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We develop an inverse geometric optimization technique that allows the derivation of optimal
and robust exact solutions of low-dimension quantum control problems driven by external fields: we
determine in the dynamical variable space optimal trajectories constrained to robust solutions by
Euler-Lagrange optimization; the control fields are then derived from the obtained robust geodesics
and the inverted dynamical equations. We apply this method, referred to as robust inverse opti-
mization (RIO), to design optimal control fields producing a complete or half population transfer
and a NOT quantum gate robust with respect to the pulse inhomogeneities. The method is ver-
satile and can be applied to numerous quantum control problems, e.g. other gates, other types of
imperfections, Raman processes, or dynamical decoupling of undesirable effects.

Introduction.- Designing solutions of a system driven
by external controls that are optimal with respect to
practical costs such as area of the controls, energy or
duration is a well known problem [1]. The necessary con-
ditions of optimality were established by Pontryagin via
a maximum principle [2]. Based on this approach, var-
ious optimal quantum problems have been solved from
low- [3-6] to large-dimensional [7, 8] systems.

Solutions that additionally feature robustness has be-
come a major issue in quantum physics, especially
in quantum information processing, where ultra high-
fidelity solutions are required (typically with relative er-
rors below 107%) [9]. Small imperfections in the design
can cause fatal deviations of the performance. Robust-
ness can be specifically taken in to account using adia-
batic [10, 11], composite [12-14], combined [15] or short-
cut to adiabaticity [16-19] techniques. However, these
methods are not optimal and usually cost non-necessary
energy and time.

Combining robustness constraints with the optimiza-
tion methods has thus become a major challenge [20].
Numerical optimal control techniques based on time dis-
cretization with thousands of parameters to be optimized
[21] can lead to very different results depending on the al-
gorithm and the initial condition used. Alternative tech-
niques involving from a few tens [22] to a few [23] pa-
rameters to be optimized have been developed, but they
do not provide global optimal solutions in principle since
they are based on restricted parametrizations. A recent
proposal using Pontryagin’s maximum principle (PMP)
in an extended Hilbert space [24] allows an elegant inte-
gration of the robustness constraints, but leads to com-
plicated systems to solve, only tractable for very simple
targets, typically complete population transfers. A ge-
ometrical approach has been shown to provide optimal
single-qubit phase gates [25]. All these methods use a
direct optimization procedure, i.e. with the dynamical
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equations as constraints, which makes complicated the
simultaneous integration of the robustness constraints.

In this Letter, we propose an alternative method of
optimization based on inverse engineering: We apply in
a first stage the Euler-Lagrange optimization [26] con-
strained by robustness integrals and by the boundaries
ensuring exact fidelity in the dynamical variable space
without invoking the dynamical equations. The con-
strained Euler-Lagrange optimization leads thus to a ro-
bust and exact geodesic. In a second stage, we derive the
control field parameters from the geodesic and the dy-
namical equation, i.e. the time-dependent Schrodinger
equation for the present quantum control problem, for-
mulated in an inverted way, in which we express the con-
trols from the dynamical variables.

We describe the technique by applying it to determine
complete and partial transfers, as well as single-qubit
gates that features all the desired properties with respect
to the control pulse area (chosen as the cost): exact-
fidelity, optimality and robustness. The general applica-
bility of the method is finally discussed with an emphasis
on specific important quantum control problems.

