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ABSTRACT

This article presents a new hand architecture with three
under-actuated fingers. Each finger performs spatial movements
to achieve more complex and varied grasping than the existing
planar-movement fingers. The purpose of this hand is to grasp
complex-shaped workpieces as they leave the machining centres.
Among the taxonomy of grips, cylindrical and spherical grips are
often used to grasp heavy objects. A combination of these two
modes makes it possible to capture most of the workpieces ma-
chined with 5-axis machines. However, the change in grasping
mode requires the fingers to reconfigure themselves to perform
spatial movements. This solution requires the addition of two or
three actuators to change the position of the fingers and requires
sensors to recognize the shape of the workpiece and determine
the type of grasp to be used. This article proposes to extend
the notion of under-actuated fingers to spatial movements. Af-
ter a presentation of the kinematics of the fingers, the problem
of stability is discussed as well as the transmission of forces in
this mechanism. The complete approach for calculating the sta-
bility conditions is presented from the study of Jacobian force
transmission matrices. CAD representations of the hand and its
behavior in spherical and cylindrical grips are presented.

1 Introduction
Robotic hands are inspired by human ones to enable robots

to grasp parts or tools. They can be used for industrial robots, for
humanoid robots or as prostheses for humans. Since the early
1980s, many hands have been designed as the Okada hand [1],
the Stanford/JPL hand [2], the Utah/MIT hand [3], the LMS
hand [4]. This first generation of hands suffered many disad-
vantages such as their cost and the complexity of their control.
Other hands have been developed by reducing the number of ac-
tuators and the number of degrees of freedom [5] [6]. Another
way is the creation of under-actuated hands allowing the num-
ber of actuators to be reduced without reducing the number of
degrees of freedom [7].

The architecture of these under-actuated fingers has not
changed since their origin and remains planar. In order to adapt
to the objects to be grasped, a mechanism placed at the base of
each finger must be used to switch from a cylindrical to a spher-
ical or planar grasp [7]. In this case, one or two actuators are
required to change the type of grasp.

However, among the taxonomy of grips, the cylindrical and
spherical grips are mainly used for gripping heavy objects [8].
The other types are for precision tasks and are not dedicated to
the capture of heavy objects (Figure 1). To simplify both design
and control, the aim of this article is to introduce a new finger
architecture that can naturally adapt to the shapes of objects.

Next section presents the architecture of the new fingers.
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FIGURE 1: Grasping of common objects of the daily life

The equations of the kinematics are presented after the descrip-
tion of the different closed chains.

2 Architecture of the new hand
The purpose of this article is to present a new hand architec-

ture, consisting of three fingers with a new architecture, the ob-
jective being to introduce a new type of spatial under-actuation.

2.1 Architecture of the new fingers
To achieve spherical and cylindrical grasps, an under-

actuated finger architecture is presented featuring a spherical
mechanism for the proximal phalanx [9] and four-bar mecha-
nisms for the distal phalanges (Figure 2). This solution provides
a new degree of freedom from under-actuated fingers allowing a
non-planar behaviour comparable to the abduction movements of
the human hand and thus a change in the type of grip. The hand
is an under-actuated three-fingers assembly whose placement is
defined to achieve both types of grasp.

The innovation of this architecture comes mainly from the
use of the spherical mechanism. In order to simplify the ge-
ometry of the spherical parallel mechanism, we set ||−−→CO2|| =
||−−→CO3||= ||

−−→
CO4||= ||

−−→
CO5||. In addition, the angles of the mech-

anism are two by two identical and defined as follows Ô2CO3 =

Ô4CO5 = α and Ô3CO4 = Ô5CO2 = η .
A new actuating system is adapted to this new kinematics in

order to meet the stability requirements when grasping objects.
The four degrees of freedom of each finger can be defined as:

• A first degree of freedom θ1 is defined as the movement of
the proximal phalanx. θ1 is the angle between

