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Abstract: The paper focuses on a generic optimal control problem (OCP) deriving from
the competition between two microbial populations in continuous cultures. The competition for
nutrients is reduced to a two-dimensional dynamical nonlinear-system that can be derived from
classical quota models. We investigate an OCP that achieves species separation over a fixed
time-window, suitable for a large class of empirical growth functions commonly used in quota
models. Using Pontryagin’s Maximum Principle (PMP), the optimal control strategy steering the
model trajectories is fully characterized. Then, we provide sufficient conditions for the existence
of a turnpike property associated with the optimal control and state-trajectories, as well as their
respective co-state trajectories. Indeed, we prove that for a sufficiently large time, the optimal
strategy achieving strain separation remains most of the time exponentially close to an optimal
steady-state defined from an associated simpler static-OCP. This turnpike feature is based on the
hyperbolicity of the linearized Hamiltonian-system around the solution of the static-OCP. The
obtained theoretical results are then illustrated on microalgae, described by the Droop model in
dimension 5. The optimal strategy is numerically computed in Bocop (open source toolbox for
optimal control) with direct optimization methods.

Key-words: Optimal control, turnpike properties, nonlinear systems, photobioreactor, strains
selection, microalgae.
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4 Walid Djema et al.

1 Introduction

Natural selection drives the fate of the species that are permanently competing for limited survival
sources [33]. The individuals with a lower fitness in local conditions will eventually disappear
from the ecosystem due to the competition for survival [47]. Combined with mutations that may
appear naturally over time, the Darwinian adaptation characterizing living organisms ensures
that individuals which are better tailored to their local environment are continuously emerg-
ing and then progressively dominating their surroundings. In some instances, these evolution
phenomena may be guided and redirected towards different fates. It is for instance possible to
modify the outcome of species competition, leading to the emergence of enhanced organisms,
by controlling and modulating the natural selection pressure [40]. Such a selection process was
then tamed for generating naturally more efficient microogranisms [1]. Within this scope, some
microalgae strains have been recently improved by setting-up a Darwinian selection pressure
within artificial cultures such as photobioreactors (see, e.g., [26, 29, 10]).

Microalgae attract considerable attention since they have a great potential to produce less
impacting biofuels ([15, 46]). In addition to reducing atmospheric CO2, they are also considered
as promising elemental bricks for green chemistry and profitable new protein sources. Moreover,
they are even used to improve wastewater treatment (see also, [44, 35]). However, despite their
large interest, microalgae are still in their infancy and hitherto mainly grown for cosmetic or
pharmaceutical industries. Their exploitation on a larger scale, particularly for biofuel produc-
tion, is conditioned by the overcoming of various technical challenges, including the necessity
of enhancing the strain productivity since mainly wild species are currently cultivated. This
explains the worldwide race during the last decade for selecting more suitable microalgae strains
(see, e.g., [2, 34, 49]).

In this paper, the objective is to develop an effective control strategy ensuring that the most
suitable strains will dominate the continuous artificial culture in finite time. For instance, in
biofuel production, desirable microalgae strains can be those which grow faster, with higher lipid
content, and which are also well adapted to local environment and seasons.

We recall that when n distinct strains coexist in a chemostat with limited substrate, a well-
known principle –the competitive exclusion principle CEP [39]– predicts that the species requiring
the smallest amount of nutrients to grow at a rate equal to the dilution rate wins the competition,
while the other species will be asymptotically washed out. However, depending on the culture
conditions, the winner of the competition is not in general necessarily the one with the highest
lipid content or unrivalled productivity. Therefore, our goal is to determine an optimal control
strategy so that the species of interest is the one that dominates in finite time. To achieve our
objectives, we use an approach that is based on optimal control theory (Pontryagin’s principle
[38]) and turnpike features (see, e.g., [43]). There are other works for optimal selection of
microorganisms in minimal-time ([4, 5]), based on the simpler Monod-type dynamics describing
the growth of bacteria. The microalgae behavior is however more complex since the growth of
these microorganisms does not depend on the substrate concentration in the photobioreactor
(like in the Monod model), but rather on the quantity of nutrients stored inside the cells [6, 7].
The Droop model ([23]) is widely used to represent algal growth, since it takes into account the
additional dynamics governing the internal cell-quota storage [39, 25]. Here we use a general
form of quota models, extending the classical Droop’s formulation to include different forms of
growth rate. In particular, we suppose in this work that an ad’hoc controller is able to track
the desired nutrient concentration in the medium. As a consequence, the classical 5 dimensional
quota model (studied for instance in [19, 20]) reduces to a system of dimension 2. In addition,
this work generalizes the approach in [18, 20], not only because it considers a generic class of
systems relevant for microalgae (using different growth rates), but also because there are no
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Extended proofs 5

assumption on the initial conditions, which are often assumed to be already confined to an
attractive positively invariant set ([4, 18, 20]). The main novelty of our work is to prove the
existence of a turnpike property characterizing the optimal solutions. The turnpike has been
recently revisited in the optimal control literature and it is attracting more and more attention
(see, e.g., [42, 37, 51, 42, 30, 27]). The turnpike property states that the optimal solutions
consist of three pieces: two transient short-time arcs at the boundaries of the time interval, and
a long-time behavior remaining exponentially close to a static solution (see, e.g., [43]). From a
practical standpoint, turnpike features are also advantageous for deriving sub-optimal controls
that are easy to implement on real industrial systems.

The paper is organized as follows. Sect. 2 is devoted to the statement of the general optimal
control problem (OCP), formulated for a generic two-dimensional dynamical system, which in-
cludes competition between algal species. In Sect. 3 we state the main theorem dealing with the
general OCP. Its proof is provided in Sect. 4, which relies on Pontryagin’s maximum principle
(PMP, [38]) and also on the existence of a turnpike property along the optimal solutions. In Sect.
5, we focus on an application involving a variable yield model that includes the classical Droop’s
model. Thus, based on the results in Sect. 3-4, we solve the problem of microalgae selection
under several growth-rates. Finally, in Sect. 5.5, the optimal control is determined in different
cases and the turnpike feature is illustrated using a direct optimization method implemented in
Bocop (optimal control toolbox, [11]).

2 Optimal control problem (OCP)

We consider a generic nonlinear two-dimensional dynamical system, suitable for competition be-
tween two populations, in which the dynamics are coupled through the feeding control-flow. Typ-
ically, the competition may hold between two species (e.g., phytoplankton, bacteria, yeasts,...)
for a limiting substrate (w), whose concentration is controlled in a continuous bioreactor, can be
represented as follows: {

ẏ1 = −f1(y1)y1 + g1(w),
ẏ2 = −f2(y2)y2 + g2(w),

(1)

where the fi(·) are regular nonnegative real-valued and increasing functions representing the
growth rate of the i-th species with respect to the intracellular limiting nutrient yi. The functions
gi(·) are also regular nonnegative real-valued and increasing functions, standing for the flux of
limiting nutrient into the cell.

We highlight that the system (1) typically appears as a subsystem of quota models, where yi
is the internal quota of the i-th species, i.e. the intracellular amount of the element for which the
involved species are competing. The Droop’s model is extensively studied later in Sect. 5 as the
most famous example of this class of systems. However, the model (1) can also be found in more
complicated metabolic dynamical systems ([45]) where the intracellular element yi is diluted by
growth.

The resulting system (1) is positive, i.e., for positive initial conditions the trajectories remain
positive.

In general, the dynamics of the system (1) is at higher dimension (at least 5 in the case
of Droop’s model for instance). However, the reduced system is derived by assuming that the
limiting substrate has been controlled by an ad’hoc controller tracking the concentration w(t).
Indeed, the way this subsystem can be extracted from the full model is developed in Sect. 5 in
the typical case of Droop’s model describing microalgae.

