an agile approach. Due to its simplicity, the model
can easily be used on its own or as an extension to an
existing requirements management solution. As an exten-
sion, it can extend and enrich traditional solutions that
were not initially designed for adaptive management.

Once this model has been properly implemented and in-
stantiated (i.e., data has been collected), the next chal-
lenge is to display the captured information in a mean-
ingful way to the different project stakeholders. Because
visibility is key to agile management, project information
is often shared graphically in an information radiator that
is easily accessible and understandable by all. Our future
work will focus on identifying the most appropriate visu-
alization techniques to display the information we are now
able to collect.

REFERENCES

Adedjouma, M., Dubois, H., and Terrier, F. (2011). Re-
quirements exchange: From specification documents to
models. In 2011 16th IEEE International Conference on
Engineering of Complex Computer Systems. IEEE.

Agile, S. (2019). Safe 5.0 framework. URL
https://www.scaledagileframework.com/. Accessed:
2020-10-10 [Online].

AP242, S. (2013). Requirement management
interoperability. URL http://www.ap242.org/
requirement-interoperability. Accessed: 2020-10-
13 [Online].

Balaji, S. and Murugaiyan, D.M.S. (2012). Waterfall
vs v-model vs agile: A comparative study on sdlc.
International Journal of Information Technology and
Business Management, 2(1).

Besrour, S., Rahim, L.B.A., and Dominic, P.D.D. (2016).
A quantitative study to identify critical requirement en-
gineering challenges in the context of small and medium
software enterprise. In 2016 3rd International Con-
ference On Computer And Information Sciences (IC-
COINS). IEEE.

Blind, K. (2009). Standardisation as a catalyst for inno-
vation. FRIM Report Series.

Davis, C.J., Fuller, R.M., Tremblay, M.C., and Berndt,
D.J. (2006). Communication challenges in requirements
elicitation and the use of the repertory grid technique.
Journal of Computer Information Systems, 46(5).

Decker, B., E. Ras, J.R., Jaubert, P., and Rieth, M. (2007).
Wiki-based stakeholder participation in requirements
engineering. IEEE Software, 24(2).

Edeki, C. (2015). Agile software development methodol-
ogy. Furopean Journal of Mathematics and Computer
Science, 2(1).

Fernandes, J., Duarte, D., Ribeiro, C., Farinha, C.,
Pereira, J.M., and da Silva, M.M. (2012). ithink : A
game-based approach towards improving collaboration
and participation in requirement elicitation. Procedia
Computer Science, 15.

Fischer, K., Rosche, P., Trainer, A., Feeney, A.B., and
Hedberg, T.D. (2015). Investigating the impact of
standards-based interoperability for design to manufac-
turing and quality in the supply chain.

Gallaher, M.P., O’Connor, A.C., John L. Dettbarn, J.,
and Gilday, L.T. (2004). Cost analysis of inadequate

+Name = Frank J.

+Organization = Acorp

I Wember L

+Name = Georges T.
+Organization = B&co

e =TomE !
“orgmizaion neop [
e

Task

+Subject = Survey on how to migrate to Agile
+Deadine = Q2 2020

4 gress
er

M
+URL = 5297dac

Fig. 4. Simple example of our Requirement Elicitation model (UML Object Diagram)

interoperability in the u.s. capital facilities industry.
National Institute of Standards and Technology (NIST).

Gambo, LP., Soriyan, A.H., and Tkono, R.N. (2015). A
proposed process model for requirements engineering
using delphi techniques for prioritization. International
Journal of Information Technology and Computer Sci-
ence.

Guasch, J., Racine, J.L., Sdnchez, I., and Diop, M. (2007).
Quality Systems and Standards for a Competitive Edge.
The World Bank.

Hause, M. (2006). The sysml modelling language. In Fifth
European Systems Engineering Conference. INCOSE.
Hedberg, T.D., Feeney, A.B., Helu, M.M., and Camelio,
J.A. (2016). Towards a lifecycle information framework
and technology in manufacturing. ASME Journal of

Computing and Information Science in Engineering.

Helu, M.M., Hedberg, T.D., and Feeney, A.B. (2017).
Reference architecture to integrate heterogeneous man-
ufacturing systems for the digital thread. CIRP Journal
of Manufacturing Science and Technology.

In, H. and Roy, S. (2001). Visualization issues for software
requirements negotiation. In 25th Annual International
Computer Software and Applications Conference. IEEE.

Institute, P.M. (2017). Agile Practice Guide. Project
Management Institute.

ISO (2017). Target date planner. Accessed: 2020-10-10
[Online].

ISO (2020). Industrial automation systems and integration
— product data representation and exchange — part
242: Application protocol: Managed model-based 3d
engineering.

Kumar, G. and Bhatia, P.K. (2012). Impact of agile
methodology on software development process. Interna-
tional Journal of Computer Technology and FElectronics
Engineering, 2(4).

OMG (2016). Requirements interchange format (reqif).
URL https://www.omg.org/reqif/. Accessed: 2020-
10-11 [Online].

PMI (2017). A guide to the project management body
of knowledge (pmbok guide). Project Management
Institute, 6 edition.

Pratt, M.J. (2005). Iso 10303, the step standard for
product data exchange, and its plm capabilities. In-
ternational Journal Of Product Lifecycle Management,
1(1).

Roques, P. (2015). How modeling can be useful to
better define and trace requirements. Requirements
Engineering Magazine. Accessed: 2020-10-13 [Online].

S. Friedenthal, A.M. and Steiner, R. (2015). A Practical
Guide to SysML, Third Edition. Morgan Kaufmann.

Sapp, B., Harvey, M., Toussaint, M., Krima, S., Feeney,
A.B., and Panetto, H. (2021). Agile for model-based-
standards development. NIST Advanced Manufacturing
Series 100-40.

Shah, T. and Patel, S.V. (2014). A review of requirement
engineering issues and challenges in various software de-
velopment methods. International Journal of Computer
Applications, 99(15).

Shameem, M., Kumar, C., Chandra, B., and Khan, A.
(2018). Impact of requirements volatility and flexible
management on gsd project success: A study based on
the dimensions of requirements volatility. International
Journal of Agile Systems and Management.

Sharma, S. and Pandey, S.K. (2013). Revisiting require-
ments elicitation techniques. International Journal of
Computer Applications, 75(12).

Stellman, A. and Greene, J. (2013). Learning Agile:
Understanding Scrum, XP, Lean, and Kanban. O’Reilly
Media.

SysML (2019). Sysml open source project. URL
https://sysml.org. Accessed: 2020-10-11 [Online].
Thummadi, B., Shiv, O., and Lyytinen, K. (2011). Enacted
routines in agile and waterfall processes. In 2011 Agile

Conference. IEEE.

