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Abstract.

Many geovisualization environments integrate graphical representations of time. Some of them include repre-

sentation of both linear and cyclic aspects of time, providing an exploratory analysis of spatio-temporal data

through several temporal cyclic scales. However, few of them provide an exploratory analysis of localized

cyclic recurrences in spatio-temporal data. Ad hoc temporal diagrams, representing both linear and cyclic

aspects of time, provides a visual search for cyclic recurrences in temporal data when the possibility is left to

the user to perform a gradual modification of the represented cyclic scale’s duration. The combination of these

graphic representations of time, with cartographic representations, displaying the spatial distribution of such

cyclic recurrences, could provide an exploratory analysis of localized cyclic recurrences in spatio-temporal

data. Mathematical tools coming from other scientific fields, such as the harmonic analysis, offer another way

to identify cyclic behaviors in temporal data. Combining the visual approach offered by specifically designed

geovisualization environments, with a harmonic analysis that suggests searching paths to the user during

its exploratory analysis, can then improve the visual search for localized cyclic recurrences. We propose a

geovisualization environment, which combines, on one hand, a visual analysis of localized cyclic recurrences

in spatio-temporal data, using ad hoc temporal diagrams, cartographic representations, and specific semio-

logic rules, and on the other hand mathematical tools, such as harmonic analysis and spatial clustering, that

provide searching paths to the user for its visual analysis. This approach is supported by a geovisualization

environment, GrAPHiST, which provides an exploratory analysis of spatio-temporal event data.

Keywords: Geovisualization; Exploratory analysis; Localized cyclic recurrences; Visual analysis; Harmonic

analysis.
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1 Introduction.1

The representation of the cyclic aspect of time has been a research subject in visualization for a long time2

(Carlis and Konstan, 1998; Müller and Schumann, 2003; Aigner et al., 2011), and graphical representations3

allowing visual analysis of the cyclic component of spatio-temporal phenomena are used in many geovisu-4

alization environments (Andrienko and Andrienko, 2006), such as eSTIMe (Menin et al., 2019), or PerSE5

(Swedberg and Peuquet, 2017).6

A lot of these environments (Bak et al., 2009; Li, 2010; Andrienko et al., 2011; Swedberg and Peuquet,7

2017; Menin et al., 2019) are calibrated to visualize spatio-temporal data through cyclic representations of8

time, using a limited set of usual cyclic scales corresponding to the rhythms of nature or human activities9

(Hornsby and Egenhofer, 2002). For this reason, few of them allow us to perform an exploratory search10

of unsuspected cyclic recurrences, of which the period of reappearance may have any duration, and the11

possibility to observe the spatiality of such recurrences.12

We call “cyclic recurrences” a regular reappearance of a phenomenon or a regular evolution of its inten-13

sity, which follows a certain period of reappearance. A “localized cyclic recurrence” refers then to a cyclic14

recurrence contained in a specific spatial area, or presenting different periods of reappearance according to15

different spatial areas. For instance, a localized cyclic recurrence can correspond to the reappearance of16

flooding events every twenty years at a location A, and every fifty years at a location B.17

The identification of cyclic behaviors in spatio-temporal data, and the analysis of their spatial component,18

represent a great interest for the analysis of several spatio-temporal phenomena, notably natural phenomena19

such as sea-level variation (Galassi and Spada, 2015) or flooding (Sabino et al., 1999; Yao, 1982). Proposing20

graphic representations, which would allow visual exploratory analysis of localized cyclic recurrences, would21

present then a research opportunity for the analysis of such spatio-temporal phenomena.22

The analysis of cyclic behaviors is a subject of research in other scientific fields. Mathematical tools, such23

as harmonic analysis (Gasquet and Witomski, 2000; Bony, 2001; Katznelson, 2004), allow detecting cyclic24

recurrences in temporal data. We make the hypothesis that the combination of graphical representations,25

specially designed for visual analysis of cyclic recurrences, with such mathematical tools will improve the26

exploratory analysis of localized cyclic recurrences in spatio-temporal data.27

We present a geovisualization approach, which combines visual and mathematical analysis to perform28

an identification of localized cyclic recurrences during an exploratory analysis of spatio-temporal data. Our29

approach is integrated into a geovisualization environment, GrAPHiST, designed for the analysis of spatio-30

temporal event data related to several topics. First, we present existing approaches regarding i) the vi-31

sualization of the cyclic aspect of time in cartographic representations of spatio-temporal data; ii) the use32

of diagrams to identify cyclic recurrences in temporal data; iii) the possibilities offered by mathematical33

tools for the identification of cyclic behaviors and the combination of such mathematical tools with visual34
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representations. Then, we present our exploratory approach for the search of localized cyclic recurrences35

in spatio-temporal data, which combines specifically designed temporal diagrams and cartographic repre-36

sentations, with mathematical tools such as harmonic analysis and spatial clustering. Finally, through the37

application of our proposition to the analysis of height simulated datasets, we present that this proposition can38

be effective to identify localized cyclic recurrences within predominantly random datasets of spatio-temporal39

data.40

2 Related works.41

Several works propose a visualization of spatio-temporal data (Andrienko and Andrienko, 2006; Aigner et al.,42

2011; Kaddouri et al., 2014). The geovisualization environments providing a graphical representation of the43

temporal component of data are yet the best suited for an exploratory data analysis (Kaddouri et al., 2014).44

Amongst the graphical representations of time, some of them allow visual identification of cyclic recurrences45

in temporal data, and could be used for exploratory analysis of localized cyclic recurrences in geovisualization46

environments. Other techniques, using mathematical tools, may facilitate these visual analyses.47

2.1 The representation of the cyclic aspect of time in geovisual-48

ization.49

Amongst the different existing works related to spatio-temporal data visualization, (Kaddouri et al., 2014)50

listed five main types of methods to visualize spatio-temporal data:51

• the use of animation to represent an evolution of the spatial environment in real-time, or through52

chronological sequences;53

• the use of small multiples, which consists in displaying, on several representations, the spatial environ-54

ment at several timesteps;55

• the use of the space-time cube, which uses the third dimension to represent time, as it was explored by56

the Time geography (Hägcrstrand, 1970);57

• the use of semiologic rules (Cauvin et al., 2008; Kaddouri et al., 2014) to represent different temporalities58

