
HAL Id: hal-03253324
https://hal.science/hal-03253324

Submitted on 4 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Codon Model for Associating Phenotypic Traits with
Altered Selective Patterns of Sequence Evolution

Keren Halabi, Eli Levy Karin, Laurent Guéguen, Itay Mayrose

To cite this version:
Keren Halabi, Eli Levy Karin, Laurent Guéguen, Itay Mayrose. A Codon Model for Associating
Phenotypic Traits with Altered Selective Patterns of Sequence Evolution. Systematic Biology, 2021,
70 (3), pp.608-622. �10.1093/sysbio/syaa087�. �hal-03253324�

https://hal.science/hal-03253324
https://hal.archives-ouvertes.fr


A codon model for associating phenotypic traits with 

altered selective patterns of sequence evolution  

Keren Halabi1, Eli Levy Karin2*, Laurent Guéguen3, Itay Mayrose1* 

 

1 Department of Cell Research and Immunology, George S. Wise Faculty of 

Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel. 

2 Quantitative and Computational Biology, Max-Planck institute for biophysical 

Chemistry, Göttingen 37077, Germany. 

3 Laboratory of Biometry and Evolutive Biology, University of Lyon, CNRS, 

INRIA, Villeurbanne 69100, France. 

 

* To whom correspondence should be addressed: 

Itay Mayrose, Tel: 972-3-6407212; Fax: 972-3-6409380  

E-mail: itaymay@tauex.tau.ac.il 

Eli Levy Kain 

E-mail: eli.levy.karin@gmail.com 

 

 

Running title: Coding-sequence-phenotype integrated model 

Keywords: Evolutionary selection; relaxation, genotype-phenotype; ꝩ-

proteobacteria;  

mailto:itaymay@post.tau.ac.il


 

ABSTRACT 

Changes in complex phenotypes, such as pathogenicity levels, trophic lifestyle, and 

habitat shifts are brought on by multiple genomic changes: sub- and neo-

functionalization, loss of function, and levels of gene expression. Thus, detecting the 

signature of selection in coding sequences and associating it with shifts in phenotypic 

state can unveil the genes underlying complex traits. Phylogenetic branch-site codon 

models are routinely applied to detect changes in selective pressures along specific 

branches of a phylogeny. This a-priori branch partitioning implies that the course of 

trait evolution is fully known and that transitions in phenotypic states occurred only at 

speciation events. Here we present TraitRELAX, a new phylogenetic model, that 

alleviates these strong assumptions by explicitly accounting for the evolution of both 

trait and coding sequences. This joint statistical framework enables the detection of 

changes in the selection intensity upon repeated trait transitions, while accounting for 

uncertainty in the trait transitions pattern by using a stochastic model to describe the 

trait evolution. We evaluated the performance of TraitRELAX using simulations and 

then applied it to two case studies. Using TraitRELAX, we found that 36 bacterial 

genes experienced significant relaxation or intensification of selective pressure upon 

transitioning from free-living to an endosymbiotic lifestyle, as well as intensification 

in the Semenogelin 2 gene in polygynandrous species of primates. 

  



INTRODUCTION 

The operation of selection on heritable traits leaves distinct signatures in the genes 

that code for them. These include, for example, depletions in amino-acid changing 

mutations in genes whose function is crucial. Therefore, analyzing selection 

fingerprints at the molecular level while considering phenotypic changes can reveal 

the identity of the genes that are associated with the phenotype, their novel 

functionalities, or which ones are no longer required. The ongoing advances in high-

throughput sequencing and increasing efforts to collect phenotypic trait data (e.g., 

Parr et al. 2014, Tree Of Sex Consortium et al. 2014, Rice et al. 2015, Kattge et al. 

2011) provide the opportunity to detect associations between evolutionary patterns at 

the genomic level and whole-organism phenotypic traits. Specifically, detecting 

associations between such traits and selective forces operating at the codon level can 

provide insight into the locations of functional domains in coding regions that shape 

the traits of interest and reveal functionalities of unknown genes. With the increased 

availability of large-scale genome sequence data, the need for comparative methods 

for detection of such functionalities is increasing. However, such methods are scarce 

(Nagy et al. 2020). 

The nature of selection acting on a protein-coding gene can be revealed by 

computing the rate ratio between non-synonymous (amino acid altering) and 

synonymous substitutions, 𝜔. Initial codon models (Goldman and Yang 1994; Muse 

et al. 1994) incorporated a single 𝜔 parameter, thus reflecting the assumption of a 

single selective pressure that operates across the entire sequence, be it purifying (𝜔 <

1), neutral (𝜔 = 1) or positive (𝜔 > 1). Further developments integrated multiple 𝜔 

classes into site-models, thereby allowing variation in the selective regime across 

codon sites (Yang, Nielsen 2000). Moreover, branch-site models (Yang and Nielsen 



2002), in which the selective pressure can vary not only across sites, but also among 

branches of the phylogeny, can be used to detect site-specific changes of selective 

patterns across the phylogeny based on a prior partitioning of the branches into 

distinct categories (often termed background, 𝐵𝐺, and foreground, 𝐹𝐺).  

To date, branch-site models are often used to detect selective signatures at the 

codon level based on phenotypes of study. For example, using the branch-site model 

of Yang and Nielsen (2002), the color vision in butterflies and primates has been 

shown to be associated with positive selection in several sites of the opsin gene 

(Frentiu et al. 2007), and an evidence of connection between rice domestication and 

elevated 𝜔 in several genes has been found (Lu et al. 2006). Furthermore, the mating 

system in primates has been associated with  positive selection in the NYD-SP12 gene 

that is involved in formation of the acrosome during spermatogenesis (Zhang et al. 

2007). Positive selection in chitinase that takes part in construction of the cell wall 

and is implicated in defense against pathogens has been associated with sexual 

reproduction in evening primroses (Hersch-Green et al. 2012).  