−→
P2C and

−−−→
P2P11

• A second degree of freedom θ2 is defined as the move-
ment of the spherical system. θ2 is the angle between plans
(C,02,03) and (C,02,05)
• A third degree of freedom θ6 is defined as the movement of

the intermediate phalanx. θ6 is the angle between
−−→
05C and−−−→

O6O7

Actuator

C 

FIGURE 2: Kinematics of the new finger architecture

• A fourth degree of freedom θ7 is defined as the movement
of the distal phalanx. θ7 is the angle between

−−→
0706 and

−−→
O7P8

By using spherical trigonometry [10] (Eq. (1)) and the results
coming from the study of parallel spherical mechanisms [9]
(Eq. (2)), the angles θ1, θ2, θ6 and θ7 read as:

θ1 =
1
2

acos

(
−sin2 (η

2

)
+ cos(α)

cos2
(

η

2

) )
(1)

θ2 = −2atan

(√
− tan

(
α

2

)
tan
(

η

2

)
−1

tan
(

α

2

)
tan
(

η

2

)
−1

)
(2)

θ6 = −1
2

acos
(

2cos(α)+ cos(η)−1
cos(η)+1

)
−π/2 (3)

θ7 = π−δ7 (4)

The angles are defined as positive in the closing direction of the
fingers.

2.2 Grasping and fingers’ positions
Figure 3 shows, in a top view, the ideal positioning of the

fingers to switch from prismatic to spherical grips. The lines
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FIGURE 3: Fingers’ positions for neutral, cylindrical, spherical
grasps

(I1G1),(I2−0G2),(I3−0G3) represent the orientation of a normal
vector on the surface of the distal joint when the three fingers
are in the neutral position, the lines (I1G1),(I2−1G1),(I3−1G1)
the orientation of a normal vector on the surface of the distal
joint when the three fingers are in position to make a cylindrical
grasp and the lines (I1G1),(I2−2G2),(I3−2G3) the orientation of
a normal vector on the surface of the distal joint when the three
fingers are in position to make a spherical grasp. Points G1, G2,
G3 correspond to the point C (Figure 2) of each finger.

Depending on the shape of the objects to be grasped, the
posture of the fingers will be adjusted in a natural way. Springs
will allow the fingers to return to a neutral posture in the absence
of contact. Figure 4(a) depicts an example of the fingers positions
for the spherical grasp and the Fig. 4(b) the cylindrical grasp.

3 Stability analysis
We generalize to this new finger architecture, the under-

actuated finger stability theory used for planar fingers [11]. The
stability criterion is defined as f ≥ 0 where f is the vector of
the constraints of the finger phalanges on the gripping part. The
values of f is given by

f = J−tT−t t (5)

where J is the matrix of the torques on the degrees of freedom as
a function of the forces applied on the phalanges, T is the matrix
of the torque ratios of the transmission mechanism and t is the
vector of the input force applied by the actuator.

Now the matrices T and J are calculated in order to obtain
the expression f. In the following sub-sections the methodology
developed for planar under-actuated fingers [12] is followed to
extend it to the new proposed spatial architecture.

(a) (b)

FIGURE 4: (a) Spherical grasp and (b) cylindrical grasp

3.1 Matrix of the torques J

When picking up an object, contacts with the fingers can be
located in four places, two at the spherical mechanism, one at the
middle phalanx and one at the distal phalanx. Define the 4 forces
f1, f2, f3, f4 (see Figure 5) which apply to the points S1, S2, S3,
S4. k1, k2, k3, k4 and q3, q4 are the distances between these points
and the origin of the joints O1, O2, O6, O7. m1 and m2 are the
angles between the direction of the forces f1, f2 and the planes
(O2CO3) and (O4CO5) so that the forces f1, f2 are parallel to the
forces f3, f4 in the neutral position (home position).