(MacEachren, 1994) in cartographic representations;59

• the use of multi-view interfaces, which show the three components of the spatio-temporal data (spatial,60

temporal, thematic), into three main synchronized windows.61

According to (MacEachren, 1994) and (Davoine, 2014), multi-view interfaces are the best suited for62

the exploratory analysis of spatio-temporal data, allowing to identify patterns in the spatial and temporal63
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distribution of the data. The other methods listed by (Kaddouri et al., 2014) can be integrated into multi-64

views interfaces, to provide a visualization of relationships between the temporal and spatial components65

of the data, by allowing the user to establish visual links between the temporal and spatial windows of the66

interface. These methods are yet not all suited for exploratory analysis of spatio-temporal data through the67

cyclic aspect of time:68

• the use of animation may impact the readability of the visualization (Kaddouri et al., 2014), and may69

not be adapted for exploratory analysis of the spatio-temporal distribution of data;70

• the use of small multiple may either impact the readability of the visualization because of the huge71

number of representations (Kaddouri et al., 2014), or impact the resolution of the analysis because of72

the data aggregation needed to reduce the number of representations.73

• the space-time cube, by representing the time on a linear axis, does not include a representation of the74

cyclic aspect of time.75

The use of semiologic rules appears to be the best option to consider the cyclic aspect of time in geovi-76

sualizations of spatio-temporal data (Gautier, 2018). Combined with specific cartographic design, it allows77

us to visually establish relationships between spatial and temporal patterns. As an example, Growth Ring78

Map ((Bak et al., 2009; Andrienko et al., 2011; Aigner et al., 2011)) visualizes event data, each event being79

represented by a pixel wearing a color hue representing its season of appearance. Spatially close events are80

represented by aggregates of pixels, where pixels corresponding to the same season of appearance are reunited81

into concentric rings. This cartographic design allows us to identify, through the observation of aggregates of82

the same color hue, relationships between concentrations of events in specific spatial areas and concentrations83

of events during specific cyclic temporal intervals, forming patterns we call spatio-temporal clusters.84

Some temporal diagrams may be used to carry out an exploratory analysis of cyclic recurrences. Inte-85

grating such diagrams in multi-view interfaces could allow extending the exploratory analysis to the search86

of localized cyclic recurrences.87

2.2 Visualization of temporal recurrences.88

Some diagrams propose to combine the benefits of the timeline and the timewheel, by integrating the linear89

and cyclic aspects of time in a single representation (Edsall and Peuquet, 1997; Van Wijk and Van Selow,90

1999; Weber et al., 2001; Li, 2010). These diagrams, that we call mixed diagrams (Gautier, 2018), represent91

time in a linear way, through the succession of several instances of a considered temporal cyclic scale. As92

examples, we can cite:93

• the Spiral Graph (Weber et al., 2001), based on a linear version of the timewheel, which takes the shape94

of a spiral, of which the rings represent successive instances of a temporal cyclic scale;95
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• the tiles maps (Van Wijk and Van Selow, 1999), which represent time through a linear and a cyclic96

scale, on two orthogonal axes according to two different temporal granularities. It creates a matrix of97

which each column represents an instance of the cyclic scale (“a day”), and each row represents the98

same relative temporal moment in these different instances (“4 p.m”);99

• the Time Wave (Li, 2010), based on the combination of the structures of the timeline and the timewheel,100

and which are composed of a series of graphical patterns, each representing an instance of a temporal101

cyclic scale, aligned along an axis representing the linear dimension of time.102

These diagrams allow visual identification of a cyclic recurrence in temporal data, through the obser-103

vation of alignments of similar graphic patterns along an axis, when the duration of the represented cyclic104

scale reaches the duration of the observed cycle’s period. A visual search for a cyclic recurrence can be105

performed through these diagrams, by following this process: the user must search which cyclic temporal106

scale corresponds to the observation of graphic alignments in these diagrams (Weber et al., 2001).107

However, many visualization environments (Li, 2010; Swedberg and Peuquet, 2017; Menin et al., 2019),108

which integrate temporal diagrams, are designed for the visualization of spatio-temporal data through a cyclic109

representation of time, and not for the exploration of the possible cyclic behaviors in temporal data. Their110

goal is not to determine whether a phenomenon is cyclic or not, by allowing the identification of possible111

cyclic recurrences, but to provide a visual analysis of the temporal structure of phenomena, through one or112

several cyclic temporal scales. These cyclic scales can be used as temporal markers (Li, 2010), to analyze113

phenomena already considered as cyclic such as those related to the day-night cycle(Menin et al., 2019), or114

to analyze the temporal distribution of data according to usual cyclic representations of time such as the115

seasonal cycle (Swedberg and Peuquet, 2017). This objective limits the number of cyclic scales, which can116

be calibrated in these environments.117

According to Hornsby and Egenhofer (Hornsby and Egenhofer, 2002), the cyclic scales used by the rep-118

resentations of time are, in most cases, based on the rhythms of nature or human activities, and correspond119

to usual and calendar periods such as days, months, hours, etc. The configurable scales in visualization120

environments are then often limited to these usual periods (Li, 2010; Swedberg and Peuquet, 2017). It limits121

the periods for which it is possible to identify a cyclic recurrence of events. Furthermore, the discontinuous122

nature of the series of configurable cyclic scales (the transition from a scale of one month, to a scale of one123

year, generally takes place without transition) prevents the observation of the formation of graphical align-124

ments, during a gradual modification of the cyclic scale. The observation of the formation of these alignments125

allows the user to know if he is approaching a cyclic temporal scale corresponding to a cyclic recurrence. To126

carry out a visual exploration of cyclic recurrences in temporal data through these mixed diagrams, it is,127

therefore, necessary to allow a dynamic and gradual modification of the duration of the represented cyclic128

scale (Weber et al., 2001).129

The integration of such diagrams, in geovisualization environment, could then be a way to perform an130
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analysis of localized cyclic recurrences in spatio-temporal data. The major disadvantage of the provided131