Without loss of generality, we consider throughout this paper that species 1 is the one of
interest and must become predominant in the population in finite time. Our objective is to

RR n° 9399



6 Walid Djema et al.

investigate the control strategies for this competition between two initially co-existing populations
by controlling the nonnegative and bounded input w over a fixed time-interval [0, Tf ].

2.1 Statement of the general OCP
The set of admissible controls associated with system (1) is defined by w ∈ W, s.t., W is a
subset of L∞loc(R+), the space of locally integrable functions on every compact set on R+. More
precisely, we set,

w ∈ W =
{
w : [0, Tf ]→ [0, wm] | w(·) ∈ L∞loc(R+)

}
,

where wm is a sufficiently large positive constant (the maximum influent substrate concentration
in the bioreactor).

Then, we define now the main OCP that reads,{
Maximize

w∈W
C[0,Tf ] =

∫ Tf
0

f1(y1(`))− f2(y2(`))d`,

where, y = (y1, y2), y(·) is the solution of (1) corresponding to the control w(·).
(2)

In what follows, the terminal conditions of the states yi, i = 1, 2, are assumed to be free and
their initial conditions are positive.

Besides, let us define (y∗, w∗), the steady state of (1), where, y∗ > 0 and w∗ ∈ [0, wm]. It
follows that, fi(y∗i )y∗i = gi(w

∗), for i = 1, 2, and since the map, y → fi(yi)yi, is increasing, we
get, w∗ = δi(y

∗), where, δi(y) = g−1
i (fi(yi)yi). Thus, y∗i (w∗) = δ−1

i (w∗), i = 1, 2, for all fixed
w∗ ∈ [0, wm].

Then now, we define for all admissible y∗i > 0 and w∗ ∈ [0, wm] the function,

∆(w∗) = f1(δ−1
1 (w∗))− f2(δ−1

2 (w∗)). (3)

Throughout this work, we assume that the maximizer of ∆ is the unique point w ∈ (0, wm), as
illustrated in Fig. 1. The cases where w is zero or wm are pointless and can be trivially addressed
outside this framework.

Let us remark that under these considered assumptions, OCP (2) has a maximizer using
Filippov Theorem (see, e.g., [14]). In fact, the generic form of the functions fi(δ−1

i (·)), involving
one intersection point over (0, wm) as in Fig. 1, ensures the existence of control functions maxi-
mizing and minimizing the criterion C[0,Tf ], as a direct consequence of the competitive exclusion
principle (CEP), (see, e.g., [39]).

2.2 Pontryagin’s maximum principle (PMP)
The Hamiltonian associated with OCP (2) is defined by,

H =Φ(λy1 , λy2 , w)− λy1f1(y1)y1 − λy2f2(y2)y2 + λ0 [f1(y1)− f2(y2)] , (4)

where,
Φ(λy1 , λy2 , w) = λy1g1(w) + λy2g2(w). (5)

It is classical to consider that λ0 = 1 since OCP (2) is stated as a maximization problem. The
PMP implies the existence of absolutely-continuous λyi , which are the co-state of yi, satisfying,
λ̇yi = −∂H/∂yi, for i = 1, 2. In addition, since the final states yi(Tf ) are free, it follows that the
transversality conditions are given by,

λyi(Tf ) = 0, for i = 1, 2. (6)

Finally, the PMP implies that the control function w ∈ W satisfies, for almost all t ∈ [0, Tf ],

max
w(t)∈[0,wm]

H(yi(t), λyi(t), w(t)). (7)

Inria
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Figure 1: (a-b) provide the generic form of the functions fi and gi for i = 1, 2 (with arbitrary
units), studied in this paper. (c) illustrates the resulting fi(δ−1

i (w)), in their typical general form
studied throughout this work, where both situations f1(δ−1

1 (w)) > f2(δ−1
2 (w)) and f1(δ−1

1 (w)) <
f2(δ−1

2 (w)) hold over [0, wm]. The resulting function ∆ in (d) satisfies the hypothesis w ∈ (0, wm).

2.3 Introducing the static-OCP

The static-OCP (see, e.g., [43]) associated with the OCP (2), for the system at steady state is:{
Maximize
w∈[0,wm]

∆(w) = f1(y1(w))− f2(y2(w)),

under the constraints fi(yi)yi = gi(w), i = 1, 2.
(8)

In other words, the static-OCP seeks to maximize the function ∆ defined in (3) when system (1)
is at steady state. Under the assumption that w ∈ (0, wm) is the unique point maximizing ∆, as
in Fig. 1, the definition of the static-OCP is extended to include the co-state variables using the
Hamiltonian equation.

Indeed, according to the Lagrange multipliers rule ([43]), there exists, (λy1 , λy2) ∈ R2, s.t.,

RR n° 9399



8 Walid Djema et al.

the solution (y1, y2, w) of the static-OCP (8) implies that
(
w, y1, y2, λy1 , λy2

)
also satisfies:

∂H
∂λyi

(y1, y2, λy1 , λy2 ,−1, w) = 0,

−∂H∂yi (y1, y2, λy1 , λy2 ,−1, w) = 0,

∂H
∂w (y1, y2, λy1 , λy2 ,−1, w) = 0.

(9)

More precisely, using H given in (4), we deduce that the steady-state satisfying the static-OCP
(8) is solution of, 

−fi(yi)yi + gi(w) = 0, i = 1, 2,

λy1 (f1(y1) + f ′1(y1)y1)− f ′1(y1) = 0,

λy2 (f2(y2) + f ′2(y2)y2) + f ′2(y2) = 0,

g′1(w)λy1 + g′2(w)λy2 = 0,

(10)

In the general case illustrated in Fig. 1, we define the unique static optimal steady-state that
satisfies (10), denoted by,

Estatic =
(
w, y1, y2, λy1 , λy2

)
. (11)

In Sect. 5, an explicit determination of Estatic is given for typical fi and gi functions in quota
models (in the Droop’s case).

3 Turnpike main result : Theorem 1
Let us consider the perturbed trajectories around the static optimal steady-state Estatic defined
in (11). More precisely, we perform the classical change of coordinates, δyi(t) = yi(t) − yi,
δλyi(t) = λyi(t)− λyi , for i = 1, 2, and we consider the shifted control, δw(t) = w(t)− w.
Thus, as in [43], we can check that, δw(t) = −H−1

ww(Hwyδy(t) + Hwλδλy(t)), where, δy =
(δy1, δy2)T and δλy = (δλy1 , δλy2)T. In what follows, we set z = (δy, δλy)T.

Using the Hamiltonian (4), we notice that,

Hyw =
∂2H

∂y∂w

∣∣∣
Estatic

= (0, 0),

and thus around the unique point Estatic we end up with,(
δẏ(t)

δλ̇y(t)

)
= Ψ

(
δy(t)
δλy(t)

)
+

(
Λ1(δy(t), δλy(t))
Λ2(δy(t), δλy(t))

)
, (12)

for all t ∈ [0, Tf ], where Λi satisfies,

‖Λi(δy, δλy)‖
‖(δy, δλy)‖

−−−−−−−−−→
(δy,δλy) → 0

0. (13)

and,

Ψ =

(
Hλy −HλwH

−1
wwHwλ

−Hyy −Hyλ

)
, (14)

where,

Hww =
∂2H

∂w2

∣∣∣
Estatic

= λy1g
′′
1 (w) + λy2g

′′
2 (w),

Inria
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Hyy = diag{ − λy1 (2f ′1(y1) + y1f
′′
1 (y1)) + f ′′1 (y1),−λy2 (2f ′2(y2) + y2f

′′
2 (y2))− f ′′2 (y2)},

Hλy = diag {−f1(y1)− y1f
′
1(y1),−f2(y2)− y2f

′
2(y2)} ,

Hwλ = (g′1(w), g′2(w)),

and thus we end up with,

HλwH
−1
wwHwλ =


g′21 (w)

λy1g
′′
1 (w)+λy2g

′′
2 (w)

g′1(w)g′2(w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

g′1(w)g′2(w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

g′22 (w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

 .