By using spherical trigonometry [10], one gets

m1 =
1
2

acos

(
cos(η)− sin2 (α

2

)
cos2

(
α

2

) )

m2 =−
1
2

acos

(
cos(η)− sin2 (α

2

)
cos2

(
α

2

) )
(6)

To carry out the computations, define a frame located in the mid-
dle of point O2 and O3 at point P1 such that

−→
R1y =

−−→
P1O5 and

−→
R1z =

−→
P1C and a frame located in C such that

−→
R2z =

−−→
O2C and−→

R2x =
−→
R1x. The matrix J depends on the contact points of the
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C

FIGURE 5: Matrix of the torques J

finger

J =


Θ1
f1

Θ2
f1

0 0
Θ1
f2

Θ2
f2

0 0
Θ1
f3

Θ2
f3

Θ6
f3

0
Θ1
f4

Θ2
f4

Θ6
f4

Θ7
f4

 (7)

where Θ1, Θ2, Θ6, Θ7 are the torques along the joint axes O1,
O2, O6, O7 respectively. The ratios Θ7

f4
, Θ6

f4
, Θ6

f3
are calculated in

the same way as in the planar case [11]:

Θ7

f4
= k4

Θ6

f4
= k4− l2 cos(δ7 +θ7)

Θ6

f3
= k3 (8)

Furthermore, Θ2
f2

and Θ2
f1

can be calculated by using the formulae

of the spherical parallel mechanisms [9]

Θ2

f1
= k1 sin(m1)cos

(
α

2

)
Θ2

f2
=

Θ2

Θ5
k2 sin(m2)cos

(
α

2

)
(9)

Θ2

Θ5
=

sin(ρ)
sin(ρ−η)

with ρ the angle between the line (O2C) and the intersection of
planes (O2CO5) and (O3CO4) [9].

To evaluate Θ2
f3

and Θ2
f4

, we calculate the ratio of the speed at
the points of application of the forces to multiply them by their
components in the R2 reference frame.

Θ2

Θ3
=

θ̇3

θ̇2
=

sin(ρ ′)
sin(ρ ′−α)

(10)

where ρ ′ is the angle between the line (O2C) and the intersection
of the planes (O2CO3) and (O4CO5) [9]. Positions S3,S4 are
calculated in the R2 frame with

[S3x S3y S3z 1]t = Rotz(θ2)Rotx(α)

Rotz(θ3)Rotx(
η

2
)Transz(−z1)Roty(θ6)

Transz(k3)Transy(q3) [0 0 0 1]t (11)
[S4x S4y S4z 1]t = Rotz(θ2)Rotx(α)

Rotz(θ3)Rotx(
η

2
)Transz(−z1)

Roty(θ6)Transz(l2)Roty(θ7)

Transz(k4)Transy(q4) [0 0 0 1]t (12)

with, if 0 < θ2 < π

θ3 = −atan2 (B,A)+ acos
(

C√
A2 +B2

)
else : (13)

θ3 = −atan2 (B,A)− acos
(

C√
A2 +B2

)

with A = sin2 (α)cos(η)cos(θ2)− sin(α)sin(η)cos(α)

B = sin2 (α)sin(θ2)

C = (sin(α)cos(η)− sin(η)cos(α)cos(θ2))sin(α)
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The components of f3 and f4 expressed in R2 read as

[ f3x f3y f3z 1]t = Rotz(θ2)Rotx(α)Rotz(θ3)

Rotx(
η

2
)Roty(θ6)

[
1 0 0 0

]t (14)

[ f4x f4y f4z 1]t = Rotz(θ2)Rotx(α)Rotz(θ3)

Rotx(
η

2
)Roty(θ6)Roty(θ7)

[
1 0 0 0

]t (15)

Finally, the ratios Θ2
f3

and Θ2
f4

are calculated in R1

Θ2

f3
=

Ṡ3x

θ̇2
f3x +

Ṡ3y

θ̇2
f3y +

Ṡ3z

θ̇2
f3z (16)

Θ2

f4
=

Ṡ4x

θ̇2
f4x +

Ṡ4y

θ̇2
f4y +

Ṡ4z

θ̇2
f4z (17)

whereas the ratios Θ1
f3

and Θ1
f4

read as (in R1)

