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Abstract
Pricing or regulatory works done by actuaries incorporate more and more external data provided
by data providers. The reliability of these external data needs to be examined, since all aspects
of regression are impacted by data quality. Therefore, actuaries as others modellers need to deal
with this notion of quality. This paper studies the impact of data credibility on GLMs. This latter
is measured by an exogenous and individualized quality index. Under a simple hypothesis that
inconsistent data have the same distribution as consistent data, this paper proposes a method to
find the true impact of a variable on the predictor. Under several assumptions, this method adapts
the prediction depending on each data quality. Operational remarks and actuarial applications
illustrate the creation and the use of quality indexes.
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1. Introduction8

Actuarial pricing was traditionally limited by the number of variables used and their9

complexity. Indeed, variables available to actuaries stem from the underwriting process.10

The potential client has a limited knowledge and amount of time to answer the question-11

naire. To offset this problematic and improve the risks’ knowledge, insurance companies12

use external data, for which its reliability is debatable. External data come from a third13

party for which the users do not have the ability to infer in the data creation process. Its14

reliability depends on each observation within a same variable. Indeed, often gathering15

processes aggregate data sets from various sources with heterogeneous quality. Legally,16

insurers’ entities are responsible for the data quality (articles 219, 237, 244, 245, 247 from17

Solvency II Commission Delegated Regulation (EU) 2015/35). Their works must assess18

and justify the data quality even if they are coming from a third party : ’Data used in the19

internal model obtained from a third party shall not be considered to be appropriate unless the20

insurance or reinsurance undertaking is able to demonstrate a detailed understanding of those data,21

including their limitations’, article 237. In France, the French Prudential Supervision and22

Resolution Authority, ACPR, [1, ACPR 2011] states that 10% of the data are coming from23

external parties. The data quality does not have a negligible impact as illustrate Campbell24

[3, Campbell et al., 2006] relating several actuarial examples. Therefore, actions must be25

triggered to assess and to take into account the data quality problematic. These different26

notions of quality have already been discussed for actuarial purposes in exploratory cases27

on the North American side ([7, Francis, 2005]) or on the UK side [3, Campbell et al., 2006]28

for instance. To the best of our knowledge, advices to take into account data quality are29
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still very qualitative ([8, GCASB, 2014]) such as basic recommendations : deleting, imput-30

ing or correcting the problem. These solutions will be discussed but are not sufficient.31

Models depend on observations’ quality and the latter can be represented by quality32

indexes given by the data provider. How can an individualized and exogenous quality33

index be used for predicting ?34

Literature suggests a multiple dimension analysis to evaluate data quality ([21,35

todoran, 2014]). For instance, the completeness dimension of data is a research field36

where numerous methods were developed to deal with missing values ([23, Van Buuren,37

2018], [14, Little and Rubin, 2019]). These methods are globally based on assumptions38

such as MCAR (Missing Completely At Random), MAR (Missing At Random) or MNAR39

(Missing Not At Random). In the present paper, the credibility dimension will be studied40

further. On the mismeasurement side of uncertainty dimension, some works exist using41

trees algorithm ([22, Trabelsi et al., 2016], [20, Tami et al. 2018]) or the EIV-mismeasurment42

([24, Van Huffel and Lemmerling, 2013]) framework. On the credibility side of uncer-43

tainty dimension, robust estimation theory as RANSAC (RANdom SAmple Consensus,44

[6, Fischler and Bolles, 1981]) algorithm and its different extensions such as KALMANSAC45

[25, Vedaldi et al., 2005] deal with outliers and inliers mostly used for computer vision.46

The downside of these methods is the left-aside observations for which no prediction can47

be made. It would be operationally inconceivable that some contract may not be priced.48

In our framework, the credibility of observations is quantified and called quality index.49

It is assumed to be perfectly measured. Observations’ uncertainty is modelled by a latent50

variable model. In this work, quality indexes are exogenous, individualized and equal51

to the probability that the observation is the true one. Indeed, this framework derives52

from works with a data provider. In different works, the data provider delivers data and53

quality indexes associated to it. The goal was to price household insurance contracts54

using building geolocation and external data. During this work, it was clear that the55

given quality indexes were evaluating the credibility of each observation more than its56

precision. These quality indexes are exogenous (given by the data provider) and the57

framework and assumptions developed in this paper arise from this case.58

The main assumption is that wrong observations have the same distribution as the59

empirical one. Under this assumption,[4, Chatelain and Milhaud , 2021] considers the60

case of a basic linear regression and the correlation matrices. Because GLM are preferred61

in insurance industry, this paper will study the GLM cases through the likelihood. The62

goal is to give a precise answer to the following question. Given an individualized63

quality index (here based on credibility dimension), how can this quality index be used64

in a multivariate GLM ? How could actuaries set up a pricing model with a variable65

having quality problems?66

Contributions :This paper presents two main contributions. First, it shows how to take67

into account quality indexes in a GLM regression. Next, several operational and practical68

remarks are given to help the creation and the use of quality indexes.69

Outline of the paper : The paper is built as follows: in the section 2, the general frame-70

work and the notation are introduced. This work specifies how uncertainty is integrated71

in the covariate generating process. Section 3 gives the main algorithm and theoretical72

results. Hereafter, a simulation study illustrates the results in the section 4. Next, section73

5 brings close the different assumptions to actuarial uses. In detail, subsection 5.4 and74

5.3 discuss the use of quality indexes and the case of imperfect data quality indexes. All75

these remarks are illustrated by a practical case on household insurance.76
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2. Data problems and imputation77

2.1 Notations78

The set of all n−m matrices where all its element are in the interval I is denotedMn×m(I).79

p represents the number of variable without the intercept and n the number of rows. Data80

are important :81

• X= (Xi j) ∈Mn×(p+1)(R) : the data set available with data quality problems i.e.82

observed covariates ;83

• Xreal = (Xreal
i j ) ∈Mn×(p+1)(R) : the data set, in practice not available , corresponding to84

the ”real” observations.85

We want to take advantage of the exogenous information provided by an individualized86

quality index related to the confidence we can have about the i− th observation of the87

j− th covariate, further denoted Qi j.88

In this view, we introduce the following latent variable model :

X=Xreal
◦Ω+Z ◦ (Jn,(p+1) −Ω), (1)

where :89

• ◦ corresponds to the Hadamard product,90

• Jn,(p+1) is the n× (p+ 1)-identity matrix under Hadamard multiplication,91

• Z= (Zi j) ∈Mn×(p+1)(R) are considered as the “wrong” covariate values having the92

same distribution as Xreal,93

• Ω= (ωi j) ∈Mn×(p+1)({0, 1}) is a binary mask indicating whether the i− th observation94

of the j− th covariate Xi j is perfectly observed or not. In other words, Ω tells us95

if one observes the “real” observation or not. Assume that covariates distribution96

have second moment finite.97

In practice, the data at disposal are made of individualized quality indexes through some
matrix Q= (Qi j) ∈Mn×(p+1)([0, 1]), together with n i.i.d replications (Yi,Xi)i=1,..,n of (Y,X),
where Yi ∈R and Xi = (1,Xi1, ...,Xip) ∈Rp+1. The vector of quality indexes of the i-th row is
written Qi = (1,Qi1, ...,Qin). A vector of specific values’ quality indexes is called a quality
pattern. Each element Qi j of the matrix Q informs us on the quality related to the observed
covariate value Xi j. Let use that Q is the expectation of Ω, leading to define the quality
index as a credibility index. This means that for all i= 1, ..., n, j= 1, ..., p the quality index
Qi j is equal to :

Qi j =E(ωi j)=P(ωi j = 1)=

P(Xi j =Xreal
i j ) if X j is continuous variable,

P(Xi j =Xreal
i j )−P(Xreal

j =Xreal
i j ) if X j is discrete variable.

