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Introduction

The model called Structured Potts Neural Network is an hierarchical Bayesian model where we train individual neural nets to specialize on sub-groups (latent clusters components) while we still stay informed about representations of the overall data. Our Potts neural network model differ from those of [START_REF] Kanter | Potts-glass models of neural networks[END_REF] and [START_REF] Wjm Philipsen | Using a genetic algorithm to tune Potts neural networks[END_REF], which is a generalization of the Ising neural network. We call it a structured one, because we integrate the structured correlations among the weights (and offsets) of the network [START_REF] Sun | Learning Structured Weight Uncertainty in Bayesian Neural Networks[END_REF] through Markov Random Fields (MRF) process. Bayesian learning allows the opportunity to quantify posterior uncertainty on neural networks (NNs) model parameters. We can specify priors to inform and constrain our models and get structured uncertainty estimation. This research work is published in Edge Intelligence Workshop 2020 organized by the GERAD (Group For Research In Decision Analysis) and The Eighth Annual Canadian Statistics Student Conference.

Background 0.1 Potts Clustering

We present Potts Clustering based on [START_REF] Murua | Semiparametric Bayesian Regression via Potts Model[END_REF] paper framework. The training data consists of n examples in the form of inputs vector x = x i ∈ R q , and corresponding outputs y = y i , where y i ∈ R l 2 (a vector response) for each i = 1, ..., n. For our model, x = x i is the vector of available covariates for observation i.

As in [START_REF] Murua | Semiparametric Bayesian Regression via Potts Model[END_REF], we assume a random partition model with a hierarchical form for these data :

y 1 , ..., y n |ρ n , ψ * 1 , ..., ψ * k n ind ∼ p(y i |x i , ψ * s i ) (1) ψ * 1 , ..., ψ * k n ind ∼ p(ψ) (2) 
ρ n ∼ p(ρ n |x)

where ρ n is a partition of [n] into k n subsets, s 1 , ..., s n are cluster membership indicators such that s i = j if the ith individual belongs to the jth cluster, and

ψ i = ψ * s i represent the neural network parameters for all i ∈ [n].
Potts clustering model can be seen as a stochastic version of the label propagation approach [START_REF] Tibély | On the equivalence of the label propagation method of community detection and a Potts model approach[END_REF]. In following section, we present the feed-forward network function itself, which is of the form y = g(x, w, b), with w weights matrix, b biases matrix (offsets), and g an activation function.

The feed-forward neural network regression framework

The network itself is (in general) a multi-layer network, defined typically by the following equations. Layer k computes an output vector h k using the output h k-1 of the previous layer, starting with the input x = h 0 .

h k = b k ⊕ g k (h k-1 )w k (4)
with parameter b k (a vector of offsets/biases), w k a matrix of weights, ⊕ the Kronecker sum, and g k which is applied element-wise, represents any suitable nonlinear function.

The top layer output h l is used for making a prediction and is combined with the supervised target y into a loss function L(h l , y), which is typically convex in

h l = b l + w l h l-1 .
The model output y is given by :

E[y|h l-1 ] = b l ⊕ h l-1 w l
In what follows, a 2-layer network means that we build two (2) layers on top of the input layer. . . . . . . . . .
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Hidden layer (l 1 neurones) Output layer (l 2 neurones) Given a Potts partition ρ n = (S 1 , ..., S k n ) with k n subsets, we denote by {ψ 1 , ψ 2 , ..., ψ n } the set of unique cluster-specific parameters. y * j = {y i , i ∈ S j } and x * j = {x i , i ∈ S j } denote respectively the set of responses and covariates of cluster S j . Defining

