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Supplementary Methods 25 

Environmental conditions and sample collection 26 

The Marine Ecosystem Biodiversity and Dynamics of Carbon around Kerguelen (MOBYDICK) 27 

cruise took place in the Indian Sector of the Southern Ocean during the austral late summer 28 

period from Feb 18
th

 to Mar 29
th

 in 2018. Three stations in contrasting oceanic regions were 29 

chosen for our study, including one located in the naturally iron-fertilized waters above the 30 

central Kerguelen Plateau (M2) and two off-plateau stations within the High Nutrient Low 31 

Chlorophyll (HNLC) waters (M3 and M4; Supplementary Fig. 1A and Supplementary Table 32 

1). The timing of the sample collection corresponded to about two months after the peak of the 33 

summer phytoplankton blooms (Supplementary Fig. 1B). In central Kerguelen Plateau waters 34 

maximum seasonal Chlorophyll a (Chl a) concentrations, based on satellite images, were about 35 

1.5 µg L
-1

, and they were substantially lower (0.3 to 0.5 µg L
-1

) in HNLC waters. During the 36 

MOBYDICK cruise in late austral summer, differences in the Chl a concentrations among sites 37 

were less pronounced. As a consequence of the sustained seasonal phytoplankton activity, 38 

concentrations of dissolved organic carbon (DOC) were higher in Kerguelen Plateau waters as 39 

compared to those in HNLC waters and during previous investigations in the study region in 40 

spring [1] (Supplementary Fig. 1BC). Concentrations of dissolved iron were shown not to 41 

differ in the on- and off-plateau surface waters in summer (0.09 nM) [2], due to the rapid 42 

utilization of iron supplied by natural fertilization [3]. The seasonal phytoplankton activity led 43 

to a build-up of heterotrophic prokaryotic abundance, associated to higher heterotrophic 44 

prokaryotic production, in fertilized waters as compared to the HNLC sites. Station M2 was 45 

visited three times at an 8-day interval, and station M3 and M4 were visited twice at a 46 

two-week interval. Samples were collected for all visits from surface waters (10 m) with 12 L 47 

Niskin bottles mounted on a rosette equipped with a conductivity, temperature, depth sensor 48 

(Seabird SBE-911 plus CTD unit). 49 

Microbial community DNA extraction and metagenome library preparation 50 

Total genomic DNA was extracted from the Sterivex filter units using the AllPrep DNA/RNA 51 

kit (Qiagen, Hiden, Germany) with the following modifications: Filter units were thawed and 52 

closed with a sterile pipette tip at the outflow. Lysis buffer was added (40 mM EDTA, 50 mM 53 

Tris, 0.75 M sucrose) and three freeze-and-thaw cycles were performed using dry ice in ethanol 54 

and a water bath at 65 °C. Lysozyme solution (0.2 mg mL
-1

 final concentration) was added, and 55 

filter units were placed on a rotary mixer at 37 °C for 45 min. Proteinase K (0.2 mg mL
-1

 final 56 
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concentration) and SDS (1% final concentration) were added and filter units were incubated at 57 

55 °C with gentle agitation every 10 min for 1 h. To each filter unit, 1 550 µl RLT plus buffer 58 

was added and inverted to mix. The lysate was recovered by using a sterile 5 ml syringe and 59 

loaded in three additions onto the DNA columns by centrifuging at 10 000x g for 30 sec. DNA 60 

purification was performed following manufacturer’s guidelines. The concentration of 61 

double-stranded DNA was quantified by PicoGreen fluorescence assay (Life Technologies). 62 

DNA quality was checked on an Agilent 2100 Bioanalyzer/Agilent Nano DNA chip (Agilent, 63 

Santa Clara, CA, USA). Triplicate DNA extracts were pooled in equimolar amounts providing 64 

1 pooled DNA extract per visit and station. The DNA extracts from the repeated visits (3 at M2 65 

and 2 at each M3 and M4) were then pooled for each station to achieve 1 µg in 30 µL Tris for 66 

sequencing purposes. 67 

Microbial community RNA extraction and metatranscriptome library preparation 68 

Triplicate samples (each 10 L) for prokaryotic RNA extraction were collected from the Niskin 69 

bottles and immediately filtered. The filtration procedure did not exceed 10 min and 10 ml of 70 

RNA-later was added to the filter in a Greiner tube prior to storage at -80 °C. RNA was 71 

extracted using the NucleoSpin® RNA Midi kit (Macherey-Nagel, Düren, Germany). Filters 72 

stored in RNA-later were thawed, cut in half, removed from the RNA-later solution, re-frozen 73 

in liquid nitrogen and shattered using a mortar. The second half of the filter was kept and 74 

extracted when sufficient RNA could not be obtained in the first round of extraction, resulting 75 

in different values for normalization per volume (L) used (Supplementary Table 2). The 76 

obtained ‘powder-like’ filter-pieces were added to the denaturing lysis buffer supplied by the 77 

NucleoSpin® RNA Midi kit (Macherey-Nagel, Düren, Germany) and vortexed for 2 min. Two 78 

internal standard RNA molecules of 1 006 nucleotides (nt) were synthesized and added to each 79 

sample with known copy numbers (Supplementary Table 2 and Supplementary Data), to 80 

enable absolute quantification of transcripts in the downstream analysis [4, 5]. RNA was treated 81 

with two rounds of DNA digestion and purified using the RNA Clean & Concentrator™-5 kit 82 

(Zymo Research, OZyme, France). Ribosomal RNA (rRNA) was removed with the RiboZero 83 

rRNA stranded RNA protocol. 84 

Metagenomic read quality control, assembly, and mapping 85 

Metagenomic reads was evaluated using FastQC (v0.11.7) [6] and processed with Trimmomatic 86 

(v0.39) [7]. An amount of 327.8, 336.3, and 285.0 million high-quality reads were retained for 87 

station M2, M3 and M4, respectively (Supplementary Table 2). Sequencing coverage and 88 

complexity of microbiomes in each metagenomic dataset was assessed using Nonpareil (v3.303) 89 



4 

[8] with the k-mer based approach (Supplementary Fig. 2A). Combined with another 337.3 M 90 

high-quality reads from station M2 sampled in a previous cruise in early spring, de novo 91 

co-assembly was performed using MEGAHIT (v1.0.4) [9] with default settings. CD-HIT-EST 92 

(v4.7; -c 0.99 -aS 1 -g 1) [10] was used to measure the redundancy of the assembled contigs. 93 

Metagenomic reads were aligned back to the contigs using Bowtie2 (v2.3.5) [11], with 94 

duplicates removed by the markdup function of SAMtools (v1.9) [12]. On average, 30.32% of 95 

reads in each metagenomic dataset could be recruited back to the assembled contigs. 96 

Southern Ocean assemblies vs. NCBI nt and nr databases 97 

We queried all the contigs against the NCBI nt database using BLASTN (v2.7.1) [13] with an 98 

e-value threshold of 1e-10. The bitscore and percentage of identity of the best alignment for 99 

each contig were collected. For those contigs which could not find a match in the nt database, 100 

zeroes were assigned. The statistics of the two features are shown in (Supplementary Fig. 101 

2BC). 102 

We also searched for homologs of our predicted genes, at both the nucleotide and amino 103 

acid level, against the NCBI nt database using BLASTN (v2.7.1) [13] and nr database using 104 