Inverse engineering method in the dynamical variable
space.- We can consider, without loss of generality, trace-
less Hamiltonians Hy = Hy + AV (in units such that

h=1), where
1/-A Q

models the qubit {|0), |1)} with the control parameters:
the pulsed Rabi frequency Q = Q(t) (considered positive
without loss of generality) and the detuning A = A(t),
and A gathers unknown (time-independent) parameters
representing the error in the description of the model.
An error with respect to (i) the pulse amplitude (or
area for a fixed pulse duration), i.e. the pulse inho-
mogeneities, is modeled with V = Qo,/2 and A = «
corresponds to the relative deviation of the pulse am-
plitude; (ii) the detuning is modeled with V = —o,/2
and A = 0 corresponds to the deviation of the detun-



ing. The solution |¢g(t)) = Up(t,t;)|¢o(t;)) of the time
dependent Schrodinger equation (TDSE) associated to
the qubit without errors, ih% Uo(t,t;) = HoUy(t,t;) with
Uo(t, ;) the propagator from the initial time ¢; to time ¢,
is conveniently parameterized with three angles, the mix-
ing angle § = 0(¢t) € [0, 7], a relative ¢ = ¢(t) € [—m, 7]
and a global phase v = «(¢t) € [0, 27], as

0 pip/2 )
_ [ cos e —iv/2
o) = (S ) @
The TDSE can be equivalently rewritten as
0 = Qsin g, (3a)
$»=A+Qcospcotb, (3b)
. Ccos -cot
= Q = .
7 sin 6 sin 6 (8¢)

The inverse-engineering method consists in determin-
ing the Hamiltonian elements (the controls) from the
dynamical variables by inverting the TDSE: Hp, =
ih(%Ug(mti))UJ(t, t;), i.e. from inversion of Egs. (3):

A= —4cosb, (4a)
QO =1/62+42sin%0 = |7/ (6)° +sin®6  (4b)
with § = %3' Since the optimization cost (the pulse

area) and the integrals of robustness [see Eqs. (6)] de-
pend on 6(t) and ~(t), we can consider them as the
dynamical variables providing a geometric representa-
tion of the problem, and the third variable ¢(t) is given
by (3¢), cot = #sin6/6, from which we obtain ¢ =
(6sin® — 40sind — 462 cos 0) /(6> + 4?sin*6). In the
right part of Eq. (4b), we have assumed that one can

write 0(t) as a function of v(t): 6(y) = 6(¢). In general
we are led to consider multiple functions 6;(y), each de-
pending on the time interval, in order to get the optimal
solution (see for instance Fig. 3). We note that the pulse
area from the initial ¢; to the final ¢; times (denoting
vi = v(t:), vf = v(ty) and assuming a monotonic y(t),
such that 4(¢) > 0) can be written as

A—/%f dtQ(t):/i{f i/ (6) +sind,  (5)

i

which does not depend on the time-dependance of ~(t),

but only on #(v) (and its derivative). In this represen-

tation, it is thus relevant to consider trajectories 6(v)
in the parameter space formed by the angles ~,60 and
o(7) = p(t) is given by (3¢) for a given trajectory. We
could have considered alternatively a representation with
multiple functions 7;(#). However we will see that the

chosen representation 6(7) is more convenient for the
technical determination of the geodesics.

As a simplification of the presentation, we consider in
this Letter robustness with respect to the pulse area (or
identically to the pulse amplitude or inhonomegenities

for a given time of interaction). It is shown below to al-
low one to consider the problem in the parameter space
without invoking specific time parametrization: a robust
optimal solution corresponds to a special trajectory 6(7)
(the same when we consider optimization with respect
to the pulse area, pulse energy or pulse duration for a
given bound of its amplitude). The construction of the
actual controls, i.e. the Rabi frequency €2 and the de-
tuning A, from (4) necessitates to use a specific time
parametrization, ~y(¢), which can be chosen at will for
the optimization with respect to the pulse area. On the
other hand, the optimization with respect to the pulse
duration corresponds to a specific time parametrization
[see Eq. (8)].

