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Abstract 

Ependymomas encompass a heterogeneous group of central nervous system (CNS) 

neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic 

profiling efforts have identified several molecular groups of ependymoma that are 

characterized by distinct molecular alterations and/or patterns. Based on unsupervised 

visualization of a large cohort of genome-wide DNA methylation data, we identified a highly 

distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established 

CNS tumor types, of which a high proportion were histopathologically diagnosed as 

ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic 

adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most 

common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 

fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these 

tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are 

regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) 

demonstrated a broad morphological spectrum of largely ependymoma-like tumors. 

Immunohistochemically, tumors were GFAP-positive and OLIG2- and SOX10-negative. In 3/16 

of the cases, a dot-like positivity for EMA was detected. Consistent with other fusion-positive 

ependymal groups, all tumors in our series were located in the supratentorial compartment. 

Median age of the patients at the time of diagnosis was 6.2 years. Analysis of time to 

progression or recurrence revealed survival times comparable to those of patients with 

ZFTA:RELA-fused ependymoma. In summary, our findings suggest the existence of a novel 

group of supratentorial ependymomas that are characterized by recurrent PLAGL1 fusions and 

enriched for pediatric patients. 
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Introduction 

Ependymomas encompass a heterogeneous group of central nervous system (CNS) 

neoplasms that occur along the entire neuroaxis and can affect both children and adults 1. DNA 

methylation and gene expression profiling efforts in recent years have identified several 

molecular groups of ependymoma across different anatomic sites of the CNS with distinct 

clinicopathological characteristics and molecular alterations or patterns 2-10. Within the 

supratentorial compartment, two molecularly defined types of ependymoma are characterized 

by recurrent gene fusions, one involving the gene ZFTA (formerly referred to as C11orf95, 

most frequently fused to RELA), and the other involving YAP1 2,5. More recently, several 

reports have expanded on the spectrum of gene fusions observed in supratentorial 

ependymoma and ependymoma-like tumors, in particular in the pediatric setting 11-13. 

Implementing these molecular markers into the WHO classification for brain tumors is of 

paramount importance in overcoming the challenges of histologically diverse tumor types and 

in increasing diagnostic accuracy. Still, many cases do not fit into the as of yet established 

CNS tumor types, leaving clinicians and patients with unclear or even incorrect diagnoses in 

further decision making. 

Genome-wide DNA methylation profiling has emerged as a powerful tool for both robust 

classification of known CNS tumor entities and identification of novel and clinically relevant 

subclasses of brain tumors with characteristic alterations 2,14. Here, we describe a molecularly 

distinct subset of supratentorial neoplasms (n = 40) with ependymal appearance identified by 

investigation of a large cohort of DNA methylation data. These tumors harbor recurrent fusions 

involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene.  
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Materials and methods 

Sample collection 

Tumor samples and retrospective clinical data from 40 patients were obtained from multiple 

national and international collaborating centers and collected at the Department of 

Neuropathology of the University Hospital Heidelberg (Germany). Sample selection was based 

on unsupervised visualization of genome-wide DNA methylation data that revealed a 

molecularly distinct group of tumors (n = 40) forming a cluster separate from all established 

entities. A proportion of data was generated in the context of the Molecular Neuropathology 

2.0 study. Analysis of tissue and clinical data was performed in accordance with local ethics 

regulations. Clinical details of the patients are listed in Supplementary Table 1 (online 

resource). 