Diamond (v0.9.24; BLASTP mode) with an e-value threshold of 1e-10. The bitscore and 105 

percentage of identity of the best alignment for each gene were collected. For those genes 106 

which could not find a match in the nt (or nr) database, zeroes were assigned. The statistics of 107 

the two features are shown in (Supplementary Fig. 2D-G). 108 

Metagenome Southern Ocean vs. TARA 109 

A total of        draft genomes from the TARA Ocean Global Expedition Project, including 957 110 

from Delmont, et al. [14] and 2 631 from Tully, et al. [15], were downloaded. Besides, another 111 

41 newly released Arctic metagenomic datasets with 11 709 809 contigs were also collected 112 

[16]. We leveraged FastANI (v1.3) [17] for estimating pairwise ANI values between our 133 113 

MAGs and the TARA draft genomes (Supplementary Fig. 4A). Read recruitment from our 114 

Southern Ocean samples to the TARA assemblies, including both the draft genomes and the 115 

un-binned Arctic contigs, were implemented using BBMap (v38.22) [18] to verify the 116 

differences observed through ANI. The percentage of reads mapped to each assembly dataset, 117 

with a minimum percentage of identity at 90%, were summarized, and further normalized by 118 

the size of each dataset to a “per Mbp” unit (Supplementary Fig. 4BCE). Sequence similarities 119 

between our 949 228 non-redundant contigs and the TARA Arctic contigs were assessed using 120 

BLASTN (v2.7.1) [13]. Matches were identified with a minimum percentage of identity at 90%, 121 

a minimum coverage of the shorter sequence at 90% and an e-value threshold at 1e-3 122 
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(Supplementary Fig. 4D). Interestingly, in contrary to the low sequence similarity shared 123 

among contigs, the TARA Arctic datasets showed higher abundance through read recruitment 124 

than our MOBYDICK assemblies (adjusted P-value < 0.05 by Wilcoxon rank sum test; 125 

Supplementary Fig. 4E). To further assess the similarity between our metagenomes and the 126 

TARA Arctic ones, we downloaded the 41 TARA Arctic metagenomes and implemented 127 

BBMap (v38.22) [18] to map TARA Arctic reads to both the TARA Arctic contigs and our 128 

MOBYDICK contigs. The read recruitment statistics are summarized and further normalized by 129 

the size of each dataset to a “per Mbp” unit, as shown in Supplementary Fig. 4F. TARA Arctic 130 

metagenomes and contigs are classified into two groups based on sampling depth. In addition to 131 

the comparisons at the DNA level, we employed OrthoFinder (v2.2.3) [19] to identify 132 

orthologous gene clusters among our Southern Ocean MAGs and TARA draft genomes 133 

(Supplementary Fig. 4GH). Results and discussion could be found in Supplementary 134 

Results. 135 

Reconstruction of prokaryotic16S rRNA markers from metagenomes 136 

Reconstruction of prokaryotic16S rRNA markers from metagenomes is a complementary tool 137 

for evaluating microbial diversity and abundance. We implemented 16S rRNA-based 138 

community characterization using the MATAM (v1.6.0) [20] and phyloFlash (v3.4) [21] 139 

assemblers with the SILVA SSU rRNA database (v138.1) [22], resulting 6 groups of SSU 140 

assemblies (3 samples × 2 assemblers). The V4-V5 region of each 16S rRNA assembly was 141 

extracted by SSU-ALIGN (v0.1.1) [23]. Non-redundant representative V4-V5 sequences were 142 

selected across samples using CD-HIT-EST (v4.7; -c 1 -aS 1 -g 1) [10], among which 1 460 143 

were at least 200 bp in length and verified with a prokaryotic origin by the assignTaxonomy 144 

function of DADA2 (v1.16.0) with its precompiled SILVA training set (v138.1) [24]. 145 

The identified archaeal and bacterial 16S rRNA V4-V5 representative sequences were 146 

aligned by SSU-ALIGN (v0.1.1) [23] according to their secondary-structure covariance models. 147 

We built a phylogenetic tree from the sequence alignment using FastTree (v2.1.10; -slow -nt 148 

-gtr -gamma -bionj) [25], with the taxonomic assignment of the sequences as constraints at the 149 

order level (-constraints). Metagenomic reads were mapped back to the 16S rRNA V4-V5 150 

representative sequences using Bowtie2 (v2.3.5) [11]. A pseudo-OTU table was generated by 151 

jgi_summarize_bam_contig_depths [26], taking the depth of coverage as an approximation to 152 

amplicon counts. Visualization and statistics were performed in R (v3.6.1) using the phyloseq 153 

package (v1.28.0) [27]: Closely-related taxa were clustered through phylogenetic 154 

agglomeration by tip_glom (Supplementary Fig. 5A); The pseudo-OTU table was transformed 155 

for equal sampling depth by rarefy_even_depth; Relative abundance was calculated with the aid 156 
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of transform_sample_counts (Supplementary Fig. 5B); Alpha diversity was assessed according 157 

to the Shannon index and visualized via plot_richness (Supplementary Fig. 5C); To describe 158 

the differences across sites, we applied the double principal coordinate analysis (DPCoA) with 159 

regard to both phylogenetic structure and relative abundance, and visualized the results using 160 

plot_ordination (Supplementary Fig. 5D). Environmental vectors (M2, M3 and M4) were 161 

added according to the coordinates of the sampling sites reported in the DPCoA result. The first 162 

principal component, which accounts for more than 99% of the total variance, is associated 163 

positively with M2 and negatively with M3 and M4. Given that the three sampling sites are 164 

representatives of the on- (M2) and off-plateau (M3 and M4) environments, the first principal 165 

component could primarily measure the major differences that distinguish the contrasting 166 

oceanic regions, such as the availability of iron and organic carbon. 167 

Clusters of taxonomic groups are distributed along the first axis. The SAR11 group and 168 

Bacteroidota are well separated from each other and other taxonomic groups. A Monte-Carlo 169 

permutation test (1 000 replicates) applied to the DPCoA result was used to evaluate whether 170 

the observed compositional differences among microbial communities are higher than expected 171 

in a random distribution, by implementing the randtest.dpcoa function in the ade4 package 172 

(nrep=1000 and alter=“greater”) [28]. The simulated p-value approximates 0.001, assuring 173 

phylogenetic clustering as observed in Supplementary Fig. 5D given that phylogeny was used 174 

to build the distance matrix for our DPCoA analysis. 175 

We also estimated the root square of Rao’s dissimilarity coefficient between samples by the 176 

disc function in the ade4 package, using the OTU table and the phylogenetic distance 177 

(generated by the cophenetic.phylo function in the ape package) involved in the DPCoA 178 

analysis. This resulted a Rao’s dissimilarity value of 0.1624 between M2 and M , 0.1 07 179 

between M2 and M4, and 0.0259 between M3 and M4, in consistent with the correlations 180 

between the environmental vectors as shown in Supplementary Fig. 5D. To evaluate the 181 

statistical significance of categorical explanatory variables, such as the on- and off-plateau 182 

environments, we performed another permutation test based on constrained DPCoA (cDPCoA) 183 

[29]. Our cDPCoA analysis extended the DPCoA result with a partitioning factor of sampling 184 

sites (on- and off-plateu), using the bca (between-class) function in the ade4 package. The 185 

Monte-Carlo permutation test (1 000 replicates) on the cDPCoA result, using the 186 

aforementioned randtest.dpcoa function, resulted in a p-value of 0.3446553 (> 0.05). 187 