visual analysis of cyclic recurrences, is to make the user explore amongst an undefined amount of possible132

durations for the represented cyclic scale. Suggesting exploration paths to the user could then be a way to133

improve such visual analysis.134

2.3 Combining mathematical analysis of recurrences with graphic135

representations.136

Identifying recurrences in data through mathematical analysis is a research topic in other scientific fields,137

such as DNA (Deoxyribose nucleic acid) analysis in biology (Ritz et al., 2011), in which many works have138

been done on the identification of sequences reappearances in character string data. Our goal is mainly to139

identify the cyclic behavior of the reappearances of similar patterns, rather than to identify the reappearances140

of similar patterns. However, many of these works propose to combine mathematical analysis of recurrences141

with graphical representations, specifically designed for the observation of patterns reappearances (Hamori142

and Ruskin, 1983; Jeffrey, 1990; Wu et al., 1993). These works have inspired other visualizations allowing a143

visual analysis, assisted by mathematical analysis, of patterns reappearances in textual data such as computer144

code (Church and Helfman, 1993) or musical score (Wattenberg, 2002). We can make the hypothesis, that145

integrating such mathematical analysis into a geovisualization environment, could be a way to support the146

user’s visual exploration to identify localized cyclic recurrences in spatio-temporal data.147

Harmonic analysis is a branch of mathematics, which studies the representation of signals as combinations148

of elementary sinusoidal functions called “harmonics”, which can present different frequencies and amplitudes149

(Bony, 2001; Katznelson, 2004). With mathematical tools such as the Fourier transforms, these analyses make150

it possible to decompose a mathematical function into a sum of periodic functions of different frequencies151

(Gasquet and Witomski, 2000). The harmonic analysis of a signal, representing a physical phenomenon, allows152

obtaining the frequencies of possible cyclic recurrences in the phenomenon. Other mathematical methods153

propose more efficient ways to identify cyclic patterns in temporal data (Wang et al., 2018). However, the154

harmonic analysis by Fourier transform, easy to handle, may represent a good choice for a first integration155

of such a mathematical tool in a geovisualization environment.156

3 Combining visual and mathematical analysis for the157

exploratory search of localized cyclic recurrences.158

We propose an exploratory approach for the identification of localized cyclic recurrences, based on a visual159

analysis using interactive graphic and cartographic representations, assisted by mathematical analysis tools.160

Our visual analysis is based on the use of:161
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• interactive temporal diagrams, that can be used to perform an exploratory search of a cyclic recurrence162

in temporal data;163

• a cartographic representation, that can be used to identify spatial cluster;164

• specific semiologic rules and cartographic/graphic designs, allowing to identify spatio-temporal clusters;165

• interaction functionalities, extending the search of cyclic recurrences performed in the temporal diagram,166

for the visual search of localized cyclic recurrences.167

We propose to extend this visual analysis by combining it with mathematical tools performing back-168

ground analysis on the spatio-temporal data, to suggest to the user search paths for its exploratory analysis.169

According to the user actions, harmonic analysis by Fourier transform are performed on either the entire170

data, or on groups of data obtained by manual or automatic classification. Their results are suggested to the171

user as temporal scales that may correspond to a cyclic behavior in the spatio-temporal data.172

Our approach is integrated into GrAPHiST (Gautier, 2018; Gautier et al., 2019), a multi-view geovisu-173

alization environment, dedicated to the exploratory analysis of punctual spatio-temporal event series, which174

may describe any type of spatio-temporal phenomena.175

In this part, we present the general structure of GrAPHiST and the nature of the visualized data. We then176

present how the visual analysis supported by GrAPHiST allows the search of localized cyclic recurrences in177

spatio-temporal data. Then, we show how we improve the exploratory analysis of localized cyclic recurrences178

in spatio-temporal data, by combining this visual approach with mathematical analysis.179

3.1 GrAPHiST180

3.1.1 Represented data.181

GrAPHiST provides a ”generic” exploratory of spatio-temporal phenomena, which can be related to dif-182

ferent topics, through visualization of event-based spatio-temporal data. Spatio-temporal phenomena, in183

GrAPHiST, are represented by event series related to the same topic (Gautier, 2018). Each event is consid-184

ered as an occurrent spatio-temporal entity, that can be described through the Pyramid Model of Mennis185

(Mennis et al., 2000): each event is composed of a temporal component (a moment of appearance), a spatial186

component (a location of appearance), and a thematic component (which type of event).187

Events which form a phenomenon can be seen as close, mainly on a thematic criterion (the phenomenon188

“storm” is composed by every “storm” events), but also on a spatial or a temporal criterion (the phenomenon189

“storm” in the USA in 2008 is composed by every “storm” events occurred in 2008 in the USA). Defining190

which events are part of the same phenomenon is open to interpretation, and we let this choice to the user: a191

phenomenon can be seen as a selection, made by the user, of events he wants to analyze. This representation192

allows us to visualize data related to several topics with the same approach.193
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We focus our proposition on the visualization of spatio-temporal punctual events: each event corresponds194

to a punctual location in space and a punctual moment in time. These events can correspond to real195

punctual events observed in time and space, or at punctual moments when a variable represented by a time196

series related to a punctual location exceeds a threshold value.197

A cyclic recurrence in spatio-temporal data will correspond, through this representation, to a regular198

reappearance of events, or a regular increase or decrease of the number of event appearances, which follow a199

certain period of reappearance. A localized cyclic recurrence will correspond to a cyclic recurrence contained200

in a specific spatial area, or a cyclic recurrence presenting different period of reappearance according to201

different spatial areas. For instance, a localized cyclic recurrence can correspond to the rise of the sea level202

above a threshold value every ten years at a location A, and every fifteen years at a location B.203