Θ1

f3
= (S3x f3z−S3z f3x)

Θ1

f4
= (S4x f4z−S4z f4x) (18)

The ratios Θ1
f1

and Θ1
f2

are given by (with the positions S1, S2 given
in the reference frame R1)

Θ1

f1
= (S1x f1z−S1z f1x)

Θ1

f2
= (S2x f2z−S2z f2x) (19)

with

f1x = sin(m1)cos(θ2)+ sin(θ2)cos
(

α

2

)
cos(m1)

f1z =
(

sin
(

α

2

)
cos
(

η

2

)
+ sin

(
η

2

)
cos
(

α

2

)
cos(θ2)

)
cos(m1)

− sin
(

η

2

)
sin(m1)sin(θ2)

S1x = −k1 sin
(

α

2

)
sin(θ2)

S1z = k1

(
−sin

(
α

2

)
sin
(

η

2

)
cos(θ2)+ cos

(
α

2

)
cos
(

η

2

))
f2x = sin(m2)cos(θ5)+ sin(θ5)cos

(
α

2

)
cos(m2)

f2z =
(

sin
(

α

2

)
cos
(

η

2

)
− sin

(
η

2

)
cos
(

α

2

)
cos(θ5)

)
cos(m2)

+ sin
(

η

2

)
sin(m2)sin(θ5)

S2x = −k2 sin
(

α

2

)
sin(θ5)

S2z = k2

(
sin
(

α

2

)
sin
(

η

2

)
cos(θ5)+ cos

(
α

2

)
cos
(

η

2

))

with, if 0 < θ2 : θ5 = −atan2 (B,A)− acos
(

C√
A2 +B2

)
else :

θ5 = −atan2 (B,A)+ acos
(

C√
A2 +B2

)

3.2 Matrix of torques ratios T
The behaviour of the actuating mechanism is given by the

matrix T, which can be written as follows The actuation mecha-
nism consists of four loops:

• A loop (Loop1) with five revolute joints (O2, O3, P6, V1,
P1). As input, this loop has two degrees of freedom But only
one if we consider the spherical mechanism. This DOF can
be modelled according to θ2. The output of the mechanism
can be modelled according to ψ1, ν1, ψ6. V1 is a virtual
link introduced in section 3.2.1. We therefore calculate three
torque ratios Γ1

Θ2
, N1

Θ2
and Γ6

Θ2
.

• A loop (Loop2) with four revolute joints (P5, P6, O6, O7) and
two ball and socket joints (P8, P7). As input, this loop has
three degrees of freedom mechanism that can be modelled
according to θ7,ψ6,θ6. The output of the mechanism can
be modelled according to ψ5. We therefore calculate three
torque ratios Γ5

Θ7
, Γ5

Γ6
and Γ5

Θ6
.

• A five-bar planar linkage (Loop3) (P2, P3, P4, P5, V1) which is
connected to the spherical mechanism by two revolute joints
P1 and P6 which are concurrent in the center of the spherical
mechanism C and inscribed in the plane perpendicular to the
links of the 5-bar planar mechanism. The joints (P1,P2) and
(P5,P6) are equivalent to an universal joint. This loop has two
degrees of freedom that can be modelled according to ν1,ψ5.
The output of the mechanism can be modelled according to
ψ2. We calculate two torque ratios Γ2

N1
and Γ2

Γ5
• An actuated prismatic joint P10 connect by two ball and

socket joint (P9, P11) and three revolutes (O1, P1, P2)
(Loop4). As input, this loop has three degrees of freedom
mechanism that can be modelled according to θ2,ψ1,ψ2.
The output of the mechanism is prismatic joint P10. We
therefore calculate three force ratios F10

Θ1
, F10

Γ1
and F10

Γ2
.

