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Abstract: In this paper, we investigate the causality in the sense of Granger for functional time series.
The concept of causality for functional time series is defined, and a statistical procedure of testing
the hypothesis of non-causality is proposed. The procedure is based on projections on dynamic
functional principal components and the use of a multivariate Granger test. A comparative study
with existing procedures shows the good results of our test. An illustration on a real dataset is
provided to attest the performance of the proposed procedure.

Keywords: functional data; Granger causality; functional autoregressive models; prediction func-
tional time series

1. Introduction

Functional data analysis has become an important field of modern statistics, and
now an abundant literature on this topic exists. The monograph of [1] is an introductory
source with very valuable examples and techniques for the analysis of functional data.
Another standard book about functional data analysis is [2]. As a good introduction to
dependent functional data and functional time series, we recommend the monographs
of [3,4]. Recently, the classical notion of causality in the sense of Granger (see [5]) has
been extended to the functional time series cases. This extension is important and useful
to the statistical community. The notion of Granger causality test can be explained as a
statistical hypothesis test that measures the usefulness of adding a variable to forecast
another variable. Granger causality is a predictive notion of causality. The causality for
functional time series has been studied from a Granger point of view by Saumard [6]. The
procedure was used in two application research articles; Almanjahie et al. [7] studied
the relations between oil prices and the gross domestic product and Sancetta [8] with an
application in financial econometrics. In this article, we provide a new testing procedure
based on dynamic functional principal components.

Since the pioneering work of [5,9], an abundant literature has become available on
causality of classical time series (for a broader review see [10,11]). In fact, there are various
possible approaches for defining causality, notably causality in the frequency domain [12],
a nonparametric approach [13], and causality on Bayesian networks [14]. Furthermore,
the wide range of applications (causality in econometrics, neuroscience, social science,
biomedical, signals) indicates the central role of causality in science.

In this article, we recall the notion of causality for functional stationary time series and
propose tests of non-causality. There are nowadays different tools to analyze dependency
on functional data, such as a mixing, linear process [3,15], where a definition of dependency
on functional data has been proposed that generalizes the m-dependency, called Lp −m-
approximable sequences. This notion is exploited to theoretically justify the “F-causality”
test. “F-causality” stands for functional causality. This first test exploits the functional
nature of the data and adapts a test of equality between operators for stationary functional
time series (see [16]) to the context of causality. This test is explained in detail in [6]. The
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proposed test relies on functional dynamic principal components, which are able to capture
the variability of functional time series better than functional principal components as
demonstrated in [17]. Once we obtain the dynamic FPCA scores, we make the decision
by using a multivariate Granger test on the scores. Aue et al. [18] use the same idea for
predicting functional time series. Our dynamic-FPCA based procedure is publicly available
at https://github.com/PyMattAI/DynamicFPCA_Causality.git (accessed on 7 June 2021)
In order to compare, we studied another procedure that does not use the functional nature
of the data, which is called the classical test. This procedure is based on differentiating the
time series and using a multivariate Granger test.

A functional time series is a sequence of functional objects that are dependent. For
example, in Figure 1, a classical time series of monthly sea surface temperatures (in °C)
from January 1982 to December 2018 is plotted. These sea surface temperatures were
measured by Moore buoys in the ‘Niño region’. The functional versions of the same data
points are represented in Figure 2. One functional observation represents the sea surface
temperature for one year. From the 12× 37 data of the classical time series, we generate
37 observations of a functional time series that are observed each month. More generally, a
functional time series Xt(u), where t = 1, . . . , N (N is the sample size of the functional time
series) and u ∈ [0, 1] (where there are m points by functional observations we observe at
the points ui i = 1, . . . , m from [0, 1]) can be generated from a classical time series xt where
t = 1, . . . , N ∗m, with m being the number of observations points. We have the relation
Xt(ui) = x(t−1)×m+i.

Figure 1. Monthly sea surface temperatures.

