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On a set-valued Young integral with applications to
differential inclusions
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Abstract

We present a new Aumann-like integral for a Hölder multifunction with respect
to a Hölder signal, based on the Young integral of a particular set of Hölder
selections. This restricted Aumann integral has continuity properties that allow
for numerical approximation as well as an existence theorem for an abstract
stochastic differential inclusion. This is applied to concrete examples of first
order and second order stochastic differential inclusions directed by fractional
Brownian motion.
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1. Introduction

Consider d, e ∈ N∗, a β-Hölder continuous signal w : [0, T ] → Rd with
β ∈ (0, 1), and an α-Hölder continuous multifunction F defined on [0, T ] with
convex compact values in the set Me,d(R) of linear mappings from Rd to Re,
where α ∈ (0, 1) and α + β > 1. The purpose of this paper is to define a
set-valued Young integral of F with respect to w, of the form∫ T

0

F (s) dw(s) =

{∫ T

0

f(s) dw(s) ; f ∈ S(F )

}
(1)

in a nontrivial way, but with a small enough set of selections S(F ), so as to
get algebraic and topological properties (convexity, boundedness, compactness,
continuity, etc.) allowing to give a sense and establish the existence of solutions
to several types of differential inclusions.

There have been many different approaches to set-valued integration with
respect to a nonnegative σ-additive measure µ. The most popular one is due to
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Aumann [3], based on Lebesgue integrals of selections:∫ T

0

F (s) dµ(s) =

{∫ T

0

f(s) dµ(s) ; f ∈ SL1(µ)(F )

}
(2)

where SL1(µ)(F ) denotes the set of all µ-integrable selections of F . In the
case of multifunctions with convex compact values, other approaches such as
Hukuhara’s [16] or Debreu’s [9] are restricted to multifunctions with compact
convex values and use the cone structure of the space of convex compact sets.

The concept of Aumann integral has been applied in several papers to in-
tegration of multivalued stochastic processes using classical stochastic calculus
and a definition of the form (1), where w is a Brownian motion, or more gen-
erally a semimartingale, e.g., [19, 23, 24]. Despite this similarity, the setting
of stochastic calculus is quite different from ours, since the stochastic integral
needs a probability space to make sense. In this context, some variants have
been developped, the main one by Jung and Kim [17], which is the decompos-
able hull of an integral of the form (1), has been extensively studied by Polish
mathematicians from Zielona Góra [20, 21, 18, 25, 26], to cite but a few papers
and a book.

In the case of a deterministic signal w with possibly infinite variation, Michta
and Motyl [27, 28] are the only references so far defining a set-valued Young
integral à la Aumann of the form (1), for convex as well as nonconvex-valued
multifunctions. In their approach, the set of selections S(F ) is large, namely, in
the case of our setting, S(F ) is the set of all α-Hölder continuous selections of
F . Of course this is a natural definition, and the authors obtain basic expected
properties on the set-valued integral: nonemptyness, convexity and regularity of
the integral with respect to S(F ) (not F ). In our approach, the set of selections
is smaller:

Sα,r(F ) := {f selection of F : ‖f‖α,T 6 r}.
The ”tuning parameter” r > 0 controls both the α-Hölder seminorm of F and
of the considered selections. This allows to establish the compactness of the
integral, to get the upper semicontinuity of the integral with respect to F , and
then to establish the existence of solutions to some differential inclusions. Note
that our integral converges to that of Michta and Motyl [27] when the tuning
parameter r goes to +∞. However, our integral is always compact-valued,
whereas that of [27] may be unbounded, see Example 3.11 below.

On differential inclusions driven by α-Hölder continuous signals, let us men-
tion Bailleul et al. [5]. In this paper, the authors establish the existence of
solutions to a differential inclusion using the approach of Aubin and Cellina
[1]. Let us also cite Levakov and Vas’kovskii [22] who mix pathwise integration
with respect to fractional Brownian motion with Itô’s integral with respect to
standard Brownian motion, following Guerra and Nualart [13]. These works on
differential inclusions implicitely use an Aumann type set-valued integral of the
form (1).

As an application of our set-valued Young integral, we are able to define a
stochastic set-valued integral with respect to the fractional Brownian motion
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(fBm) of Hurst index H > 1/2, and then to establish the existence of solutions
to several types of stochastic differential inclusions driven by the fBm.

This paper is organized as follows. Section 2 recalls preliminary definitions
and results on Steiner’s selections and on the Young integral for point-valued
functions. Section 3 deals with the set-valued Young integral. Finally, Section 4
provides a fixed-point theorem for functionals of the set-valued Young integral
which allows, in particular, to get the existence of solutions to several types of
differential inclusions.

2. Preliminaries

2.1. Notations and basic definitions

Let d > 1 be an integer.

1. The set of nonempty closed subsets of Rd is denoted by Pf(Rd). The semi-
Hausdorff distance on Pf(Rd) is denoted by dH: for all (A,B) ∈ Pf(Rd)2

dH(A,B) = max

{
sup
a∈A

d(a,B) ; sup
b∈B

d(b, A)

}
= sup
x∈Rd

|d(x,A)− d(x,B)| (3)

(see, e.g., [6]). For every A ∈ Pf(Rd), we denote ‖A‖dH := dH(A, {0Rd}) =
sup{‖a‖ ; a ∈ A}.

2. Let Pck(Rd) be the space of nonempty, convex and compact subsets of Rd.
For any C ∈ Pck(Rd), the support function of C is the map

δ∗(., C) :

{
Rd → R
l 7→ maxx∈C〈`, x〉.

We have, for all A,B ∈ Pck(Rd),

dH(A,B) = sup
`∈Rd,‖`‖=1

|δ∗(`, A)− δ∗(`, B)| .

For any C ∈ Pck(Rd) and ` ∈ Rd, consider

Y (`, C) := {c ∈ C : 〈`, c〉 = δ∗(`, C)} .

If Y (`, C) contains exactly one element, it is denoted by y(`, C) and called
exposed point of C with exposing direction `. The set of all exposing direc-
tions for a given point of C is denoted by TC . For all A,B ∈ Pck(Rd), the
Demyanov distance between A and B is defined by

dD(A,B) := sup{‖y(`, A)− y(`, B)‖ ; ` ∈ TA ∩ TB}.

Note that dD(A,B) > dH(A,B) for all A,B ∈ Pck(Rd), see, e.g., [31]. On Rd,
which we identify with the subset of singletons of Pck(Rd), both distances dD

and dH coincide with the distance induced by ‖.‖.
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3. For any α ∈]0, 1[, Cα-Höl([0, T ];Pck(Rd)) (respectively Cα-Höl
D ([0, T ];Pck(Rd)))

is the space of α-Hölder continuous maps from [0, T ] into Pck(Rd), where
Pck(Rd) is endowed with the Hausdorff distance (respectively, the Demyanov
distance). In the sequel, Cα-Höl([0, T ];Pck(Rd)) is equipped with the α-Hölder
norm Nα,T (.) := ‖.‖∞,T + ‖.‖α,T , where, for F ∈ Cα-Höl([0, T ]; Pck(Rd)),

‖F‖α,T = sup

{
dH(F (s), F (t))

|t− s|α
; s, t ∈ [0, T ] and s < t

}
,

and (with inconsistent but convenient notations)

‖F‖∞,T = sup
t∈[0,T ]

‖F (t)‖dH .

We denote by Bα,Pck
(F, δ) the closed ball of center F and radius δ in the

space Cα-Höl([0, T ];Pck(Rd)) .

Similarly, the space Cα-Höl
Dem ([0, T ];Pck(Rd)) is equipped with the α-Hölder

norm Nα,T,Dem(.) := ‖.‖∞,T + ‖.‖α,T,Dem, where dH is replaced by dD in the
above definition.