3.2.1 Virtual 2-DOFs mechanism (Loop1) A virtual
mechanism with two degrees of freedom (ν1, ψ1) is defined
(P1,V1,P6) to model the behaviour of the spherical mechanism on
the first stage of the finger actuating mechanism (P2,P3,P4,P5).
The link V1 is defined as coincident at point C and perpendic-
ular to the plane formed by the points P1,C,P6. The virtual
mechanism is connected to the point P6 located on the spheri-
cal mechanism. Depending on the values of θ2, the spherical
parallel mechanism admits two assembly modes, parallelogram
mode and anti-parallelogram mode. The first mode is used in the
finger movement and limits on the passive joints will be placed
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FIGURE 6: Virtual two-degree-of-freedom mechanism similar to
the parallel-spherical mechanism

to avoid the singularity of the mechanism and the change of as-
sembly mode. The direct kinematics of the virtual mechanism is
defined as

ν1 = acos

(
−P6y sin

(
η

2

)
+P6x cos

(
η

2

)
cos
(

η

2

) )
(20)

If P6y > 0 then : ψ1 =−acos

(
− P6z

sin(ν1)cos
(

η

2

))
else :

ψ1 = acos

(
− P6z

sin(ν1)cos
(

η

2

)) (21)

with P6 = [P6x,P6y,P6z]
t defined as a function of the design pa-

rameters and the angles of the spherical parallel mechanism [9]:

P6x = − (cos(η)+1)cos(α)

2
+

sin(α)sin(η)cos(θ3)

2

P6y =

((
cos2 (η)+1

)
sin(α)+ sin(η)cos(α)cos(θ3)

)
cos(θ2)

2

− sin(η)sin(θ2)sin(θ3)

2

P6z = −
((cos(η)+1)sin(α)+ sin(η)cos(α)cos(θ3))sin(θ2)

2

− sin(η)sin(θ3)cos(θ2)

2

Due to the symmetry of the spherical mechanism, we find

ψ1 =−ψ6. (22)

The torque ratio N1
Θ2

and Γ1
Θ2

can be now written as

N1

Θ2
=−asin

(
Ṗ6x cos

(
η

2

)
− Ṗ6y sin

(
η

2

)
cos
(

η

2

) )
(23)

if P6y > 0:

Γ1

Θ2
=

Γ6

Θ2
=− N1P6z cos(ν1)− Ṗ6z sin(ν1)

sin2 (ν1)cos
(

η

2

)√
− P2

6z
sin2 (ν1)cos2 ( η

2 )
+1

(24)

else :
Γ1

Θ2
=

Γ6

Θ2
=

N1P6z cos(ν1)− Ṗ6z sin(ν1)

sin2 (ν1)cos
(

η

2

)√
− P2

6z
sin2 (ν1)cos2 ( η

2 )
+1

(25)

based on the velocity of P6:

Ṗ6x

θ̇2
= −z1((−θ̇3 sin(θ2)sin(θ3)cos(α)+ θ̇3 cos(θ2)cos(θ3)

− sin(θ2)sin(θ3)+ cos(α)cos(θ2)cos(θ3))sin(
η

2
)

+ sin(α)cos(
η

2
)cos(θ2)) (26)

Ṗ6y

θ̇2
= −z1((θ̇3 sin(θ2)cos(θ3)+ θ̇3 sin(θ3)cos(α)cos(θ2)

+ sin(θ2)cos(α)cos(θ3)+ sin(θ3)cos(θ2))sin(
η

2
)

+ sin(α)sin(θ2)cos(
η

2
)) (27)

Ṗ6z

θ̇2
= −z1θ̇3 sin(α)sin(

η

2
)sin(θ3) (28)

3.2.2 Evaluation of Γ5/Θ7 (Loop2) The mechanism
formed by the joints (07,P8,P9,P5,P6,06) is a three degrees of
freedom mechanism that can be modelled according to θ7,ψ6,θ6.
The angles θ7, θ6 are degrees of freedom corresponding to the
movements of the intermediate and distal phalanges and the an-
gle ψ6 is related to the motions of the spherical parallel mech-
anism θ2 by Eqs. (22) and (21). Θ7 is the torque in the joint 07
and Γ5 is the torque in the link P5, to calculate the torque ratio
Γ5
Θ7

, we define RSSR mechanism with one degree of freedom [13]
with four joints (07, P8, P9, P5). The joints P6 and 06 are defined
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FIGURE 7: Mechanism RSSR

in the matrix MO75 of Eq. (29) of transfer between links (07, P5).