We denote |¢y(t)) the state of the complete dynamics
including the error, solution of the TDSE ihZ |, (t)) =
Hy|¢x(t)). The single-shot shaped pulse method [17] al-
lows one to define trajectories, in the dynamical vari-
ables space, resistant to errors. It can be formulated
by a perturbative expansion of ¢ (ty) with respect to A,
(prloa(ty)) =1+01+ 02403+ -, where O,, denotes
the error term of total order n: O, = O(A\") and |¢r)
the target state. The first two terms read

0r = =i [ an(OV O loot)ar =i [ etat. (6a)

i

' t t
0r = (=i [ at [ ale(et) + £ 1(0))
:7%[/tzfdte(t)rf/tif dt f(t) /tz dt' f(t'), (6b)
with e = —1(§cosf — afsin®0), and f = %{5sin9 +

« (%7 sin 20—1‘9)} e?. The other terms can be determined

from a symbolic diagram [17]. We denote at a certain
order n: (¢pr|da,s(ts))n =1+ 01+ 02+ -+ Oy. One
notes the remarkable property that, assuming a function
6(v) and a monotonic v(¢) (such that 4(¢) > 0), when one
considers the robustness with respect to solely a (i.e. § =
0), then the integrals O,, do not depend on the particular

time-parametrization of y(t) since

‘ IS 1 [ ~
/ e(t)dt = fa/ dtsin® § = fa/ dysin? 6, (7a)
+ 27/, 2/,

i K3

¢ RS O
== Z5in20 — i 22 e,
; ft)de 20[/71» d’y(2bln 0 dey)e (7b)

The opposite situation of a decreasing v(¢) (§(t) < 0)
would add a minus sign in the right hand sides of Egs.
(7). _
One can thus design an optimal robust trajectory 0(~)
when § = 0. The robust optimal time Ty, is deter-
mined from the particular time-parametrization +(t) of

the same trajectory () leading to a flat pulse (of chosen
amplitude Qg):

T —i/wd\/(é)ﬁsm?'é (8)
min — QO ) ’y N



We notice that robustness witthespect to § could be
considered, from the trajectory 6(vy) previously derived
by exploiting the time-dependence of ~(t) (anticipated
different from the one derived above for the time opti-
mization).

The method, referred in short to as robust inverse op-
timization (RIO), is applied below for deriving first the
optimal robust solution of two typical examples of pop-
ulation transfer: complete transfer and half coherent su-
perposition (referred to as half transfer). We next con-
sider a more complex target: the optimal robust quantum
gate.

RIO for optimal robust population transfer. For the
case of a population transfer to a target state |¢r), the
final global phase is not a priori fixed and is not robust
since it is irrelevant. The figure of merit up to the third
order reads

(7l das(ts)* =1+ O0s, Op =

/:f f(t)dtr. (9)

The main result of the Letter is the following: The prob-
lem of optimal nullification up to the third order can be
formulated as an optimization problem: finding the tra-
jectory 6(v) that minimizes the pulse area (5)

A(g) = /w dyy/ (5)2 +sin?6 = /’Yf dry Lo(7, 5) (10)

under the constraints Oy = 0 rewritten for convenience
as

_ 1 (v o Vs ~
¥1(0) -1 / dry(sin 26 — 20) siny = / dy ¢1(v,0)
¥ i

i

1
= _5(0f cosys — 8; cosy;), (11a)

N 1 o vs -
o (0) = 1 / dry(sin 26 — 20) cosy = / dy pa(7y,0)
¥ v

i

1
= 5(91 sin~y; — 0fsin~yy) (11b)
with the initial state characterized by the angles (6; =
0(ti), s = @(t;),v) and the final target state (0 =
O(ty),or = @(ty),vf). This can be solved by the La-
grange multiplier method extended to the function space

as follows: The trajectory 6(7) is solution of
grad A(6) + A1 grad ¢ (0) + A grad ¢5(0) = 0, (12)

with A;, 7 = 1,2, the Lagrangian multipliers associated
to the two constraints, where the gradient is defined ac-
cording to the Euler-Lagrange equation (which is zero
without constraint):