 

Histology and immunohistochemistry 

For all cases with sufficient material (n = 16), histological review of an H&E-stained slide was 

performed according to the World Health Organization (WHO) 2016 classification of tumors of 

the CNS 15. Immunohistochemical staining was performed on a Ventana BenchMark ULTRA 

Immunostainer using the ultraView Universal DAB Detection Kit (Ventana Medical Systems, 

Tucson, AZ, USA). Antibodies were directed against: glial fibrillary acid protein (GFAP; Z0334, 

rabbit polyclonal, 1:1000 dilution, Dako Agilent, Santa Clara, CA, USA), epithelial membrane 

antigen (EMA; clone GP1.4, mouse monoclonal, dilution 1:1000, Thermo Fisher Scientific, 

Fremont, CA, USA), Sry-related HMG-BOX gene 10 (SOX10; clone EP268, rabbit monoclonal, 

dilution 1:100, Cell Marque Corp., Rocklin, CA, USA) and oligodendrocyte lineage transcription 

factor 2 (OLIG2; clone EPR2673, rabbit monoclonal, dilution 1:50, Abcam, Cambridge, UK). 

 

DNA methylation array processing and copy number profiling 

Genome-wide DNA methylation profiling of all samples was performed using the Infinium 

MethylationEPIC (EPIC) BeadChip (Illumina, San Diego, CA, USA) or Infinium 

HumanMethylation450 (450k) BeadChip array (Illumina) according to the manufacturer’s 

instructions and as previously described 14. Raw data were generated at the Department of 

Neuropathology of the University Hospital Heidelberg, the Genomics and Proteomics Core 

Facility of the German Cancer Research Center (DKFZ) or at respective international 

collaborator institutes, using both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) 

tissue samples. All computational analyses were performed in R version 3.6.0 (R Development 

Core Team, 2016; https://www.R-project.org). Copy-number variation analysis from 450k and 

EPIC methylation array data was performed using the conumee Bioconductor package version 

1.12.0 16. Raw signal intensities were obtained from IDAT-files using the minfi Bioconductor 

package version 1.21.4. Illumina EPIC and 450k samples were merged to a combined data 

set by selecting the intersection of probes present on both arrays (combineArrays function, 

minfi). Each sample was individually normalized by performing a background correction 

(shifting of the 5% percentile of negative control probe intensities to 0) and a dye-bias 

correction (scaling of the mean of normalization control probe intensities to 10,000) for both 

color channels. Subsequently, a correction for the array type (450k/EPIC) was performed by 

fitting univariable, linear models to the log2-transformed intensity values (removeBatchEffect 

https://www.r-project.org/
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function, limma package version 3.30.11). The methylated and unmethylated signals were 

corrected individually. Beta-values were calculated from the retransformed intensities using an 

offset of 100 (as recommended by Illumina). All samples were checked for duplicates by 

pairwise correlation of the genotyping probes on the 450k/EPIC array. To perform 

unsupervised non-linear dimension reduction, the remaining probes after standard filtering 14 

were used to calculate the 1-variance weighted Pearson correlation between samples. The 

resulting distance matrix was used as input for t-SNE analysis (t-distributed stochastic 

neighbor embedding; Rtsne package version 0.13). The following non-default parameters were 

applied: theta = 0, pca = F, max_iter = 10,000 perplexity = 20. 

 

RNA sequencing and analysis 

RNA was extracted from FFPE tissue samples using the automated Maxwell system with the 

Maxwell 16 LEV RNA FFPE Kit (Promega, Madison, WI, USA), according to the manufacturer’s 

instructions. Transcriptome analysis using messenger RNA (mRNA) sequencing of samples 

for which RNA of sufficient quality and quantity was available was performed on a NextSeq 

500 instrument (Illumina) as previously described 17. This was possible for 20 tumors within 

the novel group and 14 ZFTA:RELA-fused ependymomas. In addition, a reference cohort of 

other glioma and glioneuronal subtypes were used for differential gene expression analysis 

(YAP1:MAMLD1-fused ependymoma (n = 3), central neurocytoma (n = 9), extraventricular 

neurocytoma (n = 8), dysembryoplastic neuroepithelial tumor (n = 11), papillary glioneuronal 

tumor (n = 9), KIAA1549:BRAF-fused pilocytic astrocytoma (n = 14), diffuse midline glioma H3 

K27M mutant (n = 14) and glioblastoma IDH-wildtype (n = 9)). Fastq files from transcriptome 

sequencing were used for de novo annotation of fusion transcripts using the deFuse 18 and 