MO75 =


s11 s12 s13 X01
s21 s22 s23 Y01
s31 s32 s33 Z01
0 0 0 1

 (29)

=


−cos(θ6) −sin(θ6)cos(ψ6) sin(ψ6)sin(θ6) l2

sin(θ6) −cos(ψ6)cos(θ6) sin(ψ6)cos(θ6) 0
0 sin(ψ6) cos(ψ6) 0
0 0 0 1


The torque ratio Γ5

Θ7
can be now written as

Γ5

Θ7
=

d′ cos(ψ5)+ e′ sin(ψ5)− f ′

d sin(ψ5)− ecos(ψ5)
(30)

with d′ = 2a2c2s11 sin(θ7) − 2a2c2s21 cos(θ7), e′ =
2a2c2s12 sin(θ7)−2a2c2s22 cos(θ7), f ′ =−2X01c2 sin(θ7), and
where ψ5 is the angle between

−→
P5C and

−−→
P5P7 as defined as

following

ψ5 = atan2 (e,d)− acos
(

f√
d2 + e2

)
(31)

with d = −2a2c2s21 sin(θ7) + 2a2s11 (X01− c2 cos(θ7)), e =
−2a2c2s22 sin(θ7) + 2a2s12 (X01− c2 cos(θ7)) and f = −X2

01 +
2X01c2 cos(θ7)−a2

2 +b2
2− c2

2.

3.2.3 Evaluation of Γ5/Θ6 (Loop2) In a similar way,
to calculate Γ5 according to Θ7, we calculate torque ratio Γ5

Θ6
,

where Θ6 is the torque in the joint 06. We define the RSSR
mechanism with one degree of freedom [13] with for joints
(06,P8,P9,P5). The joint P6 is defined by the matrix MO65
Eq. (32) of transfer between links 06,P5.

MO65 =


1 0 0 0
0 cos(ψ6) −sin(ψ6) 0
0 sin(ψ6) cos(ψ6) 0
0 0 0 1

 (32)

We introduce two new variables θ ′6, l′2 associated with the links
(06, P8).

l′2 =
√

c2
2−2c2l2 cos(θ7)+ l2

2 (33)

if π < θ7 < 2π :

θ
′
6 = acos

(
l2
2 +(l′2)

2− c2
2

2l2l′2

)
else :

θ
′
6 = −acos

(
l2
2 +(l′2)

2− c2
2

2l2l′2

)
(34)

The torque ratio Γ5
Θ6

can be now written as

Γ5

Θ6
=
−d′ cos(ψ5)− e′ sin(ψ5)

d sin(ψ5)− ecos(ψ5)
(35)

with d′= 2a2l′2 sin
(
θ6 +θ ′6

)
, e′=−2a2l′2 cos(ψ6)cos

(
θ6 +θ ′6

)
,

d =−2a2l′2 cos
(
θ6 +θ ′6

)
and e =−2a2l′2 cos(ψ6)sin

(
θ6 +θ ′6

)
.

3.2.4 Evaluation of Γ5/Γ6 (Loop2) In a similar way,
to calculate Γ5 according to Θ7, we calculate Γ5

Γ6
, where Γ6 is the

torque in the joint P6 Eq. (25). We define the RSSR mechanism
with one degree of freedom [13] with for joints (P6,P8,P9,P5).
The the matrix MP65 Eq. (36) is matrix of transfer between links
P6,P5.