Figure 2. Monthly sea surface temperatures as functional observations by year.

https://github.com/PyMattAI/DynamicFPCA_Causality.git
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The functional time series must be stationary in order for our test to perform well. It
is worth mentioning that stationarity for functional time series and stationarity for classical
time series are quite different. For example, we could have a stationary functional time
series from a classical time series that is not stationary. Mainly, it is the case when the
classical time series has a seasonality over a period T, and we cut this series at these
intervals of time.The classical time series appears non-stationary, but if we consider the
data as functional observations, it can be stationary. Hence, our test provides a natural
framework to test causality for classical non-stationary time series. The application of a
traditional test and our procedure to the real dataset highlight this fact.

In Section 2, the definition of causality for functional stationary time series and an
example in the autoregressive functional processes are introduced. In Section 3, we recall
how we can estimate the dynamic FPCA and propose three algorithms for testing the non-
causality including the dynamic FPCA-based testing procedure. We conclude this article
with Sections 4 and 5, which are developed to empirically analyze the testing procedure,
and an application of the procedure to explain the relation between electricity demand and
temperature in Australia.

2. Linear Causality with Two Functional Time Series
2.1. Definition

Let H be a separable Hilbert space, with its inner product 〈·, ·〉 and the norm asso-
ciated ‖h‖ =

√
〈h, h〉, ∀h ∈ H. We take H = L2[0, 1] for simplicity. Thereafter, for every

functional time series {Zt}t∈Z valued inH, we make the assumptions that E
[
‖Zt‖2] < +∞

and E[Zt] = 0, ∀t ∈ Z; moreover, we assume that {Zt}t∈Z is strongly stationary. Let
us recall the two definitions: strongly and weakly stationary. We say that series of ran-
dom functions (Zt) are strongly stationary if for any h ∈ Z, k ∈ N and any sequence of
indices t1, . . . , tk, (Zt1 , . . . , Ztk ) and (Zh+t1 , . . . , Zh+tk

) are identically distributed. We say
that {Zt}t∈Z is weakly stationary if for all t we have:

(i) Zt verifies E
[
‖Zt‖2] < +∞,

(ii) EZt = EZ0,
(iii) ∀h ∈ Z, ∀(u, v) ∈ [0, 1]2, we have cov(Zt+h(u), Zt(v)) = cov(Zh(u), Z0(v)).

Let us introduce a key concept in functional data analysis about the second-order
property of the process. To understand why this operator is a key concept, we recommend
reading [19]. We define the operator of covariance ΓZ of the stationary functional time
series Zt by:

ΓZ(U) = E[〈Z, U〉Z], ∀U ∈ H, (1)

where we omit the index t of time, due to stationarity. It is well known that this operator is
a self-adjoint, positive, nuclear operator.

Let Xt and Yt be two stationary functional time series valued in H. Let Ut be the
information accumulated since time t− 1, and Ut − Xt denote all this information without
the series Xt. Define the predictive error series by

εt(Y|U) = Yt − Ŷt(U),

where Ŷt(U) is the best linear predictor of Yt using the information Ut. Then, we have the
following definition.

Definition 1 (Causality). We say that X is causing Y if Γε(Y|U−X) − Γε(Y|U) is a positive
definite operator.

This definition is a natural extension of the idea of causality studied by Granger [5]. In
fact, we replace the variance of the time series by the covariance operator of the functional
time series. In addition, in order to compare covariance operator, we assume that a
symmetric operator A is greater than a symmetric operator B if the difference A− B is a
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positive definite operator. This is a theoretical definition because, in general, we do not
have access to the information Ut, so we must be careful for the conclusions in practice.