(2)
The quality index corresponds to the probability to have taken not the ”right” but the98

”real” observation. For a discrete variable, the part ”−P(Xreal
j =Xreal

i j )” corresponds to99

the probability to get the true value randomly. In other words, Qi j = 0 means that the100

value Xi j is not informative on the risk of i. Denote for the rest of the paper ( j= 1, ..., p),101

Q̄ j =
1
n
∑n

i=1 Qi j and assume Q̄ j , 0. This assumption is not restrictive, especially for real-life102

applications where such covariates would simply be removed from the data. However,103

it does not mean that an individual having all quality indexes null does not exist.104

In this framework, the singularity is that Xreal is not fully observed, which has105

consequences on the estimation of the regression coefficients.106
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2.2 Inapplicability of basic recommendations107

The basic recommendations proposed by different actuarial works on deleting and108

imputing new values on ”wrong observations” are not viable solutions for this109

framework.110

Figure 1: An univariate example where black squares are the real observations and crosses
are the observed values. This graph is based on simulated data with X ∼ Γ(1, 2) and
Y = 10+ 1X, Q follows an uniform distribution between 0.2 and 1. The data set X is
created with the previous framework defined in subsection 2.1. Two linear regressions
are fitted; one on the real data set Xreal and the other one on the observed dataset X. Two
points are highlighted : a real point which could be considered as an outlier and a wrong
value which could be considered as an inlier.

Imputating: Let consider the strategy to impute new values on outliers or low qual-111

ity observations1. Defining outliers in the multivariate case when the others covariates112

are not good quality is difficult. This is even more true in actuarial pricing where the113

outcome to model - claim cost, claim frequency, retention rate ..., has an intrinsic vari-114

ability. Without taking into account exogenous information, robust estimation theory as115

RANSAC (RANdom SAmple Consensus, [6, Fischler and Bolles, 1981]) algorithm and its116

different extension have been developed using only a subsample of ”real observation”117

(inliers) in modelling. Straightforwardly, in our framework, the data quality influences118

the definition of outliers for a regression, as shown in Figure 1. Indeed, the outliers’119

detection is bias due to the data set’s quality. In that situation, some perfectly observed120

observations may be defined as outliers and the goal is also to predict values for indi-121

vidual with wrong observation(s). In the multivariate case and with variance outcome122

increasing, the definition of an outlier is operationally even more complex to deal with.123

For instance, in our framework, if (Xi,1,Xi,2) is defined as an outlier, is Xi,1 or Xi,2 or both124

wrong ?125

Deleting: Given a data set and its joint quality index, a naive workaround of deleting126

low quality observations could be done. An easy one is to choose a threshold on the quality127

indexes and delete individuals having one of their quality indexes below. This solution128

can hardly be done with some low quality data or for highly dimensional datasets.129

1Outliers detection and influential values have been studied for instance by [9, Hadi, 1991]) or [5, Cook, 1977].
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Indeed, this latter issue was exemplified by [26, Zhu and al., 2019]. With an independent130

probability of a value missing equals to 0.05 and 300 covariates, this deleting approach131

would suppress 95% of the data set.132

For our framework, let assume assumptions similar to Zhu et al. 2019 [26], i.e. in133

the case of complete independence of quality and observations2. Assume all the quality134

indexes independently distributed as an Uni f orm(0.4, 0.8). Not only the low quality of135

the data implies a small threshold, but the different observations would highly range136

around the mean value. For a threshold of 0.5 and 10 variables defined as before, only137

6 % rows would have all its covariates above the threshold in average. Besides, errors138

can be correlated spatially and this filtering process may bias the portfolio risks. For139

open data used in household insurance, this is in particularly true for urban area zones140

: covariates have often lower quality in rural areas. In short, filtering strategies are not141

optimal. Finally, neither imputing nor deleting are correcting the impact of quality on142

models.143

2.3 An illustrative example144

Exposure X1 X2 X3 Q3 Y Premium
0.6 45 2 454 0.8 350 ?
1 30 3 1000 0.6 0 ?
1 43 2 2500 0 2450 ?

0.2 61 6 245 0.7 0 ?
1 53 3 723 1 - ?
1 53 3 723 0.5 - ?

Table 1. : The four first lines exemplifies a training dataset and the two last lines a testing
data set.

Let consider a simple example : the explanatory variables, (X1,X2,X3) and Y. Here, only145

the last variable X3 has an associated individualized quality index Q3 where Q3 ∈ (0, 1).146

Each Xi;3 observation has a quality index Qi;3 associated which is between 0 and 1 - 1 being147

an observation of perfect quality and 0 the worst one. The table 1 represents a dummy148

example. Here, X1 refers to occupant age in year, X2 to the number of rooms and X3149

house value in £ per m2. Arbitrary, Y could be the annual claims amount. From a training150

data set with an imperfect variable, how can actuaries predict the future mean claim cost151

knowing perfectly a value or in a more general knowing imperfectly a value ? Here, both152

last individual have the same observed characteristics but not the same quality index.153

How should the premium differ ?154

First, the index can not be used as a weight in a multivariate regression. Indeed, the use155

of weights may bias the regression and does not correct the impact of quality. Secondly,156

table 1 displays another problematic : if an actuary fits a model with medium quality157

observations, how should he adapt its prediction for observations for which the covariate158

value is perfectly known or unknown ?159

In our framework, quality indexes are associated to values between 0 and 1 as shown160

in example 1. In real-life application, quality indexes are exogenous information given161

by the data provider and take qualitative values such as ”very high”, ”high”, ”medium”,162

2From the notations used in this paper: (C1) with the assumptions (X-A1) and (Z-A1).
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”low”, ”very low”. To overcome this issue, the last section shows how to associate a value163

to a quality index modality using our theoretical framework.164

2.4 Frameworks under study165

Several assumptions are looked through. They are linked with Rubin’s nomenclature [17,166

Rubin, 1976], yet contested by [19, Seaman, 2013]. From the equation (1), different cases167

can be investigated depending on the correlation structure of (Xreal,Z,Ω). Let consider168

the four following situations resumed in the Figures 2a, 2b, 2c, 2d. These cases depend169

only on the type of collection of each variable. Suppose that the information brought to170

the predictor from Z is not distinct from Xreal; Z is informative only through it correlation171

with Xreal on Y.172

Ω j

Xreal
j Z j

Ωk

Xreal
k Zk

⊥⊥

No Hyp No Hyp

⊥⊥ ⊥⊥

⊥⊥

⊥⊥

⊥⊥

⊥⊥

(a) Case (C1) - Total uncertainty ( j, k). (No Hyp)
means No hypothesis.

Ω j

Xreal
j Z j

Ωk

Xreal
k Zk

⊥⊥ iff Xreal
j ⊥⊥Xreal

k

No Hyp No Hyp

⊥⊥ ⊥⊥

⊥⊥

⊥⊥

⊥⊥

⊥⊥

(b) (C2) - Local imprecision with unrelated errors.

Ω j

Xreal
j Z j

Ωk

Xreal
k Zk

⊥⊥ if Xreal
j ⊥⊥Xreal

k

No Hyp No Hyp

⊥⊥ ⊥⊥

⊥⊥

Dependent

⊥⊥

⊥⊥ if Xreal
j ⊥⊥Xreal

k

(c) Case (C3) - Imprecision ( j, k).

Ω j

Xreal
j Z j

Ωk

Xreal
k Zk

No Hyp

No Hyp No Hyp

No Hyp No Hyp

No Hyp

No Hyp

No Hyp

No Hyp

(d) Case (C4) ( j, k).