Arriba (v1.2.0) 19 algorithms with standard parameters. All further analysis was performed in R 

(version 3.6.0; R Core Team, 2019) using the DESeq2 package (v1.28.1) 20. Principal 

Component Analysis (PCA) was performed after variance stabilizing transformation of the 

count data and normalization with respect to library size, based on the selection of the top 

1,000 most variable genes with relative log expression normalization. Similarities between 

samples were determined by computing Manhattan distances on the variance stabilized data 

followed by unsupervised hierarchical clustering. Differential expression testing was performed 

on raw count data after fitting a negative binomial model. P-values were adjusted for multiplicity 

by applying the Benjamini-Hochberg correction. 

 

Targeted next generation DNA sequencing and mutational analysis  

Genomic DNA was extracted from FFPE tumor tissue samples of 18 patients within the cohort 

using the automated Maxwell system with the Maxwell 16 FFPE Plus LEV DNA Purification Kit 

(Promega, Madison, WI, USA), according to the manufacturer’s instructions. Capture-based 

next-generation DNA sequencing was performed on a NextSeq 500 instrument (Illumina) as 

previously described 21 using a custom brain tumor panel (Agilent Technologies, Santa Clara, 

CA, USA) covering the entire coding and selected intronic and promoter regions of 130 genes 

of particular relevance in CNS tumors (Supplementary Table 2, online resource). 

 

Statistical analysis 
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Statistical analysis was performed using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, 

USA). Data on survival could be retrospectively retrieved for ten patients. Distribution of time 

to progression or recurrence (TTP) after surgery was estimated by the Kaplan-Meier method 

and compared between groups with the log-rank test. Patients lost to follow-up are censored 

at date of last contact in analysis of TTP. P-values below 0.05 were considered significant. 

 

Data availability 

The DNA methylation and sequencing dataset used in the current study are part of the dynamic 

dataset of the www.molecularneuropathology.org platform and are available from the authors 

on reasonable request. 

  



8 
 

Results 

DNA methylation profiling reveals a molecular distinct group of ependymoma 

DNA methylation profiling has emerged as a powerful approach for robust classification of CNS 

neoplasms 14. Using a screening approach based on unsupervised visualization of a large 

cohort of genome-wide DNA methylation data, we identified a highly distinct group of tumors 

(n = 40) forming a cluster separate from all established entities of which a high proportion of 

tumors (19/32, 59%) were histopathologically diagnosed as ependymoma. A more focused t-

SNE analysis of DNA methylation patterns of these samples alongside 453 other well-

characterized ependymal neoplasms (reference samples included in the current version of the 

Heidelberg DNA methylation classifier with a calibrated score >0.9) confirmed the distinct 

nature of this novel group (Fig. 1 and Supplementary Figure 1, online resource). Analysis of 

copy number variations (CNVs) derived from DNA methylation array data revealed a relatively 

balanced profile in most of the cases, with structural aberrations on chromosome 22q (21/40, 

52.5%) and 6q (19/40, 47.5%) most frequently observed (Supplementary Figure 2a, online 

resource). A chromothripsis-like pattern affecting chromosomes 6 and 13 was seen in one of 

the samples (Supplementary Figure 2b, online resource). In one case a homozygous deletion 

of CDKN2A/B was detected. An integrated plot of CNVs identified in all samples is given in 

Supplementary Figure 2c (online resource). 