MP65 =


0 −1 0 0
0 0 −1 0
1 0 0 ZP6P8
0 0 0 1

 (36)

We introduce two new variables ZP6P8, l′′2 associated with the
links (P6, P8).

l′′2 = c2 sin(θ6 +θ7)− l2 sin(θ6) (37)
ZP6P8 = c2 sin(θ6 +θ7)− l2 sin(θ6) (38)

7
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FIGURE 8: Mechanism RSSR Γ5(Γ6)

The torque ratio Γ5
Γ6

can be now written as

Γ5

Γ6
=

de′

d2 + e2 −
d′e′ f

(d2 + e2)
√

d2 + e2− f 2
(39)

with d′ = 2a2l′′2 cos(ψ6), e′ = −2a2l′′2 sin(ψ6), d = 2ZP6P8a2,
e = 2a2l′′2 cos(ψ6) and f =−Z2

P6P8−a2
2 +b2

2− (l′′2 )
2.

3.2.5 Evaluation of Γ2/Γ5 and Γ2/N1 (Loop3) The
joints (P5, P4, P3, P2, V1) form a closed loop with two degrees of
freedom (Figure 9). ν1 is linked to the movements of the spher-
ical mechanism θ2 by Eq. (20) and ψ5 is calculated in Eq. (31).
To calculate the torque ratio Γ2

Γ5
, we define the 4R mechanism [9]

plane with for the articulations (P5,P4,P3,P2).
To do this, we define three new variables: l′1 distance be-

tween P5,P2, ψ ′5 the angle between
−−→
P5P7 and

−−→
P5P2 and z1 distance

between CP1 and CP5

z1 =
l1 cos

(
η

2

)
2sin

(
α

2

) (40)

We deduce from this

l′1 = 2z1 cos
(

ν1

2

)
(41)

with ν1 defined in Eq. (20)

ψ
′
5 =−

ν1

2
−ψ5 (42)

C

FIGURE 9: Actuation coupling mechanism

The angles ψ4 are written as a function of ψ ′5

ψ4(ψ
′
5) = atan2 (B,A)− acos

(
C√

A2 +B2

)
(43)

with A(ψ ′5)= 2b1c1−2b1l′1 cos
(
ψ ′5
)
, B(ψ ′5)= 2b1l′1 sin

(
ψ ′5
)

and
C(ψ ′5) = a2

1−b2
1− c2

1 +2c1l′1 cos
(
ψ ′5
)
− (l′1)

2.
The torque ratio Γ2

Γ5
can be now written as

Γ2

Γ5
=

h2

h2 + l′1
(44)

with h2 =−
c1 sin(ψ4)

sin
(
ψ4 +ψ ′5

)
To calculate the torque ratio Γ2

N1
, we define the 4R mecha-

nism [9] plane with for the articulations (V1,P4,P3,P2). To do
this, we define three new variables: c′1 distance between V1,P4,
ν ′1 the angle between

−−→
V1P4 and

−−→
V1P2 and ψ ′4 the angle between

−−→
P4V1 and

−−→
P4P3

c′1 =
√

c2
1−2c1z1 cos(ψ6)+ z2

1 (45)

ν
′
1 = −ν1− acos

(
−c2

1 +(c′1)
2 + z2

1
2c′1z1

)
+π (46)
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The angle ψ ′4 as a function of ν ′1 is defined

ψ
′
4(ν
′
1) = atan2 (B,A)− acos

(
C√

A2 +B2

)
(47)

with A(ν ′1) = 2b1c′1− 2b1z1 cos(ν ′1), B(ν ′1) = 2b1z1 sin(ν ′1) and
C(ν ′1) = a2

1−b2
1− (c′1)

2 +2c′1z1 cos(ν ′1)− z2
1.

h1 =−
c′1 sin(ψ ′4)

sin
(
ν ′1 +ψ ′4

) (48)

The torque ratio Γ2
N1

can be now written as

Γ2

N1
=− h1

h1 + z1
(49)

The angles ψ2 and ψ ′2 are calculated to allow the calculation of
the force on the actuator.