2.2. An Example

Let Xt = (Yt, Xt)′ be an autoregressive process valued at H := L2[0, 1] × L2[0, 1]
associated with (ρ, ε), where ρ is a linear operator ofH and ε is aH-strong white noise. For
more information on the definition of autoregressive process valued in separable Hilbert
space, see [3]. We have

Xt = ρ(Xt−1) + εt. (2)

We can rewrite the model as{
Yt = ρ11(Yt−1) + ρ12(Xt−1) + ε1t,
Xt = ρ21(Yt−1) + ρ22(Xt−1) + ε2t,

with ρ11 :=
(

ρ �L2[0,1]×0

)(1)
, ρ12 :=

(
ρ �0×L2[0,1]

)(1)
and the same idea for ρ21 and ρ22. The

symbol f �A stands for the restriction of the function f on the subset A of a definition set.
The notation F(1) for an operator F, whose image is on a product space, means we take
only the first component of the operator. According to the Definition 1, we say that (Xt)
does not linearly cause (Yt) if and only if ρ12 = 0. In fact, if ρ12 = 0, the two covariance
operators of the definition are equals, and then the difference between the operators cannot
be positively defined.

3. Testing Linear Causality
3.1. Dynamic FPCA

Hörmann et al. [17] have proposed a dynamic version of functional principal compo-
nent analysis (FPCA) that is more efficient for functional time series than the traditional
FPCA. As stated by [17] “classical static FPCs still can be consistently estimated, but, in
contrast to the i.i.d. setup, they will not lead to an adequate dimension reduction tech-
nique”. In fact, the dynamic FPCs tend to recover the process better than the traditional
FPCs. In this section, we recall briefly the practical aspects of this method. We consider a
functional time series (Xt : t ∈ Z) where Xt takes values in L2[0, 1]. We assume here that
(Xt : t ∈ Z) is weakly stationary. We define the autocovariance kernels ch by

ch(u, v) = cov(Xh(u), X0(v)), ∀u, v ∈ [0, 1].

We denote Ch, h ∈ Z as the operator corresponding to the autocovariance kernels as ch and
Ĉh as the empirical counterpart of Ch at lag h. We define the estimated spectral density
operator at frequency θ:

F̂θ = ∑
|h|≤q

(
1− |h|

q

)
Ĉhe−ihθ , 0 < q < n.

Then, we can estimate the m-th dynamic functional principal score by

Ŷmt =
L

∑
l=−L
〈Xt−l , φ̂ml〉, m = 1, . . . , p and t = L + 1, . . . , n− L,

where L is some integer and φ̂ml are the m-th estimated dynamic FPC filter coefficients
coming from the fourier transform of the eigenfunction of F̂θ .

3.2. Three Procedures for Testing the Causality

This first testing procedure is called F-causality (see Algorithm 1) and is explained
in detail in [6]. We propose an enhanced procedure (see Algorithm 2) inspired by [18]
and by [17] based on dynamic functional principal components. This is the second testing
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procedure. In this case, the number of dynamic functional principal components (d and d′)
can be chosen to explain a reasonable part of the variance (for example, 85%). This second
procedure is called Dynamic-FPCA. We propose a last procedure, called the Classical test.
This last procedure is based on differentiating the series, which are viewed as classical time
series of period m.

Recall that we have
H0 : No causal relation,
H1 : causal relation,

and in the case of FAR(1), this is equivalent to

H0 : ρ12 = 0
H1 : ρ12 6= 0.

We present the three procedures of testing non-causality under the form of the
Algorithms 1–3. Algorithm 1 refers to first testing procedure (F-causality). The second one
(Algorithm 2) is based on the scores of the dynamic functional principal components, and
the second testing procedure (Dynamic-FPCA). The last one (Algorithm 3) refers to the
classical testing procedure (Classical).

Algorithm 1 F-causality Test

1. (Data) We have (X1, . . . , Xn) and (Y1, . . . , Yn)
2. (Estimation of the parameters) We perform the estimation of ρ according to the

previous section. We separate the two different models, one estimation of ρ without
the Yi (nested model) and one that includes them (pooled model).

3. (Estimation of the errors) ε1 is then estimated in the different models for t = 2, . . . , n, by{
ε̂1

t = Yt − ρ̂11(Yt−1) + ρ̂12(Xt−1), (pooled model),
ε̂2

t = Yt − ρ̂11(Yt−1), (nested model).