h 2 i = f ψ j (x i ), h * 2j = {h 2 i , i ∈ S j }. p(y * j |h * 2j , ψ j , Σ) = i∈S j (2π) -l 2 /2 |Σ| -1/2 × exp{-(1/2)(y i -h 2 i )) Σ -1 (y i -h 2 i ))} (5) 
With ψ = (w 1 , w 2 , b 1 , b 2 ) for each cluster. The weights MG-MRF is sparse and defined on vector w = (vec(w 1 ) T , vec(w 2 ) T ), with mean µ = (µ T 1 , µ T 2 ) (let's say µ k = E[vec(w k )]), sparse precision matrix J . For sparsity, we set only w 1 j and w 2 i as neighbors with i = j, where w 1 j denotes the j-th column of w 1 , and w 2 i the i-th line of w 2 . The Fully Connected Markov Random Fields model is the same as described above with huge difference in weights connections. We set the whole matrices w 1 and w 2 as neighbors.
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Figure 3: Fully Connected Markov Random Fields (MG-MRF) on the network weights

Fully-connected graphical models address issues of locally-connected models by assuming full connectivity amongst all nodes in the weights graph, thus taking full advantage of long range relationships to improve inference accuracy [START_REF] Wong | A Deep-Structured Fully Connected Random Field Model for Structured Inference[END_REF].

The S-SPNNR-FCMRF model with Compound Symmetry matrix block (S-SPNNR-FCMRF-CS)

We have built for the Fully Connected Markov Random Field S-SPNNR model a compound symmetry version (S-SPNNR-FCMRF-CS) using the precision matrix J . The matrix block J ii for (w 1 , w 2 ) itself can be express as a Kronecker product between two matrices U i and V i .

J ii = V i ⊗ U i , U i ∈ M l i-1 ×l i-1 , V i ∈ M l i ×l i
To reduce the model complexity, we choose U i and V i to be a positive-definite matrix with compound symmetry structure (constant diagonal and constant offdiagonal elements). It means for example :

U i = a u I + (1 -ρ u )11 T
where a u is a strictly positive number, and ρ u a real-number. I is an identidy matrix with dimension l i-1 , and 1 a vector of ones of size l i-1 .

Results

Compare to a simple predictor, the proposed S-SPNNR model and its three versions have achieved great results against the MMR model. This large improvement of the proposed S-SPNNR over the MMR with significant margins on all the 11 datasets shows its effectiveness modeling multi-target regression task. Andromeda, and SCPF show that the 5-layer FFRNN is still beatable in terms of predictive power for these datasets. S-SPNNR-SMRF was really effective on EDM, ATP7D, Jura, online sales and water quality against the S-SPNNR-FCMRF and SPNNR-FCMRF-CS. SPNNR-FCMRF-CS was better against S-SPNNR-FCMRF only on slump, ENB and water quality. 
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 3 The S-SPNNR model with Sparse Markov Random Fields (S-SPNNR-SMRF)

Figure 1 :

 1 Figure 1: Shallow feedforward neural network
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 22 Figure 2: Sparse Multivariate Gaussian Markov Random Fields (MG-MRF) on the network weights

  We reduce the input features to the first 6 PCA components. We reduce the input features to the first 6 PCA components.

	Data sets	' MMR S-SPNNR-FCMRF S-SPNNR-FCMRF-CS
	Andromeda	52.7	31.63	32.35
	Slump	58.7	21.90	18.47
	EDM	71.6	28.01	35.96
	ATP7D*	44.3	22.69	24.56
	ATP1D*	33.2	13.50	14.63
	Jura	58.2	28.98	25.81
	Online sales* 70.9	18.90	21.59
	ENB*	11.1	39.05	45.79
	Water quality 88.9	10.01	8.26
	SCPF	81.2	12.30	13.86
	River flow 1*	8.9	10.97	11.45
	Data sets	' S-SPNNR-SMRF 5-layer FFRNN
	Andromeda	30.91	37.44
	Slump	20.02	19.83
	EDM	17.23	15.71
	ATP7D*	19.73	13.67
	ATP1D*	29.54	9.89
	Jura	13.46	8.15
	Online sales*	14.79	8.78
	ENB*	23.92	4.36
	Water quality	6.48	6.15
	SCPF	10.78	18.49
	River flow 1*	5.16	0.91

* *