For notational convenience, we set the following matrices and constants,

−HλwH
−1
wwHwλHyy =

(
b1 b2

b3 b4

)
,

b23 = b2b3,

ai = −∂(f(yi)yi)

∂yi

∣∣
Estatic ,

and
Hλy = diag{a1, a2}.

Consequently, we can show that the eigenvalues κj , j = 1, . . . , 4, of the matrix Ψ defined in
(14) are given by,

κ1 = 1√
2

√
a2

1 + a2
2 − b1 − b4 + ς1/2 ,

κ2 = −κ1 ,

κ3 = 1√
2

√
a2

1 + a2
2 − b1 − b4 − ς1/2 ,

κ4 = −κ3 ,

(15)

where,
ς =

[
(a2

1 − a2
2)− (b1 − b2)

]2 − 4b23.

Now, we are ready to state the main result of the paper.

Theorem 1. Let Tf > 0 be a large fixed final-time and Estatic be the unique global solution of
the static-OCP (8), s.t. w ∈ (0, wm) maximizes ∆ in (3).
¬ The solution of OCP (2) with fixed initial conditions yi(0) ∈ R∗+, i = 1, 2, corresponds to the
singular control function ws ∈ W, s.t.,

ws(t) 6= {0, wm} , for all t ∈ [0, Tf ], (16)

i.e., the optimal control maximizing H in (4) is neither a bang 0 nor a bang wm.

­ Moreover, if a1 6= a2, Hww < 0, and,

Re(κj) 6= 0, for j = 1, . . . , 4, (17)

where κj are the eigenvalues of the matrix Ψ given in (15), then there exist positive constants ε,
c1, c2 and a time-instant T ∗ > 0, s.t., for all Tf > T ∗, if,

2∑
i=1

‖yi(0)− yi‖+ ‖λyi‖ < ε, (18)

RR n° 9399



10 Walid Djema et al.

then, the optimal solutions of OCP (2) satisfy, for all t ∈ [0, Tf ], the turnpike inequality,

2∑
i=1

‖yi(t)− yi‖+ ‖λyi(t)− λyi‖+ ‖ws(t)− w‖ ≤ c1
(
e−c2t + e−c2(Tf−t)

)
, (19)

where c1 does not depend on Tf and the optimal control is the singular ws in ¬.

Remark 1. Assuming that Tf is sufficiently large is classical in turnpike framework ([43]). The
proof of Theorem 1 provides an estimate on the lower-bound of Tf . This bound is satisfied in
biological applications, e.g., metabolite production ([12, 48]), algal growth ([19, 20]) due to the
selection time which is much larger than the time-constants characterizing the system dynamics.

Remark 2. The conditions (17) ensure that the real part of the eigenvalues of the matrix Ψ are
non-zero (i.e. they are not on the imaginary axis), which leads to a hyperbolic behavior around
the static steady-state. In practice, the conditions (17) are satisfied for a large class of systems
describing microalgae growth, as illustrated in Sect. 5.5.

Remark 3. In the proof of the second part of Theorem 1, we use the approach given in [36, 43].
Notice that the main theorem from [43] cannot be applied to our class of optimal control problems.
Firstly, the control is bounded in the considered class of optimal control problem whereas it is
unbounded in [43]. Secondly, the matrix −Hyy + HywH

−1
wwHwy is not positive definite in our

case. For instance, choosing fi(yi) = aiyi−bi
yi

, it follows that 2f ′1(y1)+y1f
′′
1 (y1) = 0, and then we

deduce that, −Hyy +HywH
−1
wwHwy = −Hyy = diag{f ′′1 (y1),−f ′′2 (y2)}, which does not satisfy the

positive definite condition in [43]. This point is illustrated numerically in Sect. 5.5 using Droop’s
functions. Therefore, the hypotheses of the second part of Theorem 1 are slightly different from
the hypotheses of the main theorem in [43].

The proof of Theorem 1 is divided in two parts. The first step concerns the statement ¬ and
derives from the PMP. The second step is based on the hyperbolicity of the linearized system
ż = Ψz + Λ(z), where z = (δy, δλy)T . We end up the proof of point ­ using hyperbolic system
properties, similarly to the arguments used in [36, 43], and which are adapted to the case of
Theorem 1 as detailed in Appendix D.

4 Proof of Theorem 1
¬ Using (4)-(5), we note that the PMP implies that the admissible control function satisfies, for
almost all t ∈ [0, Tf ], the maximization condition,

max
w(t)∈[0,wm]

H(yi, λyi , w) = max
w(t)∈[0,wm]

Φ(λyi , w). (20)

At first sight, we deduce from (20) that any extremal solution should be a concatenation of bang
and singular arcs over [0, Tf ]. Indeed, using (5) we notice that in the case where λy1(t) ≥ 0
and λy2(t) ≥ 0, the control satisfying (20) is the bang w(t) = wm. Similarly, if λy1(t) ≤ 0 and
λy2(t) ≤ 0, then it follows that the control satisfying (20) is the bang w(t) = 0. And finally, when
λy1(t)λy2(t) < 0 at any t ∈ [0, Tf ], we deduce from the fact that gi is a positive increasing function
that the control satisfying (20) is the singular control denoted by ws(t), which maximizes Φ and
which is neither 0 nor wm. However, using the co-states dynamics given by,{

λ̇y1 = λy1 (f1(y1) + f ′1(y1)y1)− f ′1(y1),

λ̇y2 = λy2 (f2(y2) + f ′2(y2)y2) + f ′2(y2),
(21)

Inria
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where fi are continuously increasing, we deduce that,

λy1 =
f ′1(y1)

f1(y1) + f ′1(y1)y1

> 0,

and
λy2 =

−f ′2(y2)

f2(y2) + f ′2(y2)y2

< 0.

Then, since λyi is an equilibrium point of (21) and using the transversality conditions (6),
we deduce that, {

0 < λy1(t) < λy1 ,

λy2 < λy2(t) < 0,
(22)

for all t ∈ [0, Tf ), where the latter inequalities derive from the fact that ∂(fi(yi)yi)/∂yi > 0 and
f ′i(yi) > 0 in (21). In particular, (22) imply that for all t ∈ [0, Tf ),

λy1(t)λy2(t) < 0. (23)

Consequently, we conclude from (23) that the control ws(t) is the one that satisfies the PMP
and thus steers over the time window [0, Tf ] the trajectories from y1(0), y2(0) to y1(Tf ), y2(Tf ).
This concludes the proof of ¬.

­ Now, let us focus on the eigenvalues of the matrix Ψ defined in (14). Firstly, let us observe
that,

det(Ψ− κI4) = det

(
Hλy − κI2 −HλwH

−1
wwHwλ

−Hyy −Hyλ − κI2

)
,

where Ip is the p× p identity matrix. We notice that Hyy and −Hyλ−κI2 are diagonal and thus
they are commutative. Therefore, it follows that,

det(Ψ− κI4) = det
(
(Hλy − κI2)(−Hλy − κI2)−HλwH

−1
wwHwλHyy

)
.