Figure 2: Cases studied.
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These assumptions can be linked with the missing value theory. For instance, the173

MCAR assumption ([17, Rubins 1976], [10, Heitjan and Basu, 1996]) can be seen as a174

particular case of the statement (C1) when the quality indexes are equal either to 0 or to175

1. The multivariate independency between variables suggests that the errors are inde-176

pendent. In other words, each observation of each variable is gathered from different and177

unrelated sources or with unrelated errors. In the same way, MAR assumption is a par-178

ticular case of (C2) and (C3). Indeed, it corresponds to some dependence between quality179

indexes/missing observations. In the case (C3), the wrong values Z j are correlated to the180

real values Xreal
j . A particular case is when (Z j −Xreal

j ) follows a centred distribution and is181

related to mismeasurement theory. The last case (C4) is closely linked to MNAR setting,182

where some dependence exists between each variable. In most of the cases encountered,183

Ω depends on specific values of Xreal. Therefore, the wrong values Z can depend on the184

real values Xreal; the errors are informative, which make the analysis more complex. The185

different cases are discussed in section 5.186

Remark 2.1. A discrete variable is considered a sum of boolean variables in regression. In between187

these boolean variables, the quality variables are equal. Hence, the case (C2) with fully correlated188

quality variables is a necessary assumption.189

3. Estimation Process190

3.1 Reducing the error by mitigating on quality pattern191

In this work, X is governed by the underlying process generating the covariates, as in
the equation (1). In linear regression, the solution β̂ minimizes the Residual Squared
Error (RSE) calculated on the dataset X. In GLM regression ([15, Nelder and Wedderburn,
1972]), it is the mean deviance (1/n)Dev(β̂|X,Y) calculated on the dataset X which is
minimized. Our particular framework enables to group two individuals i and i′ having
the same quality indexes (i.e. Qi =Qi′ ), which defines a quality pattern. Denote P(Q) the
set of all quality patterns present in the data. By taking it into account, the cost metric can
be improved since

(1/n)Dev(β̂|X,Y)≥ (1/n)
∑

K∈P(Q)

∑
i\Qi=K

Dev(β̂K
|Xi,Yi), (3)

where β̂K is the solution found on subset of the data with quality pattern K. The strategy192

to calculate these different coefficient is introduced in Section 3.2.193

3.2 Prediction using quality index194

This section studies in the sequel GLM given by

E[Y |Xreal]= g−1(Xrealβ),

and the likelihood associated L(β; Y|Xreal) using the real data set Xreal 3.195

In most cases, the previous model is unknown in our framework. Hereafter, this model196

is called ”Real” model.197

Denote the following naming :198

3See the subsection 3.5 and the appendices.
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• M2 (”Naive” model) : Model fitted on the observed dataset X:

E[Y|X]= g−1(XβM2 ),

where β̂M2 the solution of ArgmaxβLM2 (β; Y|X). When LM2 (β; Y|X) is estimated199

using Xreal and Q, denote it LM2(β; Y|Xreal,Q). Let write β̂M2 |Xreal,Q the solution of200

ArgmaxβLM2 (β; Y|Xreal,Q).201

• M1 (”Perfect quality” model): Model fitted on the observed dataset X which
estimates the coefficient of the real model, β:

E[Y|X,Q= Jn,p+1]= g−1(XβM1 ).

In our framework, denote the solution β̂ the solution of ArgmaxβL(β; Y|Xreal) and202

β̂M1 is the solution of ArgmaxβLM1 (β; Y|X,Q) defined in the section 3.6. L(β; Y|Xreal)203

can not be determined in practice, since Xreal is not fully observed;204

• M3 (”Pattern-adjusted” models): based on X andQ, obtained from Algorithm 3 the
models depend on each quality pattern:

E[Yi |Xi, K = (Qi j)1≤ j≤p]= g−1(Xiβ
K),

where K denotes the quality pattern associated to the individual i. In this work,205

notice that when Q= Jn,1K, β̂M2 estimates βK.206

For all the proofs, the variables are supposed centred.207

3.3 Algorithm 3 for linear regression and GLM208

For linear regression

Y,X,Q

I.a β̂M2 = f (X,Y)

I.b Σ̂ induce by X

II.Σ̂real = f (Σ̂,Q).

III. β̂M1 using β̂M2 , Σ̂real and Σ̂

IV. For given a quality pattern Qi =K ∈
P(Q), each individual i, Xi :

IV.a β̂K using β̂M1 , Σ̂real,K

IV.b Prediction of Yi using β̂K and Xi

For GLM

Y,X Q Y,Xreal

log(LM2 (β; Y|X)) i.a log(LM1 (β; Y|X,Q))

Maximization: β̂M2 i.b Maximization: β̂M1

ii. For given a quality pattern Qi =K ∈
P(Q), each individual i, Xi :

ii.a (Linear approximation): β̂K using
β̂M1 , Σ̂real and K

ii.b Prediction of Yi using β̂K and Xi

ii.a.bis log(LM2 (β; Y|Xreal,Qi))

Maximization : β̂K =

β̂M2 |Xreal,Qi

Figure 3: Process to take into account the quality index for linear regression and an approx-
imation for GLM log-Poisson. In this way, this process adjusts the coefficient to each
quality pattern.

For linear regression (see [4]), the algorithm associated with the Model M3 is displayed209

in Figure 3. First, it assesses the Naive model M2 from X. Using the quality index Q and210
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the empirical correlation matrix Σ̂, an estimator of the ”perfect quality” correlation matrix211

Σreal is evaluated (see A.1). β̂M1 is evaluated thanks to β̂M2 and Σreal. Finally, the algorithm212

provides β̂K which minimizes the Residual Squared Errors for each pattern of quality K.213

Using β̂K, predictions depend on the characteristics of each individual and its quality.214

For GLM regression, a similar method is suggested. To that end, the likelihood will be215

studied in place of the correlation matrix. However, the algorithm M3 can not be applied216

as easily. No closed formula exists to link βM2 with β. Therefore, this work proposes to217

find βM1 - an estimator of β by maximizing an estimator of real model likelihood using218

Q and X (see section 3.6). Once β̂M1 determined, I propose to use a linear correction to219

estimate β̂K. This approximation works well for small values of β (see section 4.2).220

In the event that Xreal is known, or a large enough sample X is perfectly observed, β̂K
221

could be directly estimated from the maximization of the likelihood LM2 (β; Y|Xreal,Q=222

Jn,1K) (see section A.3). If the correlation structure of Xreal is the same as X one, another223

solution would be to simulate a new Ynew using X and β̂M1 to apply an estimator proposed224

in the subsection 3.6.225

3.4 Assumptions under study226

Assume that each covariate distribution has a finite second-order moment, and recall227

that Z j ∼Xreal
j for j= 1, ..., p. Here, the discussion is about the assumptions underlying the228

correlation structure between the covariates Xreal, as well as for the random variables Z.229

Let us thus define the five following assumptions:230

(X-A1) All the random variables Xreal
j ( j= 1, ..., p) are independent.231

(X-A2) Each variable Xreal
j is correlated with only one variable Xreal

k ( j, k).232

(X-A3) For all k, p, the variable Xreal
k is independent of Xreal

p and Q̄k = 1.233

(Z-A1) All the random variables Z j and Zk are independent.234

(Z-A2)(Z j,Zk) has the same correlation structure than (Xreal
j ,X

real
k ), j, k.235

For GLM, correlation between imperfectly observed covariates, such as (X-A2) are not236

considered. However, for linear regression, (X-A2) is taken into account in [4]. When the237

assumption (X-A3) is studied, denote X(∗p) = (1,X1; · · · ; Xp−1) and it’s observed sample238

Xi;(∗p). In the same way, β(∗p) refers to (β0, · · · , βp−1).239

Remark 3.1. The choice of the correlation structure of Z depends only on the data. Based on240

the same extraction and on the same key (e.g. geocoding), the correlation between two Zi, Z j241

will be similar to Xreal
i , Xreal

j ones for i, j and i, j ∈ {1, ..., p}. In this case, (Z-A2) would be more242

appropriate. For errors completely independent, (Z-A1) would be preferred. In some other cases,243

the correlation structure might also differ, leading to different assumptions on Z dependency244

structure.245
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3.5 The likelihood of the model with quality index246

For actuarial pricing, most of the model used are GLMs. In the GLM case, the set of
coefficient β= (β0, ..., βp)T is found by maximizing the likelihood or log-likelihood (ML-
Maximum likelihood)4;

Argmax
β∈Rp

L(β; Y|X)=Argmax
β∈Rp

n∑
i=1

log( fY(Yi|Xi; β)), (4)

where L is the likelihood function of the outcome Y given X and β and fY is the density247

function of Y.248

Because the observations are independent and identically distributed, the previous log249

likelihood is the sample analogue ofE(log( fY(Y|X; β))). Assume mild regularity conditions250

(see A.3) for the proper convergence of our models. In our framework, these regularity251

conditions lead to the existence of the moment generating function for each imperfectly252

observed covariate. More detail on the theoretical part can be found in the appendixes. The253

subsection 3.6 explains how to find βM3 |K (ii. part of the M3 algorithm) and the following254

part 3.7 focuses on estimating the ”real” coefficient for log-Poisson GLM (i. part of the255