Considering that we only have three metagenomes, this insignificant outcome is not surprising 188 

when the analysis focused on the effect of environmental types. We undertook simulations with 189 

pseudo replicates for each sampling sites to examine how the number of samples biased the 190 
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significance test. We considered two cases, including 2 and 3 replicates per site. Assuming that 191 

biological replicates from the same sampling site should consist of similar microbial 192 

communities, the pseudo replicate(s) was generated by replacing the original measurement (x) 193 

with a random number selected using the rnorm function with mean=x and sd=0.25x. The same 194 

cDPCoA and Monte-Carlo permutation test was performed on each simulated OTU table. A 195 

total of 100 simulations were carried out in the case of 2 replicates per site, and the mean value 196 

of the resulted p-values is 0.06286713 (±0.01416026 standard deviation; mean > 0.05). When 3 197 

replicates per site were considered, the p-value approximates 0.01042957±0.004679961 (mean 198 

< 0.05). 199 

Assembly-free metagenome taxonomic profiling 200 

One limitation of working with metagenomes is the considerable amount of reads that could not 201 

be assembled into contigs (Supplementary Table 2). Such a limitation might be explained by 202 

the prevalence of genomes with low genome abundance and the deficiency in de Bruijn 203 

assembly algorithms [30]. Therefore, we also performed taxonomic profiling solely based on 204 

unassembled metagenomic reads. We implemented three types of taxonomic classifiers with 205 

distinct pros and cons [31], including DNA-to-DNA (Centrifuge v1.0.4 [32] with its 206 

precompiled nt database and Kraken2 v2.0.7-beta [33] with its standard database), 207 

DNA-to-protein (Kaiju v1.7.0 [34] with its precompiled nr databases), and 208 

phylogenetic-marker-based (mOTUs2 v2.5.1 [35]) methods. The mOTUs2 intrinsically 209 

incorporates the correction for copy number and genome length by using universal single-copy 210 

phylogenetic marker genes [35] (Supplementary Fig. 5E). However, to derive accurate relative 211 

abundance, the other three tools require subsequent normalization by the elusive total sequence 212 

size of individual taxon in the reference databases. To avoid this, we divided out the effects of 213 

reference sizes, as well as other multiplicative systematic biases, by considering the fold 214 

changes between taxon ratios across sampling sites [36]. The fold change is defined as 215 

     

     
 

     

     
, where O represents the observed number of reads from sample s (or t) that were 216 

assigned to individual taxonomic group i (or j) [36]. We used Candidatus Pelagibacter as the 217 

denominator (taxon j) given its prevalence and high abundance across sampling sites. The taxon 218 

ratios measured the “relative abundance” of a taxonomic group to Candidatus Pelagibacter, 219 

instead of to the whole community. The fold change of taxon ratios, by crossing out potential 220 

multiplicative systematic biases [36], was used as an indicator of the relative fitness of a taxon 221 

as compared to the ubiquitous SAR11 population in contrasting environments (M3 vs. M2, or 222 

M4 vs. M2; Supplementary Fig. 5F). Regarding possible detection biases against rare taxa, 223 
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here, we summarized read counts at the genus levels and only considered genera whose read 224 

counts was no less than 1‰ of Candidatus Pelagibacter’s. 225 

Metatranscriptomic read quality control and internal standards quantification 226 

An initial round of read processing was provided by the company using Trimmomatic (v0.39) 227 

[7]. The standard Illumina adapters and low-quality bases were removed with the following 228 

parameters “2: 0:10 SLIDINGWINDOW:4: ”. Further, we performed another round of quality 229 

control and refinement with Trim Galore (v0.5.0) using a minimum Phred score of 20 and a 230 

length threshold of 50 bp. To remove rRNA, tRNA and internal standard sequences, a two-step 231 

clean-up procedure was performed, starting with SortMeRNA (v2.1b) [37] and followed by a 232 

BLASTN (v2.7.1) [13] search against a custom database consisting of 545 336 reference rRNA 233 

and tRNA sequences from diverse taxa along with the 2 internal standard sequences [38]. 234 

Finally, an average of 22.38 M high-quality paired-end protein-coding reads were retained from 235 

each replicate, and the per-liter calculations were performed based on the recovery rate of 236 

internal standards as previously described [38-40] (Supplementary Table 2). 237 

Identification of PUL-like structures and fucose utilization loci 238 

In this study, we adopted a more general term CAZyme gene clusters (CGCs) [41] to identify 239 

PUL-like gene clusters in a broader sense, requiring at least one CAZyme accompanied with 240 

transcription factors (TFs) and/or transporters (TCs) (Supplementary Fig. 13A-D). To identify 241 

fucose utilization loci among Verrucomicrobiae MAGs, the nine Lentimonas genomes provided 242 

in Sichert et al. [42] were downloaded from NCBI GenBank database. Orthologous proteins 243 

between the MAGs and the Lentimonas references were determined using OrthoFinder (v2.2.3) 244 

[19] (Supplementary Fig. 13E). 245 

Comparative analysis of Pseudomonadales HTCC2089 pangenomes 246 

The sequences of 19 Pseudomonadales HTCC2089 draft genomes were downloaded from 247 

NCBI GenBank database, including 15 from UBA4421 genus and 4 from UBA9926 248 

(Supplementary Table 6). Pangenome is defined on the basis of cluster of orthologous genes 249 

identified by OrthoFinder (v2.2.3) [19], and comparative analysis between genus UBA4421 and 250 

UBA9926 was carried out from three aspects, including the core, accessory and singleton genes 251 

(Supplementary Table 6). A gene cluster enhancing the use of light as an energy resource was 252 

identified exclusively in the UBA4421 genus (Supplementary Fig. 14A). A gene encoding 253 

bacteriorhodopsin was also identified in one of the UBA9926 genome (GCA_002728935), but 254 

genes around it are not related to light harvesting (Supplementary Fig. 14A). Genes encoding 255 
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bacteriorhodopsin were identified and their protein sequences were retrieved. The top 5 256 

homologous bacteriorhodopsin sequences were selected from the MicRhoDE database [43] via 257 

BLASTP search. Another two archaeal rhodopsin sequences were obtained from MicRhoDE 258 

and used as outgroups for phylogeny analysis. All bacteriorhodopsin proteins were aligned by 259 

MAFFT (v7.313) [44] and processed by trimAl (v1.4; -automated1) [45]. Phylogenetic 260 

reconstruction was performed using IQ-Tree (v1.6.8; -m MFP -bb 1000 -bnni) [46]. The 261 

bacteriorhodopsins from distinct genera are well separated on the phylogeny tree with high 262 

support values (Supplementary Fig. 14B).263 
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Supplementary Results 264 

Comparison between MOBYDICK metagenome assemblies and the TARA ocean dataset 265 

The TARA Ocean Global Expedition Project provides an extensive survey on the global surface 266 

ocean microbiomes [47], providing        draft genomes [14, 15] and another 41 newly released 267 

Arctic metagenomic datasets with 11 709 809 contigs [16]. However, to date, only 3 TARA 268 

prokaryote-enriched metagenomes from the surface Southern Ocean are publicly available, and 269 

their sampling sites were far away from ours. The aforementioned comparisons between our 270 

Southern Ocean assemblies and the NCBI databases highlight the uniqueness of the Southern 271 

Ocean microbiomes (Supplementary Fig. 2B-G) and further request the comparisons between 272 

our Southern Ocean MAGs and the TARA assemblies. Our analyses were performed from three 273 

main aspects, including the pairwise average nucleotide identity (ANI) assessment, the 274 