 

Recurrent rearrangements involving PLAGL1 are characteristic for the novel group of 

ependymoma 

Since a high proportion of supratentorial ependymomas are driven by gene fusions involving 

ZFTA (C11orf95, most frequently fused to RELA) or YAP1, we performed mRNA sequencing 

of all samples with sufficient material (n = 20). In 19/20 of the cases, a gene fusion involving 

PLAGL1 was detected, conserving the zinc finger structure (C2H2 type) as part of the fusion 

product, with either EWSR1 as 5’ partner or FOXO1 or EP300 as a 3’ partner (Fig. 2a-c). In 

the most common EWSR1:PLAGL1 fusions (n = 13), exons 1-9 or 1-8 of EWSR1 

(NM_013986), which is located on chromosome 22q12.2, were fused to exon 5 of PLAGL1 

(NM_001289039), which is found on chromosome 6q24.2. Five out of 20 cases were observed 

with exons 1-5 of PLAGL1 fused to FOXO1 upstream of exons 2-3 (NM_0017612) were also 

observed. In one case, exons 1-5 of PLAGL1 are fused to exons 15-31 of EP300 

(NM_001429). In all rearrangements, the DNA binding domain (zinc finger structure) of 

PLAGL1 was retained and fused to the respective transactivation domain (TAD) of the partner 

gene (Fig. 2a-c). We next performed an exploratory differential gene expression analysis of 

tumor samples (n = 20) within the novel group in comparison to ZFTA:RELA-fused 

ependymomas (n = 14). Unsupervised hierarchical clustering demonstrated a clear 

segregation of tumor samples in comparison to ZFTA:RELA-fused ependymoma (Fig. 2d). 

These results were recapitulated by PCA of normalized transcript counts (Fig. 2e). 

Quantification of mRNA expression revealed that the PLAGL1 gene itself was more highly 

expressed in tumors within the novel group than in ZFTA:RELA-fused ependymoma (adjusted 

p = 1.22e-14; Fig. 2f and g). Additionally, upregulated genes of potential interest included H19 

and IGF2 (adjusted p = 1.31e-83, adjusted p = 5.04e-08; Fig. 2h and i), both regulated by 

PLAGL1 and with known functions in the tumorigenesis of different cancers 22. RELA and ZFTA 

transcript levels were upregulated in ZFTA:RELA-fused ependymomas (adjusted p = 1.03e-61 

and adjusted p = 1.10e-19, respectively; Fig. 2j and k). Differential gene expression analysis 
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between tumors within the novel group and a reference cohort of other glial and glioneuronal 

subtypes confirmed high transcript levels of PLAGL1 (adjusted p = 2.35e-18), H19 (adjusted p 

= 9.12e-15), IGF2 (adjusted p = 7.91e-06) and DLK1 (adjusted p = 1.12e-10) in the PLAGL1-

fused cohort (Figure 3a-c and Supplementary Figure 3, online resource). Expression of 

particular markers differentially expressed in astrocytic and in ependymal neoplasms 23-25 

revealed low OLIG2 and SOX10 expression (adjusted p = 3.89e-26 and adjusted p = 7.75e-

65) within the novel group, with similar expression of GFAP (Figure 3d-f and Supplementary 

Figure 3, online resource). Analysis of the mutational landscape of 19/40 tumors in the novel 

group using targeted next-generation sequencing revealed TERT promoter mutations (C228T) 

in two of the cases (Supplementary Table 1, online resource), with no other relevant events 

involving putative brain tumor genes.  

 

Clinical characteristics and morphological features demonstrate pediatric-type tumors 

with ependymoma-like appearance 

Analysis of available clinical data demonstrated that median age of the patients at the time of 

diagnosis was 6.2 years (n = 25; range 0-30; with 92% of the tumors occurring in patients < 17 

years of age, Fig. 4a) and the sex distribution was relatively balanced (F/M = 1:1.2, Fig. 4b). 

All tumors in our series were located supratentorially (Fig. 4c). Outcome data were available 

for 11 patients. Analysis of time to recurrence in comparison to ZFTA:RELA-fused 

ependymomas (n = 80) revealed a similar outcome (p = 0.18; Figure 4d). The initial 

histopathological diagnoses of the tumors within the cohort were relatively wide, although a 

high proportion of cases were designated as ependymoma (19/32, 59%). Other recurrent 

diagnoses included ‘embryonal tumor’ and different low- and high-grade gliomas 

(Supplementary Table 1, online resource). More detailed descriptions of the cases are given 

in Supplementary Table 1. A histopathological review of samples with available material (n = 

16) confirmed a relatively wide morphological spectrum of tumors with ependymoma-like 

features (Fig. 5a-i). Histologically, all reviewed tumors shared a moderate to high increase in 

cellular density in a mostly fine neurofibrillary matrix with prominent microcystic changes (Fig. 