3.1.2 A multi-view structure.204

GrAPHiST follows a multi-view interface structure (Figure 1). Events related to the same phenomenon being205

considered as close on a thematic criterion, the visual analysis is focused on the spatio-temporal structure206

of the event series. The available graphic space of the interface is preserved for the representation of the207

spatial and temporal components of data. Therefore, GrAPHiST does not include a thematic window. Each208

window can be used to perform an analysis of spatial or temporal patterns in events distribution, such as209

the concentration of events appearance in a specific area (spatial cluster), or during a specific linear or cyclic210

temporal interval (temporal linear or cyclic cluster).211

[Figure 2]212

The spatial window integrates a map, which represents all events that occurred during the temporal213

interval represented in the temporal window (Figure 1.A). Events are represented by punctual entities. Spa-214

tially close events are aggregated and represented by graphical punctual entities of which size depends on the215

number of events.216

The temporal window integrates a mixed diagram, representing events that occurred in the extent of217

the spatial window (Figure 1.B). Events are represented by punctual entities, temporally close events being218

aggregated and represented in the same manner as in the spatial window. The temporal window includes a219

timewheel-based diagram inspired by the Rose Chart (Nightingale, 1858) (Figure 1.C), using the same cyclic220

scale than in the mixed diagram. Each section of the diagram represents an equal temporal portion of the221

cyclic scale, and the number of events appearing during each portion is represented by the section’s area.222

3.2 Visual analysis of localized cyclic recurrences.223

We present here our visual approach for the analysis of localized cyclic recurrences in spatio-temporal event224

data. We first present how our mixed temporal diagram allows performing a visual search of a cyclic recurrence225
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in temporal event data. We then present how specific semiologic rules and graphic/cartographic designs allow226

extending this approach to the visual analysis of localized cyclic recurrences in spatio-temporal data.227

3.2.1 Visual analysis of cyclic recurrences in temporal data.228

The visual identification of cyclic recurrences in temporal data is carried out through the use of an interactive229

mixed diagram. We propose a mixed diagram partly inspired by the tiles map (Van Wijk and Van Selow, 1999)230

and the Time Wave (Li, 2010), which takes the shape of a sawtooth periodic function. Time is represented on231

two axes according to the same temporal granularity. The abscissa axis represents time according to a linear232

scale, and the ordinate axis represents time according to a cyclic scale. An instance of the corresponding233

cyclic scale is represented by an oblique linear curve. The representation of several instances of the cyclic234

scale takes the shape of a series of broken lines. The graphical entities are placed along the curve of the235

diagram according to the moment of appearance of the represented event, or according to the “barycenter”236

of the moments of appearance of the aggregated events.237

The duration T of the represented cyclic scale can be dynamically and gradually modified by the user238

(Figure 2). When T decreases, the number of broken lines in the diagram increases, and the lines appear more239

closely spaced and more vertical. When T increases, the number of broken lines in the diagram decreases,240

and the lines appear more spaced and more horizontal.241

The visual search for cyclic recurrences is carried out through a gradual modification of T, using a cursor in242

a control interface. During this modification, the user has to observe the formation of alignments of graphical243

entities on the diagram. The formation of such alignments is observable when the value of T approaches the244

duration of the period P of a cyclic recurrence. The alignments of graphical entities take first the shape of245

one or more oblique lines. When entities, corresponding to cyclic events, are forming such alignments for a246

scale of duration T1, the orientation of the corresponding lines indicates whether the period P is less than or247

greater than T1:248

• if P < T1, the line(s) formed by the alignment of graphic entities will be descending.249

• if P > T1, the line(s) formed by the alignment of graphic entities will be ascending.250

As the value of T approaches that of P, the orientation of the graphical alignment approaches the orientation251

of the abscissa axis. When T = P (Figure 2.H), the corresponding entities form one alignment parallel to252

the abscissa axis.253

[Figure 3]254

The timewheel-based diagram included in the temporal window is an additional tool for the visual analysis255

of cyclic recurrence. According to the cyclic scale corresponding to their period of reappearance, cyclic events256

appear together in the same cyclic temporal interval. Their existence causes, if the proportion of cyclic events257

is not too weak, a concentration of events in this cyclic temporal interval, forming a cyclic temporal cluster.258
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This pattern can be observed in the timewheel-based diagram, when few sections present a higher area259

than the others. The observation of the formation of a graphical alignment, in the mixed diagram, can be260

supported by the observation of sections presenting a higher radius in the timewheel-based diagram (Figure261

2.E-H). These sections have their highest area when T = P (Figure 2.H). The user can increase the number262

of angular sections of the timewheel diagram. A bigger number of sections, representing smaller intervals of263

time, facilitates the estimation of the temporal extent of the observed cluster.264

3.2.2 Visual analysis of localized cyclic recurrences in spatio-temporal data.265

Semiologic rules and graphic/cartographic designs. The visual identification of localized cyclic re-266

currences is carried out through the use of specific semiologic rules and graphic/cartographic designs, that267

allow establishing relationships between temporal patterns (cyclic recurrences and temporal clusters) and a268

spatial cluster.269

We use events classifications and semiologic rules, which take three different aspects according to the270

paradigm chosen by the user, that we call spatial entry and cyclic temporal entry:271

• From a spatial entry: events are sorted and represented, using color hue, according to their location of272

appearance. The relationship between GrAPHiST’s windows is oriented from the map to the temporal273

diagrams (Figure 3.A).274

• From a cyclic temporal entry: events are sorted and represented, using color hue and a chromatic275

circle, according to their moment of appearance related to a cyclic scale. The relationship between276

GrAPHiST’s windows is oriented from the circular diagram to the sawtooth diagram and the map277

(Figure 3.B).278

[Figure 4]279

In each case, proposed classification and semiologic rules follow the same principles:280

• events are divided into several classes:281

– for a spatial entry, geographical space is divided into several areas, and each class represents events282

appearing in the same area.283

– for a cyclic temporal entry, the represented temporal cyclic scale is divided into several regular284

temporal intervals, and each class represents events appearing during the same temporal interval.285

For this specific case, the temporal intervals used to classify the events correspond to those used286

in the timewheel-based diagram, each class corresponding to an angular section of the diagram.287

• an instance of the corresponding visual variable is affected to each class (Figure 4):288

– for a spatial entry, a color hue is assigned to each spatial area;289
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– for a cyclic temporal entry, the different cyclic temporal intervals are projected on a chromatic290

circle, and the corresponding color hue is assigned to each temporal interval.291