Consequently, det(Ψ− κI4) = 0, leads to,

(a2
1 − κ2 − b1)(a2

2 − κ2 − b4)− b23 = 0, (24)

where the constants a’s and b’s are defined before Theorem 1. From the equation (24) we readily
get the eigenvalues κj , j = 1, . . . , 4, given in (15). Under the suitable assumptions expressed
in (17), we ensure that the studied optimality system is hyperbolic, i.e., all eigenvalues of Ψ
have nonzero real parts. Next, by Theorem 6 of [32], it follows that there exist symmetric 2× 2
matrices P−, P+ maximal and minimal solutions of the Riccati equation,

HyλP + PHλy −Hyy − PHλwH
−1
wwHwλP = 0. (25)

Moreover, the corresponding matrices Ω+ = Hλy − HλwH
−1
wwHwλP+ and Ω− = Hλy −

HλwH
−1
wwHwλP− are such that eigenvalues of Ω+ have strictly positive real part and eigenvalues

of Ω− have strictly negative real part, i.e., Ω+ is unstable and Ω− is stable. We denote by,

V :=

(
I I
P− P+

)
(26)

where I is the 2× 2 identity matrix. Straightforward calculations show that,

Ψ̃ = V −1ΨV = diag{Ω−,Ω+}.
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We denote by z̃ the new variable s.t. V z̃ = z, and then it follows from (12) that,{
˙̃z1(t) = Ω−z̃1(t) + θ1 (z̃1(t), z̃2(t)) ,

˙̃z2(t) = Ω+z̃2(t) + θ2 (z̃1(t), z̃2(t)) ,
(27)

where the θi, i = 1, 2, satisfy the o-little property as in (13). At this juncture, we point out that
under different hypothesis, we have rewritten the optimality conditions in the form (27) similarly
to [43] and [36]. It can be shown (see Lemmas 2-3 in Appendix D), that there exists r > 0 s.t.
for all (z̃0

1 , z̃
f
2 ) satisfying, z̃0

1 = z̃1(0), z̃f1 = z̃2(Tf ), (z̃0
1 , z̃

f
2 ) ∈ B(0, r), the corresponding solution

(z̃1(t, (z̃0
1 , z̃

f
2 ), z̃2(t, (z̃0

1 , z̃
f
2 )) of system (27) admits for any t ∈ [0, Tf ] the bound,

‖z̃1(t)‖ ≤ Cκ
[
‖z̃0

1‖ e−κt + e−κ(Tf−t) ‖z̃f2 ‖Θ1(‖z̃1‖c0)
]
,

‖z̃2(t)‖ ≤ Cκ
[
‖z̃f2 ‖ e−κ(Tf−t) + e−κt ‖z̃0

1‖Θ2(‖z̃2‖c0)
]
.

(28)

Next step is to verify that there exist T ∗ > 0 and ε > 0 in (18) s.t., for any Tf > T ∗ and y(0)

satisfying (18), (z̃0
1 , z̃

f
2 ) satisfy, {

z̃0
1 + z̃2(0) = y0 − y,

P−z̃1(Tf ) + P+z̃
f
2 = −λy.

(29)

For that, we use the fixed point argument as in [36], by defining the map F : B(0, r)→ R4,s.t.,

F

(
z̃0

1

z̃f2

)
=

(
y0 − y − z̃2(0)

−P−1
+ (P−z̃1(Tf ) + λy)

)
,

and showing that F admits the unique fixed point (z̃0
1 , z̃

f
2 ). This step is detailed Appendix D.4.

It is worth mentioning that at this stage of the proof, we also get the lower-bound T ∗ of Tf and
ε from (18). Finally, using (28) for Tf > T ∗, we obtain for all t ∈ [0, Tf ],

‖δy(t)‖ = ‖z̃1(t, (z̃0
1 , z̃

f
2 ))‖+ ‖z̃2(t, (z̃0

1 , z̃
f
2 ))‖

≤ Cκ
(
‖z̃0

1‖e−κt + e−κ(Tf−t)‖z̃f2 ‖Θ1(r)
)

+ Cκ

(
‖z̃f2 ‖e−κ(Tf−t) + e−κt‖z̃0

1‖Θ2(r)
)
.

Up to defining a bigger constant Cκ, we deduce that,

‖δy(t)‖ ≤ Cκ
(
e−κt + e−κ(Tf−t)

)
, ∀t ∈ [0, Tf ]. (30)

Note that Cκ is independent of Tf . Similarly, we get,

‖δλy(t)‖ ≤ Cκ
(
e−κt + e−κ(Tf−t)

)
, ∀t ∈ [0, Tf ]. (31)

Note that there exists R = R(r) s.t.,

‖δy‖+ ‖δλy‖ ≤ R.

Then, using additional calculations for δw(t), we get,

‖δw(t)‖ = ‖w(y, λy)− w‖ ≤ sup
B((ȳ,λ̄y),R)

‖∇y w‖‖δy‖+ sup
B((ȳ,λ̄y),R)

‖∇λy w‖‖δλy‖, (32)

for all t ∈ [0, Tf ]. Combining (30), (31) and (32) leads us to the exponential turnpike estimate
given in (19) and thus concludes the proof of Theorem 1.
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5 Application to a higher dimensional dynamical system

5.1 Algal competition using Droop’s model
In this section, we focus on a model of competition between two microalgae populations in
dimension 5, with the aim of achieving species separation over a fixed time window. We tweak
this issue using a system reduction in order to rewrite the optimization objective in term of the
generic OCP (2). We stick to conventional biological notations following the classical Droop’s
model in order to remain consistent with earlier works (e.g., [19, 20]).

Let x1 and x2 be the biomass concentrations of two different strains of microalgae, initially
coexisting in a bioreactor with one limiting substrate s, s.t., s(t) ∈ [0, sin], for all t ≥ 0, where
sin is the constant substrate influent concentration. Each microalgae species uptakes the free
nutrient s in the bioreactor. The intracellular amount of this limiting element is the cell quota
qi, with i = 1, 2.

A general class of quota models, including the classical Droop’s model ([23]), writes,
ṡ = (sin − s)D −

∑2
i=1 ρi(s)xi,

q̇i = ρi(s)− µi(qi)qi,
ẋi = [µi(qi)−D]xi.

(33)

The function µi in (33) stands for the growth rate of the i−th species, while ρi is its nutrient
uptake rate of free nutrient. The dilution rate D and the substrate input sin can generally be
manipulated in the bioreactor. The functions ρi and µi are nonnegative and increasing bounded
functions, s.t., 0 ≤ ρi(s) ≤ ρmi, and, 0 ≤ µi(qi) ≤ µmi, where ρmi and µmi are positive constants.
Typically in Droop’s model, the uptake rate ρi(s) is expressed in terms of Michaelis-Menten
kinetics,

ρi(s) =
ρmis

Ksi + s
, (34)

where Ksi is a positive constant. The most classical form –known as Droop’s growth– for µi is
given for i = 1, 2 by,

µi(qi) = µi∞

(
1− Qimin

qi

)
, qi ≥ Qimin. (35)

The minimum intracellular quota Qimin > 0 defines the quota under which cell division cannot
occur (thus, µi(qi) = 0 for all qi ≤ Qimin). Other forms have been used to describe the growth
rate such as the Caperon-Meyer equation ([13]),

µi(qi) =
µi∞(qi −Qimin)

qi −Qimin + kqi
, qi ≥ Qimin, kiq > 0, (36)

another possible form that we also use in this work is,

µi(qi) =
µi∞q

ni
i

qnii + kniqi
, ni > 1. (37)

Notice that the choices (36)-(37) lead to nonlinear terms µi(qi)qi in (33). In all these cases, the
resulting quota is bounded for all t ≥ 0, i.e., Qimin ≤ qi(t) ≤ qmi, where qmi is the maximum
internal storage rate ([7]). In the sequel, the quota variables qi will stand for yi in model (1) and
we will prove that:

(i) OCP (2) achieves microalgae separation, through maximization of relative concentration

RR n° 9399



14 Walid Djema et al.

x1(Tf )/x2(Tf ),

(ii) Theorem 1 applies for different functions µi (given by (35)-(37)), i.e., turnpike-type behaviors
hold and characterize microalgae selection, under various types of growth rates.

5.2 Controlling the substrate concentration
Now, let us assume that the free substrate concentration s is controlled by an ad’hoc controller.For
instance, by playing with the concentration of the influent substrate sin and with the dilution rate
D, the concentration s can follow a desired (smooth enough) reference trajectory s(t) = s∗(t).
Different control designs can be used such as linearizing control ([22]), asymptotic control ([31])
or other approaches that demonstrated their efficiency on microalgae (see, e.g., [6, 41]).