5a-d). The tumor cells typically had monomorphic, round to oval nuclei with finely dispersed 

chromatin and prominent nucleoli. Single cases presented more pleomorphic cells. In many 

cases, perivascular pseudorosettes were observed, at least focally. Two of the cases showed 

focal oligodendroglial morphology with perinuclear halos due to cytoplasmatic clearing (Fig. 

5e). Extensive calcification was seen in a small number of tumors (n = 3). Necrosis was not 

observed. Mitotic activity was generally low, with exception of two cases. Immunoreactivity for 

GFAP was present in all cases (Fig. 5f). The tumor cells neither expressed OLIG2 nor SOX10 

(Fig. 5g and h). In 3/16 of the cases, a dot-like positivity for EMA was detected (Fig. 5i).   
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Discussion 

Here, we provide evidence for the pathobiological heterogeneity of ependymal tumors beyond 

the established spectrum by reporting the existence of an epigenetically distinct group of rare 

pediatric-type supratentorial neoplasms with often ependymoma-like appearance that shows 

recurrent gene fusions involving the PLAGL1 gene.  

Our findings suggest rearrangements involving PLAGL1, particularly EWSR1:PLAGL1 and 

PLAGL1:FOXO1 fusions, as a molecular hallmark of this novel group of tumors. Gene fusions 

of PLAGL1 with EWSR1 have been reported exceptionally rarely in neoplasms of the CNS, 

including single cases of a SMARCB1-deficient atypical teratoid/rhabdoid tumor (AT/RT) 26 and 

a glioneuronal tumor, not elsewhere classified (NEC) 27. However, in a very recent report, a 

PLAGL1:EWSR1 fusion was described in a supratentorial ependymoma of a six-year-old child 
11. While EWSR1 has long been known to be involved in gene fusions in Ewing sarcoma and 

several other tumor entities 28, the role of PLAGL1 in tumorigenesis is not yet fully understood. 

The PLAGL1 gene encodes a C2H2 zinc finger protein that acts as a transcription factor as 

well as cofactor of other regulatory proteins, and is expressed in diverse types of human 

tissues amongst others in neural stem/progenitor cells and developing neuroepithelial cells 
29,30. Although its specific role in tumorigenesis is controversial and its functions appear to 

depend on the cellular context, altered expression of PLAGL1 has been linked to various types 

of cancer 31-33. More recent studies provide evidence for its oncogenic function in brain tumors 

with overexpression of PLAGL1 being involved in tumorigenesis of glioblastoma 34,35 and 

interaction of PLAGL family transcription factors in ZFTA:RELA-fused supratentorial 

ependymoma 36. 

In the EWSR1:PLAGL1 fusions described here, the whole N-terminal transcriptional activation 

domain (TAD) of EWSR1 is fused in-frame to the zinc finger domain (with DNA binding activity) 

of PLAGL1, very similar to other oncogenic EWSR1 fusions, in particular rearrangements 

between EWSR1 and PATZ1 37,38. This indicates aberrant recruitment of the TAD of EWSR1 

to the DNA binding domain of PLAGL1 with subsequent downstream effects, as described for 

other EWSR1 rearrangements, as the likely oncogenic function of this fusion 39. This also fits 

to the increased expression of PLAGL1 in these samples. In addition, five samples harbored 

a fusion between PLAGL1 and the transcriptional factor FOXO1, which is a known partner in 

other rearrangements 40,41. In the PLAGL1:FOXO1 fusion observed here, the DNA binding 

domain of PLAGL1 is juxtaposed to the C-terminal TAD of FOXO1, which seems quite similar 

to PAX3:FOXO1 rearrangements as frequently observed in alveolar rhabdomyosarcoma 41. In 

a single case, PLAGL1 was fused to EP300, a fusion partner known from ‘CNS tumors with 