We then use specific graphic/cartographic designs to represent, in each aggregate of events, the proportion292

of the different event classes existing in the aggregate (Figure 4):293

• In the circular diagram, as in the Rose Chart, the proportion of each event class in a cyclic temporal294

interval symbolized by an angular section of the diagram, is represented by the area of different axial295

subsections.296

• In the map and the mixed diagram, aggregates of events are represented by pie charts, of which the297

size represents the number of aggregated events, and the different sections represent the proportion of298

the different events classes amongst the aggregated events.299

These representations, that may show a concentration of events related to the same spatial area in an300

aggregate of temporally close events, or a concentration of events related to the same temporal interval in an301

aggregate of spatially close events, allow visual identification of spatio-temporal clusters.302

[Figure 5]303

Extending the search of cyclic recurrences with semiologic rules. A representation of events304

through a spatial entry (Figure 5.A.1), separating events in several spatial groups and giving the same color305

to events related to the same area in the temporal diagram, allows performing the visual analysis presented306

in section 3.2.1 on each group of events. The user can, during a gradual modification of the represented307

cyclic scale, perform a visual search of cyclic recurrences in a group of spatially close events, by observing308

the formation of alignments of graphical entities presenting the corresponding color (Figure 5.A.2).309

The timewheel-based diagram represents still an additional tool for the visual analysis of a cyclic recurrence310

in a group of spatially close events. The existence of a cyclic recurrence in a located area causes the existence,311

in this area, of a spatio-temporal cluster. Its identification can be carried out, in the timewheel-based diagram,312

through the observation of close diagrams sections presenting a higher proportion of the corresponding color.313

[Figure 6]314

The identification of localized cyclic recurrences using a cyclic temporal entry is done in two steps. The315

first and main step consists of performing the exploratory search of the cycle’s duration directly on the map.316

The existence of a localized cyclic recurrence causes the existence of a cyclic spatio-temporal cluster related317

to a scale of which duration is equal to the cycle’s period. The search for the cycle’s duration can then be318

done by searching the cyclic temporal scale which corresponds to the observation of a spatio-temporal cluster319

on the map. To achieve this, the user can gradually modify the duration of the represented cyclic scale.320

The color of graphical events in the map being determined by their cyclic temporal distribution, changing321
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the value of the temporal scale changes their color in the map. The user can then identify spatio-temporal322

clusters on the map, by observing the formation of pie charts presenting both a notable size and a high323

proportion of the same color.324

The second step of the analysis consists in checking, in the mixed diagram, if the observed spatio-temporal325

cluster corresponds to the existence of a cyclic recurrence. When a cluster is observed on the map, selection326

and filtering functions allow the user to only display the events of the corresponding area in the temporal327

diagrams. If graphical alignments are formed by the corresponding events on the mixed diagram, the user328

can validate the existence of a localized cyclic recurrence. The user can then modify the duration of the329

represented cyclic scale to observe the formation of one alignment parallel to the horizontal axis, presenting330

at least one graphical entity on each broken line. Observing alignment, without at least one entity on each331

broken line, means that the duration of the cyclic scale corresponds to a harmonic of the cycle’s period332

(Figure 5.B.2).333

3.3 Using background mathematical analysis to improve the ex-334

ploratory search of localized cyclic recurrences.335

To improve the exploratory search of localized cyclic recurrences, we propose to combine our visual approach336

with mathematical analysis, executed in background, able to suggest exploratory paths to the user. In this337

part, we show how we combine our mixed temporal diagram with a harmonic analysis by discrete Fourier338

transform. Then, we show how this harmonic analysis can be integrated into an exploratory search of339

localized cyclic recurrences, and how this analysis is executed according to the user’s interaction to suggest340

him different research paths.341

3.3.1 Mixed diagrams and harmonic analysis.342

We propose to combine our mixed temporal diagram with a harmonic analysis performed on the studied343

data, in the background of the graphical representation. When data are displayed on the temporal diagram,344

the following actions are done on the temporal data.345

• A temporal signal is created by sampling the event series we are studying (the sampling interval can346

be calibrated by the user). The graphical representation of the obtained signal takes the shape of a bar347

chart (Figure 6.A).348

• A harmonic analysis is applied to the obtained sampled signal. We use a discrete Fourier transform,349

which allows performing a harmonic analysis on a discrete series of values. The frequencies correspond-350

ing to the most significant peaks of the obtained spectrum are selected (Figure 6.B).351

• The duration of the periods corresponding to the selected frequencies is graphically represented, by352

13



being projected on the cursor used to modify the duration of the cyclic scale in the control interface353

(Figure 6.C). Each dot on the cursor represents one of the periods obtained from the harmonic analysis.354

The obtained periods constitute a list of suggestions of “remarkable” cyclic temporal scales that the user355

can “inspect”. The user can change the duration of the cyclic scale to these values, to check whether the356

formation of graphic alignments is observable on the mixed diagram (Figure 6.D). Figures 2 and 6 present357

the same simulated data. In Figure 6, the background mathematical analysis suggests a cyclic scale close to358

the cycle’s period found in Figure 2.359

[Figure 7]360

3.3.2 Harmonic analysis on spatially gathered events, for the search of localized cyclic re-361

currences.362

The harmonic analysis previously presented provides a way to support the exploratory analysis of cyclic363

recurrences through the temporal diagram. This analysis is carried out on the whole population of events. To364

support the exploratory analysis of localized cyclic recurrences in spatio-temporal data, we propose to extend365

the combination of our visual approach with mathematical analysis executed in background, by considering366

the spatial distribution of events in those analyses. To achieve this, we propose to execute a series of different367

harmonic analysis on several groups of events, gathered according to their spatial location. These groups are368

defined according to the actions of the user regarding the chosen paradigm for the exploratory analysis.369

When any semiologic rules are used to represent events in the different windows of GrAPHiST, a harmonic370

analysis is carried out on the entire population of events. The analysis results are proposed to the user as371

cyclic scales suggestions, in the shape of dots of the same color in the control interface (Figure 6). This372

approach gives exploration paths for the search of cyclic recurrences in the entire studied spatial extent.373