M3 algorithm). The last part goes through different distributions and emphasizes the256

differences.257

3.6 Deduce βM3 |K258

As already mentioned in Section 3.2, the vector βK exactly matches βM1 when all indi-259

vidualized quality indexes equal to 1, i.e. when K = J1,p+1. In full generality, when K =Qi260

is made of terms Qi j , 1, the coefficients β̂K need to be calculated. β̂K=Qi is an estimator261

of βM2 when the model is fitted on dataset X but in the case Q= Jn,1 Qi. Therefore, the262

coefficient β̂K is the one minimizing the mean Dev(β̂K
|X,Y) for a given pattern of quality263

K as wanted (see the equation 3).264

For any distribution and link function, it is possible to estimate the expected M2265

log-likelihood for a given Q using Xreal in the univariate case.266

Theorem 3.1. Let (Y,X,Xreal,Q) be the data sets as defined by equation 1. Suppose the
assumption (C1) in the univariate case p= 1. Assume mild regularity assumptions, espe-
cially

∫
R2 |log( fY(y|z; β))|dFZ1 (z)dFY(y)<∞ for any value of β. Knowing (Y,Xreal,Q), a sample

estimator of E(log( fY(Y|X; β))) is

Q̄1

n∑
i=1

log( fY(Yi|Xreal
i1 ; β))

+ (1− Q̄1)×
n∑

i=1

1
n

n∑
h=1

log( fY(Yi|Xreal
h1 ; β)).

(5)

This estimator converges almost surely and is denoted log(LM2 (β; Y|Xreal,Q)). The associated
maximum likelihood estimator β̂M2 |Xreal,Q converges in probabilities into βM2 , i.e.

β̂M2 |Xreal,Q P.
→ βM2 .

The theorem can be easily extended to multivariate hypothesis (X-A3) and (Z-A1).267

4Or equivalently minimize the deviance.

10



Theorem 3.2. Under the assumptions (X-A3) and (Z-A1) and the same hypothesis as in the
univariate case, the sample analogue of E(log( fY(Y|X; β)))

Q̄p

n∑
i=1

log( fY(Yi|Xreal
i;(∗p),Xi;p =Xreal

i;p ; β)

+ (1− Q̄p)
n∑

i=1

1
n

n∑
h=1

log( fY(Yi|Xreal
i;(∗p),Xi;p =Xreal

h;p ; β)),

(6)

is consistent. The associated maximum likelihood estimator β̂M2 |Xreal,Q converges in probabilities
into βM2 , i.e.

β̂M2 |Xreal,Q P.
→ βM2 .

Remark 3.2. In fact, for any correlation structure in between Xreal, Ω, Zreal, an estimate of the268

expected likelihood of M2 can be found easily through simulations. The only constraints needed269

are that mild regularity conditions must be verified under the chosen correlation structure.270

A downside of these methods is that Xreal must be known, which is not always the case.271

Nonetheless, if X has the same the correlation structure than Xreal5, a solution would be272

to simulate Ynew from X using β̂ and therefore calculate the previous estimator.273

Both theorems permit to estimate βM2 through Xreal for any Q. β̂K=Qi is an estimator of274

βM2 when the model is fitted on dataset X but in the case Q= Jn,1 Qi.275

3.7 Deduce βM1 for log-Poisson GLM276

This part will focus on Log-Poisson GLM under (X-A3) and (Z-A1). Estimators for other277

distributions or assumptions would be created exactly in the same way. Denote V =278

(vi)i=1,...,n the exposure to have more traditional notations for count distributions. The279

exposure is supposed to be perfectly observed.280

Remind that only Xp has a heterogeneous quality. Using the equation 34, an estimator
of log(L(β̂; Y|Xreal,Q)) can be found as follows :

log(LM1 (β̂; Y|X,Q))=
1

Q̄p

[
log(LM2(β̂; Y|X)

− (1− Q̄p)× log(L(β̂∗p; Y|Xreal
(∗p)))

− (1− Q̄p)×
n∑

i=1

vie
β̂∗pXreal

i,(∗p) (1−MXp (β̂p))
]
.

(7)

All the right terms are known and can be evaluated. Indeed,281

• log(LM2 (β̂; Y|X)) is the M2 model log-likelihood using all the covariates;282

• MXp (β̂p) can be estimated or for particularly distributions, given the distribution283

parameters, the moment generating function is explicitly known ;284

• log(L(β̂∗p; Y|Xreal
(∗p))) is the M2 model log-likelihood using all the covariables except for285

Xp; under the assumption (X-A3), log(L(β̂∗p; Y|Xreal
(∗p))) is equal to log(L(β̂∗p; Y|X(∗p))).286

5i.e in the (C1) case under (X-A1) and (Z-A1) or in the (C2) case with fully correlated quality variables and
(Z-A2).
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In the same spirit, another estimator can be put forward as a sum of the previous estimator
conditioned by pattern of quality Kp :

log(LM1 (β̂; Y|X,Q))=
∑

Kp∈P(Qp),Kp,0

1
Kp

[
log(LM2(β̂; Y|XQp=Kp )

− (1−Kp)× log(L(β̂∗p; Y|Xreal
(∗p);Qp=Kp

))

− (1−Kp)×
n∑

i=1

vie
β̂∗pXreal

i;(∗p);Qp=Kp (1−MXp (β̂p))
]
.

(8)

where XQ=Kp represents the dataset where only individual i such as Qi;p =Kp are kept.287

The second estimator log(LM1 (β̂; Y|X,Q)) from the equation 8 is often more precise by288

construction than the equation 7. Individual having null quality index are not taken into289

account. Therefore, in the following part, the second estimator will be used. These two290

estimators converge in probabilities to log(L(β̂; Y|Xreal,Q)). In the same way, the solution291

of the maximum likelihood converges in probability.292

Optimization program: On the contrary of the classical optimization method: the iter-293

ative weighted least square algorithm used to fit GLM parameters can not be used.294

Empirically, the Nelder-Mean optimization from the optim function from stats package (R295

software) seems to have a more stable convergence than Newton-Raphson algorithm.296

Indeed, for some distributions, the moment generating function may not exist or has297

extremely high value for some values of β̂p. In this case, the estimated derivative may298

be important. For these reasons, Newton-Raphson method can lead to important staring299

oscillations depending on β̂p and Xp distribution. This is why Nelder-Mean optimization300

is here preferred and starting at β̂p = 0.301
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3.8 Estimators proprieties for other distributions302
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Previous table shows different results for different GLM and assumptions. For the most304

common GLM used in non-life pricing (Log-Gaussian, Log-Poisson and Log-Gamma305

GLM), some interesting results can be found thanks to the additive or multiplicative306

structure. However, for Probit or Inv-Gamma GLMs, no explicit formulas can be found307

without approximation.308
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Log-Gaussian GLM: Log-Gaussian GLM’s structure leads to explicit relation between309

β and βM2. Therefore, the M1 log-likelihood is not needed to be calculated. Because Log-310

Gaussian GLM and linear regression are equivalent, the same results can be state. It is311

important to notice that βM2
j only depends on Q j and βk and Q j for all Xk correlated to312

X j in Log-Gaussian case. In other words, the coefficient of a variable is not skewed by313

the quality of variables not correlated to it. In the case (C2) with fully correlated quality314

variable under (Z-A2), i.e. Ω j =Ωk for all j and k, Log-Gaussian coefficients βM2
j have a315

simple affine linearship with βM1
j for j= 1, ..., p.316

Multiplicative structures: In the case (C1), Log-Poisson and Log-Gamma GLM’s multi-317

plicative structure provides the calculus of log(LM1(β; Y|X,Q)). However, in multivariate318

case, under (X-A3) and (Z-A1), βM2
p depends on Qp , the moment generating function319

MXp (t) and β j for j= 1, ..., p− 1. The main difference is that βM2
j depends on the distribu-320

tion of Xp. For Log-Poisson model, βM2
j = β j and βM2

p convergences in probability in an321

interval [0, βp]. However, for Log-Gamma this property is not true and the other coeffi-322

cients, βM2
j , are also impacted by Qp. In the case (C2), regrettably, no proprieties on the323

estimator can be state for Log-Gamma and Log-Poisson GLM.324

4. Simulation study - M1 estimator325

This section aims to check our theoretical results on the estimator properties for Log-326

Poisson GLM. In this view, all the simulated examples are created using the following327

steps involving all the aforementioned quantities required to generate the right data :328