BCOR alteration’ 42. Additionally, upregulated genes included H19 and IGF2, both regulated 

by PLAGL1 and with known functions in tumorigenesis of different cancers 22. This might 

indicate a potential downstream effect of the fusion. However, the precise oncogenic 

mechanism of the EWSR1:PLAGL1, PLAGL1:FOXO1 and PLAGL1:EP300 chimeric proteins 

remain to be elucidated. Further studies will be needed to reveal the exact role of the fusions 

in these tumors.  

Another important finding was the relatively wide morphological spectrum of tumors within this 

group. Although most tumors were originally diagnosed as ependymoma, a significant 

proportion of cases were designated to other entities, including different low- and high-grade 

tumors. Consistent with that, a histopathological review of cases with sufficient material 

revealed a morphologically heterogeneous group of tumors often with ependymoma-like 

features, compatible with the designation as ependymoma. These findings are supported by 
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differential gene expression analysis between tumors within the novel group and a reference 

cohort of other glial and glioneuronal tumors, that revealed low expression levels of OLIG2 and 

SOX10, both suggested to distinguish astrocytic from ependymal tumors 23-25. However, the 

absence of a unifying morphological pattern in this group of tumors underlines the relevance 

of molecular profiling for precise diagnosis of these CNS neoplasms. This group has not been 

identified as a distinct subset in previous large-scale ependymoma studies due to the relatively 

small case numbers, broad morphology and lack of routine RNA profiling in previous cohorts, 

again highlighting the importance of RNA sequencing in standard brain tumor diagnostic. 

According to the structure of specifying ‘essential diagnostic criteria’ of the upcoming 5th 

edition of the WHO classification of CNS tumors, we suggest (a) the specific signature by DNA 

methylation profiling or (b) the combination GFAP expression and PLAGL1 fusions as essential 

diagnostic criteria for these tumors. 

A limitation of our study is the relatively low extent of clinical data, in particular patient outcome 

data, which allows only a rough estimation of the malignancy of the tumors within this novel 

group. Considering the high number of cases without sequencing data, it seems also possible 

that other alterations apart from the described fusions could be present, particularly in those 

tumors which do not show indication for a PLAGL1 fusion in the copy-number profile. Follow-

up analyses are needed to characterize this new group of CNS neoplasms in more detail.  

In summary, we provide new insights into the tumorigenesis of ependymoma and identify 

PLAGL1 as a putative relevant driver in this entity. Given their ependymoma-like appearance 

and expression pattern with a high frequency of PLAGL1 fusions, we suggest the term 

‘supratentorial ependymoma with PLAGL1 fusion’ to describe this novel group of tumors. 

These findings have immediate implications for brain tumor profiling in order to avoid incorrect 

diagnoses due to lack of alignment with established tumor types. PLAGL1-fusion positive 

ependymomas should thus be included into upcoming classifications of brain tumors. 
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Fig. 1 DNA methylation profiling reveals a molecular distinct group of ependymoma. t-distributed stochastic 

neighbor embedding (t-SNE) analysis of DNA methylation profiles of the 40 tumors investigated (EPN_PLAGL1) 

alongside selected reference samples. Reference DNA methylation classes: ependymoma posterior fossa group A 

(EPN_PFA), ependymoma posterior fossa group B (EPN_PFB), ependymoma spinal (EPN_SPINE), ependymoma 

with ZFTA fusion (EPN_ZFTA), ependymoma with YAP1 fusion (EPN_YAP1), myxopapillary ependymoma 

(EPN_MPE), spinal ependymoma (EPN_SPINE), posterior fossa subependymoma (EPN_PF_SE), spinal 

subependymoma (EPN_SPINE_SE), supratentorial subependymoma (EPN_ST_SE) and spinal ependymoma with 

MYCN amplification (EPN_SPINE_MYC). Additional clustering analyses indicated that the PLAGL1 cohort can 

potentially be further subdivided into two clusters (not shown). 
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Fig. 2 Illustration of the PLAGL1 fusion genes and transcriptional profiling of tumors samples in the novel group. 