4. (Test the equality of operators based on the errors) We perform the proposed
test of Zhang and Shao [16] on the equality of the covariance operators of the
estimated errors.

Algorithm 2 Dynamic-FPCA Test

1. (Data) We have (X1, . . . , Xn) and (Y1, . . . , Yn).
2. (Parameters) Choose L and q defined in Section 3.1.
3. (Dynamic FPCA) Compute the first d and d′ dynamic FPCA scores for the two

functional time series.
4. Use a multivariate test on the scores to conclude. For instance,

(a) Model the scores by a VAR model.
(b) Apply a Wald test on the scores.

Algorithm 3 Classical Test

1. (Data) We have (X1, . . . , Xn) and (Y1, . . . , Yn), and each curve has m points.
2. (time series) We obtain two “classical” time series (x1, . . . , xm∗n) and (y1, . . . , ym∗n)

by not viewing them as functional time series.
3. (Differencing) Due to the potentially non-stationarity of these classical time series, we

use the differencing technique of period m.
4. Use a multivariate test to conclude.
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4. Empirical Analysis
4.1. Design of the Experiments

A simulation study was developed to check the performance of the three procedures.
We used R software, namely package “fda” [20], “far” [21] and “freqdom.fda”. To verify
the results of our test under the Null and the alternatives, we simulated different scenarios.
We used the packages “far” in order to simulate functional time series and to estimate the
parameters of the models, the package “fda” to perform the test of equality of covariance
and the package “freqdom.fda” to compute the dynamic FPCA scores. Under the null,
we used three independent functional time series and one model computed with the “far”
package (see “Null 1”). Under the alternative of causality, we tested five different scenarios.
We simulated with ρ on a sinusoidal basis that approximates the Hilbert spaceH. In fact,
we used the function “theoretical.coef” (package “far”) to obtain the parameters used
internaly by the function “simul.farx” (package “far”) to make the simulation. Table 1
presents the different forms for ρ.

Table 1. Six scenario for the simulations of ρ.

Scenario ρ Dim X and Y

Null 1


0.45 0.00 0.00 0.00 0.00
0.00 0.3 0.00 0.00 0.00
0.00 0.0 0.34 0.00 0.00
0.00 0.0 0.00 0.45 0.00
0.00 0.00 0.00 0.00 0.40

 3, 2

1


0.45 0.00 0.00 0.002 0.001
0.00 0.3 0.00 0.001 0.002
0.00 0.0 0.34 0.00 0.00
0.00 0.0 0.00 0.45 0.00
0.00 0.00 0.00 0.00 0.40

 3, 2

2


0.45 0.00 0.00 0.02 0.01
0.00 0.3 0.00 0.01 0.02
0.00 0.0 0.34 0.00 0.00
0.00 0.0 0.00 0.45 0.00
0.00 0.00 0.00 0.00 0.40

 3, 2

3


0.45 0.00 0.00 0.50
0.00 0.3 0.00 0.00
0.00 0.0 0.34 0.00
0.00 0.0 0.00 0.45

 3, 1

4


0.15 0.00 0.00 0.40
0.00 0.10 0.00 0.20
0.00 0.00 0.10 0.20
0.00 0.00 0.00 0.45

 3, 1

5


0.25 0.00 0.00 0.40
0.00 0.10 0.00 0.00
0.00 0.0 0.10 0.00
0.00 0.00 0.00 0.45

 3, 1

The first scenario “Null 1” is used in the last line (line 4) of Table 2 of the level. Here,
we represent the space H by the space Hm × H′m. Hm is the space of Yt and H′m for Xt.
Then, it can have more than two lines to represent ρ, depending on the dimension of
approximations of the two spaces Hm and H′m. For example, if we take dim(Hm) = 3 and
dim(H′m) = 2 (as in the first scenario) with a basis with two components, then in the case
of scenario 1, we have the following approximations:
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ρ11 =

0.45 0.00 0.00
0.00 0.3 0.00
0.00 0.00 0.34

, ρ12 =

0.002 0.001
0.001 0.002
0.00 0.00

,

ρ21 =

(
0.00 0.00 0.00
0.00 0.00 0.00

)
, ρ22 =

(
0.45 0.00
0.00 0.40

)
.