Step 1: Q is in practice given. For the simulation, it is randomly generated;329

Step 2: Xreal is simulated given the marginals and the correlation structure;330

Step 3: Z= (Z1, ...,Zp) is simulated given Xreal and the assumptions;331

Step 4: Y is simulated from its relationship with Xreal;332

Step 5: Ω is simulated from Q through Bernoulli trials;333

Step 6: X is deduced thanks to the equation (1).334

The study is performed using R ([16]) statistical software.335

4.1 Find β̂M1 coefficients336

Let E(Y|Xreal)= exp(1+ 0.4Xreal
1 + 0.5Xreal

2 + 0.6Xreal
3 + 0.07Xreal

4 ) with X1 ∼ Γ(2, 1),Xreal
2 ∼337

N(0, 1),X3 ∼Pois(2), X4 ∼N(0, 10) and Y following a Poisson distribution. The quality338

index follows an independent discrete distribution on the values (0.5; 0.75; 1) with the339

probability (0.25; 0.25; 0.5) for Q4. Let all the other covariates be perfectly observed, e.g.340

Qi, j = 1 for all i ∈ 1, ..., n and j ∈ {1, 2, 3}.341

Using the precedent result, M1 likelihood can be estimated as shown in figure 4.342

The use of imperfectly observed dataset implies a wider variance of the estimator M1343

than the real model one. Here, the first estimator has wider variance than the second344

estimator. As shown by equation 37, the coefficients β1, β2 and β3 did not change due to345

the independence in between the variables - figure 5 - and the coefficient associated to X4346

is corrected - figure 6.347

14



Figure 4: Estimation of the M1 log-likelihood for log-Poisson GLM using equation 7 for a
given X and Q. The moment function is estimated using its empirical estimator. The true
function leads to the same graph but with a smaller variance. 2000 simulations are done
for a given Xreal and Q.

Figure 5: β̂M2
4 is smaller than β̂ because of

the quality of the variable. β̂M1
4 is unbias,

but has a wider variance than the real
coefficient.

Figure 6: The quality of the variable X4
does not impact the estimation of β1,
β2, β3; here, highlighted by β1 with Xreal

1
standard normal distribution and Y fol-
lowing a Poisson distribution. Other dis-
tributions of Xreal

1 have also been tested
and lead to the same results. 2000 simu-
lations are done for a given Q.

4.2 Adapt the coefficient to the quality348

Unlike linear regression, no explicit relation exists between the β and βM2 or βK in function349

of the quality. It has been shown that the coefficient is a barycenter of the β̂M1 and 0.350

Moreover, β̂M2
p converges to 0 when Qp tends to 0. I suggest using the linear approximation,351

i.e. β̂K=Qp
p =Qp × β̂

M1
p . Indeed, as shown on the figure 7, for small values of β4 (≈ 0.07), the352
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Figure 7: 1000 simulation for each quality. As for linear regressions, a linear evolution
through the quality can be seen for low coefficient, however for higher values the rela-
tionship is not proportional to the quality.

impact of the moment on the likelihood is lower than for higher value of β4 = 4. Therefore,353

the coefficient could be estimated linearly only for E(Y) small, but would overestimate354

the coefficient for higher values. In household insurance for individual, this assumption355

is adapted to the low annual frequency of claims.356

5. Discussion357

In this discussion, the adequacy of different assumptions and hypothesis will be eval-358

uated. The following example comes straight up from a project on household pricing359

using geolocated addresses to add external data. First, the subsection 5.1 gives proper360

examples encountered and justifies the different hypothesis needed in our framework361

in the subsection 5.2. In our example, issues remain, such as imperfect quality index,362

its’ evaluation and correlations in between variables. Sections 5.3 and 5.4 emphasize the363

limits and propose some solutions using interactions.364

5.1 Examples365

In this part, the different cases are discussed under the scope of a pricing case using house366

geolocation. Here, the goal is to model the frequency or the claim cost of a household367

insurance using only the address and external data. As explained in the introduction,368

our particular framework is adapted to this problematic. To find the different covariates369

associated to characteristics of the individual, the first step is to link the address with370

its geocoding, then to link the geocoding to the right parcel or/then with the building.371

Then by geolocating external data and calculating characteristics from picture analysis372

or other predicting method, a database is created. The variable to model is given by373

insurers departments. It corresponds to the frequency or claims cost and is supposed to374

be perfectly observed.375
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Here, the collected data’s quality is mainly looked through the credibility dimension.376

If the geocoding is wrong, all the observations would be taken on another building.377

The consistency of the variable and the way it is collected change also the data quality.378

Moreover, the reliability of predicted characteristics depends also on the reliability of379

covariables used in the predictive model.380

Let discuss the different assumptions on the example of pricing of home insurance381

using geocoding.382

Example of case C1: The collection of the variables, the presence of pool and presence383

of solar panels can fit the description. Suppose that the pool variable collection uses a384

governmental data set based on inhabitants’ declaration and the solar panels variable uses385

the geocoding to determine pictures to analyse. The collection of the two variables are386

not correlated. The case (C1) and the assumption (Z-A1) would be appropriate. Indeed,387

if one is wrongly observed, it does not induce the other one to be and the errors are not388

linked with the variable value, i.e. Q, Xreal and Z are independent.389

Example of case C2: The living surface, the number of rooms and the footprint are390

globally one of the most segmenting features in household pricing. Different data sets and391

methods are available in France to collect them, such as DVF 6. This database geolocates392

parcels and contains different features such as the value of property values, the number393

of rooms, the surface of the parcel or the living surface among others. The database is394

created from all properties transfer since 2015. e. On the uncertainty dimension, errors395

are coming from the link between geocoding and the address or between the address and396

the building, each of these steps impacts the data’s quality depending on the feature. A397

wrong geocoding would imply that the observations are taken from another building.398

For all these variables, the case (C2) and the assumption (Z-A2) would be appropriate399

since they are collected from the same building.400

Example of case C3: The previous example acts also on the mismeasurement dimen-401

sion, where Z and Xreal are correlated. Data quality, impacted by the consistency of the402

collection of the database, infers on it due to the timeless dimension; houses might have403

changed since the last property transfer. Indeed, precision of the house’s size may be bias404

after expansion of a house if the database is not updated in the meantime. Moreover,405

correlations between Xreal and Z come also from the way that variables are collected;406

the best example is spatial correlation. For instance, let look into a variable informing407

on the floors’ number being collected from pictures analysis. The impact of geocoding408

uncertainty is not globally the same as before. Indeed, neighbour’s houses have often the409

same height or number of floor. Then, even if the collection of the data is done on the410

wrong building, Z will be correlated with Xreal.411

Example of a case C4: All variables mentioned earlier can fit in this category due to412

spatial correlation. In fact, rarely in our study, the quality variable does not depend on if413

the building is from rural areas or urban areas. Moreover, if in megalopolis the detection414

of the house size may be difficult due to the building’s density, a systematic uncertainty415

could appear on this variable for urban houses - globally smaller. Then Z would be416

correlated with the Xreal automatically, but also with Q. The same analysis could be done417

on high buildings, e.g. for the number of floors.418

One of the most difficult cases is when the quality depends on others variables; for419

instance the material of the roof and the analysis of a roof to detect a window - see figure420

8 and 9. In this case, the modality of dark slate informs on the risk, not because dark slate421

changes it but due to the low quality of the variable roof-windows associated to it.422

6This database comes from a certified public service documenting the property values declared during
property transfers available in open data
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Figure 8: The detection of a window on a
roof is immediate from the IGN cartogra-
phy (47.183722, -1.812768) -© IGN 2018.