By assuming a perfect tracking of the substrate towards w(t), the system (33) then reduces
to, {

q̇i = ρi(w)− µi(qi)qi,
ẋi = [µi(qi)−D]xi,

(38)

This system is triangular, and the dynamics of xi results from the dynamics of qi. Consequently,
we can focus exclusively on the quota-dynamics qi, for i = 1, 2.

5.3 Maximizing the relative biomass density
Species separation is achieved when maximizing the relative density of the species of interest x1

at Tf , i.e., finding the optimal control maximizing the quantity,

C̃(Tf ) =
x1(Tf )

x2(Tf )
. (39)

Let us state the following key result to end up with a functional that does not depend on the
states xi, but still maximizes the relative concentration at the final-time.

Proposition 1. Any solution of the class of systems (38) maximising C[0,Tf ] defined in OCP (2)
is equivalently maximizing C̃Tf in (39), where the functions fi in OCP (2) stand for the growth
rates µi in system (38).

Proof: Indeed, the cost function in OCP (2) writes,

C[0,Tf ] =

∫ Tf

0

[µ1(q1(t))−D]− [µ2(q2(t))−D] dt. (40)

Using the state dynamics, µi(qi)−D = ẋi
xi
, we get,

C[0,Tf ] = [ln(x1(t))− ln(x2(t))]
Tf
0 = ln

(
x1(Tf )x2(0)

x1(0)x2(Tf )

)
. (41)

Thus, maximizing C[0,Tf ] indeed consists in maximizing C̃Tf . The advantage of considering the
criterion C[0,Tf ] instead of the natural criterion C̃Tf is that it is independent of the dynamics of
the states xi, for i = 1, 2.
Thus, the optimization problem can now be reduced to an OCP as in (2), involving the cost
C[0,Tf ] and associated with the reduced-system (in the form (1)),{

q̇1 = −µ1(q1)q1 + ρ1(w),

q̇2 = −µ2(q2)q2 + ρ2(w),
(42)
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where the growth rate µi is given by one of the functions (35)–(37), the uptake rate ρi is given
by (34), and the control w is equivalent to the substrate s in (33) once regulated by the ad’hoc
controller. This is especially true since ¬ in Theorem 1 states that the solution of the OCP
(2) corresponds to the singular control function with no bangs over the time-window [0, Tf ], and
consequently the optimal control wH(t) has thus the required smoothness to be tracked in the
original system (33) through the ad’hoc controller. To sum up, we can see that finding a control
for system (33) approaching as close as possible the solution wH(t) of the OCP studied in Sect.
2-3 will provide an excellent suboptimal control for the OCP of the ful-system (33) associated
with the criterion (39).

5.4 Optimal synthesis of species separation
Now, we are ready to apply the results obtained in Sect. 2-3 to the problem of species selection.
Firstly, the static-OCP associated with (42) and C[0,Tf ] states,{

Maximize
w∈[0,wm]

∆(w) = µ1(q1(w))− µ2(q2(w)),

where −µi(qi)qi + ρi(w) = 0 for i = 1, 2 ,
(43)

under the steady-state constraints −µi(qi)qi + ρi(w) = 0 for i = 1, 2. Similarly to Section 2,
the solution of (43) –including the co-states– is denoted by, Estatic =

(
q1, q2, λq1 , λq2 , w

)
. This

optimal steady-state satisfies (9)-(10), using this time the quota-coordinates in (42), under the
standard assumption of Section 2, i.e., w ∈ (0, wm) as in Fig. 1, which is generally satisfied for ρi
and µi in (34)-(37), as illustrated later in numerical simulations. A case in point is the classical
Droop’s model associated with (34)-(35), in which case the function ∆ rewrites,

∆(w) = µ1(δ−1
1 (w))− µ2(δ−1

2 (w)), (44)

where, δi(`) = ρ−1
i (µi(`)`), and since, ρ−1

i (`) = Ki`
ρim−` , for all ` ∈ [0, ρim), we obtain, δi(`) =

Ki
`−Qimin

σi−` , where, σi = ρim
µi∞

+Qimin. This leads to,

δ−1
i (`) =

σi`+KiQimin

`+Ki
,

and consequently we end up in the Droop’s case with,

µi(δ
−1
i (`)) =

ρim`

σi`+KiQimin
, i = 1, 2. (45)

Using (45) we can compute successive derivatives of ∆(w) in the Droop’s case, i.e.,

∆′(w) =
ρ1mK1Q1 min

(K1Q1 min + σ1w)
2 −

ρ2mK2Q2 min

(K2Q2 min + σ2w)
2 ,

and, ∆′′(w) = κ1(w)− κ2(w), where,

κi(w) = − 2Kiµ
2
i∞Qiminρim(µi∞Qimin + ρim)

(Kiµi∞Qimin + (µi∞Qimin + ρim)w)
3 .

Thus, by looking for the points that satisfy ∆′(w) = 0 and ∆′′(w) < 0 in the case where µi
is given by (35), we deduce that the steady-state Estatic =

(
w, q1, q2, λq1 , λq2

)
, satisfies,

qi =
1

µi∞
(ρi(w) + µi∞Qimin) , for i = 1, 2,
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λq1 = −Q1 min

q2
1

,

and,

λq2 =
Q2 min

q2
2

.

Numerically, we check that only one numerical value w belongs to (0, wm) for a sufficiently
large wm, leading then to the configuration in Fig. 1 (Fig. 4 in Droop’s case). We refer to
Appendices A-B for more details on the practical determination of Estatic in the Droop’s case.

In a similar way, we can determine the analytic expression of Estatic for different growth-rates
((36)-(37)).

Therefore, under suitable conditions a unique Estatic exists and satisfies w ∈ (0, wm), and
thus in light of Theorem 1 we derive the following statement as a direct consequence.

Claim 1 (Application of Theorem 1). Let fix any biological parameters for the functions
ρi in (34) and µi in (35)-(37), i = 1, 2, in system (33), s.t., there exists a unique Estatic with
w ∈ (0, wm), solution of the static-OCP (43) then,
¬ the optimal control wH(t) for all t ∈ [0, Tf ] is singular, i.e., it does not involve bang arcs 0 and
wm over [0, Tf ].
­ Moreover, if the corresponding conditions (17) and (18) are fulfilled, the singular optimal
control (substrate concentration) wH(t) and its related quota qi(t), as well as their respective co-
states λqi(t), i = 1, 2, exhibit over the fixed time-horizon [0, Tf ] an exponential turnpike behavior
characterized in (19).

Note that the overlapping of favorable features (namely the facts that w solution of the
static-OCP is remote from the bounds 0 and wm, the optimal control is inherently singular,
i.e., ws(t) ∈ (0, wm) for all t ∈ [0, Tf ], and also the exponential turnpike keeping ws(t) almost
constant most of the time) results in strong smoothness of the optimal control and the optimal
trajectories, as illustrated in the next section. Nonetheless, this smoothness does not imply that
the resulting ad’hoc controller of system (33) should be smooth as well, as shown in [20] where
the obtained dilution-based control is of type bang-singular.

To sum up the methodology provided in this paper: the first step is to determine the optimal
point Estatic s.t. w ∈ (0, wm), solution of the static-OCP corresponding to a given dataset of
biological parameters and functions in the system (33). Next, we compute the matrix Ψ defined
around Estatic as in (14). Then, the conditions stated in ­–Theorem 1 ensure the existence
of a turnpike-type behavior of the optimal solution of the reduced system (1). The numerical
computation of the eigenvalues κj , j = 1, . . . , 4, which are defined in (15), is illustrated in
different cases of the functions µi in Sect. 5.5.

Finally, it is worth noting that the conditions (17) in Theorem 1 appear to be systematically
satisfied in numerical simulations, leading accordingly to a turnpike behavior in all the evaluated
cases.

5.5 Numerical synthesis through direct optimization methods
The direct-optimization approach performed in this section illustrates the results of Theorem 1
applied to the quota-model in Sect. 5 (System (42)) for the different growth functions ((35)-(37))
illustrated in Fig. 2.