4. For any s, t ∈ [0, T ] such that t > s, D[s,t] is the set of all dissections of [s, t].

Remark 2.1. (R̊adström-Hörmander embedding) Since Pck(Rd) is not a vector
space, it may seem strange to use the notation ‖.‖dH or to callNα,T andNα,T,Dem

”norms”. Actually, there exists an embedding of Pck(Rd) into a vector space
that turns these mappings into true norms.

More precisely, let us recall briefly the R̊adström-Hörmander embedding
[30, 15], following R̊adström’s construction [30]. The space Pck(Rd) is endowed
with the scalar multiplication λA = {λa ; a ∈ A} and the addition A + B :=
{a+ b ; a ∈ A and b ∈ B}, for all A,B ∈ Pck(Rd) and λ ∈ R+. With these
operations, Pck(Rd) is such that A+C = B+C implies A = B for all A,B,C ∈
Pck(Rd) and λ1A+ λ2A = (λ1 + λ2)A for all λ1, λ2 ∈ R+ and all A ∈ Pck(Rd).
Taking equivalence classes of pairs (A,B) ∈

(
Pck(Rd)

)2
for the relation (A,B) ∼

(C,D) ⇔ A + D = B + C leads to the construction of a vector space S which
extends the convex cone Pck(Rd), where each element A ∈ Pck(Rd) is identified
with (A, {0Rd}). The distances dH and dD are extended to S by setting

dX

(
(A,B), (C,D)

)
= dX(A+D,B + C),

where X denotes either H or D. Since dH and dD are translation invariant and
positively homogeneous, the map (A,B) 7→ dX

(
(A,B), ({0Rd}, {0Rd)

)
is a norm

on S which induces the distance dX. Then Nα,T and Nα,T,Dem have natural
extensions as norms on Cα-Höl([0, T ];S) and Cα-Höl

D ([0, T ]; S) respectively.

2.2. Steiner point and generalized Steiner selections

Let

M := {µ probability measure on BRd(0, 1)

; ∃θ ∈ C1(BRd(0, 1);R), µ(dx) = θ(x)dx}.
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Definition 2.2. The Steiner point of C ∈ Pck(Rd) is defined by

St(C) :=
1

vd

∫
TC∩BRd (0,1)

y(x,C) dx with vd =
πd/2

Γ(1 + d/2)
.

It is well known that St(C) ∈ C for any C ∈ Pck(Rd) (see the more general
Proposition 2.6 below). Furthermore, we have:

Proposition 2.3 (Lipschitz property). The map St : Pck(Rd) 7→ Rd is kd-
Lipschitz for the Hausdorff distance dH, where the sharp Lipschitz coefficient kd
satisfies √

2d

π
< kd <

√
2(d+ 1)

π
. (4)

See [33, 32] for the exact calculation of kd. The estimation (4) can be found
in [32].

The Steiner point can be generalized by replacing the probability measure
dx/vd in Definition 2.2 by any element ofM. This is particularly interesting in
connection with the Demyanov distance.

Definition 2.4 (generalized Steiner selection). The Generalized Steiner point
of C ∈ Pck(Rd), for a measure µ ∈M, is defined by

Stµ(C) :=

∫
BRd (0,1)

St(Y (x,C))µ(dx).

The generalized Steiner selection of a multifunction F : [0, T ] → Pck(Rd) with
respect to a measure µ ∈M, is the map t ∈ [0, T ] 7→ Stµ(F (t)).

Proposition 2.5. For all C,C1, C2 ∈ Pck(Rd), µ1, µ2, µ ∈ M, κ ∈ [0, 1],
λ, ν > 0, we have

Stκµ1+(1−κ)µ2
(C) = κStµ1(C) + (1− κ)Stµ2(C),

Stµ(λC1 + νC2) = λStµ(C1) + νStµ(C2).

See Baier and Farkhi [4, Lemma 4.1] for a proof.

Theorem 2.6. (Castaing representation) For every measurable multifunction
F : [0, T ] → Pck(Rd), there exists a sequence (µn)n∈N of elements of M such
that, for every t ∈ [0, T ],

F (t) =
⋃
n∈N
{Stµn(F (t))}.

See Dentcheva [10, Theorem 3.4] for a proof.
It is proved in [10] that, for any µ ∈ M, the map Stµ : Pck(Rd) 7→ Rd is

Lipschitz for the Hausdorff distance dH. However there is no uniform bound on
the Lipschitz coefficient with respect to µ. But the Demyanov distance dD can
be expressed using generalized Steiner points:
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Proposition 2.7 (Demyanov distance and generalized Steiner points). For ev-
ery C1, C2 ∈ Pck(Rd),

dD(C1, C2) = sup
µ∈M

‖Stµ(C2)− Stµ(C2)‖.

See Baier and Farkhi [4, Corollary 4.8] for a proof.

2.3. Young integral for single valued functions

This subsection deals with the definition and some basic properties of Young
integral which allow to integrate a map f ∈ Cα-Höl([0, T ];Me,d(R)) with respect
to w when α ∈]0, 1[ and α + β > 1. Here, Me,d(R) denotes the space of real
matrices with e rows and d columns.

Let us first introduce a compactness result which is essential in the con-
struction of the Young integral and the proof of its properties, and that we use
several times in this paper.

Proposition 2.8 (Compactness in Hölder spaces). Let (fn) be a bounded se-
quence in C(α)-Höl([0, T ];Me,d(R)) such that supn supt∈[0,T ] ‖fn(t)‖Me,d(R) <

+∞. Then there exists a subsequence (fnk)k∈N of (fn)n∈N and f ∈ C(α)-Höl([0, T ];
Me,d(R)) such that, for every ε ∈]0, α], (fnk)k∈N converges in C(α−ε)-Höl([0, T ];
Me,d(R)) to f .

See Friz and Victoir [11, Theorem 5.28] for a proof.

Theorem 2.9 (Young integral). Consider α, β ∈]0, 1] such that α+β > 1, and
two maps

f ∈ Cα-Höl([0, T ];Me,d(R)) and w ∈ Cβ-Höl([0, T ];Rd).

For every n ∈ N∗ and Dn = (tn1 , . . . , t
n
mn) ∈ D[0,T ] such that |Dn| → 0 (where

|Dn| = max16k6mn−1(tnk+1 − tnk )) the limit

lim
n→∞

mn−1∑
k=1

f(tnk )(w(tnk+1)− w(tnk ))

exists and does not depend on the dissection Dn.

Definition 2.10 (Young integral). The limit in Theorem 2.9 is denoted by∫ T

0

f(s) dw(s)

and called the Young integral of f with respect to w on [0, T ].

The following theorem provides a bound on Young’s integral which is crucial
in the sequel.
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Theorem 2.11 (Young-Love estimate). Consider α, β ∈]0, 1[ such that α+β >
1, and two maps

f ∈ Cα-Höl([0, T ];Me,d(R)) and w ∈ Cβ-Höl([0, T ];Rd).

There exists a constant cα,β > 1, depending only on α and β, such that, for all
s, t ∈ [0, T ] such that s < t,∥∥∥∥∫ t

s

f(u) dw(u)− f(s)(w(t)− w(s))

∥∥∥∥ 6 cα,β‖w‖β,T ‖f‖α,T |t− s|α+β .

Therefore, for all s, t ∈ [0, T ],∥∥∥∥∫ t

s

f(u) dw(u)

∥∥∥∥ 6 cα,β‖w‖β,T (‖f‖α,TTα + ‖f‖∞,T )|t− s|β ,

and, in particular,∥∥∥∥∫ .