Southern Ocean metagenomic read recruitment and the identification of orthologous protein 275 

families between the two datasets (see Supplementary Methods). Only 13 of the Southern 276 

Ocean MAGs conform to > 95% intra-species ANI values with TARA counterparts, despite the 277 

high similarity shared among the TARA MAGs (Supplementary Fig. 4A and Supplementary 278 

Table 3) [17]. Metagenomic read recruitment analysis further confirmed that, except for the 279 

TARA Southern Ocean samples (SOC), the TARA MAGs recruited a significantly lower 280 

amount of our metagenomic reads as compared to our Southern Ocean MAGs (adjusted P-value 281 

< 0.05 by Wilcoxon rank sum test; Supplementary Fig. 4BC), assuring that the novelty of our 282 

Southern Ocean assemblies is not derived from biases introduced during metagenome assembly 283 

and binning. In addition, only 4.18% (±1.33%; S.D.) of our Southern Ocean contigs could find 284 

a match with high similarity in the TARA Arctic datasets (Supplementary Fig. 4D). 285 

Interestingly, in contrary to the low sequence similarity shared among contigs, the TARA Arctic 286 

datasets showed higher abundance through read recruitment than our Southern Ocean 287 

assemblies (adjusted P-value < 0.05 by Wilcoxon rank sum test; Supplementary Fig. 4E) and 288 

the vice-versa read recruitment analysis confirmed the same pattern (Supplementary Fig. 4F), 289 

suggesting that Arctic and Southern Ocean metagenomes may have some taxonomic and 290 

functional similarity. 291 

Genera with anomalously deviated fold changes between taxon ratios across sampling sites 292 

Particularly, Polaribacter presented an intense increase in abundance in the on-plateau M2 site 293 

as compared to the HNLC waters (Supplementary Fig. 5F). Polaribacter are heterotrophic 294 

bacteria belonging to the family Flavobacteriaceae. They are widely distributed in marine 295 
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habitats and rely heavily on the phytoplankton-derived dissolved organic matters [48-51]. It can 296 

develop rapidly under favorable conditions, and was reported to contribute to a large share of 297 

biomass production during the spring phytoplankton blooms surrounding Kerguelen Island [52]. 298 

Another interesting Flavobacteriaceae genus is Formosa (Supplementary Fig. 5F; named as 299 

Hel1-33-131 under the GTDB taxonomy system [53] in Supplementary Table 3), which 300 

accounted for up to 24% of all bacteria during diatom-dominated spring blooms off the 301 

Helgoland Island in North Sea [54]. In general, marine Flavobacteriaceae are active degraders 302 

of biopolymers and was observed to be abundant in nutrient-rich habitats [49, 55, 56]. They are 303 

key players in Southern Ocean carbon cycling. Therefore, it is important to understand the 304 

underlying enzymatic mechanisms and adaptation that drive the specialization of these highly 305 

competitive bacteria in the on-plateau M2 site. To the contrary, the Gammaproteobacterial 306 

genus Psychrobacter were of greater success in HNCL waters, characterized with a log fold 307 

change of taxon ratios below 0 (Supplementary Fig. 5F). We have a Southern Ocean MAG 308 

(MAG_130) from this genus, which showed an overall high abundance in all three sampling 309 

sites and were featured with an average coverage of depth per million reads ~12 times higher in 310 

M3 and M4 than M2 (Fig. 1 and Supplementary Table 3). Psychrobacter is known to produce 311 

siderophores in iron limiting conditions and able to increase growth rate under iron fertilization, 312 

reassuring its success in both environments [57]. 313 

Genomic differences between MAG_103 and MAG_62 314 

We identified a putative methanogenesis gene cluster in MAG_62, which was conserved in all 315 

but one UBA9926 genomes and absent from the UBA4421 genus (Supplementary Table 6). It 316 

consisted of one trimethylamine methyltransferase (mttB; K14083), a corrinoid 317 

methyltransferase, a protein of unknown function, a methyltetrahydrofolate-homocysteine 318 

methyltransferase (MTR; K00548). and a ferredoxin. Methylotrophic prokaryotes, which 319 

consume methylated compounds such as trimethylamine and dimethyl sulfate, were reported to 320 

be common in marine and hypersaline, sulfate-rich sediments [58]. Just adjacent to putative 321 

methanogenesis loci, there was another cluster consisting of four sarcosine oxidase-encoding 322 

genes (soxADG), which could only be found in one UBA4421 genomes. Another sarcosine 323 

oxidase subunit, soxB, was also identified in all UBA9926 genomes and 2 UBA4421 gnomes 324 

but absent from MAG_103. Sulfur oxidation mediated by Sox proteins have also been widely 325 

identified as an important process of energy metabolism in sediments and deep-sea vent 326 

ecosystems [59, 60]. The co-localization and conservation of the sox and mtt genes in MAG_62 327 

suggested a deeper water origin of this species, which is coherent with the higher abundances of 328 

MAG_62 in spring characterized by a deep mixed layer (Supplementary Table 3). 329 
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We could not detect fundamental advantages in substrate utilization that would explain 330 

the flourishing of MAG_62 in the spring surface waters. Other possible explanations could be 331 

related to RecBCD DNA repair enzymes and the biosynthesis of antibiotics. MAG_62 had a 332 

gene cluster encoding the three exodeoxyribonuclease V gamma subunits in a row (recB, recC 333 

and recD; K03582, K03583 and K03581), which was shared by all UBA9926 genomes but 334 

absent from the UBA4421 genus. RecBCD complex is responsible for the repair of DNA 335 

double-strand breaks by homologous recombination [61], and was considered to play an 336 

effective role in handle antibiotic-induced oxidative DNA damage [62]. Additionally, RecD was 337 

also reported to play a critical role for deep-sea bacteria to grow under high pressure [63]. 338 

Prokaryotes have evolved various strategies, such as motility, antibiotic synthesis and antibiotic 339 

resistance, to increase their probability to survive and increase their competence for larger 340 

shared of resources [64]. Both MAG_103 and MAG_62 were capable of producing multiple 341 

antibiotics, but their approach to protect themselves from antibiotic-induced damages were not 342 

the same (Supplementary Table 6). Penicillin-binding proteins (PBPs) are targets of β-lactam 343 

antibiotics. Prokaryotes can confer antibiotic resistance by modifying their PBP structures to 344 

either reduce the binding capability of antibiotics or directly degrade the antibiotics [65]. Both 345 

the UBA9926 and UBA4421 genera could produce penicillin-binding protein 1A (mrcA; 346 

K05366) and penicillin-binding protein 2 (mrdA; K05515) which were considered to participate 347 

in beta-Lactam resistance. Besides, MAG_62 could produce a putative multi antimicrobial 348 

extrusion protein (PF01554.18) which was reported to mediate resistance to multiple 349 

antimicrobial agents [66]. As mentioned above, the RecBCD complex also plays are role in 350 

antibiotic resistance, therefore, MAG_62 might be better equipped to deal with antibiotic stress.351 
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Supplementary Figure Legends 352 

Supplementary Fig. 1    Three sampling sites (M2, M3 and M4) of the MOBYDICK cruise. 353 

A, Station M2 is located above the central Kerguelen Plateau, where Chlorophyll a (Chl a) 354 

concentrations are higher than at the off-plateau stations (M3 and M4). The colour code in (A) 355 

represents the monthly (March) climatological mean of Chl a concentration (mg m
-3

) from 356 

2003-201 . Data was collected from NASA’s moderate-resolution imaging spectroradiometer 357 