In this perspective, the state variables and the control function of system (42) are discretized,
by setting a subdivision of the time-horizon [0, Tf ] with fixed Tf , and the substrate-control w
is discretized over W, s.t. w is piecewise constant on the time-interval subdivision, with values
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belonging to [0, wm]. The state dynamics q1 and q2 (42) is discretized with Lobatto scheme
([8]), i.e. RK method of type Lobatto-IIIC, based on an implicit trapezoidal rule, of order
6. suitable for stiff-nonlinear problems, through a scheme of ordinary differential equations
(ODE) decomposition (e.g., implicit/explicit Euler schemes, Runge-Kutta methods, etc.). Thus,
numerical direct methods transform OCP (2) (stated in Sect. 2, associated with System (42))
through the discretization step, into a nonlinear programming problem (NLP) in finite-dimension
of the form, {

Maximize{w1,...,wp}∈[0,wm] C[0,Tf ](w1, . . . , wp),

q1,2k+1
= fi(tk, q1,2k , wk), k = 0, . . . , N − 1.

(46)

When applied to an ODE of the form, ż = f(t, z), Lobatto Runge-Kutta methods are expressed
as,

Zki = zk + hk
∑s
j=1 aijf(tk + cjhk,Zkj),

with, i = 1, . . . , s,

zk+1 = zk + hk
∑s
j=1 bjf(tk + cjhk,Zkj),

(47)

where the stage value s defines the order of the Lobatto’s method (the order is given by 2s + 2
in Lobatto-III family), and the coefficients aij , bj and cj are given according to s, verifying a
set of conditions (see, e.g., [28], Chap. VI.5). In this case, the stage s is 4 and the coefficients
aij , bj and cj in (47) are given in Tab. 1.

Using the numerical values of the biological parameters in Fig. 2, we performed several direct
optimizations in Bocop, based on the settings given in Tab. 2. with appropriate settings (toler-
ance for NLP solver: 10−34, 2000 time-steps, see Tab. 2). No issue is encountered regarding the
initialization and starting points for solving the studied problem. In all the following examples,
the conditions of Theorem 1 are satisfied, and the optimal solutions satisfy the turnpike property
(19) as stated in Claim 1.
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Figure 2: Various functions used in Droop and Caperon-Meyer models ([13, 23]). From left to
right: absorption functions ρi in (34) with, ρ1m = 9.1 (µmol.L−1.d−1), K1 = 0.08 (µmol.L−1)
ρ2m = 9.6(µmol.L−1.d−1), K2 = 0.25(µmol.L−1). Growth rate µi in (35) with, µ1∞ = 1.6day−1,
Q1 min = 0.95 µmol/L, µ2∞ = 2.2 day−1, Q2 min = 1.5 µmol/L. Growth rate µi in (36) with,
µ1∞ = 0.75day−1, Q1 min = 1.6µmol/L, kq1 = 0.9µmol/L, µ2∞ = 0.9day−1, Q2 min = 2µmol/L,
kq2 = 0.6 µmol/L. Growth rate µi in (37) with, µ1∞ = 1.5 day−1, n1 = 4, kq1 = 3 µmol/L,
µ2∞ = 1.15 day−1, n2 = 3, kq2 = 2 µmol/L.

Example 1. We set Tf = 15 days and we consider that the growth functions µi are in the
Droop’s form (35). In this case, the sufficient conditions given in [43] are not satisfied (see
Remark 3).

The computations performed in Appendices A-B give the analytical expression of the singular
control in this case.

The function ∆(w) = µ1(δ−1
1 (w)) − µ2(δ−1

2 (w)) is given in Fig. (3). In addition, the static
steady-state Estatic and the eigenvalues of the matrix Ψ are given in Table . Notice also that
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c1 = 0 a11 = 1
12 a12 = −

√
5

12 a13 =
√

5
12 a14 = − 1

12

c2 = 1
2 −

√
5

10 a21 = 1
12 a22 = 1

4 a23 = 10−7
√

5
60 a24 =

√
5

12

c3 = 1
2 +

√
5

10 a31 = 1
12 a32 = 10+7

√
5

60 a33 = 1
4 a34 = −

√
5

60
cs = 1 a41 = 1

12 a42 = 5
12 a43 = 5

12 a44 = 1
12

b1 = 1
12 b2 = 5

12 b3 = 5
12 bs = 1

12

Table 1: The values of the coefficients corresponding to s = 4 in Lobatto IIIC.

Final time (days) Tf = 15 (Example 1), Tf = 20 (Example 2), Tf = 50 (Example 3)
Discretization Lobatto IIIC (implicit, 4-stage, 6th order)

Time steps 2000
Max. iterations 2000

NLP solver tolerance 10−34

Table 2: The numerical settings used in Bocop, associated with the biological parameters given
in Fig. 2.

in this case Hyy = diag{0.2997,−1.0443}. According to Theorem 1 (see Claim 1), the turnpike
property (19) holds as shown in Fig. 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

Figure 3: The functions µi(δ−1
i (w)) and ∆(w) using the data given in Fig. 2 with µi as in (35).

Example 2. We set Tf = 30 days and we consider that the growth functions µi are in the
form (36), with the biological parameters given in Fig. 2. Results are in Table 3. The turnpike
holds according to Theorem 1, as described in Claim 1 and illustrated in Fig. 5. Notice that
the sufficient conditions for the turnpike existence given in [43] are not satisfied, since Hyy =
diag{0.116993,−0.939631}.

Example 1 Example 2 Example 3
w 0.021 0.015 0.074
q1 2.164 0.015 3.91
q2 1.84 0.015 2.69
λq1 0.44 0.322 0.173
λq2 -0.20 -0.1377 2.690
κ1,2 2.332 ±0.81i 1.74 ±1.09i ±3.02
κ3,4 -2.332 ±0.81i -1.74 ±1.09i ±0.82

Table 3: Values of the static steady-state Estatic and eigenvalues of the matrix Ψ defined at Estatic

for the 3 examples.
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Figure 4: The optimal control and optimal trajectories given by Bocop in Example 1.

Example 3. We set Tf = 50 days. The functions µi are in the form (37), with the biological
parameters in Fig. 2. Results are in Tab. 3. Similarly to the previous examples, here we get,
Hyy = diag{0.183898,−0.210028}. However, the turnpike characteristics hold in the optimal
solution according to Theorem 1 and Claim 1, as shown in Fig. 6.
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Figure 5: The optimal control and optimal trajectories given by Bocop in Example 2.
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Figure 6: The optimal control and optimal trajectories given by Bocop in Example 3.

In all these examples (Fig. 4-6), the optimal solutions of the OCP (2), settled in relatively
large time [0, Tf ], consist of three pieces: the first and the last ones are relatively short arcs,
and the middle piece being a relatively long-time arc staying close to the optimal steady-state
solution of the associated static-OCP (8).
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6 Conclusion
The optimal control has been fully-characterized through a complete study combining Pontrya-
gin’s principle and turnpike frameworks relying upon classical hyperbolic system properties. The
turnpike theory ([43, 36]) considerably simplifies the understanding of the control strategy and
provides a clear insight into the optimal control structure. By investigating the OCP and its
associated static version, the main result in this paper proves that the optimal control is always
singular and provides sufficient conditions ensuring the existence of turnpike behaviors charac-
terizing the optimal trajectories. We had to upgrade the existing turnpike results so that they
can apply to the specificity of our models. The considered class of systems naturally appears in
the framework of competition between two microbial or algal species, but a similar structure is
likely to play a role for other classes of problems. In general, solving an OCP in dimension 5 is
a challenging issue (see [19, 20]). Thus, the microalgae optimal selection problem was reduced
in this paper considering the core dynamics in dimension 2. This reduction approach using a
back-stepping philosophy might also prove to be efficient in other contexts (see, e.g., [48, 12]),
and this will be the main focus of our future work.
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A The singular control expression

We choose gi(w) = ρimw/(Ki + w), with K1 6= K2. In the case where λy1λy2 < 0, it is useful to
perform the change of variable,

v =
w

K1 + w
, v ∈ [0, vm]. (48)

Thus, maximizing (20) is equivalent to maximizing the function,

Φ̃(yi, λyi, v) = λy1ρ1mv + λy2ρ2mK1
v

K2 + (K1 −K2)v
.