0

f(s) dw(s)

∥∥∥∥
β,T

6 Cα,β ‖w‖β,T Nα,T (f)

with Cα,β,T = cα,β(Tα ∨ 1).

See Friz and Victoir [11, Theorem 6.8] for a proof.

3. Set-valued Young integral

This section deals with an Aumann-like integral based on a special subset
of selections. We assume the following hypothesis:

(A) F ∈ Cα-Höl([0, T ];Pck(Me,d(R))), and w ∈ Cβ-Höl([0, T ];Rd), with α, β ∈
]0, 1], α+ β > 1.

We shall sometimes consider the subcase obtained by adding the following
stronger assumption on F :

(B) F ∈ Cα-Höl
Dem ([0, T ];Pck(Me,d(R))).

To show that (B) is not contained in (A), we can consider the case when F (t) is
the segment of R2 with one end at (0; 0) and the other end at (sin t, cos t) (see
[31, Example 3.3]). Then dD(F (t), F (s)) > 1 for s 6= t, thus Nα,T,Dem(F ) = +∞
for all α, whereas F is Lipschitz for dH.

3.1. Special selections

We now define an appropriate set of selections of F , that will be used to
define a set-valued Young integral of F with respect to w.

Let us choose our ”tuning parameter” r such that

r > ked‖F‖α,T , (5)

7



where ked is the constant defined in Proposition 2.3. In the case when (B) is
satisfied, we can alternatively take

r > ‖F‖α,T,Dem. (6)

Note that Condition (6) can be less restrictive than (5), when (B) is satisfied. For
example, if F (t) has the form f(t)+C, where f is single-valued and C ∈ Pck(Rd)
is constant, we have ‖F‖α,T,Dem = ‖F‖α,T 6 ked‖F‖α,T .

Notation 3.1. In this section, we denote

rmin = min
(
ked‖F‖α,T , ‖F‖α,T,Dem

)
. (7)

Notation 3.2. We denote by S0(F ) the set of all measurable selections of F ,

Sα,r(F ) := {f ∈ S0(F ) ; ‖f‖α,T 6 r} and

SSt(F ) := {Stµ(F (.)) ; µ ∈M} ⊂ S0(F ).

Remark 3.3 (Dependence on T of Sα,r(F )). Let t ∈ [0, T [. If f is an α-
Hölder selection of F on [0, t], with ‖f‖α,t 6 r, there does not necesarily exists

a selection f ∈ Sα,r(F ) wich extends f on [0, T ] and such that
∥∥f∥∥

α,T
6 r.

So, Sα,r(F ) depends on T , but we chose to keep the relatively light notation
Sα,r(F ) without stressing this fact.

Proposition 3.4. For every r > rmin, the set Sα,r(F ) is nonempty and convex.

Proof. The convexity of Sα,r(F ) stems from the convexity of the norm Nα,T .
If (5) is satisfied, Sα,r(F ) is nonempty because it contains St(F ) by Propo-

sition 2.3. Indeed, we have, for s, t ∈ [0, T ],

‖St(F (t))− St(F (s))‖ 6 keddH(F (t), F (s)) 6 ked‖F‖α,T |t− s|α,

thus ‖St(F )‖α,T 6 r.
Similarly, if (B) and (6) are satisfied, we have St(F ) ∈ Sα,r(F ) by Proposi-

tion 2.7 and since, in that case, Nα,T,Dem(F ) <∞.

Remark 3.5 (Basic properties of the selections sets).

1. The set SSt(F ) is a nonempty and convex subset of Cα-Höl([0, T ];Me,d(R))
such that, for every f ∈ SSt(F ), Nα,T (f) 6 Nα,T,Dem(F ). Moreover,
there exists a sequence (fn)n∈N of elements of SSt(F ) such that, for every
t ∈ [0, T ],

F (t) =
⋃
n∈N
{fn(t)}.

Indeed, the convexity of SSt(F ) follows from Proposition 2.5, the Castaing
representation from Proposition 2.6, and the comparison withNα,T,Dem(F )
stems from Proposition 2.7.
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2. Consequently, if (B) and (6) are satisfied, we have SSt(F ) ⊂ Sα,r(F ) (since
in this case Nα,T,Dem(F ) < ∞), and there exists a sequence (fn)n∈N of
elements of Sα,r(F ) such that, for every t ∈ [0, T ],

F (t) =
⋃
n∈N
{fn(t)}. (8)

Let us establish some topological properties of Sα,r(F ) in L2([0, T ];Me,d(R))
and in Cα-Höl([0, T ];Me,d(R)).

Proposition 3.6. For every r > rmin, the set Sα,r(F ) is a bounded and closed
subset of Cα-Höl([0, T ];Me,d(R)). Moreover, for every sequence (fn)n∈N of ele-
ments of Sα,r(F ), there exists a subsequence (fnk)k∈N of (fn)n∈N such that, for
every ε ∈]0, α], (fnk)k∈N converges in C(α−ε)-Höl([0, T ];Me,d(R)) to an element
of Sα,r(F ).

Proof. Let (fn)n∈N be a sequence of elements of Sα,r(F ). By the definition of
Sα,r(F ),

sup
n∈N
‖fn‖∞,T 6 ‖F‖∞,T and sup

n∈N
‖fn‖α,T 6 r.

Therefore, by Proposition 2.8, there exists a subsequence (fnk)k∈N of (fn)n∈N
such that, for every ε ∈]0, α], (fnk)k∈N converges in C(α−ε)-Höl([0, T ];Me,d(R))
to an element of Sα,r(F ).

Proposition 3.7. Sα,r(F ) is a bounded, closed and sequentially compact subset
of L2([0, T ];Me,d(R)).

Proof. Let (fn)n∈N be a sequence of elements of Sα,r(F ). According to Propo-
sition 3.6, there exists a subsequence (fnk)k∈N of (fn)n∈N such that, for ev-
ery ε ∈]0, α], (fnk)k∈N converges in C(α−ε)-Höl([0, T ];Me,d(R)) to an element of
Sα,r(F ). Note that

sup
k
‖fnk‖∞,T 6 ‖F‖∞,T <∞. (9)

Then, the sequence (fnk)k is uniformly integrable with respect to the Lebesgue
measure on [0, T ] and (fnk)k converges to f in L1([0, T ];Me,d(R)). Using es-
timation (9), the convergence holds in L2([0, T ];Me,d(R)). Thus, Sα,r(F ) is a
sequentially compact subset of L2([0, T ];Me,d(R)).

3.2. Aumann-Young integral

Now, consider w ∈ Cβ-Höl([0, T ];Rd) and let us define a set-valued Young
integral with respect to w, using special sets of selections.

Definition 3.8 (Aumann-Young integral). The Aumann-Young integral of F
with respect to w and parameters α and r is defined by

(Aα,r)

∫ T

0

F (t) dw(t) = JT,α,r(F,w) :=

{∫ T

0

f(t) dw(t) ; f ∈ Sα,r(F )

}
.
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Remark 3.9. Michta and Motyl define a larger Aumann-Young integral in [27].
For convex-valued F , their integral is

(Aα,+∞)

∫ T

0,+∞
F (t) dw(t) = JT,α,+∞(F,w)

:=

{∫ T

0

f(t) dw(t) ; f ∈ S0(F ) ∩ Cα-Höl([0, T ];Me,d(R))

}
=
⋃
r>0

JT,α,r(F,w).

See Example 3.11 below for a comparison with (Aα,r)
∫ T

0,+∞ F (t) dw(t) when
r <∞.

The following proposition provides some basic properties of the set-valued
Aumann-Young integral.

Proposition 3.10. For every r > rmin, the Aumann-Young integral of F with
respect to w and parameters α and r is a nonempty, bounded, closed and convex
subset of Re.