ψ2(ψ
′5) = ψ

′
2(ψ

′
5)−

ν1

2
(50)

ψ
′
2(ψ

′
5) = atan

(
B
A

)
− acos

(
C√

A2 +B2

)
(51)

with A(ψ ′5) = 2a1c1 cos
(
ψ ′5
)
− 2a1l1, B(ψ ′5) = 2a1c1 sin

(
ψ ′5
)

and C(ψ ′5) = a2
1−b2

1 + c2
1−2c1l1 cos

(
ψ ′5
)
+ l2

1 .

3.2.6 Actuating loop (Loop4) Finger actuation is
done with the prismatic link P10 which is connected to two ball-
and-socket joints P9 and P11. The distance between P9 and P11 is
named d0 , where a0 and c0 are the lengths between P9 and O1,
P11 and 01, respectively.

d0 =√
a2

0 +2a0c0(sin(ψ2)sin(θ1)cos(ψ1)+ cos(ψ2)cos(θ1))+ c2
0

We derive d0 according to ψ2, ψ1 and θ1 to obtain F10
Γ2

, F10
Γ1

, F10
Θ1

where F10 is the force produced by the actuator.

F10

Γ2
=

a0c0 (sin(ψ2)cos(θ1)− sin(θ1)cos(ψ1)cos(ψ2))

d0

F10

Γ1
= −a0c0 sin(ψ1)sin(ψ2)sin(θ1)

d0

F10

Θ1
=

a0c0 (sin(ψ2)cos(ψ1)cos(θ1)− sin(θ1)cos(ψ2))

d0

Actuator

C 

FIGURE 10: Actuating loop (Loop4)

3.2.7 Evaluation of matrix T From the previous re-
sults, it is now possible to write the matrix T as follows

T =


−F10

Θ1
−F10

Θ2
− Γ2

Θ6

Γ2
Γ5

F10
Γ2
− Γ5

Θ7

Γ2
Γ5

F10
Γ2

0 1 0 0
0 0 1 0
0 0 0 1

 (52)

where F10
Θ2

=
(

Γ1
Θ2

F10
Γ1

+ N1
Θ2

Γ2
N1

F10
Γ2

+ Γ6
Θ2

Γ5
Γ6

Γ2
Γ5

F10
Γ2

)
consists of

three terms because when the parallel spherical mechanism
moves, it influences all the loops of the mechanism.

3.3 Input-output analysis for stability analysis
The input force t = [ f10 0 0 0]t is defined by the action

forces with the return springs are neglected and the output forces
f = [ f1 f2 f3 f4]

tare defined by the contact forces applied by
the finger to the object . Stable configurations can be found in
Fig. 11 with Tab. 1. The movement θ2 causes limited variation in
strength f1 where θ1, θ7 (See Eq. (4)) and m1, m2 (See Eq. (6))
are in home position.

4 Conclusions
The main contribution of this article is a new kinematics al-

lowing complex grasps with a spatial under-actuated mechanism.
A spherical parallel mechanism has been added to the classical
under-actuated fingers in order to adjust the fingers from a neu-
tral position to a spherical or cylindrical grasp. The stability of

9



FIGURE 11: Stability condition for f1 (N) versus θ2 and θ6 [rad].

TABLE 1: Design parameters

l1 l2 l3 a0 a123 bi c0 c123

61 41 38 100 38 58 28 16

k12 k3 k4 qi δ7 α η f10

l1/2 l2/2 l3/2 0 π/2 85deg 40deg 1 N

this new robotic hand was analysed using two Jacobian matrices.
Compared to the modelling of planar under-actuated fingers, new
components have been added to the Jacobian matrix. The con-
tact surfaces are simplified by point contacts. In this article, the
interaction between the different fingers to allow a stable grip is
not studied and will be the subject of further work. Future work
will also be carried out to optimize the design parameters of the
fingers for a family of parts from industry.
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