The branch-site model RELAX (Wertheim et al. 2015) is designed to detect 

shifts in selection intensity in 𝐹𝐺 branches relative to 𝐵𝐺 branches. Intensification of 

selection (either purifying or positive) may be indicative of a transition into more 

stressful conditions while relaxation of selective pressure may be the result of release 

of functional constraints upon phenotype transition. The latter may indicate loss of 

function (Wu et al. 1986; Go et al. 2005) or upcoming lineage extinction (Moran 

1996). Analysis using this model allows distinguishing between three scenarios 

concerning the 𝐹𝐺 branches: (1) intensification of selection, reflected in 𝜔 values 

moving further away from 1 in the 𝐹𝐺 branches compared to the 𝐵𝐺 branches; (2) 

relaxation of selection, with 𝜔 values shifting towards 1; and (3) no change in 



selection intensity. To achieve that, RELAX incorporates three 𝜔 parameters, 𝜔0 ≤

𝜔1 ≤ 1 ≤ 𝜔2 that represent the site classes of the 𝐵𝐺 branches. The difference in the 

magnitude of selective pressure between the 𝐵𝐺 and 𝐹𝐺 branches is modeled using a 

selection intensity parameter 𝑘, such that each of the three 𝜔 values of the 𝐵𝐺 

branches are raised to the power of 𝑘 to obtain the selective pressures of the 𝐹𝐺 

branches. Consequently, 𝑘 < 1 implies relaxation of selection and 𝑘 > 1 implies 

intensification of selection. Using RELAX, several phenotypes have been shown to be 

associated with a change in selection intensity at the codon level. In orchids, 

heterotrophic lifestyle has been associated with relaxed purifying selection on the 

plastid genome (Feng et al. 2016; Roquet et al. 2016; Wicke et al. 2016), and in 

rodents there is evidence of intensified selection in subterranean species, compared to 

fossorial species (Tavares and Seuánez 2018). 

A notable shortcoming of existing branch-site models is the requirement for a 

prior specification of branches of the examined phylogeny into branch categories 

(e.g., 𝐵𝐺 and 𝐹𝐺). Based on the observed phenotypes of the extant species, a partition 

of the branches is usually determined by reconstructing the ancestral phenotypic states 

using the maximum likelihood or the maximum parsimony principles. Either way, the 

obtained partition is assumed to represent the phenotypic history of the trait across the 

phylogeny. However, considering a single partition disregards any uncertainty in the 

reconstructed evolutionary history of the trait and tends to underestimate the number 

of trait transitions. In addition, such an approach unrealistically forces trait transitions 

to occur simultaneously with speciation events (i.e., at internal nodes of the tree), 

while in reality they could occur anywhere along a branch. Consequently, any 

misspecification of the branch assignments could potentially result in failure to detect 



changes in selection patterns, as well as high false positive rate (Lu and Guindon 

2014).  

To account for uncertainty in trait evolution and for possible associations 

between the processes of molecular and phenotypic evolution, several methods have 

been developed, in which phenotypic changes are explicitly modelled and analyzed 

jointly with sequence data. CoEvol (Lartillot and Poujol 2011) is designed for the 

analysis of continuous phenotypic traits, while TraitRate (Mayrose and Otto 2011), 

TraitRateProp (Levy Karin et al. 2017) and the method of O’Connor and Mundy 

(2009; 2013) are designed for discrete phenotypes. These methods use a rate matrix 

for nucleotide or amino acid substitutions to either compose a single phenotype-

genotype rate matrix (O’Connor and Mundy 2009) or multiply it by a relative rate 

parameter according to the history of the phenotype (Mayrose and Otto 2011; Levy 

Karin et al. 2017). Conceptually, using a single phenotype-genotype rate matrix for 

the analysis of codon data is a straight-forward extension of O’Connor and Mundy’s 

model but this approach can result in inconsistent phenotypic reconstructions (as 

described by Levy Karin et al, 2017). Both TraitRate and TraitRateProp are 

inadequate for the analysis of codon data due to their assumption that the entire rate 

matrix is scaled upon phenotype transition, and thus cannot extract a differential 

effect on synonymous and nonsynonymous substitutions. The PG-BSM method 

(Jones et al. 2019) extended this approach to codon sequences, but is used to detect 

changes in selective regime in association with a phenotype, rather than changes in 

selection intensity, which is the focus of the current study.  

Here, we present TraitRELAX, which enables the detection of changes in the 

selection intensity upon transitions between phenotypic states. TraitRELAX considers 

many possible trajectories of trait evolution (“histories”), weighted by their 



probabilities (Fig. 1). By doing so, TraitRELAX alleviates the need to rely on pre-

specified branch partitions and allows trait transitions to occur anywhere along a 

branch. Using extensive simulations, we measure the sensitivity and specificity of 

TraitRELAX and examine the accuracy of the inferred parameter estimates under a 

range of scenarios. We then demonstrate the utility of the method by detecting 

relaxation in several house-keeping genes of ꝩ-proteobacteria upon transitioning to 

endosymbiotic lifestyle, and intensification of selection in the SEMG2 gene, involved 

in sperm competition, in primate lineages with a polygynandrous mating system. 

Figure  1  

  

Selection patterns in codon sequence evolution. (a) The true history of the binary 

phenotypic trait, and thus the true partition of the branches into categories. (b) codon 

models of the whole genome or site families do not allow selective regimes to vary 

across the phylogeny, assuming a time homogenous selection pattern. (c) Branch-site 

models allow the selective regime to vary between the branches of the tree, according 

to a -priory transitions pattern. (d) The suggested trait-related codon model co-infers 

the evolution of the phenotypic trait, incorporating uncertainty in its history by 

integrating over multiple possible histories, weighted by their probability. 

 



MATERIALS AND METHODS 

A joint model for character traits and coding sequences 

TraitRELAX is a joint probabilistic model of phenotypic (termed throughout 

‘character trait’) and coding-sequence evolution. The input data consist of coding 

sequence data (𝐷𝑆) in the form of a multiple sequence alignment (MSA), character 

data (𝐷𝑐) describing the trait states of the extant species, and a tree with specified 

branch lengths (𝑇). The model integrates two continuous time Markov processes: one 

describing the evolution of the character trait (𝑀𝐶) and the other is a branch site 

model that describes the evolution of the coding sequences (𝑀𝑆). By considering the 

evolution of both processes in a joint statistical framework, TraitRELAX is able to 

detect relaxation or intensification of selection at the codon level in association with 

the character evolution. In our branch-site model, branch partitioning is determined 

based on the history of the trait of interest, where branch categories are mapped to 

different character states. Thus, in case of a binary trait, there are two branch 

categories ‘0’ and ‘1’.   