(MODIS-Aqua) dataset (https://oceancolor.gsfc.nasa.gov/data/aqua/). The location of the 358 

Antarctic Polar Front (APF) is also highlighted in (A), showing that during the MOBYDICK 359 

cruise M2 and M4 were located south of the polar front in Antarctic waters whereas M3 was 360 

situated in the polar front zone. The monthly APF data was collected from Pauthenet et al., 361 

(2018) [67]. The yearly mean latitude of APF at a resolution of 0.1 longitude degree (the black 362 

curve in A) was determined by calculating the mean value of all 12-month measurements 363 

within a 0.2 degree sliding window, which moves 0.1 longitude degree at one time. The 364 

standard error of the mean (SEM) was also calculated and is shown as the grey shading around 365 

the black curve in (A). The seasonal mean and SEM, covering austral summer and autumn, 366 

were determined in the same way, except that only the data from December to May was 367 

involved (the blue curve with light blue shading in A). The calculation scheme is exemplified in 368 

the inset panel of (A), showing how the data at 60 °E were assessed: The blue dots represent 369 

data for austral summer and autumn, while the orange ones are for austral winter and spring; 370 

The mean and SEM values are calculated based on data points falling within the sliding widow 371 

which is shaded in grey. B, The variation of Chl a concentration (mg m
-3

) of the three sampling 372 

sites (M2 in orange, M3 in blue and M4 in green) from October 2017 to March 2018. The 373 

background shade in orange displays previous observations from 1998 to 2017, with Mean+S.D. 374 

as the upper and Mean-S.D. as the lower limits of the shaded region. Data was collected from 375 

Copernicus Marine Service (http://marine.copernicus.eu/). C, Depth profiles of temperature 376 

(°C), salinity and dissolved organic carbon (DOC, µM) as determined during the MOBYDICK 377 

cruise. The measurements from 0 to 200 m are illustrated. The colour scheme for data points 378 

from different sampling sites and distinct visits is shown at the bottom. 379 

 380 

Supplementary Fig. 2    A, Sequencing coverage and complexity of microbial communities 381 

in our samples determined by Nonpareil [8]. Nonpareil examines the redundancy of the reads in 382 

metagenomic datasets to assess the average coverage and predict the amount of sequences 383 

required to achieve full coverage [8]. Colours indicate different datasets used for the estimation, 384 

and “R1/R2” represents the forward/reverse reads. Solid lines show the projection curves of the 385 

https://oceancolor.gsfc.nasa.gov/data/aqua/
http://marine.copernicus.eu/


14 

estimated coverage per sequencing effort. The empty circles indicate the actual size of each 386 

metagenomic dataset (x-axis) and the corresponding fraction of microbiome covered by DNA 387 

sequencing (y-axis). The horizontal dashed lines in red indicate the 95% and 100% coverages. 388 

The arrows at the bottom indicate the sequence diversity (Nonpareil Nd). Curves on the right 389 

display higher sequence diversity than those on the left. B and C, The 949 228 assembled 390 

contigs were queried against the NCBI nt database. The statistics of the bitscore (B) and 391 

percentage of identity (C) of the best alignment for each contig are represented by bar plots. D 392 

to G, The similarity between our 3 003 586 protein-coding genes and the NCBI nt (or nr) 393 

database were also assessed. The corresponding statistics of the best hit for each gene are 394 

summarized here. D and F, the x axis represents different ranges of the bitscores, and the y axis 395 

shows the percentage of genes falling into each category. Similarly, E and G, the x axis 396 

represents the percentage of identical match, and the y axis illustrates the percentage of genes in 397 

each group. 398 

 399 

Supplementary Fig. 3    Maximum-likelihood phylogenetic tree of the 133 MAGs (A) and 400 

their corresponding sequence-discrete populations revealed by metagenomic read recruitment 401 

(B to G). A, Bootstrap values are shown in percentages at internal nodes. Leaves (MAGs) are 402 

coloured according to their taxonomic assignment at the class level. B, Fraction of reads 403 

recruited to a MAG (y axis) at each percentage of nucleotide identity level (x axis) by using the 404 

metagenome reads from Station M2. Bars are coloured in proportion to their heights. MAGs are 405 

arranged according to their position on the phylogenetic tree. C to D, Statistics of recruited 406 

metagenome reads from Station M3 and M4. E to G, Statistics of recruited metatranscriptome 407 

reads from Station M2, M3 and M4. 408 

 409 

Supplementary Fig. 4    Comparisons between MOBYDICK Southern Ocean MAGs and 410 

the TARA assemblies, including both draft genomes and un-binned contigs, suggesting high 411 

genetic diversity at the DNA level but low functional novelty with regards to proteins. A, 412 

Pairwise ANI values between our MAGs and the TARA draft genomes were calculated by using 413 

fastANI [17]. If one of our MAGs has multiple matches in TARA, only the highest ANI value 414 

was used for the statistics. MAGs without a TARA counterpart (ANI < 75%) were not 415 

considered. The violin plot describes the distribution and the density trace of the 95 (out of 133) 416 

ANI values. The 9  spotted dots are grouped and coloured according to three ranges: “red” 417 

represents for > 95% intra-species ANI values; “salmon” are ANI values ranging between    418 

and 9 %; and “black” shows <   % (but ≥ 7 %) inter-species ANI values [17]. (B, C and E) 419 
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shows the statistics of the read recruitment analyses against all the metagenome assemblies, 420 

including 949 22  contigs and 1   MAGs from our study, as well as 11 709  09 contigs and   421 

     draft genomes from the TARA Ocean Project [14-16]. Data were summarized according to 422 

their sampling locations as specified in the original papers [14-16], and the list of acronyms is 423 

provided at the end of this paragraph. The boxplots illustrate the distribution of the fraction of 424 

reads in each sample (M2, M3 or M4) that could be mapped to the assemblies by BBMap 425 

(v38.22) [18] with a minimum percentage of identity at 90% and further normalized by the size 426 

of each dataset to a “per Mbp” unit. Non-parametric pairwise Wilcoxon rank sum tests with 427 

Holm adjustment demonstrated that the non-Southern Ocean TARA draft genomes recruit a 428 

significantly lower amount of reads from each sample (M2, M3 or M4), as compared to our 133 429 

MAGs (p.adj < 0.05; B and C). In contrary to B and C, the Arctic contigs showed an overall 430 

higher rate of read recruitment than our assemblies (p.adj < 0.05; E). D, Our 949 228 contigs 431 

were queried against the 41 TARA Arctic datasets using BLASTN (v2.7.1) [13]. The violin plot 432 

describes the distribution and the density trace of the percentage of our contigs which have an 433 

Arctic match with high sequence similarity. In F, Statistics of TARA Arctic metagenome read 434 

recruitment to the TARA Arctic contigs and our MOBYDICK contigs. Similar to E, Arctic 435 

contigs recruited significantly more reads per Mbp than ours. In G and H, Prodigal (v2.6.3) was 436 

used to recover protein sequences from the TARA assemblies under meta mode (-p meta) [68]. 437 

Protein sequences were pooled according to their sampling locations as mentioned before, 438 

resulting one combined site-specific proteome for our study (named as “SO MAGs”), 12 for 439 