Proof. Let us prove each property of the Aumann-Young integral of F with
respect to w stated in Proposition 3.10.

Since Sα,r(F ) is nonempty (resp. convex), JT,α,r(F,w) is nonempty (resp. con-
vex).

By Theorem 2.11, for every f ∈ Sα,r(F ),∥∥∥∥∥
∫ T

0

f(t) dw(t)

∥∥∥∥∥ 6cα,βT β‖w‖β,T (‖f‖α,TTα + ‖f‖∞,T

6cα,βT
β(Tα ∨ 1)‖w‖β,T (r + ‖F‖∞,T ).

Then, the Aumann-Young integral of F with respect to w is a bounded subset
of Re.

Consider a converging sequence (jn)n∈N of elements of JT,α,r(F,w). Its limit
is denoted by j. By the definition of JT,α,r(F,w), for every n ∈ N, there exists
fn ∈ Sα,r(F ) such that

jn =

∫ T

0

fn(t) dw(t).

By Proposition 3.6, there exists a subsequence (fnk)k∈N of (fn)n∈N such that,
for any ε ∈]0, α], (fnk)k∈N converges in C(α−ε)-Höl([0, T ];Me,d(R)) to an element
f of Sα,r(F ). So, by Theorem 2.11, for ε < α+ β − 1, for every k ∈ N,∥∥∥∥∥jnk −

∫ T

0

f(t) dw(t)

∥∥∥∥∥
10



6cα,β‖w‖β,TT β(‖fnk − f‖α−ε,TTα−ε + ‖fnk − f‖∞,T )

6cα,β‖w‖β,TT β(Tα−ε ∨ 1)Nα−ε,T (fnk − f) −−−−→
k→∞

0.

Therefore,

j =

∫ T

0

f(t) dw(t),

and then JT,α,r(F,w) is a closed subset of Re.

Example 3.11 (Comparison with Michta and Motyl’s Young integral). In this
example, Michta and Motyl’s Young integral [27] is equal to R, whereas, by
Proposition 3.10, JT,α,r(F,w) is a compact interval. Assume that β 6 1

2 , and
let

w(t) = t2β cos(π/t) and F (t) = [−1, 1], (t ∈ [0, 1]).

We have Nα,T (F ) = Nα,T,Dem(F ) = 1 and, for 0 6 s < t 6 1,

|w(t)− w(s)| 6
∣∣(t2β − s2β

)
cos(π/t)

∣∣+
∣∣s2β(cos(π/t)− cos(π/s))

∣∣
6
(
t2β − s2β

)
+ s2β |cos(π/t)− cos(π/s)|1−β |cos(π/t)− cos(π/s)|β

6
(
t2β − s2β

)
+ 21−βπβs2β

(
1

sβ
− 1

tβ

)
62
(
tβ − sβ

)
+ 21−βπβ

(
tβ − sβ

)
6 (t− s)β

(
2 + 21−βπβ

)
,

thus ‖w‖β,1 6 2 + 21−βπβ .
Let us define a sequence (fn)n>1 of selections of F by

fn(t) =

{
sin(π/t) if 1

n 6 t 6 1
0 if 0 6 t 6 1

n .

Clearly, ‖fn‖α,1 → +∞ when n→∞. Furthermore,∫ 1

0

fn(t) dw(t) =

∫ 1

1/n

sin(π/t) d
(
t2β cos(π/t)

)
=

∫ 1

1/n

sin(π/t)
(

2βt2β−1 cos(π/t)− πt2β−2 sin(π/t)
)
dt

=

∫ n

1

sin(πu)
(

2βu1−2β cos(πu)− πu2−2β sin(πu)
) 1

u2
du

6 2β

∫ n

1

u−1−2βdu− 2

n−1∑
k=1

(k + 1)−2β

∫ k+1

k

sin2(πu) du

→ −∞ when n→∞.

By convexity of the Aumann integral and symmetry of F , this shows that the
integral of F with respect to w in the sense of Michta and Motyl [27] is the
whole line R.

11



Proposition 3.12 (Lipschitz continuity result with respect to the driving sig-
nal). For every r > rmin, the set-valued map

JT,α,r(F, .) :

{
Cβ-Höl([0, T ];Rd) −→ Pck(Re)

w 7−→ JT,α,r(F,w)

is Lipschitz continuous when Pck(Re) is endowed with the Hausdorff distance
dH.

Proof. Consider w1, w2 ∈ Cβ-Höl([0, T ];Rd) and j1 ∈ JT,α,r(F,w
1). So, there

exists f1 ∈ Sα,r(F ) such that

j1 =

∫ T

0

f1(s) dw1(s),

and by Theorem 2.11,

d(j1, JT,α,r(F,w
2)) = inf

f∈Sα,r(F )

∥∥∥∥∥
∫ T

0

f(t) dw2(t)−
∫ T

0

f1(t) dw1(t)

∥∥∥∥∥
6

∥∥∥∥∥
∫ T

0

f1(t)d(w2 − w1)(t)

∥∥∥∥∥+ inf
f∈Sα,r(F )

∥∥∥∥∥
∫ T

0

(f − f1)(t) dw2(t)

∥∥∥∥∥
6cα,βT

β(Tα ∨ 1)

[
Nα,T (f1)‖w1 − w2‖β,T + ‖w2‖β,T inf

f∈Sα,r(F )
Nα,T (f − f1)

]
.

Since f1 ∈ Sα,r(F ), Nα,T (f1) 6 r + ‖F‖∞,T and the second term in the right-
hand side of the previous inequality is null. Then

d(j1, JT,α,r(F,w
2)) 6 cα,βT

β(Tα ∨ 1)(r + ‖F‖∞,T )‖w1 − w2‖β,T

and, by symmetry,

d(j2, JT,α,r(F,w
1)) 6 cα,βT

β(Tα ∨ 1)(r + ‖F‖∞,T )‖w1 − w2‖β,T

for every j2 ∈ JT,α,r(F,w2). Therefore,

dH(JT,α,r(F,w
1), JT,α,r(F,w

2))

= max

{
sup

j1∈JT,α,r(F,w1)

d(j1, JT,α,r(F,w
2)) ; sup

j2∈JT,α,r(F,w2)

d(j2, JT,α,r(F,w
1))

}
6 cα,βT

β(Tα ∨ 1)(r + ‖F‖∞,T )‖w1 − w2‖β,T .

The following proposition provides semicontinuity results for the set-valued
Young’s integral. Let us first recall the topological superior and inferior limits
in Kuratowski’s sense for a sequence of sets, see, e.g., [6]. If (An) is a sequence
of closed subsets of a metric space M, let us denote

12



Li
n→∞

An the set of limits of sequences (xn) such that xn ∈ An for every
n,

Ls
n→∞

An the set of limits of sequences (xn) such that xn ∈ Amn for every

n for some subsequence (Amn) of (An).

Clearly, Li
n→∞

An ⊂ Ls
n→∞

An. We say that (An) converges in Kuratowski’s sense

to A ⊂M if
Ls

n→∞
An ⊂ A ⊂ Li

n→∞
An.

Convergence in Kuratowski’s sense is weaker than convergence for the Hausdorff
distance, however both convergences are equivalent if M is compact. Indeed,
by, e.g., [7, Theorem 3.1 page 51], the set Pk(M) of compact subsets of M
is compact for the topology of Hausdorff distance, thus this topology coincide
with any weaker separated (T2) topology on Pk(M). But, if M is compact, the
convergence in Kuratowski’s sense is associated with a separated topology (see,
e.g., [6, Theorem 5.2.6]).

Proposition 3.13 (Semicontinuity with respect to F ). Let r > rmin.