Character trait evolution TraitRELAX considers character traits with two 

possible states (binary) coded as either ‘0’ or ‘1’. 𝑀𝐶 is defined by the rate 

matrix 𝑄𝐶: 

𝑄𝐶 = 𝜇 [
−𝜋1 𝜋1

𝜋0 −𝜋0
]      (1) 

where 𝜋1 = 1 − 𝜋0 represents the rate of change from state ‘0’ to ‘1’ and 𝜇 is a 

scaling parameter to adapt the branch lengths of 𝑇 to the expected number of 

character changes. The model described here is not limited to binary character traits 

but can be applied generally for larger number of discrete states using the appropriate 



rate matrix (Lewis 2001), but in such cases the model would contain additional free 

parameters.  

Coding sequence evolution The TraitRELAX sequence model (𝑀𝑆) is based on the 

branch-site model RELAX (Wertheim et al. 2015). This model consists of six rate 

matrices 𝑄𝑏𝑐, one for each combination of branch category 𝑏 ∈ {0,1} and site class 

𝑚 ∈ {0,1,2}, represented by the parameter ωm: 

 [𝑄𝑏𝑚]𝐼𝐽 = 𝑟 (

𝜃𝑖𝑗𝜋𝐽      for synonymous substitution  between nucleotides 𝑖 and 𝑗       

𝜔𝑚
𝑘𝑏𝜃𝑖𝑗𝜋𝐽 for nonsynonymous substitution  between nucleotides 𝑖 and 𝑗

0              𝐼 and 𝐽 differ by more than one nucleotide                                     

) (1) 

The diagonal elements are determined by the constraint that each row in Q sums to 

zero. Above, 𝑟 represents a scaling parameter that is used to convert the branch 

lengths of the input tree to units of expected number of codon substitutions; 𝜋𝐽 

denotes the frequency of codon J, and 𝜃𝑖𝑗 denotes the rate of substitution from 

nucleotide i to nucleotide j, which can be parameterized based on any time-reversible 

nucleotide substitution model (e.g., Tavaré 1986, Tamura 1992). In the analyses 

presented throughout this study, the K80 nucleotide substitution model (Kimura 1980) 

was used and thus the nucleotide model incldues a single parameter, which is the 

transition to transversion rate bias. The 𝑘𝑏 parameter represents the selection intensity 

operating on branch category b relative to branch category 0, and thus 𝑘0 = 1.  

If we assume that a branch partitioning B is available, the likelihood at site 𝑥, 

𝐿𝑠,𝐵
𝑥 , can be computed by averaging over the conditional probabilities 𝑃(𝐷𝑆

𝑥|𝐵, 𝑀𝑆, 𝑚) 

of observing the sequence data at site x, 𝐷𝑆
𝑥, in each site class m. Note that for each 

site class two rate matrices, Q0m and Q1m, are alternately used according to the branch 

assignments in B. The likelihood thus becomes:  

𝐿𝑆,𝐵
𝑥 = ∑ 𝑝𝑚 × 𝑃(𝐷𝑆

𝑥|𝐵, 𝑀𝑆, 𝑚)2
𝑚=0         (3) 



where 𝑝0 and 𝑝1 are two free parameters, describing the proportion of sites associated 

with site classes 0 and 1, respectively, and 𝑝2 = (1 − 𝑝0 − 𝑝1) those with site class 2. 

Joint likelihood computation 

The likelihood of the combined model is the joint probability of 𝐷𝑐 and 𝐷𝑆 

given all model parameters and the phylogeny: 

𝐿 = 𝑃(𝐷𝐶 , 𝐷𝑆|𝑇, 𝑀𝐶 , 𝑀𝑆)        (4) 

which can be decomposed to:  

𝐿 = 𝑃(𝐷𝐶|𝑇, 𝑀𝐶) × 𝑃(𝐷𝑆|𝑇, 𝐷𝐶 , 𝑀𝐶 , 𝑀𝑆)      (5) 

where the first term, denoted here 𝐿𝐶  is the likelihood of the character model and is 

computed using the pruning algorithm (Felsenstein 1981). The second term, denoted 

𝐿𝑆|𝐶 , is the likelihood of the sequence model, conditioned on 𝑀𝐶 and 𝐷𝐶 . Thus, under 

these settings the computation of 𝐿𝑆|𝐶 requires knowledge of the character state in 

each part of 𝑇. This history is generally unknown, but the probability of a given 

history 𝑃(ℎ|𝑇, 𝐷𝐶 , 𝑀𝐶) can be computed based on 𝐷𝐶  and 𝑀𝐶. Thus, the likelihood of 

the sequence model for site 𝑥, 𝐿𝑠|𝑐
𝑥  is computed by integrating over all possible 

character histories, weighted by their probabilities: 

𝐿𝑆|𝐶
𝑥  = ∫ 𝑃(𝐷𝑆

𝑥 |𝑇, 𝐷𝐶 , 𝑀𝐶 , 𝑀𝑆, ℎ)𝑃(ℎ|𝑇, 𝐷𝐶 , 𝑀𝐶 , 𝑀𝑆)𝑑ℎ
ℎ

    (6) 

Omitting parameters that do not affect the probability of 𝐷𝑆
𝑥, we obtain:  

𝐿𝑆|𝐶
𝑥  = ∫ 𝑃(𝐷𝑆

𝑥 |ℎ, 𝑀𝑆)𝑃(ℎ|𝑇, 𝐷𝐶 , 𝑀𝐶)𝑑ℎ
ℎ

      (7) 

The computation of 𝐿𝑆,ℎ
𝑥 = 𝑃(𝐷𝑆

𝑥|ℎ, 𝑀𝑆) follows from Equation 3. Note, however, that 

in the branch partition induced by h, character transitions are allowed to occur 

anywhere along a branch, not necessarily at the internal nodes of the tree. Thus, some 

branches of the input phylogeny may be divided into several segments, each mapped 

to a different branch class. 



Finally, assuming independence of sequence sites 𝑥: 

𝐿𝑆 = ∏ 𝐿𝑆
𝑥

𝑥           (8) 

 

Approximations 

The number of possible character histories is infinite so the full integration in 

Equation 7 is infeasible. We thus approximate it by importance sampling using 

stochastic mappings (Nielsen 2002) and replace the integral by summation over 𝑁 

mappings, each with a probability of 1/N: 

𝐿𝑆
𝑥 ≈

1

𝑁
∑ 𝑃(𝐷𝑆

𝑥|ℎ𝑖, 𝑀𝑆)
𝑁

𝑖=0
        (9) 

The likelihood computation detailed above requires 𝑁 computations of the 

sequence likelihood, which is costly. Thus, as a second approximation, we replace the 

costly summation over N mappings with a single likelihood computation given a 

single history that represents the expected amount of time spent in each character state 

along each branch, 𝐸(ℎ): 

𝐿𝑆
𝑥 ≈ 𝑃(𝐷𝑆

𝑥|𝐸(ℎ), 𝑀𝑆)                   (10) 

Obtaining the expected history 𝐸(ℎ) can be performed either by averaging N sampled 

stochastic mappings (Mayrose and Otto 2011, Levy Karin et al 2017) or analytically, 

following the rewards method of Minin and Suchard (2008). For more details on both 

approaches, see supplementary materials. 