Delmont, et al. [14] and 10 for Tully, et al. [15]. Orthologous groups shared among these 23 440 

site-specific proteomes were identified using OrthoFinder (v2.2.3) [19]. G, A total of 519 468 441 

orthologous groups were identified, among which 84 192 were shared by all. Only 71 442 

orthologous groups were unique to our MAGs (Singletons were not included). H, Barplots 443 

illustrate the percentage of proteins in each site-specific proteome that are involved in 444 

orthologous groups with at least one member from our MAGs. The TARA SOC MAGs have the 445 

highest percentage of shared orthologs, whereas the TARA ASW ones have the lowest 446 

percentage. Due to computational limitation, the TARA Arctic datasets were not included in the 447 

orthology analysis. Acronyms: Delmont, et al. has 12 locations, including ANE (Atlantic 448 

northeast), ANW(Atlantic northwest), ASE (Atlantic southeast), ASW (Atlantic southwest), 449 

ION (Indian Ocean north), IOS (Indian Ocean south), MED (Mediterranean), PON (Pacific 450 

Ocean north), PSE (Pacific Ocean southeast), PSW (Pacific Ocean southwest), RED (Red Sea) 451 

and SOC (Southern Ocean) [14]. And, Tully, et al. consists of 10 sites, including ARS (Arabian 452 

Sea), CPC (Chile-Peru coastal), EAC (east Africa coastal), IN (Indian Ocean), MED 453 
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(Mediterranean), NAT (north Atlantic), NP (north Pacific), RS (Red Sea), SAT (south Atlantic) 454 

and SP (south Pacific) [15]. 455 

 456 

Supplementary Fig. 5    Taxonomic profiling confirmed that natural iron fertilization and 457 

DOC availability altered the diversity and abundance of the prokaryotic communities across the 458 

sampling sites. A to D, Taxonomic profiling through 16S rRNA assemblies (as defined under 459 

the SILVA v138.1 taxonomy). A, The outmost circle shows the phylogenetic tree constructed 460 

using FastTree [25] based on the MATAM/phyloFlash-assembled prokaryotic 16S rRNA 461 

sequences [20] (Supplementary Methods). Taxonomic assignment of each 16S rRNA is 462 

labelled on the tree tip. The taxonomic colour scheme for the labels is shown in the middle. The 463 

red numbers on the internal nodes (≥ 0.5) indicate the local support values provided by the 464 

Shimodaira-Hasegawa (SH) test [25]. B, shows the stacked bar charts of the relative abundance 465 

at the class level of the prokaryotic communities from different sampling sites. C, The Shannon 466 

index of each sampling site suggests that M3 and M4 share similar and higher species diversity 467 

and evenness as compared to M2. D, Double principal coordinate analysis (DPCoA), taking 468 

both phylogenetic and abundance data into account, reveals a strong clustering of different 469 

taxonomic groups by sampling regions (off- vs. on-plateau). E and F, Taxonomic profiling 470 

based on the direct assignment of metagenomic reads to phylogenetic categories (as defined 471 

under the NCBI taxonomy). E, The stacked bar charts of the relative abundance at the class 472 

level from different sampling sites estimated by mOTUs2 [35]. F, Statistics of the fold changes 473 

between taxon ratios across sampling sites. The taxon ratios measured the “relative abundance” 474 

of a taxonomic group to that of Candidatus Pelagibacter, instead of to the whole community. 475 

The fold change of taxon ratios, by crossing out potential multiplicative systematic biases [36], 476 

was used as an indicator of the relative fitness of a taxon as compared to the ubiquitous SAR11 477 

population in contrasting environments (M2 vs. M3, or M2 vs. M4). The median value of the 478 

log fold change varied between 1.16 and 1.34, indicating approximately one-fold increasing in 479 

the relative fitness of the studied genera in comparison with Candidatus Pelagibacter in the 480 

on-plateau region. Genera with anomalously deviated fold changes could be quintessential 481 

representatives of specific environment, such as Polaribacter, Formosa and Psychrobacter 482 

(Supplementary Results). The blue and green colors are used to represent different 483 

comparison pairs. The shapes are used to distinguish tools. The size of each symbol is in 484 

proportion with the total number of reads assigned to the taxonomic group by all tools. 485 

 486 
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Supplementary Fig. 6    Taxonomic composition and abundance of KEGG Orthology 487 

groups (KOs) in the SO metagenomes (A to D) and metatranscriptomes (E to J). In A to D, the 488 

relative abundance of a taxonomic category i given a KOj was measured: A, by the proportion 489 

of genes, among all the protein-coding genes belonging to KOj, assigned to taxonomy i, as 490 

defined by the division of 
                          

                   
; B to D, based on gene abundance, in the 491 

form of FPKM (fragments per kilobase of transcript per million mapped reads) values, as 492 

defined by the division of 
                              

                      

 in each metagenome. In E to G, the 493 

absolute abundance of each KO group in each metagenome was estimated using the normalized 494 

transcripts per liter according to the internal standards protocol [40], as defined by the sum of 495 

                                
. The values of the total transcripts L

-1
 assigned to each KO 496 

are shown in the middle of each cell. The colour code, from blue via yellow to red, represents 497 

the total number of transcripts L
-1

 assigned to each KO group from low to hight. In H to J, the 498 

relative abundance of a taxonomic category i given a KOj was evaluated by the division of 499 

  
                                      

                                

 in each metatranscriptome. The mean of the three replicates 500 

was used to represent their corresponding metatranscriptomic sample. The KO groups in all 501 

panels are ordered decreasingly according to the value of transcripts L
-1

 in M2 (as shown in E). 502 

Only functional groups consisting of at least 10 genes, out of 3 003 587 protein-coding genes 503 

predicted from the metagenome assemblies, were shown. 504 

 505 

Supplementary Fig. 7    Abundance of functional groups in each sample and the relative 506 

contribution of different taxonomic categories to each functional group were evaluated based on 507 

the carbohydrate-active enzymes (CAZyme) [69]. The calculation and the order of panels 508 

within each section are the same as shown in Supplementary Fig. 6. 509 

 510 

Supplementary Fig. 8    Statistics of functional diversity (A) and shifts in taxonomic 511 

composition within functional groups (B) across sampling sites, based on the community-level 512 

metagenomic gene abundance represented by FPKM (fragments per kilobase of transcript per 513 

million mapped reads) values (B-D in Supplementary Fig. 6-7). In B, the relative contribution 514 

(%) of a specific taxonomic category (e.g., Gammaproteobacteria) to a functional group (e.g., 515 

ferrous iron transporter FeoA) in each sampling station was calculated (Materials and methods). 516 

Shifts in the relative contribution across stations were estimated using the ratio of the relative 517 

contribution in M2 to that in M3 (or M4) and visualized by violin plots. A ratio value less than 1 518 
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indicates that the taxonomic category accounts for a larger share of the genes of a functional 519 

group in the off-plateau HNLC waters, and vice versa. Multiple databases were considered, 520 

including CAZy, FeGenie, KEGG, Pfam, Superfamily and TCDB. Five dominant taxonomic 521 

groups in gene pool and transcript inventories across all sampling sites were shown 522 

(Supplementary Fig. 6-7). Colour code is the same as Supplementary Fig. 6-7. Only 523 

functional groups consisting of at least 50 genes, out of the 3 003 587 protein-coding genes 524 

predicted from the metagenome assemblies, were used in the calculation. 525 

 526 

Supplementary Fig. 9    A, An exemplary illustration of the influence of genome abundance 527 

on the assessment of gene expression levels, showing that fluctuations in transcript abundance 528 

could be a result of shifting genome copies rather than changes in expression levels. B, The 529 

pipeline to generate the metagenome-normalized metatranscriptomic pseudo-read count table. 530 