[Figure 8]374

When the user chooses to perform an analysis through a spatial entry, the events are sorted according to375

a specific division of space imposed by the user (Figure 7.A.1). A specific harmonic analysis is carried out376

on each group of events obtained from this spatial classification (Figure 7.B). The results of each analysis377

are proposed to the user as cyclic scales suggestions in the shape of dots of different colors in the control378

interface, corresponding to the colors representing each area (Figure 7.C). This approach gives exploration379

paths for the search of localized cyclic recurrences through a specific division of space calibrated by the user.380

When the user chooses to perform an analysis through a cyclic temporal entry, the user does not suspect381

a specific spatio-temporal distribution of events. To provide exploration paths for the analysis of cyclic382

recurrences in located areas, several harmonic analyses are done in groups of spatially close events, obtained383

with a spatial clustering function. In the context of the implementation of GrAPHiST, we use for this task the384

clustering function of the Openlayers3 Javascript library. In the background of the graphic representation,385
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events are gathered according to their spatial proximity, using a maximum distance parameter, under which386

two events are gathered. This maximum distance is calibrated by the user. After this clustering, a color is387

randomly affected to each group, and their convex hulls are displayed on the map, to highlight the location388

of the different corresponding areas (Figure 7.A.2). A specific harmonic analysis is carried out, still in389

background, on each group. The results of each analysis are proposed to the user as cyclic scales suggestions390

in the shape of dots of different colors in the control interface, corresponding to the colors randomly selected391

for each area. This approach gives exploration paths for the search of localized cyclic recurrences through a392

division of space procedurally created with clustering functions.393

4 Case study.394

To validate our approach, we applied the exploratory analysis provided by GrAPHiST on a series of eight395

procedurally created datasets. For each dataset, the analysis has to provide the visual identification of a396

localized cyclic recurrence amongst the spatio-temporal data, and an estimation of the corresponding period397

of reappearance.398

4.1 Construction of simulated event data.399

The objective of this case study was to validate the possibility to use our approach to find localized cyclic400

recurrences in event data, and to evaluate the precision of the analysis results.401

To achieve this experiment, we had to use event series presenting such spatio-temporal structures. Some402

phenomena are known to present cyclic behaviors, as it is the case for meteorological or sea-level evolution403

phenomena (Gautier, 2018). Analyzing the corresponding datasets could be a way to validate the possibility404

to identify localized cyclic recurrences in spatio-temporal data. However, knowing the existence of these405

cycles, and their corresponding period of reappearance, would influence the analysis of such event series. To406

validate the possibility of identifying cycles presenting an unknown period, we had to use datasets preventing407

us from being influenced by an a priori knowledge or suspicion about the cycles we had to search for. We408

had to use datasets with cyclic behaviors, but of which the period of reappearance was unknown. Such an409

experiment appeared then to be impossible to conduct with data related to a real phenomenon.410

Above all, this experiment implied the use of datasets presenting localized cyclic events with a greater or411

lesser spatial and temporal dispersion, and a more or less significant proportion of random events. We used412

datasets formed by procedurally created events. Our hypothesis was that if our approach could effectively413

provide a visual analysis, able to identify localized cyclic recurrences in these simulated event data, the414

discovery of unsuspected localized cyclic recurrences in real data would also be possible.415

Each dataset was composed of a series of events forming a localized cyclic recurrence, and a series of416

randomly created events, of which place and time of appearance were randomly generated. The creation417
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parameters of the cyclic component of each dataset were randomly chosen, then stored in a log file, in order418

to be accessible afterward but unknown during the experiment. The objectives were to identify the localized419

cyclic recurrences of each dataset and to estimate its parameters. The estimated results were then compared420

with the stored parameters. More precisely, the task consisted in identifying each localized cyclic recurrence,421

and estimating, for each identified localized cyclic recurrence:422

• the geographical coordinates of the center C of the spatial area where the cyclic events appear;423

• the spatial dispersion dispc, defining the size of the spatial area where the cyclic events appear; dispc424

is measured in degrees: the borders of the area are the meridians and parallels corresponding to425

long = longC + −dispc and lat = latC + −dispc;426

• the duration P of the cyclic recurrence’s period, which can be estimated when a graphical alignment,427

parallel to the abscissa axis of the diagram, can be observed;428

• the linear temporal extent E covered by the cyclic recurrence, delimited by the temporal moments T0429

and TN , estimated by observing the extent of the corresponding alignment, along the abscissa axis;430

• the temporal dispersion dispt of the cyclic recurrence. dispt is a parameter randomly chosen, used to431

calculate the duration of the temporal interval when events appear for each instance of the cycle, and432

which is equal to 2 ∗ ∆t: “events appear every P days, more or less ∆t days”, where ∆t = P ∗ dispt.433

dispt is estimated by observing the extent of the corresponding alignment, along the ordinate axis.434

The experiment was done on height datasets, divided into “A” and “B” datasets, presenting respectively435

a proportion of 80% and 90% of randomly created events. For each “A” and “B” datasets, the parameters436

dispc and dispt are randomly chosen in different values intervals: [1.5,2.5] (datasets A1, A3, B5, B7) and437

[1.5,2.5] (datasets A2, A4, B6, B8) for dispt; [0.08,0.25] (datasets A1, A2, B5, B6) and [0.25,0.5] (datasets438

A3, A4, B7, B8) for dispt. For each dataset, the moment of the first occurrence of the cyclic component,439

and the number of its instances, were randomly defined. For each instance, X events were created, X being440

randomly chosen between one and ten for each instance.441

4.2 Experiments and results.442

For each dataset, we carried out an exploratory analysis through a cyclic temporal entry (Figure 8). Each443

analysis is done through a visual and interactive exploration executed by the user, with the following steps:444