Estimating parameter values  

The TraitRELAX model includes a total of 19 parameters, assuming that the 

K80 nucleotide substitution model is used and that codon frequencies are estimated 

using the F3x4 model. The nine codon frequencies parameters are estimated from the 

observed sequence data, while the rest are estimated using a maximum likelihood 



search that is divided into two stages: (1) searching for the character model 

parameters, given a fixed set of sequence model parameters, and (2) searching for the 

sequence model parameters, given a fixed set of character model parameters. The first 

stage yields an assignment for the character model parameters, with which the 

expected character history, 𝐸(ℎ), is computed. In this stage, the local search is 

conducted using either a sequential one-dimensional search (Brent 1974) or a two-

dimensional search (Hestenes and Stiefel 1952). In the second stage, branch 

partitioning that is induced from 𝐸(ℎ) is used for likelihood computations. In this 

stage, the values for the sequence model parameters are being searched 

simultaneously using the conjugate gradient method (Hestenes and Stiefel 1952).  

Testing for a trait-related change in selection intensity 

A null model, in which the selection intensity parameter, k, is fixed at 1 (i.e., 

imposing the same selection intensity throughout the tree, with no effect of the 

character trait) allows statistical testing of the hypothesis that the evolution of the 

character trait is not associated with the selection intensity operating on the coding 

sequences. This is compared to an alternative model, in which 𝑘 is free to vary. Since 

the models are nested, the null and alternative models can be compared using a 

likelihood ratio test (LRT) with one degree of freedom. As an alternative, the 

distribution of the likelihood ratio was also estimated using parametric bootstrapping 

(see Results). 

 

Simulating data sets under the TraitRELAX model 

Simulations were used to investigate the power and precision of our method 

and to assess its accuracy in inferring the selection intensity parameter k. In general, 

the simulations were performed by first simulating character evolution along a given 



tree. As part of these simulations, the exact locations of character state transitions 

were recorded, thereby yielding branch partitioning based on the simulated (i.e., true) 

character histories. This partitioning was used to simulate codon sequences using the 

RELAX sequence model. Specifically, random trees with different numbers of taxa 

(16, 32, and 64) were generated according to a birth–death process using INDELible 

(Fletcher and Yang 2009) with default parameters (speciation rate 0.3 and extinction 

rate 0.1) and were scaled so that the distance from the root to the tips, defined as the 

tree height, is 1. Trait histories were simulated along the generated trees and the 

specified model of character evolution using Bio++ (Guéguen et al. 2013). These 

histories were then used to generate the codon sequence data using INDELible 

(Fletcher and Yang 2009) based on the specified sequence model of TraitRELAX. 

Sequence data were simulated with various number of positions (l = 150, 300, and 

600), representing typical range of protein lengths (Anon 2016). Unless otherwise 

stated, all simulations were conducted with the parameters of the character model set 

to 𝜋0= 0.5 and μ = 8 and parameters of the sequence model set to 𝜔0 = 0.1, 𝜔1 =

0.8, 𝜔2 = 2, 𝑝0 = 0.5, 𝑝1 = 0.4 and the transition/transverion rate ratio kappa = 0.2. 

Different values of the selection intensity parameter were simulated: 𝑘 = 0.2 and 0.8 

represent relaxation of selection along lineages with character state 1, 𝑘 = 1.2, 1.6, 

and 2 represent intensification of selection, and 𝑘 = 1 represents null conditions of no 

trait-related change in the selection intensity. For each simulated scenario, 50 

independent runs were conducted (each based on a different tree), with the exception 

of cases with 𝑘 = 1, for which 200 runs were conducted. The larger number of 

simulations in the latter case was used to determine the empirical threshold for the 

LRT using parametric bootstrapping. The different scenarios analyzed in this study 

are summarized in table 1.  



 

TABLE 1 

Values of simulation parameters  

Tree 

length 

Character model 

parameters 

# Taxa Alignment 

length 

(codons) 

Selection 

intensity 

k 

Simulation 

scenario 

𝝁 𝝅𝟎 

 

4 

 

1,4,8,16 

 

0.5 

 

32 

 

300 

0.5  

1 1 

 

1,4,8,16,32 

 

varies* 

 

0.5 

 

32 

 

300 

0.5  

1 2 

 

4 

 

4 

 

      

8 

 

8 

 

0.1,0.3,0.5,0.7,0.9 

 

0.5 

32 

 

16,32,64 

300 

 

150,300,600 

0.5 3 

  

0.2,0.8,1,1.2,1.6,2 4 

     

Simulation parameters used to evaluate TraitRELAX. 

*The value of 𝜇 was adjusted to the tree length to obtain approximately the same 

number of character transitions in all the simulations (for example, in simulations 

with tree length 1, 𝜇 was set as 32, and in simulations with tree length 4 it was set as 

8). 

 

 



Empirical Data analyses 

Endosymbiont and free living ꝩ-proteobacteria We first examined the utility of 

TraitRELAX in detecting changes in the selective pressure upon transitions in the life 

style of bacteria. To this end, 68 genes from 50 species of ꝩ-proteobacteria, of which 

36 are free living and 14 are endosymbionts were examined. The coding sequences, 

the phylogeny, and character state assignments of extant taxa (free living = 0, 

endosymbiont = 1) were retrieved from Husník et al. (2011). The sequences were 

aligned with RevTrans version 2.0b (Wernersson and Pedersen 2003) using default 

parameters. Positions with more than 90% gaps across sequences were filtered out.   



Mating system evolution in primates As a second empirical example, we examined 

the evolution of SEGM2, a gene known to be involved in the male reproduction 

system, in 24 primate species with respect to changes in the mating system. Character 

state assignments (1 = multimale-multifemale system, 0 = other) were collected from 

the literature (Dixson 1997; Dixson and Anderson 2002; O’Connor and Mundy 2009). 