1. Let (Fn)n∈N be a sequence of elements of Cα-Höl([0, T ]; Pck(Me,d(R))) such
that

Ls
n→∞

Fn(t) ⊂ F (t) ; ∀t ∈ [0, T ],

and that
Fn ∈ Bα,Pck(Me,d(R))(0, r + εn)

for every n ∈ N, for some sequence (εn)n∈N of elements of R+, converging
to 0. Then

Ls
n→∞

JT,α,r+εn(Fn, w) ⊂ JT,α,r(F,w).

2. Assume furthermore that

F (t) ⊂ Li
n→∞

Fn(t) ; ∀t ∈ [0, T ].

Then
JT,α,r(F,w) ⊂ Li

n→∞
JT,α,2r+εn(Fn, w).

Proof. 1. Let us prove that

J := Ls
n→∞

JT,α,r+εn(Fn, w) ⊂ JT,α,r(F,w).

Consider j ∈ J . Then, there exists a sequence (fn)n∈N of elements of the space
Cα-Höl([0, T ];Me,d(R)) such that

fn ∈ Sα,r+εn(Fn) ; ∀n ∈ N

13



and

j = lim
k→∞

∫ T

0

fnk(t) dw(t),

where (fnk)k∈N is a subsequence of (fn)n∈N. By the definition of Sα,r+εn(Fn),
n ∈ N,

‖fnk(t)‖ 6 sup
n,s
‖Fn(s)‖dH 6 ‖F‖∞,T + sup

n∈N
εn <∞

for every k ∈ N and t ∈ [0, T ], and

sup
k∈N
‖fnk‖α,T 6 r + sup

n∈N
εn.

Then, by Proposition 2.8, there exists a subsequence (fmk)k∈N of (fnk)k∈N
such that, for every ε ∈]0, α], such that ε < α + β − 1, (fmk)k∈N converges
in C(α−ε)-Höl([0, T ];Rd) to an element f of Cα-Höl([0, T ];Rd). So,

j =

∫ T

0

f(t) dw(t).

It remains to check that f ∈ Sα,r(F ). For any t ∈ [0, T ], since fmk(t) ∈ Fmk(t)
for every k ∈ N, and since f is in particular the pointwise limit of (fmk)k∈N,

f(t) = lim sup
k→∞

fmk(t) ∈ Ls
k→∞

Fmk(t) = F (t).

Moreover, by Friz and Victoir [11, Lemma 5.12],

‖f‖α,T 6 lim inf
k→∞

‖fmk‖α,T 6 r + lim
n→∞

εn = r.

Therefore, j ∈ JT,α,r(F,w).
2. The supplementary hypothesis implies that (Fn(t)) converges in Kura-

towski’s sense to F (t). Furthermore, since (Fn) is bounded in Cα-Höl([0, T ];
Pck(Me,d(R))), it is bounded for ‖.‖∞,T , thus (Fn(t)) converges to F (t) for the
Hausdorff distance.

Let j ∈ JT,α,r(F,w), and let f ∈ Sα,r(F ) such that j =
∫ T

0
f(t) dw(t). Set

fn(t) = πFn(t)(f(t)) for every t ∈ [0, T ] and each integer n, where πFn(t) denotes
the orthogonal projection on Fn(t). We have, for any t ∈ [0, T ],

‖f(t)− fn(t)‖ 6 dH(F (t), Fn(t))→ 0 when n→∞,

thus (fn) converges uniformly to f . Furthermore, for any n and for s, t ∈ [0, T ],

‖fn(t)− fn(s)‖ 6
∥∥πFn(t)(f(t))− πFn(t)(f(s))

∥∥+
∥∥πFn(t)(f(s))− πFn(s)(f(s))

∥∥
6 ‖f(t)− f(s)‖+ dH(Fn(t), Fn(s)).

Indeed, it is well known that the projection operator πFn(t) is non expansive

(see, e.g., [14, page 118]), and the estimation of
∥∥πFn(t)(f(s))− πFn(s)(f(s))

∥∥
follows from (3). Since r > ‖F‖α,T , we deduce

‖fn‖α,T 6 ‖f‖α,T + ‖Fn‖α,T 6 2r + εn.

Thus jn :=
∫ T

0
fn(t) dw(t) ∈ JT,α,2r+εn(Fn, w). Furthermore, thanks to [11,

Proposition 6.12], we have limn→∞ jn = j.
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The preceding result can be improved when the multifunctions Fn are con-
structed from F using some recipe which can also be applied to their selections.
This can be useful for numerical approximations.

Proposition 3.14. (Time discretization of the multivalued integral) Let (Dn) be
a sequence of dissections of [0, T ], say, Dn = (tn0 , . . . , t

n
mn), 0 = t0 < · · · < tnmn =

T , and assume that |Dn| converges to 0, where |Dn| = max16i6mn−1(tni+1− tni )
is the mesh of Dn. For each n, for each i ∈ {1, . . . ,mn − 1} and for any
t ∈ [tni , t

n
i+1], set

Fn(t) =
t− tni

tni+1 − tni
F (tni ) +

tni+1 − t
tni+1 − tni

F (tni+1).

Then
lim
n→∞

dH (JT,r(Fn, w), JT,r(F,w)) = 0.

Proof. By uniform continuity of F on [0, T ], the sequence (Fn) converges uni-
formly to F for dH, and ‖Fn‖dH 6 ‖F‖dH for all n. Furthermore, we have
Nα,T (Fn) 6 Nα,T (F ) for all n, see [8].

From Part 1 of Proposition 3.13, we have that Ls JT,r(Fn, w) ⊂ JT,α,r(F,w).

Now, let j ∈ JT,α,r(F,w), and let f ∈ Sα,r(F ) such that j =
∫ T

0
f(t) dw(t).

Define fn ∈ Sα,r(Fn) by

fn(t) =
t− tni

tni+1 − tni
f(tni ) +

tni+1 − t
tni+1 − tni

f(tni+1).

for each i ∈ {1, . . . ,mn − 1} and for every t ∈ [tni , t
n
i+1]. Then (fn) con-

verges uniformly to f , and we conclude as in the proof of Proposition 3.13
that JT,α,r(F,w) ⊂ Li JT,r(Fn, w), thus (JT,r(Fn, w))n converges to JT,r(Fn, w)
in Kuratowski’s sense.

Since the sequence (JT,r(Fn, w))n is bounded for ‖.‖dH , it is relatively com-
pact for the Hausdorff distance, we deduce that it converges to JT,r(Fn, w) for
dH.

Let us conclude this section by investigating the indefinite Aumann-Young
integral

t 7→ (Aα,r)

∫ t

0

F (s) dw(s) = Jt,α,r(F,w)

:=

{∫ T

0

f(s)1[0,t](s) dw(s) ; f ∈ Sα,r(F )

}
.

Remark 3.15 (Dependence on T of the indefinite integral). Since (Aα,r)
∫ t

0
F (s) dw(s)

is built using elements of Sα,r(F ), it follows from Remark 3.3 that our indefi-
nite integral depends on T . More accurate but rather heavy notations could be
(Aα,T,r)

∫ t
0
F (s) dw(s) = Jt,α,T,r(F,w).
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Remark 3.16. The previous results on JT,α,r(F,w) remain true for Jt,α,r(F,w),
by the same arguments.

Proposition 3.17 (Continuity of the indefinite Aumann-Young integral). The
set-valued map t ∈ [0, T ] 7→ Jt,α,r(F,w) is β-Hölder continuous with constant
Cα,β,T (‖F‖∞,T +r)‖w‖β,T when Pck(Re) is endowed with the Hausdorff distance
dH, where Cα,β,T is the constant defined in Theorem 2.11.