All the analyses were performed under R environment (v3.6.1). Initially, two matrices of read 531 

counts of genes were generated using featureCounts (v2.0.0) [70]. Each matrix contains 3 003 532 

586 rows, representing the total number of protein-coding genes predicted in our 949,228 533 

assembled contigs (≥ 1 kbp). The metagenomic matrix consists of 3 columns representing 3 534 

sampling sites M2, M3 and M4. The metatranscriptomic matrix has 9 columns corresponding to 535 

3 biological replicates × 3 sampling sites. Secondly, genes with low read counts were filtered 536 

out. Only genes whose FPM (fragments per million mapped fragments) value is no less than 1 537 

in at least 1 sample, which must be satisfied in both metagenomic and metatranscriptomic data, 538 

were remained. Variance stabilizing transformation (VST) was carried out on both matrices. 539 

Given that                                                            , we used 540 

the ratio between transcript abundance and gene abundance as approximations of gene 541 

expression levels (       
                   

             
). Here,                      represents the 542 

metatranscriptomic read counts of a gene in a sample, and               equals to the 543 

metagenomic read counts of a gene in a sample. Since the transformed data was on log2 scale, 544 

the formula could also be written as                                                    . Then, 545 

in each sample (each column),        values are normalized (divided) by the corresponding 546 

sample (column) maximum. Finally, we converted the normalized ratios to pseudo counts by 547 

multiplying with 10
6
 and rounding to the nearest integer. C, Heatmap of the sample-to-sample 548 

distance, and D, Principal component analysis (PCA) based on the normalized read counts after 549 

variance stabilizing transformation by DESeq2. 550 

 551 
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Supplementary Fig. 10    Counts of significantly differentially expressed genes (SDEGs) in 552 

CAZymes [69] across contrasting oceanic regions (on- and off-plateau). Each row represents 553 

one functional group. For CAZymes, enzyme families are further clustered based on their 554 

functions, including the breakdown, biosynthesis and modification of carbohydrates and 555 

glycoconjugate (e.g., glycoside hydrolases (GHs) hydrolyse the glycosidic bonds between 556 

carbohydrates). The three vertical panels show: (1
st
) The comparison of SDEGs obtained with 557 

vs. without the metagenome-based normalization. The black segment of each bar represents the 558 

number of SDEGs identified by both methods; the grey segment displays the SDEGs only 559 

found based on the metagenome-normalized metatranscriptomic pseudo counts (with 560 

normalization); the white segment shows the SDEGs only reported without the normalization 561 

procedure. (2
nd

) The SDEGs based on the metagenome-normalized metatranscriptomic pseudo 562 

counts. (3
rd

) The log2-based fold change values of SDEGs involved in the 2
nd

 panel. In the 563 

bi-direction bar plots, the bars pointing to the left indicate the number of genes that are 564 

significantly higher expressed in the on-plateau iron-fertilized M2 site, as compared to the 565 

off-plateau HNLC M3 and M4 sites. To the contrary, the bars pointing to the right represent 566 

genes that are significantly higher expressed in the off-plateau HNLC waters. The colour 567 

scheme of taxonomy is shown on top. 568 

 569 

Supplementary Fig. 11    Counts of significantly differentially expressed genes (SDEGs) in 570 

KEGG Orthology groups (KOs) [71] across contrasting oceanic regions (on- and off-plateau). 571 

We built a list of KOs relevant to iron uptake and metabolism, the tricarboxylic acid (TCA) 572 

cycle, the Embden Meyerhof-Parnas (EMP) pathway, proposed C1 and methylated compound 573 

oxidation pathways, and etc (Supplementary Table 4). The vertical panel arrangement and 574 

colour schemes are the same as shown in Supplementary Fig. 10. Several KOs that are 575 

involved in multiple pathways are displayed multiple times. 576 

 577 

Supplementary Fig. 12    The distribution of significantly differentially expressed genes in 578 

the 133 MAGs among diverse functional categories related to iron uptake and carbon 579 

metabolism. From left to right, the panels represent the phylogenetic tree (the same as shown in 580 

Fig. 1), the KOs involved in the EMP glycolysis/gluconeogenesis, C1 and methylated 581 

compound oxidation pathways, oxidative phosphorylation, nitrogen metabolism, transcription 582 

factors, ABC transporters, sulfur metabolism, Sec (secretion) system, type II secretion system, 583 

type IV secretion system and the two-component system. The symbol and colour schemes are 584 

the same as shown in Fig. 5. 585 
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 586 

Supplementary Fig. 13    Polysaccharide utilization loci (PULs) identified in MAG_78 (A), 587 

134 (B), 3 (C) and 73 (D), as well as fucose utilization loci found in MAG_58, 98, 6 and 17 (E). 588 

Arrows represent genes and direction of arrows illustrates their strand locations. The colour 589 

scheme is: “orange” represents genes that are significantly higher expressed in the on-plateau 590 

iron-fertilized water (M2 site); “yellow” shows genes that are higher, but not significantly, 591 

expressed in the on-plateau site; “blue” indicates genes that are significantly higher expressed 592 

in the off-plateau HNLC waters (M  and M4 sites); “cyan” are genes that are higher, but not 593 

significantly, expressed in the HNLC waters. Genes encoding the fucose metabolic pathway of 594 

Lentimonas sp. CC4 [42] is used as the reference to arrange their counterparts identified in 595 

MAGs from the Verrucomicrobiae class (under the GTDB taxonomy system [53]). Light blue 596 

shades between genes are used to indicate orthologous groups and facilitate visualization, 597 

because the incompleteness of MAGs leads to the fragmented distribution of genes among 598 

contigs. 599 

 600 

Supplementary Fig. S14    (A) A gene cluster potentially engaged in using light as a 601 

complementary energy resource was identified exclusively in the UBA4421 genus. A gene 602 

encoding bacteriorhodopsin was also detected in one of the UBA9926 genome 603 

(GCA_002728935), but genes adjacent to it do not form similar light-harvesting gene clusters 604 

as found in the UBA4421 genus. Light blue shades between genes are used to indicate 605 

orthologous genes. The colour scheme is: “orange” represents genes that are significantly 606 

higher expressed in the on-plateau iron-fertilized water (M2 site); “yellow” shows genes that 607 

are higher, but not significantly, expressed in the on-plateau site; “white” are genes from 608 

reference genomes. (B) Bacteriorhodopsins from different genera are well separated on the 609 

phylogeny tree with high support values, indicating distinct origins of the rhodopsin genes. The 610 

emergence of the accessory functions of light harvesting might be a result of adaptive evolution. 611 

(C) Sequence alignment of transmembrane peptide segment of bacteriorhodopsin sequence of 612 

MAG_103 and its top 20 matches in the MicRhoDE database [43], highlighting variation in 613 

residues involved in spectral tuning and ion pumping.614 
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Supplementary Data 615 