Sequence accessions of the SEMG2 gene were collected from previous papers 

(Ulvsbäck and Lundwall 1997; Jensen-Seaman and Li 2003; Hurle et al. 2007; Roan 

et al. 2011; Isshiki and Ishida 2019). The accession of Otolemur garnettii was 

excluded due to exceedingly larger sequence length. In case more than one accession 

per species was available, a representative accession was selected (the one with 

maximal pairwise similarity relative to all other accessions). Finally, the assembled 

sequences were aligned with RevTrans version 2.0b (Wernersson and Pedersen 2003) 

with default parameters. Positions with more than 90% gaps across sequences were 

filtered out. The topology of the tree was obtained from the TimeTree knowledge-

base (Hedges et al. 2006) and the lengths of the branches were optimized based on the 

M3 codon model (Yang and Nielsen 2002). The assembled sequence data is provided 

in the supplementary materials. 

  

Availability 

TraitRELAX was implemented as an open-source program in Bio++ 

(Guéguen et al. 2013) and its code is available at 

https://github.com/halabikeren/TraitRELAX/. The input to the program is a tree in 

Newick format, as well as sequence and character data files in Fasta format. The 

program outputs the maximum-likelihood score for the null and alternative models as 

well as their inferred model parameters. 

https://github.com/halabikeren/TraitRELAX/


 

RESULTS 

Inferring Associations Between Selection Intensity and Phenotypes with the 

TraitRELAX Model 

In this work we developed TraitRELAX to detect associations between the 

evolution of a binary phenotypic trait and the intensity of selective forces operating on 

coding sequences. TraitRELAX models their joint evolution by combining two 

stochastic processes: a two-state Markov process of character changes and a variant of 

the branch-site model RELAX (Wertheim et al. 2015) of changes in the coding 

sequences (see “Materials and Methods” for full details). In this joint model, each 

position in a coding sequence is subject to a selective regime (negative, neutral, or 

positive) whose intensity could increase (decrease) upon a change in the binary 

phenotypic trait. Namely, sequence evolution in parts of branches of the phylogenetic 

tree evolving under state '0' (background, 𝐵𝐺) is described by a set selection 

parameters: 𝜔0, 𝜔1 and 𝜔2, while in parts evolving under state '1' (foreground, 𝐹𝐺) an 

intensification (relaxation) parameter 𝑘 yields 𝜔0
𝑘, 𝜔1

𝑘 and 𝜔2
𝑘 to describe sequence 

evolution. TraitRELAX allows testing whether 𝑘 is significantly different from 1 

(indicating intensification/relaxation) and estimating all relevant model parameters 

(fully detailed in the “Materials and Methods”). We evaluated TraitRELAX on 

simulated data sets and then applied it to discover intensification in the SEMG2 gene 

of primates with polygynandrous mating system. 

  



Assessing Performance Using Simulations 

Simulations were used to investigate the performance of TraitRELAX with 

regard to (1) accuracy of phenotypic trait evolution (“character history 

reconstruction”), (2) false positive rate (FPR): the tendency of the method to detect 

association between trait evolution and sequence evolution when no such association 

exists, power: the ability of the method to correctly detect association between trait 

and sequence evolution when such an association exists, (3) accuracy of parameters 

estimation (e.g., the selection intensity parameter, 𝑘), and (4) analysis of running time 

of the method. As a comparison to all these analyses, RELAX was executed with 

partitions that were derived from the true character histories used in the simulation 

procedure, thus serving as a reference for the optimal performance that could be 

expected from the method when eliminating any error in character history 

reconstruction. To compare our method to an existing one, RELAX was also executed 

with partitions that were induced by applying the maximum parsimony principle on 

the simulated character data. 

 



Accuracy of phenotypic trait evolution The full likelihood function of 

TraitRELAX (Equation 6) integrates over all possible character histories. However, 

since this integration is not feasible, the computation is approximated by a set of 𝑁 

sampled stochastic mappings (Equation 9, denoted here exhaustive approximation). 

Another approximation uses a single expected history (Equation 10) that is either 

based on the stochastic mappings or computed analytically. We estimated the 

accuracy of these approximations by using two measures: (1) the distance between the 

estimated character histories and the true (i.e., simulated) character history, measured 

by either the degree of dissimilarity between their induced partitions or by the 

difference in the computed likelihood values and (2) the rank of similarity between 

the expected history and the true history, across stochastic mappings. The latter serves 

as a measure of the effect of the reduction of multiple stochastic mappings to a single 

expected history on the accuracy of estimated character evolution. More details on 

these two measures are available in the supplementary materials. The mean values of 

each of these measures were computed for simulations from scenario 1. For each 

simulated dataset, three executions of TraitRELAX were carried out; one for each 

approximation approach. In the first two executions, 1000 stochastic mappings were 

sampled. 

In all approximations, the distance between the estimated character histories 

and the true history increases with the number of transitions in the true history (i.e., 

higher values of 𝜇). When comparing the derived partitions (Fig. 2a), all three 

approximations exhibit similar patterns. However, when comparing these three with 

regards to the computed likelihood, the approximations based on a single history 

exhibit lower distance from the true history compared with the exhaustive 

approximation (  



Figure 2b). In addition, the mean rank of the expected history among 

stochastic mappings increases with the simulated value of 𝜇 (  



Figure 2c), suggesting that the accuracy of approximations using a single 

history, compared with the exhaustive approximation, increases with the complexity 

(i.e., number of character transitions) of the true history. The results suggest that the 

single-history approximations have similar accuracies and are superior to the 

exhaustive approximation. However, since the expected history that is reconstructed 

analytically is robust to stochasticity in sampled mappings by computing the locations 

of transitions based on the rewards methods (Minin and Suchard 2008), we 

recommend using it.  

  



Figure 2 

 

Assessment of approximations for TraitRELAX likelihood computation. (a) The mean 

distance between the derived partitions from the estimated character histories and the 

true (i.e., simulated) history, measured by the dissimilarities between them along the 

phylogeny. (b) The mean distance between the likelihood values based on of the 

estimated character histories and the true (i.e., simulated) history, measured by the 

relative difference in log likelihood values. (c) The mean rank of the expected 

histories across stochastic mappings. All measurements are shown for increasing 

values of 𝜇 and for the 3 approximation approaches; Exhaustive (squares), Expected 

history obtained based on sampled stochastic mappings (rectangles) and analytically 

estimated expected history (circles). 