We can readily check that ∂Φ̃/∂v = 0 is equivalent to,

v2 +
2K2

K1 −K2
v +

(
K2

K1 −K2

)2

+
λy2ρ2mK1K2

λy1ρ1m(K1 −K2)2
= 0.

The corresponding discriminant is then given by,

Des(λy1 , λy2) = − 4λy2ρ2mK1K2

λy1ρ1m(K1 −K2)2
> 0,

and therefore, we get the solutions, vs1,2(λy1 , λy2) = − K2

K1−K2
±
√

Des(λy1 ,λy2 )

2 .

It is then straightforward that,
l If K1 > K2: the unique solution possibly belonging to (0, vm) is,

vs(λy1 , λy2) = − K2

K1 −K2
+

√
Des(λy1 , λy2)

2
. (49)

l If K1 < K2: the two solutions possibly belonging to (0, vm) are,

vs1(λy1 , λy2) = − K2

K1 −K2
+

√
Des(λy1 , λy2)

2
,

vs2(λy1 , λy2) = − K2

K1 −K2
−
√

Des(λy1 , λy2)

2
.

(50)

Therefore we can readily determine the singular controls ws, ws1 and ws2, bounded by 0 and
wm, using the expressions (49), (50) and (48). Consequently, in the case of classical absorp-
tion function in Droop’s model, we deduce that the optimal controls satisfying (20) can be a
concatenation of bangs (when λy1λy2 > 0) and singular controls ws (when λy1λy2 < 0), s.t.,

• {0, wm, ws}, if K1 > K2,

• {0, wm, ws1, ws2}, if K1 < K2.

On the other hand, ¬ of Theorem 1 shows that λy1λy2 < 0, and therefore only singular controls
are admissible.
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B The analytic expression of the singular static-control, so-
lution of the static-OCP (43)

The singular controls (candidate) obtained in the case of the growth function µi in Droop’s form
(35), are given by,

w∗1,2 =± µ1∞µ2∞ (K2µ2∞Q2min (µ1∞Q1min + ρ1m)

−K1µ1∞Q1min (µ2∞Q2min + ρ2m)
√
K1K2Q1minQ2minρ1mρ2m

+
K1K2µ1∞µ2∞Q1minQ2min (−µ2∞ρ1mρ2m + µ1∞ (µ2∞Q2minρ1m − µ2∞Q1minρ2m + ρ1mρ2m))

K2µ2
2∞Q2min (µ1∞Q1min + ρ1m)2 ρ2m −K1µ2

1∞Q1minρ1m (µ2∞Q2min + ρ2m)2
.

(51)

C Gronwall’s Lemma
Let us consider, F1 : [a, b] → R+ ∈ C0([a, b],R+), F2 : [a, b] → (0,+∞) ∈ C0([a, b],R+),
F3 : [a, b]→ R+ ∈ C0([a, b],R+).

Let, ∀y : [a, b] → R+ ∈ C0([a, b],R+), s.t., y(t) ≤ F1(t) +
∫ t
a
F2(t)F3(`)y(`)d`, ∀t ∈ [a, b].

Then, we get for all t ∈ [a, b],

y(t) ≤ F2(t)e
∫ t
a
F2(`)F3(`)d`

∫ t

a

e−
∫m
a
F2(`)F3(`)d`F1(m)F3(m)dm+ F1(t). (52)

The backward version is given for all t ∈ [a, b] by,

∀y : [a, b]→ R+ ∈ C0([a, b],R+), s.t., y(t) ≤ F1(t) +

∫ b

t

F2(t)F3(`)y(`)d`.

Then, we get for all t ∈ [a, b],

y(t) ≤ F2(t)e
∫ b
t
F2(`)F3(`)d`

∫ b

t

e−
∫ b
t
F2(`)F3(`)d`F1(m)F3(m)dm+ F1(t). (53)

D Technical detail for the proof of Theorem 1
To give more details on the proof of the bound (28) for solutions of (27) we can follow ([36, 43])
using classical theory on hyperbolic system. The following technical Lemmas are given for a
general system (27) of any dimension n ≥ 2.

D.1 Exponential estimate in the stable case
Lemma 1. ([36]). Let Ψ̃ ∈ Mn(R) be s.t. its spectrum satisfies Re (spec(Ψ̃)) ⊂ (−∞, 0), and
let θ ∈ C1(Rn,Rn) satisfies θ(`)/‖`‖ −−−−→

` → 0
0. Then, for any κ ∈

(
0,− sup Re (spec(Ψ̃))

)
, there

exist Cκ > 0 and rκ > 0, s.t., for any Tf > 0, if z̃(t) satisfies,{
˙̃z = Ψ̃z̃ + θ(z̃),

‖z̃‖ ≤ r̄κ,
(54)

for all t ∈ [0, Tf ], then it follows that,

‖z̃(t)‖ ≤ Cκe−κt‖z̃(0)‖, ∀t ∈ [0, Tf ] . (55)
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Proof. The proof relies essentially on the fact that for any κ ∈ (0,− sup Re (spec(Ψ))) there
exists a C̃κ > 0 s.t. for any z̃0 ∈ Rn the unique solution z̃ of{

˙̃z(t) = Ψ̃z̃(t), for all t ∈ [0, Tf ],

z̃(0) = z̃0,

satisfies ‖z̃(t)‖ ≤ C̃κe
−κt‖z̃(0)‖ for all t ∈ [0, T ]. Then, (55) is derived by applying Duhamel’s

formula to (54) and Gronwall’s Lemma (Appendix C, forward version (52)) to ‖z̃(t)‖.

D.2 Existence, uniqueness and continuity : classical results for hyper-
bolic systems

Now, let us fix Ω−,Ω+ ∈ Mn(R), s.t., Re (spec(Ω−)) ⊂ (−∞, 0) and Re (spec(Ω+)) ⊂ (0,∞),
r > 0, and two functions, θ1(z̃1, z̃2), θ2(z̃1, z̃2) ∈ C1(B2n(0, r),Rn), s.t., for i = 1, 2,

‖θi(`1, `2)‖ / ‖(`1, `2)‖ −−−−−−−→
(`1,`2) → 0

0.

Let us consider the system, {
˙̃z1 = Ω−z̃1 + θ1(z̃1, z̃2),
˙̃z2 = Ω+z̃2 + θ2(z̃1, z̃2).

(56)

Remark 4. Note that (27) is a particular case of (56) in dimension n = 2 (i.e., diag{Ω−,Ω+} ∈
M4(R)).

Following ([36]), we define for later use the constant K > 0, associated with Ω− and Ω+, by,

K = 2

(
sup
t>0
‖eΩ−t‖+ sup

t>0
‖e−Ω+t‖+ 1

)
.

Now we are ready to state and prove the following lemma.

Lemma 2. ([36]) For any Tf > 0 and any r > 0, there exists % ∈ (0, r) s.t. the following
statements hold.

• For any (z̃0
1 , z̃

f
2 ) ∈ B(0, %K ) there exists a unique

(
z̃1(·; (z̃0

1 , z̃
f
2 ), z̃2(·; (z̃0

1 , z̃
f
2 )))

)
∈ C1

(
[0, Tf ] ,R2n

)
satisfying (56) and, 

z̃1(0) = z̃0
1 ,

z̃2(Tf ) = z̃f2 ,

‖z̃1(t)‖+ ‖z̃2(t)‖ ≤ %, t ∈ [0, Tf ].