1. Semiologic rules are applied to the event series: events are represented according to their cyclic moment445

of reappearance, with a color scale formed by a discrete rainbow chromatic circle created from 6 basis446

colors. In the background, events are gathered according to their spatial proximity, and a harmonic447

analysis by discrete Fourier transform is executed on each group of events.448
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2. The duration of the cyclic temporal scale is modified to reach the different durations suggested from449

the harmonic analysis results, until a spatio-temporal cluster is identified on the map, through the450

observation of a pie chart presenting a higher proportion of one color.451

3. The events located near the spatio-temporal cluster are selected, and the unselected events are hidden.452

4. If one or several graphical alignments are observed on the mixed diagram, the spatio-temporal cluster453

corresponds to a localized cyclic recurrence. If not, the events are deselected, and the user continues454

its exploration for the other suggested cyclic scales.455

5. The user adjusts the duration of the cyclic scale, in order to obtain one alignment parallel to the456

horizontal axis of the mixed diagram. P and E are estimated at this step with it (Figure 8).457

6. The number of angular sections is modified in the circular diagram, in order to identify the extent of458

the temporal cluster. dispt is estimated at this step with the circular diagram (Figure 8).459

7. The colors of the chromatic circle are modified, in order to give one color (blue) to the events of the460

temporal cluster, and another color (red) to the rest of the events.461

8. The events are deselected and all events are displayed on the map. The estimation of the cyclic462

recurrence area is refined by observing the pie charts bearing the corresponding color. C and dispc are463

estimated at this step, by measuring the latitude and longitude of the observed area’s borders.464

[Figure 10]465

For each dataset, the exploratory analysis allowed the identification of the global area of appearance of466

the cyclic recurrence. The estimation of the area’s boundaries was yet imprecise. Table 1 presents the results467

of the analysis performed on the eight datasets. The carried out exploratory analysis allowed us to precisely468

estimate the period of the cycle for each dataset (less than 2% margin of error; 3rd column of Table 1), except469

for A2 dataset, where the estimated period corresponded to a harmonic of the cycle. On the other hand, the470

estimation of the temporal extent and cyclic dispersion of each cycle were imprecise (respectively up to 26%471

and 15% of margin of error; 4th and 5th columns of Table 1).472

[Table 2]473

Despite the lack of precision for the estimation of the spatial and temporal extent of the localized cyclic474

recurrences, these results validate the possibility to find those patterns with our approach. For each dataset,475

it allowed revealing the existence of localized cyclic recurrences within series of predominantly random spatio-476

temporal events, to identify their global location, and to accurately estimate their period of recurrence.477

17



5 Discussion.478

The proposed approach shows a lack of precision in the identification of the spatial and temporal extent of479

the observed localized cyclic recurrences. The borders of these extents were visually estimated by the user,480

using the computer’s cursor and tools giving the latitude and longitude, or temporal moment, corresponding481

to the cursor graphic position on the screen. This estimation could be improved by integrating better tools482

to estimate the borders of these extents, such as the attraction of the cursor when it passes over a graphical483

entity. Other interaction modalities, such as the possibility to create and represent the temporal or spatial484

convex hull of selected events, could also improve the precision of the obtained results.485

However, the main goal of our approach is reached, in the sense that the visualization methods supported486

by GrAPHiST provide an identification of localized cyclic recurrences, its global location, and a good es-487

timation of its period of reappearance. The search for localized cyclic recurrences follows the principles of488

exploratory data analysis: it is the visual identification of graphic patterns by the user, during the modifica-489

tion of the cyclic scale, which allows detecting the presence of spatio-temporal clusters and localized cyclic490

recurrences in the data. This visual approach is part of a more global approach, supported by GrAPHiST,491

for the exploratory analysis of spatio-temporal dynamics in spatio-temporal data. Such analysis bears in-492

trinsically a part of subjectivity, and the results will depend on many factors regarding the user, such as493

its expertise. However, this approach presents the advantage of not be bound to the hypothetico-deductive494

principles followed in the majority of statistical and GIS analyses (Andrienko and Andrienko, 2006). These495

analyses may not be well adapted when the user does not know what he has to look for, which may be the496

case with spatio-temporal data describing new kinds of phenomena. By providing a free exploration of data,497

the exploratory analysis allows the discovery of unsuspected structures and generating new hypotheses about498

the data (Tukey, 1977; Andrienko and Andrienko, 2006).499

Identification of localized cyclic recurrences, through a spatial entry, implies to use the adequate spatial500

division of space to regroup in the same class the events presenting a cyclic behavior. This analysis needs a501

first hypothesis from the user on the spatio-temporal structure of the analyzed event series, which may not502

always be the case during an exploratory analysis. When the user does not have suspicions about the spatio-503

temporal distribution of events, a temporal entry suits better for the analysis of unsuspected spatio-temporal504

patterns. An analysis through a spatial entry has to be reserved for analysis through specific divisions505

of space, such as water-basin or administrative districts. It can notably be used to validate a hypothesis506

about the spatial distribution of localized recurrences, established after a first analysis made through a cyclic507

temporal entry.508

We use a harmonic analysis by discrete Fourier transform as background-executed to suggest research509

paths to the user in its exploratory analysis of cyclic behaviors. Other mathematical tools exist, and propose510

a better analysis of recurrence patterns in temporal data (Wang et al., 2018), notably in those presenting511
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an imperfect cyclic behavior, where the strict reappearance of the same pattern is not always observed.512

However, to propose our approach, we wanted to use a more simple mathematical tool, easier to implement513

in a geovisualization environment. If the reusability of such an approach in other scientific domains is514

validated, further developments could then integrate more efficient mathematical analysis.515

Our approach presents an interest in the analysis of spatio-temporal phenomena such as flooding or sea-516

level rising. However, this approach is not suited for the identification of cyclic recurrences, of which the period517

of reappearance evolves, appearing more or less frequently over time. The current graphic representations518

are designed to identify such evolution of cyclic behaviors’ period. To solve this problem, other graphic519

representations have to be elaborated.520

Finally, our case study proves that our approach does work to find localized cyclic recurrences in spatio-521

temporal data. Yet, the usability of our approach, and its efficiency compared to strictly mathematical522

approaches, used for instance to find cyclic recurrence in tide gauge data for the analysis of sea-level rise, are523

to be confirmed. User tests have then to be done, to conclude about the reusability of our approach in other524

scientific domains. However, our approach is supported by an operational geovisualization environment. It525

can already be presented to different scientific communities to open the discussion about its reusability.526