  



 

False positive rate and power  We analyzed the FPR by setting the selection 

intensity parameter 𝑘 to 1, thereby simulating sequence data with no changes in 

selection intensity along the phylogeny. Similar to Levy Karin et al. (2017), we found 

deviations of the FPR from the expected 5% when LRT test statistic is compared to a 

𝜒1
2 distribution (FPR of 16.5%, 21% and 15.5%, for simulations with 16, 32, and 64 

taxa, respectively, when the number of codon positions was 300).  Importantly, when 

given the true (i.e., simulated) character histories as input, TraitRELAX still exhibited 

slight derivations from the expected FPR of 5% (FPR of 5%, 5.6% and 6.1%, for 

simulations with 16, 32, and 64 taxa, respectively, when the number of codon 

positions was 300), thereby suggesting that the high FPR cannot be solely attributed 

to error in estimation of character history. We thus developed an alternative 

parametric bootstrap procedure for corrected p-value computation. To obtain a fixed 

FPR of 5%, we determined a threshold for the LRT statistic as the 95th percentile of 

the LR values that TraitRELAX yielded for the simulated null data. The thresholds 

determined this way for simulations with 300 codon positions were 6.57, 7.62, and 

6.79, for 16, 32, and 64, respectively (compared to 3.84 using the 𝜒1
2 approximation). 

These thresholds were then used for power analysis.  

We analyzed the power of TraitRELAX based on simulations from scenario 4. 

In these simulations, we varied the number of species, the lengths of the simulated 

codon alignments and the value of selection intensity parameter 𝑘. 

The power of the method increases with the number of sequence positions (Fig 

3a); the power for simulations with 32 taxa and 𝑘=0.2 is 0.76 and 0.98 for 300 

positions and 600 positions in the sequence alignment) and the number of taxa in the 

tree (Fig 3b; power for simulations with 300 positions and 𝑘=0.2 is 0.76 and 0.84 for 



32 taxa and 64 taxa). Furthermore, increasing the magnitude of the selection intensity 

parameter also resulted in increased power (The power was 0.74 for simulations under 

𝑘=0.5, and 0.84 for simulations under 𝑘=0.2 in simulations of 64 taxa and 300 

positions). To examine the effect of the number of transitions in character state of the 

trait on the power of the method, the power was computed for simulations with 

increasing values of 𝜇 (i.e., the character transition rate). A maximum power value of 

0.66 was observed for scenario of a mild 𝜇 value of 4 and decreased (as low as 0.2) 

for extreme values (Fig 3c). As expected, the reference (i.e., TraitRELAX when given 

the true history) consistently exhibits higher power than standard execution of 

TraitRELAX, and the difference between the two approaches increases with the value 

of 𝜇, that is, with increasingly large number of transitions (The power was 0.2 and 

0.86 in standard executions and when given the true history in simulations with 

𝜇=16).  

  



 

Figure 3  

 

Assessment of the power and false positive rate (FPR) of TraitRELAX. The percent 

of replicates from simulation scenario 4 for which TraitRELAX rejected the null 

model based on parametric bootstrapping is shown is shown for simulations of 32 

taxa with increasing number of codon positions (d) and for simulations of 300 codon 

positions with increasing number of taxa; 150, 300 and 600 codon positions in blue, 

orange and green, and similarly, 16, 32 and 64 taxa are in blue, orange and green. (c) 

The power of the method is shown for simulations with increasing simulated values 𝜇 

from scenario 1. Results are shown for standard executions of TraitRELAX and 

executions of RELAX given the simulated character histories in full and dashed lines.  

 

  



Accuracy of parameters estimation The accuracy of the method was evaluated by 

the error in the inferred value of selection intensity parameter 𝑘, which is of major 

importance since it is reflective of the magnitude of trait-related change in selection 

intensity. The results exhibit an increase in the error for extreme values of 𝑘, and 

higher error for relaxation values than for intensification values (Figure a; The mean 

error is 0.77 and 0.17 for simulations of 32 taxa and 300 codon positions when k is 

0.2 and 1.2). The influence of the trait evolution on the accuracy in inference of 𝑘 was 

also examined on simulations with increasing values of 𝜇 (scenario 1) and 𝜋0 

(scenario 3). The lowest error is obtained for mild values of 𝜇=4 but the accuracy is 

robust to the simulated value 𝜋0 (Figure  3Sa-b). In addition, TraitRELAX exhibits 

lower error than RELAX when given a partition inspired by the maximum parsimony 

principle, for simulation with 𝜇 higher than 4 and tree length larger than 4. This 

suggests that a more refined modeling of the character evolution of the trait leads to 

higher accuracy in the inference of 𝑘, when the true history of the trait is reach with 

transitions. Lastly, similar to the results of the power analysis, we found that the 

accuracy of inferring the model parameters increases with the number of species in 

the data set and with the number of positions in the sequence data (Fig. 4S). 

Due to the nature of expression of selection intensity parameter 𝑘 via the 𝜔 

values of branch category 1, we studied the interplay between the inference of 𝑘 and 

that of the 𝜔 parameters by examining the likelihood surface as a function of 𝑘 and 

𝜔2 (Figure c). Both the true (i.e., simulated) values and maximum likelihood 

estimators are located along a ridge of high likelihood value, such that a large number 

of combinations of {𝑘, 𝜔2} pairs receive similar log-likelihood scores. The results 

exhibit apparent deterioration in likelihood as the parameter values grow farther than 

the simulated ones, with a more prominent effect upon changes in the value of 𝑘.  



Figure 4 

 

Assessment of the accuracy of TraitRELAX. (a)The distribution of inferred values of 

𝑘 across simulations from scenario 4 with 32 taxa and 𝑘 ∈ {0.2,1,2}, (b) the mean 

error in the inferred values of 𝑘 are shown for standard executions of TraitRELAX 

and executions of RELAX given a partition inspired by a maximum parsimony 

solution in full and dotted lines, for simulations from scenario 4 with 32 taxa and 300 

codon positions with increasing simulated values of 𝑘. The error is measured as 

|𝑙𝑜𝑔(�̂�) − 𝑙𝑜𝑔(𝑘)| to account for the exponential effect of 𝑘 on the 𝜔 values of 

branch category 1. (c) Log likelihood surface over a grid of 300 combinations of 𝜔2 

and 𝑘. The figure depicts a single simulation instance in which 𝑘=0.8, 𝜔2=2 (with 

𝑝2=0.99) with 32 species and 600 codon positions. The simulated values and 

maximum likelihood estimators are shown in green and red.  