grad A(f) = 8760 _ 4 (8{0>» (13)
o0 dv\ 5

and similarly for grade;(f), j = 1,2. We obtain the
differential equation

§— 2(9)2cotan§+ sin § cos 6

~3/2

+ (A1siny — Ay cos ) ((5)2 + sin® 0) (14)
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FIG. 1. Optimal robust geodesic 6(7y) in the dynamical vari-
able space (7, 0) determined from numerical solution of (14)
corresponding to A1 =~ —1.11505, X2 ~ —0.30473 (lead-
ing to vy = 57/3). Inset: Resulting detuning and dy-
namics of the populations Pj, j = 1,2, for robust time-
optimal control [obtained for a flat pulse of Rabi frequency
Qo according to (8)] showing the complete population trans-
fer with the optimal time Tmin &~ 5.84/Q. The detun-
ing has the form of a complete period of the elliptic co-
sine A = Agen(4K(m)t/Tmin + K(m),m), t € [0, Twinl,
with K(m) the complete elliptic integral of the first kind,
m = 0235, and A() = 8K(m)\/ﬁ/Tmin ~ 1.11490.

The optimal robust trajectory op¢(7), solution of (14), is
obtained for the set of values of \; and Ay, which satisfies
(11) (and we select the trajectory of smallest pulse area
in case of more than one solution). We remark that the
value of s results from this solution.

As a first example, we consider the complete popula-
tion transfer from the ground state: 6; = 0, 0y = m,
~i = ¢;. Equation (3c), cot ¢ = vsinf = sin§/6, implies
w; = py = m/2. We can show that 6 and 6 are initially
and finally infinite, and that the trajectory is symmetric
about § = /2 (which implies Ay = A sin~yy — Ay cosyy).
The obtained trajectory and the corresponding driving
parameters (for a flat time-optimum pulse) are shown in
Fig. 1. We notice that the optimal robust trajectory 6(v)
is a more convenient representation since it forms a func-
tion contrary to the inverse one 7(#). We remark that
we recover the robust optimal solution that has been de-
rived in [24] by the PMP method in an extended Hilbert
space.

We next focus on a (more complex) typical example
of partial population transfer: the half transfer of inter-
nal (relative) phase ¢ (up to an irrelevant global phase
70/2), targeted from the ground state |0):

1 ei®o/2 _
= E (e—wo/2> e /2, (15)

This imposes the boundaries 6; =0, 6y = 7/2, v; = ¢; =
m/2, p5 = o, and vy = 7. The obtained trajectory

|6(t5)) = l¢7)
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FIG. 2. Optimal robust geodesic 6(v) corresponding to
Ao~ —1.69741, Ao ~ —0.64653 (leading to vy ~ 1.48m).
Inset: Detuning and dynamics of the populations P;, j =
1,2, for robust time-optimal control (for a flat pulse of
Rabi frequency o) showing the half superposition. We
obtain the optimal time Tmin ~ 4.05/Q. The detuning
has the form of three-quarters of the elliptic cosine period
A = Aoen(3K(m)t/Tmin + K(m),m) with m = 0.4, and
Ao = 6K(m)\/ﬁ/Tmm ~ 16690

Bopt () and the corresponding driving parameters (for a
flat pulse) are shown in Fig. 2. From this trajectory,
we determine ﬁf = 0, which, from Eq. (3c), gives the
optimal relative phase ¢o = /2.

RIO for robust quantum gate - Achieving a quantum
gate requires the additional robust control of the global
phase v. A traceless hamiltonian can only generate the
SU(2)-type gate, which is taken as the targeted propa-
gator: Uy = <(bl _ali ) with |a|? + [b|?> = 1. The figure
of merit usually adopted to determine the fidelity of a
quantum gate is defined as F = %‘Tr(UgU)|, where U is
the actual propagator. Up to the third order, it involves
then the real part of the integrals Oy, O3 (which are both
zero), and Oag:

2

b

Fo14+R(0y)=1- ;[[f dte(t))” - ;\/ttf f(tydt
1 C )

which is one when both f:j dte(t) = 0 and ftif ft)ydt =
0. Robustness at third order can be thus expressed in
this case (assuming (¢) > 0) by (11) and the integral
f;,f dy sin?@ = 0. Since the argument of the latter is

positive, the integral cannot be 0 and we conclude that
~(t) cannot be monotonic. We have thus to consider two
(continuous) functions

{ b:+ (’Y) for ’7 2 07 = [’szfym] (17)
0-(y) for 4 <0,v=[vs,vml

with 6, = §+(7m) = 57(%1) and the integrals to be
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FIG. 3. Optimal robust geodesic 8(7) corresponding to the
NOT gate. It corresponds to two consecutive symmetric tra-
jectories of Fig. 2.

nullified become:

Ym ~ Ym ~
0= / dy sin® 0, — / dvy sin? 0_,
Y vf

(18a)

1 e L . .

0= 3 / dy e (sin20y — 20, ) —i(6pe — 6;e"7)
gt

i

1 TYm . ~ ~
— f/ dy e (sin26_ —260_). (18b)
2 Vs
We consider the typical NOT-type gate: Unor =

__ iR
(eom 8 ) , which means robust control to state |1)

from the ground state [0), ie. ideally: |px(t;)) =
|0), [ox(tf)) = o) = e~**|1), with the phase k = (pf +
v¢)/2, which should be additionally controlled in a robust
way. This control implies the boundaries §; = 0, 0y =
T, % = @i = @5 = 7/2. The symmetric form vy = v;
(giving k = 7/2), 0_(7) = 20, — 01(7), 0y = 20,,, for
which the integral (18a) is automatically satisfied, is op-
timal. It leads to Eqs. (11) for the half transfer where ¢
is replaced by ~,,. This means that the optimal robust
NOT gate is achieved when two consecutive optimal ro-
bust half transfers are achieved. The resulting trajectory
is shown in Fig. 3. It corresponds to a minimum time
Trmin = 8.1/Qq (for a flat pulse of Rabi frequency Q) and
to a pulse area of 2.58.

Discussions and conclusions. - The technique of in-
verse optimization we have developed allows the design
of optimal and robust solutions of quantum control prob-
lems of the general form H = Hy+ AV, where robustness
is meant with respect to A. Its applicability necessitates
the knowledge of the parametrization of the dynamics
generated by Hp and robustness is considered by per-
turbation of AV. This includes low-dimensional dynam-
ical symmetries for Hy, typically SU(2), SU(3) [27] and
SU(4) [28], for which dynamical invariants can be de-
rived. But this does not limit the applicability to two-,



three- or four-level systems; higher dimensions with spe-
cific symmetries can be considered [29]. The RIO method
can treat robust optimization of the following multi-level
problems:

(i) Stimulated Raman exact passage (STIREP) [18, 19]
featuring a SU(2) symmetry in the resonant case, or more
generally a SU(3) symmetry;

(ii) Two-qubit gate, represented as a four-level problem
in its simplest form: Following Ref. [30], one can com-
pensate the error in the phase of a two-qubit controlled-
PHASE gate (e.g. implemented in an ion trap) using
interactions of the form T} = %O'x o — %O'x ® oy
and T3 = %]1 ® 0, which feature SU(2) symmetry;

(iii) Qudit gate (with an arbitrary dimension d), at
the heart of quantum Fourier transform (a key ingredient
of many quantum algorithms), in a multi-pod configura-
tion with some overlapping controls [31] or with circulant
symmetries [32].

The perturbation AV is not limited to imperfections of
the driving pulse, but can also concern the leakeage to

undesirable states [33] or to a lossy environnement (for
instance leading to dephasing noise [34]), where the latter
problem takes the general form L = Ly + AV via Lind-
bladians. The application of the method can be then
interpreted as a dynamical decoupling inverse optimiza-
tion. Robustness and dynamical decoupling can also be
treated simultaneously.
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