We use different values for n = 100, 200, with the parameter ncv = 20, 40 and m = 50.
n is the sample size, ncv the number used for the cross validation in the model FAR(1)
and m is the number of discretization points used for one observation of the functional
time series. The level of significance that was studied was α = 0.05. The two parameters L
and q of the Dynamic-FPCA algorithm were chosen according to the freqdom.fda package
initializations with q = 30 and L as the minimum between the maximum possibilities and
60 (to avoid high calcuation time). For the analysis of d and d′, we chose to give the same
value d = d′ for the sake of simplicity.

In order to have an idea of what we are manipulating, we made some plots of different
time series; see Figures 3–5. Figure 3 represents the whole trajectory of a functional time
series simulated with sample size of 100. Figure 4 is the same as Figure 3 but we bring back
the sequence series to the same time domain. Figure 5 plots the whole trajectory of two
functional time series, which are in a causal relation.

Figure 3. One trajectory.

Figure 4. One trajectory on the same time domain.
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Figure 5. The trajectory of two functional time series with a causal relation.

4.2. Results

We present the type I error (power, respectively) in Table 2 (Table 3, respectively) for
each different considered scenario. We make a replication of order 1000 for each scenario.
Then, we count the number of rejections of the Null hypothesis, which in the case of a true
Null hypothesis gives an approximation of the type I error and in the case of false Null
hypothesis gives an approximation of the power of the test (which is 1− β where β is the
type II error).

In Table 2, we see that the nominal level 0.05 is very well respected for the F-causality
and Dynamic-FPCA tests and for different values of n. The parameter p of the classical test
has to be well tuned, and there are many variations for this parameter. However, for p = 3
and only its value in the different simulation setup, the classical test reaches the nominal
level correctly.

In Table 3, we perform the test for the different scenarios with parameters n = 100 or
200, m = 50 and K = 1 to 6. We observe, in general, that the power is sufficiently high for
the five different models. The sample size plays a role in the power. Higher is the sample
size, the better is the power of the test. With n = 200, the power is sufficient. We can also
see the influence of the parameter K. We also note that if K is badly selected, then there can
be a lack of power, as we can see in model 3, for example.

4.3. Comparison of the Three Tests

Since the nominal level is well respected for the two first tests, it seems that the second
test Dynamic-FPCA is more powerful than the two other tests in all the scenarios except for
model 1. We can explain this by observing that the Dynamic-FPCA captures the properties
of functional time series more, as shown in [17]. To understand the fact that model 1 is
better for the F-causality test, we can say the departure from the null hypothesis is weak,
as ρ12 is nearly zero.

As the classical test does not reach the level of significance, and the Dynamic-FPCA
seems more powerful than the F-causality test, we recommend that the Dynamic FPCA
test is performed.
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Table 2. Nominal Level 0.05.

Fcausality Test DynamicFPCA Test Classical Test

Model N K Optimal nd p

1 2 3 1 2 3 4 5 6
1 100 0.047 0.057 0.06 0.074 0.537 0.237 0.043 0.038 0.014 0.009

200 0.076 0.062 0.059 0.068 0.523 0.229 0.05 0.034 0.011 0.008
2 100 0.054 0.054 0.06 0.068 0.537 0.243 0.058 0.038 0.016 0.011

200 0.078 0.064 0.057 0.061 0.514 0.216 0.057 0.036 0.02 0.012
3 100 0.052 0.059 0.054 0.063 0.54 0.257 0.052 0.039 0.022 0.012

200 0.099 0.061 0.06 0.063 0.532 0.244 0.061 0.04 0.019 0.011
4 100 0.041 0.048 0.072 0.002 0.538 0.217 0.062 0.102 0.09 0.086

200 0.055 0.055 0.071 0.001 0.539 0.236 0.07 0.101 0.088 0.083

Table 3. Power on five different models.