 

 

 

 

  



Duration  The mean run time of the method was computed for while allocating 

each run a single core in a Linux server. The run time of the method varies both with 

the number of taxa (mean values of 10.5 and 14.77 hours for simulations of 32 and 64 

taxa with 300 positions) and with the number of positions in the coding sequence 

alignment (mean values of 9.15 and 10.5 hours for simulations of 150 and 300 

positions with 32 taxa). Importantly, the average number of cycles required to 

converge to optimal assignment of the alternative model parameters remains 

approximately 2 consistently throughout the simulation study. 

 

Association Between the intensification in SEMG2 Gene and Polygynandry in Primates  

We used TraitRELAX to investigate associations between a polygynandrous 

mating in primates the intensity of selection in the Semenogelin II (SEMG2) gene. 

We fitted two models to the collected data; in the first model, we fixed the value of 

selection intensity parameter 𝑘 to 1, thus imposing that the sequence evolution is in no 

association to the character evolution. In the second model, we set the selection 

intensity parameter 𝑘 as free, thus allowing the sequence evolution to be in 

association with character changes. To compare our method to existing ones, we also 

fitted the RELAX model described earlier based on two alternative partition that were 

inspired by the maximum parsimony and maximum likelihood ancestral assignments 

of character states of the trait along the phylogeny. Here, we also fitted two models 

accordingly; one in which 𝑘 is fixed to 1 and another where it is free to vary. 

Following the FPR control approach used in simulations, we tested the hypothesis of 

polygynandry-related change in selection intensity using parametric bootstrapping, 

both in RELAX and in TraitRELAX. The result in RELAX varied based on the given 

partition; while the results given the partition inspired by the maximum likelihood 



ancestral assignments gave no significant evidence of trait-related change in selection 

intensity (𝑘=1.44, 𝑝 − 𝑣𝑎𝑙𝑢𝑒=0.066), the one when given the partition based on 

maximum parsimony principle showed significant evidence  of intensification of 

selection under the polygynandrous state (𝑘= 2.00, 𝑝 − 𝑣𝑎𝑙𝑢𝑒=0.002). TraitRELAX 

also yielded significant result (𝑘=2.55, 𝑝 − 𝑣𝑎𝑙𝑢𝑒=0.001). This suggests that by 

accounting for uncertainty in trait evolution, TraitRELAX is robust to misleading 

starting point. This is in opposite to RELAX which is susceptible to misspecifications 

in the input partition. Importantly, the results of TraitRELAX obtained lower p-value 

than the ones in RELAX, and obtained better likelihood of the sequence model, which 

corresponds to RELAX (by a difference of 0.63 log likelihood units). Examination of 

the partitions used by RELAX and the estimated character histories by TraitRELAX 

suggests that the more refined pattern of transitions in the latter plays a role in 

yielding different inference in the two approaches (Figure 5).  

 

 

 

 

 



Figure 5 
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Partitions used in RELAX and TraitRELAX on a species tree of primates. 

 

  



DISCUSSION 

We developed TraitRELAX, a new method for detecting associations between 

organismal phenotypes and selection intensity at the codon level. Within the 

framework of the method, an association is expressed as a dependency between the 

evolutionary processes of phenotypic changes and patterns of sequence change along 

branches of a phylogeny. An important consideration of the method is that transitions 

in the phenotypic states should affect all sequence positions simultaneously, and thus 

the evolution of each site cannot be treated independently. Since the exact timings of 

phenotypic transitions are unknown, we use the stochastic mapping approach to 

sample possible scenarios of change that led to the observed phenotypic states at the 

extant taxa, which in turn induce multiple partitions that are provided to the RELAX 

model simultaneously. TraitRELAX can receive as input an ultrametric tree, which 

reflects an assumption in which branch lengths are proportional to time (e.g., millions 

of years) and better fits traits whose rate of change is time-dependent, such as 

organismal habitat or lifestyle. Alternatively, TraitRELAX can also consider non-

ultrametric trees, in which the branch lengths may correspond to the expected number 

of sequence substitutions per site, and better fit traits whose rate of change is 

proportional to the amount of genetic change, like pathogenicity or generation time. 

Because the inference of time calibrated (or ultramertric) trees is known to be error-

prone (Graur and Martin 2004; Hedges and Kumar 2004), one may prefer as a general 

rule of thumb the use of uncalibrated trees unless there is strong evidence that the 

evolution of trait in question is time dependent.    

The performance of TraitRELAX was evaluated with simulations which 

included various scenarios of dependency between phenotypic and sequence changes 

as well as scenarios in which these were independent of each other. We found that 



larger number of species in the input tree contributes to the increase in power and 

accuracy of TraitRELAX, as well as large number of sequence positions. This result 

well reflects an expected pattern in which the increase in the size of the input data 

increases the statistical power of a method. Since the number of sequence positions is 

fixed and is determined by the size of the analyzed protein coding gene, it will 

beneficial to collect sequences from as many species as possible to assure adequate 

performance. The results demonstrated that TraitRELAX performs well when 

provided data with 300 sequence positions and 64 species, although shorter sequences 

may suffice when larger trees are available. We also expected optimal results when 

large proportion of the sequence data is associated with the trait of interest, to avoid 

the potential artifact of non-associated positions affecting the overall fit of the model 

to the data. The results further showed that for the TraitRELAX model an empirical 

likelihood ratio (LR) test is better suited to test trait-related change in selection 

intensity. An alternative that is more compatible with the case of using real data, yet 

time consuming, approach is to use a full parametric bootstrapping procedure 

(Whelan and Goldman 1999), which can obtain for each examined dataset a more 

compatible distribution of LR values and consequently result in reduction of the FPR. 

The results also indicated that the method is sensitive to the confounding effect 

between 𝑘 and the 𝜔 parameters (underestimation of the inferred values of the 𝜔0 

parameter may be compensated by overestimation in the inference of the 𝑘 parameter, 

such that the induced value of 𝜔0
𝑘 is similar and thus the obtained likelihood score is 

nearly unchanged). TraitRELAX was able to detect trait-related relaxation of selective 

pressures in a biological example that have been hypothesized to exhibit such pattern 

in the past. In the reproductive gene SEMG2, TraitRELAX detected polygynandry-

related intensification.  