Figure 9: The detection of a window on
a roof is harder because of the dark
slate roof from the IGN cartography
(47.179068, -1.814216) -© IGN 2018

5.2 Actuarial justification of this framework assumptions423

Integrity of dataset and assumption on Z: In all examples seen above, the wrong424

observations Z are coming from real individual; it justifies the main assumption that425

“wrong” values Z j follow the same distribution as Xreal
j (equation 1). However, the426

assumption is true only if the integrity of the data set is valid. Indeed, for instance,427

if some wrong observations are taken from commercial buildings or flats when pricing428

residential household insurance, this assumption would not be verified.429

Assumption (X-A3): The assumption (X-A3) is a very restrictive assumption.430

Nonetheless, it can be appropriate for underwriting used. First, the use of several imper-431

fectly observed covariates is not recommended and not adapted when aiming to a stable432

model. Moreover, traditional covariates used are well-known covariates of good quality,433

so one or two variables with heterogeneous quality would in practice be integrated at the434

most. Adding some imperfect variables correlated to others also bias the coefficients of435

these perfectly observed variables.436

Use of the linear approximation to find adapted model: As shown in section 4, linear437

approximation can be a good approximation for small values of the coefficients. In other438

words, the approximation can be valid when the claim count modelling is done at the439

individual case. Indeed, in household insurance, the mean damage frequency is around440

1 % (for instance, water damage or fire damage coverage.) The other benefit is that only441

one model is fitted.442

Add a new variable in a pricing: Lastly, our framework can be used to estimate443

β for a new covariate. Without a data set and claims associated to it, the observations444

of this new variable have to be determined using external data or models. Indeed, it is445

impossible to request a completely new information once the contract signed. However, a446

question can be added in underwriting questionnaire during a quotation and therefore the447

covariate can be used in the new pricing model. Logically, information from underwriting448

questionnaire are much better quality and are often suppose perfectly observed (for most449

of the variables). So pricing models muss use β, adapted to perfectly observed variables,450

and not βM2.451

5.3 Use interactions with quality indexes452

The different results also help to understand how to deal with a finite number of quality
groups within a variable. one could propose to use interaction instead of this paper’s
framework. Indeed, the quality effect could be taken into account by adding an interaction
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between the Q j and the Xk, k, j. Denote the following log-Gaussian GLM :

E[Y|X]= β0 + β1X1 + β2X2 (9)

and ρ the correlation between the two covariates. Suppose that the data set has another
variable Q1 with two modalities (High and Low) informing on the quality of X1. From
the results earlier, adding some interactions between X1 and Q1 only, i.e,

E[Y|X,Q1]= 1Q1=L(βQ1=L
0 + βQ1=L

1 X1)+ 1Q1=H(βQ1=H
0 + βQ1=H

1 X1)+ β2X2 (10)

would be the best option only if they is no correlation. The interaction should be on both
variables :

E[Y|X,Q1]= 1Q1=H(βQ1=H
0 + βQ1=H

1 X1 + β
Q1=H
2 X2)+ 1Q1=L(βQ1=L

0 + βQ1=L
1 X1 + β

Q1=L
2 X2). (11)

Obviously, with more covariates and quality indexes, it adds a lot more parameters to fit453

exactly n× 2h−p where h is the sum of modalities’ number of each quality index. Moreover,454

the coefficients β̂Q1=H
2 and β̂Q1=L

2 could have different signs (see [4] or the appendix). For455

other distributions, the whole issue is much more complex. Therefore, in such case,456

limiting the correlation in between variables should be the priority.457

5.4 Determine quality indexes and the impact of imperfect quality indexes458

In a pricing data set studied, the quality index was given as an ordered variable with459

the following modality (”very low”, ”low”, ”medium”, ”high”,”very high”). Would it be460

possible to determine the equivalent quality index by modality ?461

By evaluating a model by modality, quality indexes can be easily found given baseline
coefficients - by example β (known or evaluated thanks to the best quality points). The
difficulty resides in the way that the quality is given. By fitting an univariate linear model
with variables centred and an interaction between X1 and the variable representing the
quality K(X1) with M ∈N modalities,

E[Y|X,K(X1)]= βM2
0 +

∑
m=1,...,M

βM2,K(X1)=m
1 X11K(X1)=m, (12)

each quality index modality can be evaluated. Indeed, let assume that the modality462

K(X1)= 1 corresponds to perfect quality observations, the quality index value of the463

modality m is equal to Qm = β
K(X1)=m
1 /βK(X1)=1

1 .464

Figure 10 shows a real example of a quality index assessment. The model used is an465

univariate log-Poisson GLM using only the living surface to predict a water damage466

frequency. The values of living surface is at first coming from labels using DVF by467

associating a building to property sale. To complete the missing information, predicting468

methods are done using the house characteristics. If the confidence into the database469

geocoding is perfect, the confidence associated is ”very high”. Otherwise, the confidence470

is degraded depending on the reliability of the geocoding of the property sales database.471

On the other hand, predicted values are associated with a maximum of ”high” (in majority472

”medium”). The credibility is degraded depending on the quality of the covariates and473

the score associated to each result. Two filters are considered on the addresses’ geolocation474

to link the claims and these characteristics : a filter keeping all the building considered as475

the main one on the parcel and a second keeping only the building if it is link only to one476

address. Figure 10 helps to evaluate the quality indexes values. Supposing βHigh−One adresse =477

βperfect. The value of each Q can be approach by β̂
Q

β using a linear approximation. Remind478

that the annual frequency of water damage is low: around 3 per 100.479
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Figure 10: Ratio of the living surface coefficient of Log-Poisson. Because they are too few
”very high” quality observations, they were regrouped with ”high” quality observations.
Different filters based the building geolocation information are done on the data set to
challenge the quality index.

Then, ”medium” quality value would be estimated by 0.6, ”low” quality value by 0.5.480

However, the coefficient of very low quality values has an opposite sign. In fact, very low481

quality values are link to rural zone. Therefore, the case (C4) is the most appropriate and482

our evaluation method can not be used. In the same way, ”low” quality values are also483

more link to rural density than ”medium” one or ”high”7. In consequence, the associated484

value to medium quality 0.5 can be debated. Indeed, the ”low” and ”very low” quality485

are correlated with others characteristics impacting the risks. The coefficients calculated486

on the database are therefore impacted. This is an important limit of our framework. In487

such case, using a threshold to set aside ”very low” quality observations is recommended488

so that the data set verifies our assumptions. The different filters on geocoding show that489

leaner detail could be added within a value of the quality index. In this case, a modality490

may regroup different levels of quality. In other word, quality index is not perfectly491

determined.492

In practice, a modality might regroup observation of different quality. This part con-
siders the case of a modality regrouping two types of observations with distinct quality.
Denote m a modality of n observations which regroups nα and nκ number observations
with the quality Q̄α and Q̄κ respectively (nα + nκ = n). The difference between model’s
coefficients and the real model ones can be expressed as a barycenter of the sum of the
group’s quality under (X-A1):

βM2,Q̄m
1 − β1 =

nα
n

(Q̄α − 1)β1 +
nκ
n

(Q̄κ − 1)β1. (13)

7Here, the mismeasurement side of the data quality is set aside.
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Equation 13 can be easily extended to higher dimension. If groups of different quality are493

mixed together and are given the same quality index value, the best one should be the494

pondered mean of each quality in a context of linear regression with the assumption (X-495

A1). However, under (X-A2) (with correlation), the aggregation of the quality influences496

the coefficients value of other correlated covariates.497

Proposition 1 For log-Gaussian GLM, under assumptions (X-A2) and (Z-A1), given k

and j such as ρreal
k j = ρ, Qk , 0 and Q j , 0, if ρβM1

k ≥−

√
Var(X j)
Var(Xk)β

M1
j ,

βM2
k :]0, 1]→R

Qk 7→ β
M2
k (Qk|Q j).