Fcausality Test DynamicFPCA Test Classical Test

Model N K nd p

1 2 3 4 5 6 1 2 3 1 2 3 4 5 6
1 100 0.761 0.918 0.865 0.735 0.489 0.214 0.069 0.153 0.004 0.552 0.231 0.073 0.1 0.09 0.086

200 0.891 0.998 0.989 0.973 0.914 0.82 0.096 0.271 0.003 0.558 0.266 0.081 0.107 0.083 0.091
2 100 0.779 0.924 0.888 0.756 0.509 0.242 0.18 0.925 0.741 0.541 0.26 0.074 0.109 0.091 0.093

200 0.895 0.996 0.992 0.972 0.915 0.826 0.287 0.999 0.99 0.564 0.314 0.082 0.126 0.093 0.09
3 100 0.733 0.907 0.857 0.75 0.487 0.241 0.988 0.987 0.98 0.665 0.223 0.371 0.434 0.472 0.487

200 0.858 0.99 0.989 0.957 0.9 0.788 0.997 0.999 0.999 0.668 0.383 0.419 0.453 0.495 0.495
4 100 0.696 0.647 0.518 0.344 0.133 0.062 1 0.999 1 0.95 0.812 0.629 0.792 0.793 0.779

200 0.949 0.939 0.917 0.779 0.507 0.303 1 1 1 0.993 0.989 0.963 0.982 0.975 0.967
5 100 0.662 0.727 0.566 0.368 0.15 0.071 0.971 0.96 0.93 0.677 0.124 0.293 0.385 0.424 0.458

200 0.886 0.954 0.916 0.793 0.539 0.321 0.996 0.997 0.994 0.653 0.232 0.33 0.422 0.455 0.478
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5. Real Data Illustration

The dataset we used is available in the R package “fds” [22] and is already studied
in [23]. The article [23] deals with the electricity demands and the temperature in Adelaide.
This dataset consists of half-hourly electricity demands in Adelaide and temperatures
measured at the Adelaide airport from Sunday to Saturday between 6 July 1997 and
31 March 2007 (see Figure 6 for the electricity demand on Thursday and Figure 7 for the
temperature on Thursday).

Figure 6. Electricity demand in Adelaide for Thursday.

Figure 7. Temperature in Adelaide for Thursday.

We wanted to test the causal relation between these two variables: the electricity de-
mands and the temperatures. To do so, we used the three algorithms. As in article [23], we
found a dependency between this two variables. Everyday, the temperatures in Adelaide
impact the electricity demands in this city.

5.1. Results of F-Causality Algorithm

In order to test the causality between the electricity demands and the measured
temperatures based on F-causality, some parameters need to be defined. Hence, the ncv
was set to 100, and the number of replication (sample size) was set to 508. A generic test
was performed between all days for the causality testing. For each test, a couple of results
are calculated by finding the optimal K value, and results of the method are included in
Table 4. The line represents the electricity demand each day, and the column represents
the temperature measured in the airport. Table 4 reports the optimal K value and causality
result (“True” or “False”) for each couple. From both tables, we can clearly observe that
with the optimal parameter method, the temperature affects the daily electricity demand,
except on Tuesday and Wednesday. Moreover, it is also observed that the temperature on a
given day may cause the electricity demand another day, which is explained by a similarity
of temperatures.
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Table 4. F-causality tests between temperature and electricity demand with an optimal parameter.

K Optimal Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 1 1 1 1 1 1 1
True False False False False False True

Tuesday 1 1 1 1 1 1 1
False False False False False False False

Wednesday 1 1 1 1 1 1 1
False False False False False False False

Thursday 1 1 1 1 1 1 1
False False False True True True False

Friday 1 1 1 1 1 1 1
False False False False True True False

Saturday 1 1 1 1 1 1 1
False False False False False True False

Sunday 1 1 1 1 1 1 1
True False False False False False True

5.2. Results of the Dynamic FPCA Algorithm

To perform the dynamic FPCA causality test, the same parameters as in F-causality
are set. Moreover, in each couple of tests, the causality is calculated with different values of
d parameter 1, 2 and 3, and results are presented in Table 5.