To speed up the computation of the likelihood of the TraitRELAX model, 

which is meant to integrate over multiple possible character histories of the trait of 

study, we adopted the approach presented in Levy Karin et al. (2017) that relies on a 

single character history which represents the sampled character histories, denoted as 

the “expected history”. A possible shortcoming of this approximation concerns with 

the reduction of the number of transitions of character state in each branch of the 

phylogeny to two transitions at most. When many transitions have occurred along a 

branch, this approach is expected to yield inferior approximation of the likelihood 

function than the one based on multiple histories. However, most organismal traits of 

interests are key features of a lineage and are expected to evolve rather slowly, such 

that multiple or back transitions on the same branch should be rare. In such cases, we 

expect the single history approximation to perform well. While the nature of 

transitions in the expected history may pose an issue with regard to the accuracy of 

the character history, this approximation can be beneficial both in duration (since only 

once history is considered in the computation) and in stability of the likelihood 

computation (because the analytic expected history is deterministic and the sampling-

based expected history is more robust to stochasticity than the stochastic mappings 

used in the exhaustive approximation). Moreover, the heavy computations of 

TraitRELAX mainly stem from likelihood computation of the sequence data, while 

the time needed to create the large sample of histories, as well as computing the 

expected history based on this sample, is substantially lower. This allows applying the 

sampling-based expected history approach using much more histories (i.e., larger 

value of 𝑁) compared to the more exhaustive computation, which further improves 

the stability of the joint likelihood computation.  



An important, yet overlooked, consideration when computing the likelihood of 

a branch-site codon model, such as the sequence model in TraitRELAX, concerns 

with the nature of transitions between selective regimes along the phylogeny (i.e., 

transition in 𝜔 categories across branches). Consider a branch-site model with two 

branch categories (e.g., 𝐵𝐺 and 𝐹𝐺), such that each is associated with three 𝜔 

parameters (𝜔0, 𝜔1, 𝜔2 for purifying, neutral and positive selection). There are three 

ways to compute the likelihood for two consecutive branches 𝑏1 and 𝑏2. The first 

option restricts the 𝜔 category in both branches to be the same, whether they belong 

to the same branch category or not. Thus, if a site evolved under 𝜔0 in 𝑏1, it will 

evolve under 𝜔0 also in 𝑏2. Because each branch category has its own value of 𝜔 for 

each category (e.g., ω0
𝐵𝐺 ≠ ω0

𝐹𝐺), the site can still experience a change in the 

selective pressure when transitioning between 𝐵𝐺 and 𝐹𝐺 branches. Alternatively, we 

can assume that the 𝜔 category assigned to each site may vary between branches only 

upon transition from 𝐹𝐺 to 𝐵𝐺 along the phylogeny. Thus, despite having a site 

evolving under 𝜔0 in 𝑏1, it may evolve under any 𝜔 category in 𝑏2. In a third and 

most permissive approach, also known as the random effects approach (Kosakovsky 

Pond et al. 2011), one can assume that the 𝜔 category assigned to each site may vary 

between branches, regardless of their branch assignment. While this is the most 

general approach, it allows rapid shifts in 𝜔 categories that are not necessarily 

realistic, such as transitioning from purifying to positive selection along very short 

branches, and can lead to high rate of false positives (Kosakovsky Pond and Frost 

2005). The second approach also poses a theoretical shortcoming of favoring certain 

partitioning of branches that consider more combinations of 𝜔 assignments. 

Specifically, when a transition from a 𝐹𝐺 branch to 𝐵𝐺 branches occurs in an internal 

branch, the restriction of the 𝜔 assignment for all the direct 𝐵𝐺 branches beneath it is 



relaxed, while transitions that occur in external branches relax the 𝜔 assignment 

restriction only for the respective external branch. This issue is prominent in the 

common multiple testing procedure offered by Anisimova and Yang (2007), in which 

each test corresponds to a different partitioning that classifies a single branch to the 

𝐹𝐺 category. Because this approach is the one most commonly used by the 

community (for example, it is the approach used in the popular software package 

PAML; (Yang 1997)), further research is needed to explore its behavior. Due to the 

consideration of more realistic selective patterns and the added benefit of computation 

simplicity, in the implementation of TraitRELAX I decided to follow the first and 

most restrictive computation approach. 

Here we introduced a combined model of phenotypic changes and codon 

changes. Specifically, the model allows detection of associations between phenotypes 

and changes in the selection intensity at the codon level. However, the same 

procedure can be applied for a wide range of analyses, by selecting a different branch-

site codon model as the underlying sequence model. For instance, setting the standard 

branch-site model (Zhang et al. 2005) as the sequence model will allow the detection 

of positive selection at the codon level upon repeated transitions in a specific 

character state. In such case, segments in the phylogeny corresponding to character 

state ‘0’ could be develop under purifying or neutral selection, while segments 

corresponding to state ‘1’ could also develop under positive selection. Previous work 

has attempted to integrated phenotypic evolution into a covarion-like codon model to 

detect adaptation (Jones et al. 2019). The method was compared to the standard 

branch-site model. However, it may be interesting to compare it to a model which 

interrogated phenotypic evolution into the same statistical framework of the branch-

site model. A generalization of the same approach can be applied by mapping 



independent codon models (Ziheng Yang,* Rasmus Nielsen 2000) to each phenotypic 

character state, while having some of the parameters shared between the models to 

reduce the overall number of parameters and, consequently, the running time of the 

optimization.  

Lastly, despite having TraitRELAX consider only binary phenotypic traits, 

many categorical traits are not binary, such that the probability of transitions between 

states will account of graduality in the discretized phenotypes. Additionally, the 

examination of multiple, perhaps correlated, traits, can provide new insights about the 

characteristics of selective patterns exhibited at the codon level. The combination of 

multiple traits can be perceived as a single, categorical, trait, whose states correspond 

to the various combinations of character states of the traits of interest. Another 

possible extension would be to generalize the approach used in TraitRELAX to 

consider categorical traits with more than two states, by adjusting the number of states 

in the character model and the number of branches categories in the codon sequence 

model. 

Despite the potential of such extensions to improve the performance of the 

method, we have shown that the current implementation of TraitRELAX is able to 

detect trait-related changes in selection-intensity both in simulations in the real 

biological examples. TraitRELAX offers the added value of a probably-based 

approximation of the history of the trait that is used to study the pattern of change in 

selection intensity, that has been shown to be more refined and accurate in some cases 

compared to methods like maximum parsimony, thereby reducing the rate of false 

positive and increasing the power to detect such patterns, compared to existing 

approaches that are mostly based on prior information on the history of the trait.  
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