Proof. Consider s, t ∈ [0, T ] with s < t, and jt ∈ Jt,α,r(F,w). So, there exists
ft ∈ Sα,r(F ) such that

jt =

∫ t

0

ft(u) dw(u),

and by Theorem 2.11,

d(jt, Js,α,r(F,w)) = inf
f∈Sα,r(F )

∥∥∥∥∫ t

0

ft(u) dw(u)−
∫ s

0

f(u) dw(u)

∥∥∥∥
6

∥∥∥∥∫ t

s

ft(u) dw(u)

∥∥∥∥+ inf
f∈Sα,r(F )

∥∥∥∥∫ s

0

(f − ft)(u) dw(u)

∥∥∥∥
6cα,β(Tα ∨ 1)‖w‖β,T

[
Nα,T (ft)|t− s|β + T β inf

f∈Sα,r(F )
Nα,T (f − ft)

]
.

Since ft ∈ Sα,r(F ), we have Nα,T (ft) 6 (‖F‖∞,T + r) and the second term in
the right-hand side of the previous inequality is null. Then,

d(jt, Js,α,r(F,w)) 6 cα,β(Tα ∨ 1)‖w‖β,T (‖F‖∞,T + r)|t− s|β

and, by symmetry,

d(jt, Js,α,r(F,w)) 6 cα,β(Tα ∨ 1)‖w‖β,T (‖F‖∞,T + r)|t− s|β

for every jt ∈ Jt,α,r(F,w). Therefore,

dH(Js,α,r(F,w), Jt,α,r(F,w))

= max

{
sup

js∈Js,α,r(F,w)

d(js, Jt,α,r(F,w)) ; sup
jt∈Jt,α,r(F,w)

d(jt, Js,α,r(F,w))

}
6 Cα,β,T ‖w‖β,T (‖F‖∞,T + r)|t− s|β .

Corollary 3.18 (Upper bound for ‖J.,α,r(F,w)‖α,T and Nα,T (J.,α,r(F,w))).
Assume that r > rmin, and let

ρw(T, r, ‖F‖∞,T ) := Cα,β,T (‖F‖∞,T + r)‖w‖β,TT β−α.

Then
‖J.,α,r(F,w)‖α,T 6 ρw(T, r, ‖F‖∞,T )

and
Nα,T (J.,α,r(F,w)) 6 (1 + Tα)ρw(T, r, ‖F‖∞,T ).
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Proof. Since α < β, the first inequality is an immediate consequence of Propo-
sition 3.17 and the obvious inequality ‖F‖α,T 6 T β−α ‖F‖β,T for any F ∈
Cβ-Höl([0, T ];Pck(Re)). The second inequality follows, using that

∫ 0

0
f(s) dw(s) =

0 for any f ∈ Sα,r(F ).

4. Existence of fixed-points for functionals of Aumann-Young’s inte-
gral and applications to differential inclusions

The main theorem of this section, derived from Kakutani-Fan-Glicksberg’s
theorem thanks to the results of Section 3, deals with the existence of fixed-
points for functionals of the Aumann-Young integral. We provide some appli-
cations to differential inclusions, especially differential inclusions driven by a
fractional Brownian motion.

In the sequel, α, β ∈]0, 1[, α + β > 1 and α < β. This implies that β > 1
2 .

As usual, T > 0 and w ∈ Cβ-Höl([0, T ];Rd).

4.1. Fixed point theorem

Let us first recall the notions of fixed-points and of upper semicontinuity for
multifunctions.

Definition 4.1. Consider a set S and a multifunction F : S ⇒ S. An element
x of S is a fixed-point of F if x ∈ F (x).

We now give a definition of upper semicontinuity for multifunctions in a
particular case which is sufficient for our needs (see [2, Definition 1.4.1 and
Proposition 1.4.8]).

Definition 4.2. Let X be a metric space, let Y be a compact metric space. Let
F : X ⇒ Y be a multifunction with closed values, and let S be a closed subset
of X, with S ⊂ DomF := {x ∈ X ; F (x) 6= ∅}. The multifunction F is said to
be upper semicontinuous on S if, for every sequence (xn, yn)n∈N of elements of
S × Y and for every (x, y) ∈ S × Y such that (xn, yn) converges to (x, y) and
yn ∈ F (xn) for every n, we have y ∈ F (x).

Let us now set the scene for the fixed point theorem. Let S be a convex
compact subset of Cα-Höl([0, T ];Re), and let Φ : [0, T ]×Re → Pck(M`,d(R))) be
continuous for the Hausdorff distance, with ` ∈ N∗. Assume that there exists
R > 0 such that

Φ(., x(.)) ∈ Bα,Pck(M`,d(R))(0, R) ; ∀x ∈ S.

Let
r > sup

x∈S
min

(
ke` ‖Φ(., x(.))‖α,T , ‖Φ(., x(.))‖α,T,Dem

)
,

so that the map

Φw :

 S −→ Cα-Höl([0, T ];Pck(R`))

x 7−→ (Aα,r)

∫ .

0

Φ(s, x(s)) dw(s)
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is well-defined. With the notations of Corollary 3.18, we have

‖Φw(x)‖α,T 6 ρw(T, r, ‖Φ(., x(.))‖∞,T ) 6 ρw(T, r,R)

for all x ∈ S.

Theorem 4.3 (Fixed point theorem). Let S, Φ, r and Φw as above, let α′ ∈
]0, α[, and let

Ψ : Cα-Höl([0, T ];Pck(R`))⇒ Cα-Höl([0, T ];Re),

a multifunction such that Dom Ψ contains B := {Φw(x) ; x ∈ S}, and which
satisfies the following conditions:

1. For every sequence (Fn)n∈N of elements of B such that there exists F ∈ B
satisfying

Ls
n→∞

Fn(t) ⊂ F (t) ; ∀t ∈ [0, T ],

if ψn ∈ Ψ(Fn) converges in Cα
′-Höl([0, T ];Re) to ψ ∈ Cα-Höl([0, T ];Re),

then ψ ∈ Ψ(F ).

2. For every F ∈ B, Ψ(F ) is convex, closed and contained in S.

Then, Γ = Ψ ◦ Φw has at least one fixed-point in S.

Remark 4.4. By Corollary 3.18, in order that Dom(Ψ) ⊃ B, it is sufficient
that Dom(Ψ) ⊃ Bα,Pck(M`,d(R))(0, (1 + Tα)ρw(T, r,R)).

Proof of Theorem 4.3. By Condition 2, Γ(x) is closed convex and contained in
S for every x ∈ S.

Let us check that Γ is upper semicontinuous. Let (xn)n∈N be a sequence of
elements of S converging to x ∈ S in X := Cα

′-Höl([0, T ];Re), and consider ψn ∈
Γ(xn) = Ψ(Φw(xn)) converging to ψ ∈ Cα-Höl([0, T ];Re) in X. By Proposition
3.13 (more precisely Remark 3.16) and the Hausdorff continuity of Φ (which
gives

Ls
n→∞

Φ(t, xn(t)) ⊂ Φ((t, x(t)) ; ∀t ∈ [0, T ])),

we have
Ls

n→∞
Φw(xn)(t) ⊂ Φw(x)(t) ; ∀t ∈ [0, T ].

Then, by Condition 1, ψ ∈ Ψ(Φw(x)) = Γ(x), which proves the upper semicon-
tinuity.

We deduce by Kakutani-Fan-Glicksberg Theorem [12, Theorem 8.6 of II.§7]
that Γ has at least one fixed-point in S.

Remark 4.5. Consider γ ∈]0, 1 ∧ (β/α)] with αγ + β > 1. The statement of
Theorem 4.3 remains true when

Φ(., x(.)) ∈ Bαγ,Pck(M`,d(R))(0, R) ; ∀x ∈ S
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and

Φw(x) := (Aαγ,r)

∫ .