(14)

is an increasing convex function. Otherwise, it is decreasing concave.498

Therefore, the weighted mean of the quality is a biased approximation. Indeed,

accordingly to the Proposition 1, if ρβk ≥−

√
Var(X j)
Var(Xk)β j, for i, j :

∀Qα,Qκ ∈ [0, 1], βM2
k (

nα
n

Q̄α +
nκ
n

Q̄κ)≤
nα
n
βM2

k (Q̄α)+
nκ
n
βM2

k (Q̄κ). (15)

In consequence, regrouping two groups of different quality bias the coefficient accordingly499

to the correlation. The equivalent quality index in linear regression under this assumption500

should be lower than the pondered mean of the quality. Because the convexity depends501

on the correlation, the pondered mean of the quality may be a fine approximation with502

low correlation between covariates.503

6. Conclusion504

This paper extends a method to take into account index quality on the credibility dimen-505

sion for GLM regression. In pricing, it could correspond to an external score when506

open/external data are added to a traditional dataset. Moreover, as for Rubin’s nomencla-507

ture, different cases exist depending on the relation structure between qualities indexes,508

real observations and wrongs one. Relaxing the different assumptions, especially some509

hypothesis between quality variable and the variable, will be the next step. These results510

are very useful for actuaries which are in charge of the data quality they use and models511

following. The different cases have been discussed under a real pricing using the geolo-512

cated addresses to find external information. Finally, actuaries should keep in mind that513

they are answerable of the data quality they use. Therefore, this work suggests a method514

to evaluate data quality and put forwards recommendation with data quality indexes in515

use.516

To use data’s quality index with correlated covariates, further research is ongoing to517

adapted decision trees to this use and to release assumptions between quality variable and518

the true values. Several issues remain generalizing for penalized likelihood optimization519

and quality index evaluation.520
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Appendix A. Theoretical framework579

A.1 The covariance impacted by quality index580

Given a data set with two covariates and their joint quality (X j,Q j), (Xk,Qk), j, k as in the equation (1), the581

following lemma states the relation between real covariance Covreal
jk and the observed covariance Covreal

jk under582

various assumptions :583

Lemma 1. In the case (C1), the relation yields

Under (Z-A1) Cov jk =Q jQk ×Covreal
jk . (16)

Under(Z-A2) Cov jk = (1+ 2Q jQk −Q j −Qk)×Covreal
jk . (17)

In case (C2), if Xreal
j and Xreal

k are independent, both (16) and (17) hold true. Otherwise, if the joint quality are completely
and positively dependent, the following results yield :

Under (Z-A1) Cov jk =Q j ×Covreal
jk , (18)

Under (Z-A2) Cov jk =Covreal
jk . (19)

The proof of the case (C1) is available in [4, Chatelain and Milhaud, 2021]. The proof of the case (C2) is a trivial584

extension of the precedent. In case (C3), an additional term corresponding to the correlation between “wrong”585

value and the “right” one would appear. The results could therefore be extended to such cases both under (Z-A1)586

or (Z-A2), but one would need to specify the correlation structure between Xreal and Z. Because each covariate Xreal587

and Z have the same distribution, Var(X j)=Var(Xreal
j )=Var(Z j). Therefore, the same relation between Pearson’s588

correlation is also true. Thanks to Lemma 1, Σreal can be evaluated from Q and Σ.589

A.2 Regression model under consideration590

Given the independent variables (Y1, ...,Yn), the corresponding explanatory variables (X1, ...,Xn), and individu-
alized quality indexes (Q1, ...,Qn) where Qi = (Qi1, ...,Qip), this part will study Generalize Linear Model (GLM).
GLM is defined by three components : the distribution’s response variable Y which is from the exponential family,
a linear predictor Xβ and a link function g defined such as

µ= E[Y|X= x]= g−1(xβ). (20)

where X is the vector of covariates including a constant (see Section 2.1), and β= (β0, β1, ..., βp) ∈Rp+1 is the vector591

of regression coefficients. β is found through maximum likelihood optimization. The classical linear regression592

model is a particular case of GLM where Y ∼N(Xβ, σ2) and the link g is the identity-function. The following593

sections aim to link E(log( fY(Y|X; β))) and E(log( fY(Y|Xreal; β))).594

A.3 Univariate analysis in GLM595

This section focuses on the univariate case (p = 1). In the case (C1), (C2) and (C3), the quality variable Ω is
independent from the others variables. For β inR2, the model M2 maximizes the following log-likelihood

E(log( fY(Y|X; β)))=E(log( fY(Y|Xreal; β))|Ω= 1)×E(Ω1 = 1)

+E(log( fY(Y|Z; β))|Ω= 0)×E(Ω1 = 0).
(21)

In the equation 21,the expected value of Ω= 0, equals to Q1, is known and when Ω= 0, Xreal
1 is not observed596

and Z1 is given.597

In the case (C1), (C2) and (C3), the quality variableΩ is independent from the others variables, which leads to :

E(log( fY(Y|Xreal; β)))|Ω= 1)=E(log( fY(Y|Xreal; β))),

E(log( fY(Y|Z; β))|Ω= 0)=E(log( fY(Y|Z; β))).
(22)

Recall one main regularity condition which is mandatory for the MLE convergence of the exponential family based598

Xreal (see section 6.2 of [13, Lehmann and CAsella, 1998] for all the conditions needed):599

Regularity condition A.1. Assume that for every β, log( fY(Y|Xreal; β)) is integrable i.e, E(|log( fY(Y|Xreal; β))|)<+∞.600
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Assumption A.1 and the other ones for the exponential family lead to the Bartlett identities and both derivatives
can be passed under the integral sign ([2, Barndorff-Nielsen, 1978]). The Bartlett identities are :

E
( δ
δβ

log( fY(Y|Xreal; β))
)
= 0,

Var
( δ
δβ

log( fY(Y|Xreal; β))
)
=−E

( δ2

δβ2 log( fY(Y|Xreal; β))
)
.

(23)

Moreover, same assumptions on Z are also needed for the MLE convergence of the exponential family based on X601

in particular :602

Regularity condition A.2. Assume that for every β, log( fY(y|z; β)) is integrable i.e E(|log( fY(Y|Z; β))|)<+∞.603

Because Z j has the same marginal distribution than Xreal
j , the regularity conditions A.1 and A.2 highly overlap.604

The main difference is the independence of Z from Y. Therefore, the Bartlett identities are still verified.605

Remark A.1. In the univariate case, the condition
∫
R2 |log( fY(y|z; β))|dFZ1 (z)dFY(y)<∞ implies

∫
R
|log( fY(y| z; β))

|dFZ1 (z)<∞ for any value of y and β. Remind that Z1 distribution has the same distribution than Xreal
1 . Hereafter, the

canonical link function is used. In this case, the log-likelihood maximized can be written as follows :

Yi(β0 + β1X1)− b(β0 + β1X1)+Cst, (24)

where Cst is a constant independent of β and X and b(.) a real function. In the Bernoulli case supposing β1 ≥ 0 without loss
of generality, the case β1 = 0 being trivial, the condition∫

R

|log( fY(y|z; β))|dFZ1 (z) ≤
Triangle ineq.

∫
R

yi|β0 + β1z1|dFZ1 (z)+
∫
R

|log(1+ exp(β0 + β1z1))|dFZ1 (z),

≤
x

1+x≤log(x)≤x

∫
R

y|β0 + β1z1|dFZ1 (z)+
∫
R

exp(β0 + β1z1)dFZ1 (z),
(25)

can be fulfilled with a condition on the Z1 generating moment function existence for all β and with E(|Z1|)<+∞. In the
Poisson case, the same sufficient condition can easily be shown :∫

R

|y(β0 + β1x1)− exp(β0 + β1x1)|dFZ1 (z) ≤
Triangle ineq.

∫
R

y|β0 + β1z1|dFZ1 (z)+
∫
R

exp(β0 + β1z1)dFZ1 (z). (26)

As the second moment existence was needed for linear regression convergence, the moment function existence is also needed606

for a proper maximum likelihood convergence.607

How could we estimateE(log( fY(Y|Z1; β))) with Xreal
1 ? In the multivariate case, the value Zi;1 could be estimated608

using the other covariables depending on the case. If Xreal
1 and Z1 are correlated or dependent, a function g could609

exist such as g(Xreal
1 ) is a good estimator of Z1. Under the case (C1), none of these solutions can be applied. Indeed,610

the quality index Q1, the real data-set Xreal
1 and the wrong values Z1 are completely independent.611

The following estimator,

Q̄1

n∑
i=1

log( fY(yi|Xreal
i,1 ; β̂))+ (1− Q̄1)×

n∑
i=1

1
n

n∑
h=1

log( fY(yi|Xreal
h,1 ; β̂)). (27)

converges almost surely to E(log( fY(Y|X; β̂))) (see the proof C.1).612

In the multivariate case, the previous assumptions can easily be extended depending on the correlation
structure. Under assumptions (X-A3) and (Z-A1), remind the following notation X(∗p) = (1,X1; · · · ; Xp−1) and its
observed sample Xi;(∗p). In the same way, β∗p refers to (β0, · · · , βp−1). The expected likelihood

E(log( fY(β; Y|X)))=Qp E(log( fY(Y|Xreal
(∗p),Xp =Xreal

p ; β)))

+ (1−Qp)
∫
R

E(log( fY(Y|Xreal
(∗p),Xp = z; β))) fZp (z)dz).