• The map χ defined by χ(z̃0
1 , z̃

f
2 ) =

(
z̃1(·; (z̃0

1 , z̃
f
2 ), z̃2(·; (z̃0

1 , z̃
f
2 )))

)
is continuous.

Proof. The first point follows from standard properties of affine systems. Its proof relies on
Picard theorem (see, e.g., [50]), which implies that for any (h1, h2) ∈ C0 ([0, Tf ],Rn), there exists
a unique solution (z̃1, z̃2) of,

˙̃z1(t) = Ω−z̃1(t) + θ1(h1(t), h2(t)),
˙̃z2(t) = Ω+z̃2(t) + θ2(h1(t), h2(t)),

z̃1(0) = z̃0
1 ,

z̃2(Tf ) = z̃f2 .
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Thus, we are left to show that the map Ξ defined by Ξ(h1, h2) = (z̃1, z̃2) admits a fixed point in
the space (BC

0

(0, %), ‖ · ‖∞), where BC
0

(0, %) is the ball in the space
(
C0([0, Tf ],R2n), ‖ · ‖∞

)
of

radius %. This can be shown with % chosen in such way that,

Jac(θi) <
κ

4Cκ
on B(0, %), i = 1, 2.

The second statement of Lemma 2 can be shown using Ascoli-Arzela’s theorem (see, e.g.,
[16]).

D.3 Exponential estimate of the hyperbolic system (proving (28))
Based on the previous lemmas, we give more details on the proof of the estimate (28). The
following results hold for a general system (27) of any dimension, associated with a more general

form of matrix V , that we denote here by, V =

(
ν1 ν2

ν3 ν4

)
, where ν1 and ν2 are invertible. Now,

let us prove the following statement.

Lemma 3. ([36]) For any κ ∈ (0,min{−max{Re (spec (Ω−))},min{Re (spec (Ω+))}) there exists
r̄κ ∈ (0,∞) independent from Tf ∈ (0,∞) and functions Θ1,Θ2 ∈ C0 ([0, r̄κ];R+) satisfying
Θi(`) −−−−−→

` → 0+
0 for i = 1, 2, s.t. if (z̃1, z̃2) satisfies (56) and

‖z̃1(t)‖+ ‖z̃2(t)‖ ≤ r̄κ, t ∈ [0, Tf ],

then, we get the following estimates for all t ∈ [0, Tf ],‖z̃1(t)‖ ≤ Cκ
[
‖z̃1(0)‖ e−κt + e−κ(Tf−t) ‖z̃2(Tf )‖Θ1(‖z̃1‖c0)

]
,

‖z̃2(t)‖ ≤ Cκ
[
‖z̃2(Tf )‖ e−κ(Tf−t) + e−κt ‖z̃1(0)‖Θ2(‖z̃2‖c0)

]
.

(57)

Proof. First, let us highlight that the statement in Lemma 3 holds for linear systems, i.e., in the
particular case when θ1 = θ2 ≡ 0 in system (56). Indeed, in the latter case the resulting system
consists of two independent systems and Lemma 1 can be applied in forward time for the system
associated with Ω− and in reverse time for the system associated with Ω+. Next, when θ1 and
θ2 are not identically 0, they admit the property Jac θi(0) = 0, for i = 1, 2, where Jac θi stands
for the Jacobian of θi, which is in our case continuous near 0. Therefore, for any ε > 0 there
exists δ > 0 such that Jac θi(m) < ε when ‖m‖ < δ. Then, using the Taylor expansions of θi,
i = 1, 2, around 0, for each θi we can defined Γi1,Γ

i
2 ∈ C0([0, r],R+), s.t. Γij(`) −−−−−→

` → 0+
0. More

precisely, functions Γi1,Γ
i
2 are defined in the following way for i = 1, 2,

Γi1(`) = sup
p1,p2∈B(0,`)

∥∥∥∥ ∂

∂p1
θi(p1, p2)

∥∥∥∥ ,
and,

Γi2(`) = sup
p1,p2∈B(0,`)

∥∥∥∥ ∂

∂p2
θi(p1, p2)

∥∥∥∥ .
Then, we can express ‖θi‖ in terms of Γi1 and Γi2 as follows,

‖θi(p1, p2)‖ ≤ Γi1(‖p1‖)‖p1‖+ Γi2(‖p2‖)‖p2‖, p1, p2 ∈ B(0, r).

These inequalities can be applied together with several successive applications of the Gromwall’s
lemma leading to the desired estimates (57) where Θ1 = Γ1

1 and Θ2 = Γ2
2.
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D.4 Projection of the terminal conditions (proving (29))
Here we provide calculations used to show (29) in proof of Theorem 1 (Section 4). The main
idea is again inspired by [36], by applying Lemmas 2-3 to (27), we have that there exists rκ > 0

s.t., for all (z̃0
1 , z̃

f
2 ) ∈ B(0, rκK ), the corresponding (z̃1, z̃2) is bounded ‖z̃1(t)‖ + ‖z̃2(t)‖ ≤ rκ for

all t ∈ [0, Tf ] and thus, it satisfies (28). Let us define F : B(0, rκK ) → R4, s.t., F (z̃0
1 , z̃

f
2 ) =(

ν−1
1 (y0 − y − ν2z̃2(0)),−ν−1

4 (ν3z̃1(Tf ) + λy)
)
, where νj appear in the matrix of V (generalized

form of (26)). Now, let us show that there exists r satisfying rκ
K > r > 0, T ∗ > 0, and ε(r), s.t.,

if Tf > T ∗ and the initial and final conditions satisfy (18), then F is contracting on B(0, r), that
is, F : B(0, r)→ B(0, r). By definition we have,

‖F (z0
1 , z

f
2 )‖ ≤

(
‖ν1‖−1 + ‖ν4‖−1

) (
‖y0 − ȳ‖+ ‖ν2‖ ‖z̃2(0)‖+ ‖λ̄‖+ ‖ν3‖ ‖z̃1(Tf )‖

)
.

By applying (28), we get

‖F (z0
1 , z

f
2 )‖

‖ν1‖−1 + ‖ν4‖−1
≤
(
‖y0 − ȳ‖+ ‖λ̄‖

)
+ Cκ

[
‖ν2‖

(
‖z̃f2 ‖ e−κTf + ‖z0

1‖θ2(‖z̃2‖)
)

+ ‖ν3‖
(
‖z0

1‖e−κTf + ‖z̃f2 ‖θ1(‖z̃1‖)
)
.

We take into account (z̃0
1 , z̃

f
2 ) ∈ B(0, r) and (18) which leads to the further simplifications

‖F (z0
1 , z

f
2 )‖

(‖ν1‖−1 + ‖ν4‖−1)
≤ ε+ Cκr (‖ν2‖+ ‖ν3‖) e−κTf + Cκr‖ν2‖Θ2(‖z2‖) + Cκr‖ν3‖Θ1(‖z1‖).

Let us define T ∗ according to, Cκ (‖ν2‖+ ‖ν3‖) e−κT
∗

= 1
4(‖ν1‖−1+‖ν4‖−1) , and r > 0 for which

there holds (from Lemma 3),

Θ2(Kr) ≤ 1

4 (‖ν1‖−1 + ‖ν4‖−1)Cκ‖ν2‖
,

and,

Θ1(Kr) ≤ 1

4 (‖ν1‖−1 + ‖ν4‖−1)Cκ‖ν3‖
.

Finally, we take Tf ≥ T ∗ and ε satisfying

ε ≤ r

4 (‖ν1‖−1 + ‖ν4‖−1)
.

This implies ‖F (z0
1 , z

f
2 )‖ ≤ r. and proves that F is contracting. By Brouwer’s fixed-point theorem,

F admits the unique fixed point (z̃0
1 , z̃

f
2 ). Now, it sufficient to notice that F (z̃0

1 , z̃
f
2 ) = (z̃0

1 , z̃
f
2 ) is

equivalent to (29) in the case of the typical form of V .
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