0

Φ(s, x(s)) dw(s).

For the sake of readability, this result has been detailed in the case γ = 1,
but the proof of Theorem 4.3 remains unchanged for γ 6= 1, again with S ⊂
Cα-Höl([0, T ];Re), but replacing α by αγ everywhere else.

Let us provide two examples of multifunctions Ψ fulfilling Conditions 1 and
2 of Theorem 4.3. These examples will be the basis for our applications to
differential inclusions.

Example 4.6. Assume that T satisfies ρw(T, r,R) 6 r with r > 0. With the
notations of Theorem 4.3, let us show that Ψh(.) := h + {x ∈ Sα,ρw(T,r,R)(·) :

x(0) = 0}, with ` = e and h ∈ Cα-Höl([0, T ];Re), fulfills Conditions 1 and 2 for
S = Sh,r := {x ∈ Bα,Re(h, r) : x(0) = h(0)} which is a convex compact subset

of X := Cα
′-Höl([0, T ];Re) for 0 < α′ < α, thanks to Proposition 2.8.

1. Let (Fn)n∈N be a sequence in Bα,Pck(Me,d(R))(0, (1 + Tα)ρw(T, r,R)) such

that there exists F ∈ Bα,Pck(Me,d(R))(0, (1 + Tα)ρw(T, r,R)) satisfying

Ls
n→∞

Fn(t) ⊂ F (t) ; ∀t ∈ [0, T ]. (10)

Consider also ψn ∈ Ψh(Fn) converging in X to ψ ∈ Cα-Höl([0, T ];Re). For any
n ∈ N, (ψn−h)(0) = 0 and, by the definition of Sα,ρw(T,r,R)(Fn), ψn−h ∈ S0(Fn)
and Nα,T (ψn−h) 6 ρw(T, r,R). Thanks to (10), ψ−h ∈ S0(F ), and since ψ is
the limit of ψn in X, (ψ − h)(0) = 0 and Nα,T (ψ − h) 6 ρw(T, r,R). Therefore,
ψ ∈ Ψh(F ).

2. For any F ∈ Bα,Pck(Me,d(R))(0, (1 + Tα)ρw(T, r,R)), since Sα,ρw(T,r,R)(F )
is convex (resp. closed) by Proposition 3.4 (resp. Proposition 3.6), Ψh(F ) is
convex (resp. closed). Moreover, since ρw(T, r,R) 6 r,

Ψh(F ) ⊂ h+ S0(F ) ∩ {x ∈ Bα,Re(0, (1 + Tα)ρw(T, r,R)) : x(0) = 0}
⊂ h+ {x ∈ Bα,Re(0, r) : x(0) = 0} = Sh,r.

Example 4.7. Assume that d = ` = 2, e = 1 and that T satisfies ρw(T, r,R) 6 r
with r > 0. Consider f ∈ Cα-Höl([0, T ];R). With the notations of Theorem 4.3
and Example 4.6, let us show that Ψh,f (.) := h + {fx1 − x2 ; x = (x1, x2) ∈
Ψ0(.)} fulfills Conditions 1 and 2 of Theorem 4.3 for S = Sh,f,r := h + {fx1 −
x2 ; x = (x1, x2) ∈ S0,r}:

1. Let (Fn)n∈N be a sequence in Bα,Pck(M1,2(R))(0, (1 + Tα)ρw(T, r,R)), and

let F ∈ Bα,Pck(M1,2(R))(0, (1 + Tα)ρw(T, r,R)) satisfying

Ls
n→∞

Fn(t) ⊂ F (t) ; ∀t ∈ [0, T ]. (11)

Consider also ψn ∈ Ψh,f (Fn) converging in X to ψ ∈ Cα-Höl([0, T ];R). For
any n ∈ N, ψn = h + fx1,n − x2,n with xn = (x1,n, x2,n) ∈ S0(Fn) such
that xn(0) = 0 and Nα,T (xn) 6 ρw(T, r,R). Then, by Proposition 2.8, there
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exists a subsequence (xnk)k∈N of (xn)n∈N converging in X to x = (x1, x2) ∈
Cα-Höl([0, T ];R) such that x(0) = 0 and Nα,T (x) 6 ρw(T, r,R). Moreover,
thanks to (11), x ∈ S0(F ). So, for every t ∈ [0, T ],

ψ(t) = lim
n→∞

ψn(t) = lim
k→∞

ψnk(t)

= h(t) + f(t) lim
k→∞

x1,nk(t)− lim
k→∞

x2,nk(t)

= h(t) + f(t)x1(t)− x2(t).

Therefore, ψ ∈ Ψh,f (F ).
2. For any F ∈ Bα,Pck(M1,2(R))(0, (1+Tα)ρw(T, r,R)), since Ψ0(F ) is convex

(resp. Ψ0(F ) ⊂ S0,r), Ψh,f (F ) is convex (resp. Ψh,f (F ) ⊂ Sh,f,r). Moreover,
the same arguments than in the previous step yield that Ψh,f (F ) is closed.

4.2. Applications to differential inclusions

Let us provide two applications of Theorem 4.3 to differential inclusions.
First, let Φ : [0, T ] × Re → Pck(Me,d(R)) be a multifunction such that, for
every t ∈ [0, T ] and every x ∈ Re, Φ(., x) is α-Hölder continuous with respect
to the Hausdorff distance and Φ(t, .) is Lipschitz continuous with respect to
the Hausdorff distance too, that is, there exist k1, k2 > 0 such that for every
s, t ∈ [0, T ] and x, y ∈ Re,

dH(Φ(s, x),Φ(t, x)) 6 k1|t− s|α and dH(Φ(t, x),Φ(t, y)) 6 k2‖x− y‖. (12)

Assume also that Φ is bounded with respect to the Hausdorff distance, that is,
there exists R > 0 such that

sup
(t,x)∈[0,T ]×Re

sup
y∈Φ(t,x)

‖y‖ 6 R. (13)

Consider w ∈ Cβ-Höl([0, T ];Rd) and an inclusion of the form

x(t) ∈ ξ + (Aα,r)

∫ t

0

Φ(s, x(s)) dw(s) ; t ∈ [0, T ], (14)

where r is large enough and the unknown function x is in Cα-Höl([0, T ];Re).

Corollary 4.8 (First order differential inclusion). Assume that 0 < α < β,
α + β > 1 and r > r0 := R + k1 + k2. Then, the set of solutions to (14) is
nonempty.

Proof. First, with the notations of Example 4.6, for any x ∈ Sξ,1, the map
s 7→ Φ(s, x(s)) is α-Hölder continuous. Precisely, for every s, t ∈ [0, T ],

dH(Φ(t, x(t)),Φ(s, x(s)))

6 dH(Φ(t, x(t)),Φ(s, x(t))) + dH(Φ(s, x(t)),Φ(s, x(s)))

6 k1|t− s|α + k2‖x(t)− x(s)‖

20



6 (k1 + k2‖x− ξ‖α,T )|t− s|α

6 (k1 + k2)|t− s|α

and then,
Nα,T (Φ(., x(.))) 6 R+ k1 + k2 = r0.

Let 1 > T0 > 0 be such that (1 + Tα0 )ρw(T0, r0, R) 6 1 (see Remark 4.4).
Applying Theorem 4.3 on [0, T0], with r = r0, S = Sξ,1 and Ψ = Ψξ (see
Example 4.6), shows that Γ = Ψ ◦ Φw has a fixed point on [0, T0]. Since the
definition of T0 is independent of ξ, gluing solutions on successive intervals
provides a fixed point for Γ on [0, T ], which is thus a solution to (14) on [0, T ].