6 Conclusion.527

We proposed an approach for the exploratory analysis of localized cyclic recurrences in spatio-temporal event528

data, combining visual analysis through specifically designed and interactive graphical representations, and529

background-executed mathematical analysis that assists the user in its exploratory analysis. Through an530

application of our approach to the analysis of height simulated datasets, we proved that this approach allows531

the identification of localized cyclic recurrences amongst widely randomly appearing spatio-temporal events.532

The observation of cyclic behaviors isolated in space, or the observation of the different periodicities of533

a phenomenon in space, can be helpful for the understanding, or even the forecast of spatio-temporal phe-534

nomena. Different applications can be imagined, such as the analysis of tide gauge, seismic or meteorological535

data, but also the analysis of social data. Our approach is integrated into an operational geovisualization536

environment, GrAPHiST, able to handle spatio-temporal data related to different thematics.537

Our approach presents some limits, which can be pushed by the elaboration of new visualization methods.538

Our approach being already implemented in an operational geovisualization environment1, this environment539

can already be used as a base for the design of these new visualization methods. This prototype can also be540

a concrete object of discussion, concerning the reusability of the proposed exploratory analysis approach in541

different scientific domains.542

1http://steamer.imag.fr/?page_id=735
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8 Tables.545

Table 1: Experiment results
Dataset Random events

prop.
P imprecision
rate

E imprecision
rate

dispt impreci-
sion rate

A1 80 % 1.9% 0.2% 0.5%
A2 80 % X 11.7% 15.0%
A3 80 % 0.1% 0.1% 1.2%
A4 80 % 0.6% 6.8% 3.0%
B5 90 % 0.2% 14.3% 6.0%
B6 90 % 0.4% 26.0% 12.0%
B7 90 % 0 % 4.9% 3.0%
B8 90 % 1.6% 13.8% 3.0%
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9 Figure captions.546

Figure 1: General structure of GrAPHiST. Visualization of storm events in the USA between 2004 and547

2018. Color value represents the linear moment of appearance of events. A: Spatial view. B: Sawtooth mixed548

temporal diagram. C: Timewheel-based temporal diagram. The base map image comes from OpenStreetMap549

(2020). The represented data come from the Open Access Storm Events Database of the US National Oceanic550

and Atmospheric Administration (2020).551

Figure 2: Visual search of cyclic recurrences by modifying the represented cyclic scale in GrAPHiST (simu-552

lated data).553

Figure 3: Using semiologic rules to establish links between spatial and temporal views into GrAPHiST554

(simulated data). The base map image comes from OpenStreetMap (2020).555

Figure 4: Application of semiologic rules in GrAPHiST. The base map image comes from OpenStreetMap556

(2020).557

Figure 5: Search for a localized cyclic recurrence in GrAPHiST (simulated data). The base map image comes558

from OpenStreetMap (2020). A: Through a spatial entry. B: Through a cyclic temporal entry.559

Figure 6: Use of harmonic analysis in GrAPHiST to assist the search for cyclic recurrences (simulated data).560

Figure 7: Use of harmonic analysis on spatially grouped events in GrAPHiST. The base map image comes561

from OpenStreetMap (2020). A.1: Homicides events in Chicago are grouped by the user using the spatial562

extent of Chicago’s main neighborhoods (spatial entry). A.2: Homicides events in Chicago are automatically563

clustered according to their spatial proximity (cyclic temporal entry). B: Spectrum obtained from simulated564

data after a manual spatial classification (spatial entry). C: Representation of the suggested periods obtained565

from the harmonic analysis.These data come from the Crime Database of the Open Access Chicago Data566

Portal, property of the City of Chicago (2020). We only use crime data here to illustrate the different567

events spatial classifications used for background harmonic analysis. We do not consider the search of cyclic568

recurrences in crime data as necessarily relevant.569

Figure 8: Identification of cyclic events in GrAPHiST (B5 dataset, simulated data). The base map image570

comes from OpenStreetMap (2020).571
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10 Figures.572

Figure 1: General structure of GrAPHiST. Visualization of storm events in the USA between 2004 and
2018. Color value represents the linear moment of appearance of events. A: Spatial view. B: Sawtooth mixed
temporal diagram. C: Timewheel-based temporal diagram. The base map image comes from OpenStreetMap
(2020). The represented data come from the Open Access Storm Events Database of the US National Oceanic
and Atmospheric Administration (2020).

Figure 2: Visual search of cyclic recurrences by modifying the represented cyclic scale in GrAPHiST (simu-
lated data).
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Figure 3: Using semiologic rules to establish links between spatial and temporal views into GrAPHiST
(simulated data). The base map image comes from OpenStreetMap (2020).
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Figure 4: Application of semiologic rules in GrAPHiST. The base map image comes from OpenStreetMap
(2020).
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Figure 5: Search for a localized cyclic recurrence in GrAPHiST (simulated data). The base map image comes
from OpenStreetMap (2020). A: Through a spatial entry. B: Through a cyclic temporal entry.
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Figure 6: Use of harmonic analysis in GrAPHiST to assist the search for cyclic recurrences (simulated data).
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Figure 7: Use of harmonic analysis on spatially grouped events in GrAPHiST. The base map image comes
from OpenStreetMap (2020). A.1: Homicides events in Chicago are grouped by the user using the spatial
extent of Chicago’s main neighborhoods (spatial entry). A.2: Homicides events in Chicago are automatically
clustered according to their spatial proximity (cyclic temporal entry). B: Spectrum obtained from simulated
data after a manual spatial classification (spatial entry). C: Representation of the suggested periods obtained
from the harmonic analysis.These data come from the Crime Database of the Open Access Chicago Data
Portal, property of the City of Chicago (2020). We only use crime data here to illustrate the different
events spatial classifications used for background harmonic analysis. We do not consider the search of cyclic
recurrences in crime data as necessarily relevant.
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Figure 8: Identification of cyclic events in GrAPHiST (B5 dataset, simulated data). The base map image
comes from OpenStreetMap (2020).
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