Table 5 reports the causality result in terms of percentage for each couple. Firstly,
the obtained results when d is set to 2 and 3 are not discriminative since they show high
causality for all couples. Secondly, it can be noticed that the temperature causes the
electricity demand each day. Furthermore, it is also observed that the temperature on a
given day may cause the electricity demand another day.

Table 5. Dynamic FPCA test between temperature and electricity demand.We highligth the diagonal in red.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday
95% 61% 13% 30% 65% 96% 44%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Tuesday
96% 95% 84% 33% 66% 88% 18%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Wednesday
58% 54% 98% 82% 39% 92% 51%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Thursday
39% 20% 77% 99% 58% 88% 82%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Friday
54% 73% 94% 6% 98% 63% 99%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Saturday
54% 85% 96% 73% 88% 97% 99%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%

Sunday
54% 65% 61% 86% 63% 94% 89%
99% 99% 99% 99% 99% 99% 99%
99% 99% 99% 99% 99% 99% 99%
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5.3. Results of the Classical Algorithm

In order to compare, we also performed the classical test (Table 6) with the p-values.
There is a major drawback to performing a classical test, namely non-stationarity. In
fact, the functional analysis allows us to perform the test directly on the functional series,
which can be directly seen as stationary functional series. In the classical setting, we must
differentiate the fourteen series at lag 48 to remove the seasonal components. We chose
to differentiate the series at lag 48 because of the recording of the series. In fact, the series
is recorded every half hour in a day. Therefore, we chose to differentiate at lag 2× 24.
Furthermore, we chose to fix p at 3, as it seems to perform at this value in the simulations.
The same conclusion for each day holds for the classical test as the Dynamic-FPCA test.

Table 6. Classical tests between temperature and electricity demands. We highligth the diagonal in red.

p = 3 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 3.88× 10−15 <2.2× 10−16 7.757× 10−10 1.964× 10−7 0.03575 0.5818 0.516
Tuesday 0.0028 <2.2× 10−16 <2.2× 10−16 1.1527× 10−12 0.003014 0.3427 0.188

Wednesday 0.0383 0.001607 <2.2× 10−16 <2.2× 10−16 0.0002952 0.9729 0.691
Thursday 0.62 0.7831 0.5706 <2.2× 10−16 <2.2× 10−16 4.6× 10−12 0.172

Friday 0.107 0.3103 0.4036 0.03976 <2.2× 10−16 <2.2× 10−16 0.0221
Saturday 0.032 0.2931 0.1128 0.02072 3.066× 10−12 <2.2× 10−16 5.83× 10−6

Sunday 1.5× 10−10 6.873× 10−5 0.2707 0.1951 0.01001 1.027× 10−5 7.88× 10−07

6. Conclusions

Causality is a hard notion due to the lack of universal definition. One notion of linear
causality for functional data was proposed and studied. We have proposed three statistical
procedures to test this concept in a special case, i.e., the autoregressive model of order 1.
A mathematical study of the behavior of the testing procedures would be an interesting
future work. Extensions to more general models will be also considered in future work.
The performance of the proposed testing procedures shows good behavior in simulations.
The simulation study shows different behaviors between classical test, F-causality test and
the Dynamic-FPCA test. An application to the electricity demands and the temperature
is studied in detail. Finally, we can conclude that the dynamic FPCA algorithm is more
suitable for the causality test due to its effectiveness to measure the causality with precision.
Possible alternatives to the test of Zhang and Shao would be to perform a global F-test as
in [24] or to test the effect of the variable X on errors as [25]. Another possible extension
is to study the link between the shape through the phase and amplitude variation in
functional data [2] and causality.
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