Remark 4.9. Consider γ ∈]0, 1 ∧ (β/α)] such that αγ + β > 1. Thanks to
Remark 4.5, the statement of Corollary 4.3 remains true when, for every t ∈
[0, T ], Φ(t, .) is γ-Hölder continuous but not necessarily Lipschitz continuous.

Now, for e = 1, consider w0 ∈ Cβ-Höl([0, T ];R) and a second order inclusion
of the form

x(t) ∈ ξ + (Aα,ρw0 (T,r,R))

∫ t

0

[
(Aα,r)

∫ s

0

Φ(u, x(u)) dw0(u)

]
dw0(s). (15)

For any x ∈ Cα-Höl([0, T ];R) such that the Aumann-Young integral in Inclusion
(15) is well defined, thanks to the integration by parts formula for Young’s
integral,

(Aα,ρw0
(T,r,R))

∫ t

0

[
(Aα,r)

∫ s

0

Φ(u, x(u)) dw0(u)

]
dw0(s)

=

{∫ t

0

∫ s

0

ϕ(u) dw0(u) dw0(s) ; ϕ ∈ Sα,r(Φ(., x(.)))

}
=

{
w0(t)

∫ t

0

ϕ(s) dw0(s)−
∫ t

0

w0(s)ϕ(s) dw0(s) ; ϕ ∈ Sα,r(Φ(., x(.)))

}
=

{
w0(t)

(∫ t

0

ϕ(s)(dw0(s), w0(s) dw0(s))

)
1

−
(∫ t

0

ϕ(s)(dw0(s), w0(s) dw0(s))

)
2

; ϕ ∈ Sα,r(Φ(., x(.)))

}
,

where, for i = 1, 2,
(∫ t

0
ϕ(s)(dw0(s), w0(s) dw0(s))

)
i

denotes the ith coordinate

of
∫ t

0
ϕ(s)(dw0(s), w0(s) dw0(s)). Then, proving the existence of solutions to

(15) amounts to prove that

Γ : x 7−→ Ψh,w0

(
(Aα,r)

∫ .

0

Φ(s, x(s)) dw(s)

)
with w :=

(
w0,

∫ .

0

w0(s) dw0(s)

)
has fixed points.
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Corollary 4.10 (Second order differential inclusion). Assume that α < β,
α + β > 1 and r > rw0,T := k1 + k2(Nα,T (w0) + 1). Then, the set of solutions
to (15) is nonempty.

Proof. First, consider xw0,ξ := ξ+w0x1−x2 with x = (x1, x2) ∈ S0,1. The map
s 7→ Φ(s, xw0,ξ(s)) is α-Hölder continuous. Precisely, for every s, t ∈ [0, T ],

dD(Φ(t, xw0,ξ(t)),Φ(s, xw0,ξ(s)))

6 dD(Φ(t, xw0,ξ(t)),Φ(s, xw0,ξ(t)))

+dD(Φ(s, xw0,ξ(t)),Φ(s, xw0,ξ(s)))

6 k1|t− s|α + k2|xw0,ξ(t)− xw0,ξ(s)|
6 k1|t− s|α + k2(|w0(t)(x1(t)− x1(s))|

+|(w0(t)− w0(s))x1(s)|+ |x2(t)− x2(s)|)
6 (k1 + k2(Nα,T (w0) + 1))|t− s|α

and then,
Nα,T (Φ(., x(.))) 6 k1 + k2(Nα,T (w0) + 1) = rw0,T .

Let T0 > 0 be such that (1 + Tα0 )ρw(T0, rw0,T , R) 6 1. By Theorem 4.3 applied
on [0, T0], with r = rw0,T , S = Sξ,w0,1 and Ψ = Ψξ,w0 (see Example 4.7),
Γ = Ψ ◦ Φw has a fixed point, which is thus a solution to (15) on [0, T0]. Since
the definition of T0 is independent of ξ, Γ has a fixed point, which is thus a
solution to (15) on [0, T ].

Let us conclude with applications to stochastic inclusions. Consider a (d−1)-
dimensional fractional Brownian motion B = (B(t))t∈[0,T ] of Hurst index H ∈
(1/2, 1), which is a centered Gaussian process such that

E(Bi(s)Bj(t)) =
1

2
(t2H + s2H − |t− s|2H)δi,j

for every s, t ∈ [0, T ] and i, j ∈ {1, . . . , d − 1}, and let (Ω,A,P) be the associ-
ated canonical probability space. By the Garcia-Rodemich-Rumsey lemma (see
Nualart [29, Lemma A.3.1]), the paths of B are β-Hölder continuous for any
β ∈ (0, H). Consider r > 0 and α ∈ (0, 1) such that α + β > 1 and α < β.
Then, for any measurable map F : Ω → Bα,Pck(Me,d(R))(0, r), one can define a
set-valued stochastic integral of F with respect to B by[

(Aα,r)

∫ t

0

F (s)dB(s)

]
(ω) := (Aα,r)

∫ t

0

F (s, ω)dB(s, ω) ; ω ∈ Ω, t ∈ [0, T ].

This allows to consider the stochastic inclusion

X(t) ∈ ξ + (Aα,r)

∫ t

0

Φ(s,X(s)) dW (s) ; t ∈ [0, T ], (16)

where Φ : [0, T ] × Re → Pck(Me,d(R)) fulfills Assumptions (12) and (13), and
W (t) := (t, B1(t), . . . , Bd−1(t)) for every t ∈ [0, T ]. By Corollary 4.8, for every
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r > k1 + k2 +R, Inclusion (16) has at least one pathwise solution. One can also
consider the one-dimensional second order stochastic inclusion

X(t) ∈ ξ + (Aα,ρB(T,r,R))

∫ t

0

[
(Aα,r)

∫ s

0

Φ(u,X(u))dB(u)

]
dB(s) ; t ∈ [0, T ].

(17)
By Corollary 4.8, for every r > k1 +k2(Nα,T (B)+1), Inclusion (17) has at least
one pathwise solution.
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Birkhäuser, 1990.

[3] R. J. Aumann. Integrals of set-valued functions. J. Math. Anal. Appl.,
12:1–12, 1965.

[4] R. Baier and E. Farkhi. Regularity and integration of set-valued maps
represented by generalized Steiner points. Set-Valued Anal., 15(2):185–207,
2007.

[5] I. Bailleul, A. Brault, and L. Coutin. Young and rough differential inclu-
sions. Rev. Mat. Iberoam., 37(4):1489–1512, 2021.

[6] G. Beer. Topologies on closed and closed convex sets. Dordrecht: Kluwer
Academic Publishers, 1993.

[7] J. P. R. Christensen. Topology and Borel structure. North-Holland Publish-
ing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New
York, 1974. Descriptive topology and set theory with applications to func-
tional analysis and measure theory, North-Holland Mathematics Studies,
Vol. 10. (Notas de Matemática, No. 51).
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grals. J. Math. Anal. Appl., 424(1):651–663, 2015.

[26] M. Michta. Stochastic integrals and stochastic equations in set-valued and
fuzzy-valued frameworks. Stoch. Dyn., 20(1):47, 2020. Id/No 2050001.

[27] M. Michta and J. Motyl. Selection Properties and Set-Valued Young Inte-
grals of Set-Valued Functions. Results Math, 75:1–22, 2020.

[28] M. Michta and J. Motyl. Set-Valued Functions of Bounded Generalized
Variation and Set-Valued Young Integrals. J. Theor. Probab., page 23
pages, 2020.

[29] D. Nualart. The Malliavin Calculus and Related Topics. Springer, 2006.

[30] H. R̊adström. An embedding theorem for spaces of convex sets. Proc. Am.
Math. Soc., 3:165–169, 1952.
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