Sequences of the two internal standards add to RNA libraries: 616 

>MTST51006NT 617 

GGGUUCGGUGGUCUAUACUACUACCUAAGUUGGAUGUACUGGUGGAAGUGCUACCAACACAGUAAUGCUGGUAUAGGUAG 618 

GCAACACUACGACUUCAGGAAGAGUCUAACGAAUGUAUGCAUAAUACUAAUGCCUUACAUGUGGAAGCACCCUAUAACGG 619 

ACAGGAUGAGGCACAGGCACAUGUGCAGGCAAGCUUUCAAGUGGAUGUGCGGUGAAAAUAAGUUCUGGCUAGUAAGGGCU 620 

AUGGAAAAUCAACCUGACGAAAGGAUACUAGCUCAAAUGACGAUAACGGACAGUGACUGGCAACCUGAAGAAUGGUACAA 621 

GAAGAGGCACGACCCUGGUGAAAAUGACGUAAUAAGGUGCGUAUACAUAGGUAUAGAAAAUCUAGUAAAUGCUACGUGCC 622 

CUGACAUGGAAGACUACUACGCUAUGACGGGUAAUAAGCCUCUACUAGAACUAAAUAGUAUAGGUCCUUGCACGCAAUGC 623 

ACGGUACACAAGCUAGAAGGUGUACACUGCAUAUGGUGGAUAGUAAGGAGGGACCACUUCCCUGUACCUAUAAUACAAAU 624 

AGUAGACGUAUUCAAUCUAUACAAUUUCGCUAGUGGUACGGUACUAUGCAUACAACACGCUGCUCACCCUUGGGGUGACU 625 

GGAUGUUCGACGUACAAUACGAAAGUUGCAGGAUGUACAGGUGGUGGAUGACGAGGAAUGACUGGAGUGGUCCUAAUAAG 626 

UGGAGUGGUGCUCACAGUAUAUGCCAACCUCACUGCUGCAGGAGUGACGACAGUAGGGUAAGUAAGAGGAUGGCUACGGU 627 

AACGAAGGAAGUAGUAGAAAUGAGUCACAUGGACCUAAAGAGGAGUGCUUACUGCAAUAGGACGCAACUAGAAGAAUACG 628 

ACGCUUUCUACACGAGGUGGAAGUUCGUACCUUGGAUGUACCCUGCUCCUCUACCUUGCGAAGUACAAGACUUCGUAACG 629 

AGGAGGACGUUCGACUACCCUGACCCUACGGCUUGCGGUCUAGUUU 630 

>MTST61006NT 631 

GGGAAUCUAAUAACGGAACCUAUAUGGUACGUAAGUAUGAGUAGUGGUUUCGGUGUAAAUUUCAGGGACCAACAAGGUGC 632 

UAUAGACGUAAGGCUAGCUUGCCUACAAAUAGACCCUAAGGUAUGCCACCAAAGGGGUAGUAAUAGUUACUGGUGGAAUU 633 

GGAGUUGGCUAGACAUGAAUACGUUCUACCCUGCUUACUUCUACGUAAUACAAAGUUGGGAAAGGUGGACGGACUGGAAG 634 

UACAAUUACUACCCUGGUGCUGUAAUGCCUAGGGGUGAACCUAAGUGGACGCCUUGCAGGCAAUGCAUGCCUAGUCACAU 635 

AAAUGGUAGGACGAAUAGGAUGCAAAAGGCUCUAGGUUUCCAAAGGAGGGUAUACUGCUACCCUUUCAUAGAAGCUGAAA 636 

UGAGGGAAUGCAUGGAAAGUGACCCUCACCAAGACAAUGUAAAGUGGAUAAUAUUCCUAAAGGUAAAUGUAAUAUACUUC 637 

AUGUGGGACAUAUACGUAAGGGCUGAAUGCAAUCUAACGCAACCUUUCAUGUUCUGGAUGAAGCAAGGUUUCAGGUUCCU 638 

AAGUUUCACGCACGAAUUCAAUCACGACACGCUACACUGGUACCUACACCAACUAGGUAGUGCUCCUAAUGUAGCUGGUG 639 

GUUGCAGGACGAAGAGUUGCCAAACGGACUACAAUUUCAAUCACCCUGACGUAAAUUACCCUAAUCAAUGCGACUUCUGC 640 

CCUUUCAUGCACUGGCUAUGCAAUGAAGCUAUAAAGAAGGACAAUAGUCUAACGAUAAAUAUAAGGUGCGAACAAGAAUG 641 

CAAUUGGGGUGGUGACGACCACGUAGACGCUGCUUGCAUACCUCAAAUGUGCUACAGGAUGGCUAUAGUAAAUACGAGGA 642 

GGAGUCACCUAUACGAAUACAGUGUAUGCAAUAGGGAAAGGUACACGCUAGAAAUGGUACCUACGGCUCAACCUCACAUA 643 

AGGAUAGCUCACAUAAAUUGGGUAUUCGACUUCAGGGUACACGUUU 644 
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Supplementary Code Availability 645 

All software used in this study are listed below: 646 

BBTools: https://jgi.doe.gov/data-and-tools/bbtools; Biostrings: 647 

https://bioconductor.org/packages/release/bioc/html/Biostrings.html; BLAST: 648 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST; Bowtie2: https://sourceforge.net/projects/bowtie-bio/files/bowtie2; 649 

Centrifuge: https://ccb.jhu.edu/software/centrifuge; CD-HIT: https://github.com/weizhongli/cdhit; CheckM: 650 

https://ecogenomics.github.io/CheckM; CONCOCT: https://github.com/BinPro/CONCOCT; Circlize: 651 

https://cran.r-project.org/web/packages/circlize; dbCAN2: http://bcb.unl.edu/dbCAN2/index.php; DADA2: 652 

https://github.com/benjjneb/dada2; DESeq2: https://bioconductor.org/packages/release/bioc/html/DESeq2.html; DIAMOND: 653 

http://www.diamondsearch.org/index.php; eggNOG-mapper: https://github.com/eggnogdb/eggnog-mapper; FastANI: 654 

https://github.com/ParBLiSS/FastANI; FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc; FastTree: 655 

http://www.microbesonline.org/fasttree; FeatureCounts: http://subread.sourceforge.net; FeGenie: 656 

https://github.com/Arkadiy-Garber/FeGenie; genoPlotR: http://genoplotr.r-forge.r-project.org; GhostKOALA: 657 

https://www.kegg.jp/ghostkoala; GTDB-Tk: https://github.com/Ecogenomics/GTDBTk; HMMER: http://hmmer.org; IQ-Tree: 658 

http://www.iqtree.org; Kaiju: http://kaiju.binf.ku.dk; KofamKOALA: https://www.genome.jp/tools/kofamkoala; Kraken2: 659 

https://ccb.jhu.edu/software/kraken2; MAFFT: https://mafft.cbrc.jp/alignment/software; MATAM: 660 

https://github.com/bonsai-team/matam; MaxBin2: https://sourceforge.net/projects/maxbin2; MEGAHIT: 661 

https://github.com/voutcn/megahit; MetaBAT2: https://bitbucket.org/berkeleylab/metabat; MetaWRAP: 662 

https://github.com/bxlab/metaWRAP; mOTUs2: https://motu-tool.org; mvoutlier: 663 

https://cran.r-project.org/web/packages/mvoutlier; Nonpareil: https://github.com/lmrodriguezr/nonpareil; OrthoFinder: 664 

https://github.com/davidemms/OrthoFinder; phyloFlash https://github.com/HRGV/phyloFlash; Phyloseq: 665 

https://bioconductor.org/packages/release/bioc/html/phyloseq.html; Prodigal: https://github.com/hyattpd/Prodigal; R: 666 

https://www.r-project.org; SAMTools: http://www.htslib.org; SortMeRNA: https://bioinfo.lifl.fr/RNA/sortmerna; Superfamily: 667 

http://supfam.org/SUPERFAMILY; SSU-ALIGN: http://eddylab.org/software/ssu-align; trimAl: http://trimal.cgenomics.org; 668 

Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic; Trim Galore: 669 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore.670 

https://jgi.doe.gov/data-and-tools/bbtools
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