Visualization of the PLAGL1 fusion genes detected by RNA sequencing for three selected samples. 

EWSR1:PLAGL1 fusion in case #1, in which exons 1-9 of EWSR1, as the 5’ partner, are fused to exon 5 of PLAGL1 

(a), PLAGL1:FOXO1 fusion in case #14, in which exons 1-5 of PLAGL1 are fused to exons 2-3 of FOXO1 as the 3’ 

partner (b), and PLAGL1:EP300 fusion in case #19, in which exons 1-5 of PLAGL1 are fused to exons 15-31 of 

EP300 as the 3’ partner (c), conserving the zinc finger structure (C2H2 type) as part of the fusion products. 

Differences in gene expression profiles between samples in the novel group and ZFTA:RELA-fused ependymomas. 

Normalized transcript counts from samples in the novel group and ZFTA:RELA-fused ependymomas clustered by 

Pearson’s correlation coefficient (d) and principal component analysis (e). Volcano plot depicting genes differentially 

expressed between samples in the novel group versus ZFTA:RELA-fused ependymomas (f). PLAGL1 (g), H19 (h), 

IGF2 (i), ZFTA (j), and RELA (k) expression in the novel group (n = 20) compared to ZFTA:RELA-fused 

ependymoma samples (n = 14). 
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Fig. 3 Transcriptional profiling of PLAGL1-altered ependymoma. Differential gene expression analysis between 

samples in the novel group (EPN_PLAGL1) and a reference cohort of different glial/glioneuronal tumors 

(ZFTA:RELA-fused ependymoma (EPN_ZFTA), YAP1:MAMLD1-fused ependymoma (EPN_YAP1), central 

neurocytoma (CN), extraventricular neurocytoma (EVN), dysembryoplastic neuroepithelial tumor (DNT), papillary 

glioneuronal tumor (PGNT), KIAA1549:BRAF-fused pilocytic astrocytoma (PA), diffuse midline glioma H3 K27M-

mutant (DMG) and glioblastoma IDH-wildtype (GBM). PLAGL1, IGF2 and H19 are more highly expressed in 

EPN_PLAGL1 cases when compared with representative glial/glioneuronal tumors (a-c). GFAP levels are similar 

compared to different glial/glioneuronal tumors (d). Expression of markers differentially expressed in astrocytic and 

in ependymal tumors revealed low OLIG2 and SOX10 expression in EPN_PLAGL1 compared to 

astrocytic/glioneuronal tumors (e,f). 
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Fig. 4 Clinical features of the investigated cohort. Age at diagnosis with the median age of 6.2 years (a), patient sex 

distribution (b) and distribution of tumor location (c). Time to progression or recurrence (TTP) of 11 patients from 

the investigated cohort (EPN_PLAGL1) for whom follow-up data were available compared to TTP of 80 patients 

with ZFTA:RELA-fused ependymoma (EPN_ZFTA:RELA; d). 
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Fig. 5 Morphological and immunohistochemical features of tumors within the cohort. Histologically, tumors shared 

a moderate to high increase in cellular density with mostly monomorphic, round to oval nuclei and often prominent 

microcystic changes (a-d). Perivascular pseudorosettes were observed in several of the cases, although very subtle 

in some the samples (a-d). Occasionally, tumor cells showed oligodendroglial morphology with perinuclear halos 

due to cytoplasmatic clearing (e). Immunohistochemically, tumors were GFAP-positive (f) and OLIG2- and SOX10-

negative (g,h). In 3/16 of the cases, a dot-like positivity for EMA was detected (i). Scale bars 200 μm.  

 