(28)

can be written in a similar way than in the univariate case under the mild regulatory conditions.613

Under these assumptions, each estimator β̂ and β̂M2 converges in probabilities respectively to β and βM2 .614
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A.4 Example 1: Log-Gaussian GLM615

In this section, let focus on Log-Gaussian GLM case. Without loss of generality, remind that the covariate are616

centred (See the paper [4, Chatelain and Milhaud, 2021] for uncentred case).617

Let β ∈Rp+1. The likelihood to optimize is :

log(LM2 (β; Y|X))∝
n∑

i=1

(yi −Xiβ)2, (29)

where for the purposes of notation Xi =
t(1,Xi;1) and β= t(β0, β1).618

In the univariate case, the Bartlett identities give the same results as the OLS’ one :

β̂M2
0

P.
→ β0,

β̂M2
1

Q̄1

P.
→ β1. (30)

Indeed, linear regressions and Log-Gaussian GLM models are equivalent. This proof can be easily extended in the619

multivariate case under the assumption (X-A1) and (Z-A1).620

Under the assumption (X-A3) and (Z-A1), only the βp is impacted by

β̂M2
j

P.
→ β j,

β̂M2
p

Q̄p

P.
→ βp, j= 0, ..., p− 1. (31)

In the particular case (C2) when the quality variables are fully correlated i.e, Ω j =Ωk→Q j =Qk ( j, k), under
the assumption (Z-A2) without any assumption on correlation structure of Xreal, it can be shown that :

β̂M2
0

P.
→ β0,

β̂M2
j

Q̄ j

P.
→ βp, j= 0, ..., p. (32)

The proof of these results are in C.2. The paper [4, Chatelain and Milhaud, 2021] proved the following theorem,621

where ρ represents the Pearson correlation of two variable.622

Theorem A.1. For all j, k, if |ρ|= |ρreal
jk |, 1, under (X-A2) and as n→+∞ :

Under (Z-A1):
1

1− ρ2

 β̂
M2
j

Q̄ j
(1− ρ2 Q̄ jQ̄k)+

√
Var(Xk)
Var(X j)

β̂M2
k

Q̄k
ρ (Q̄ jQ̄k − 1)

→ β j,

Under (Z-A2):
1

1− ρ2

 β̂
M2
j

Q̄ j
(1− ρ2 (1+ 2Q̄ jQ̄k − Q̄ j − Q̄k))+

√
Var(Xk)
Var(X j)

β̂M2
k

Q̄k
ρ (2Q̄ jQ̄k − Q̄ j − Q̄k)


→ β j.

(33)

A.5 Example 2: Log-Poisson GLM623

In the Poisson case, the additive structure simplifies some calculus. Under assumptions (X-A3) and (Z-A1), the
existence of the moment generating function MXreal

p
(t)=MXp (t)=MZp (t) for all t ∈R and its derivatives’ existence

are ensured by the mild regularity condition A.2. Denote V the exposure. To keep the notation simple, let omit
the exposure V in the expected likelihood E(log( fY(Y|X; β))). Let β ∈Rp+1. The sample estimator of the expected
likelihood is equal to

log(LM2 (β; Y|X))= Q̄p log(L(β; Y|Xreal)+ (1− Q̄p) log(L(β∗p; Y,Xreal
(∗p) ))

+ (1− Q̄p)
n∑

i=1

Vie
β∗pXreal

i;(∗p) (1−MXreal
p

(βp)).
(34)

Under (X-A3) and (Z-A1), Xreal
(∗p) =X(∗p) allows us to evaluate the M1 likelihood using only X(∗p) and Q,

log(LM1 (β̂; Y|X,Q))=
1

Q̄p
(log(LM2(β̂; Y|X)− (1− Q̄p)× log(L(β̂∗p; Y|X(∗p)))

− (1− Q̄p)×
n∑

i=1

Vie
β̂∗pXreal

i;(∗p) (1−MXp (β̂p))).
(35)
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The expected likelihood can be bounded :

Qp log(L(β; Y|Xreal))+ (1−Qp) log(L(β∗p; Y,Xreal
(∗p) ))

+ (1−Qp)
n∑

i=1

Vie
β∗pXreal

(i);(∗p)

1− exp

β2
pV(Xreal

p )

2




≤ log(LM2 (β; Y|X))≤Qp log(L(β; Y|Xreal))+ (1−Qp) log(L(β∗p; Y,Xreal
(∗p) )).

(36)

By introducing the normalized coefficient bp =
βp√
V(Xreal

p )
, one can see that a small normalize coefficient implies a624

narrower the interval. In other words, the impact of variable quality on the likelihood logically depends on the625

normalize coefficient.626

Proof. See C.3.1. □627

Lemma 2. Let β ∈Rp+1. Under the assumption (X-A3), the derivatives of the M2 log-likelihood for j in {0, ..., p− 1} are
equal to :

δ
δβp

E(log( fY(β; Y|X)))=Qp dp(β)

− (1−Qp)
∫
Rp−1

ve
β∗pxreal

(∗p) dFXreal
(∗p)

(xreal
(∗p)) M

′

Xp
(β̂p);

δ
δβ j
E(log( fY(β; Y|X)))= d j(β),

(37)

where di is the derivative according to βi of E(log( fY(β; Y|Xreal))) .628

Remark A.2. Unlike the Log-gaussian case, the difference βM2
p and βp depends on the distribution of Xp.629

When β̂p→ 0, M
′

Xp
(β̂p)→ 0. It can be easily shown that the derivatives - equation 37 are a constant function of630

the mean quality. Therefore, the following proposition A.5 can be deduced.631

Proposition 1 Suppose the framework of this paper with log-Poisson distribution. Under the Assumptions (X-A3), i.e.
Q j = 1 for j ∈ {1, · · · , p− 1} and Qp ∈ (0, 1),

βM2
p :[0, 1]→R

Qp 7→ β
M2
p (Qp)

(38)

is a monotonic function of the quality.632

Using the Lemma 2 it is straightforward to show the following theorem.633

Theorem A.2. Under the assumption (X-A3) and (Z-A1),

β̂M2
j

P.
→ β j, j ∈ 0, ..., p− 1,

β̂M2
p

P.
→ [0; βp].

(39)

A particular application of this theorem would be under the univariate case p= 1. Remark that in the univariate
case (C1) and (C2) are equal. In multivariate case, under (Z-A2) and (C2) with fully correlated quality variable and
without any assumption on the structure of Xreal, the expected log likelihood can be written only using X and the
quality index Q, (see C.3.4) :

E(log( fY(Y|Xreal; β)))=
1

Q1

(
E(log( fY(Y|X, β))− (1−Q1)

(
E(log( fY(Y|β0))+ Vexp(β0) (1−MXreal (β∗)

))
, (40)

where MXreal (β∗) is the multivariate generating function of Xreal
1 , ...,X

real
p and β∗ = t(β1, ...., βp). Unfortunately, no634

bounds explicit can be state. The paper [12, kuwaranancharoen and Sundaram, 2018] provides an upper bound635

on the location of local minimum of the sum of two strongly convex function under the assumption of bounded636

gradient. The difficulty is that the log-likelihood exponential family is almost strongly convex, i.e. strongly convex637

in the neighbourhood of β as proved in [11, Kakade et al. 2010].638
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A.6 Example 3: Log-Gamma GLM639

The expected log-likelihood of Log-Gamma Y ∼ Γ(µ, ν) can be written :

E(log( fY(Y|X, β)))=
∫
Rp+1
ν(−y exp(−xβ)− xβ+ (ν− 1)log(y)− log(Γ(ν))dFX1 ,...,Xp ,Y(x, y). (41)

Here, the only interest is to maximize the log likelihood according to β for a known ν. Therefore, the expected640

log-likelihood will be studied,641

E(log( fY(Y|X, β)))∝
∫
Rp+1
−y exp(−xβ)− xβdFX1 ,...,Xp ,Y(x, y). (42)

Under (X-A3) and (Z-A1), the expected log likelihood E(log( fY(β̂; Y|X))) is equal to

Qp E(log( fY(β̂; Y|Xreal)))+ (1−Qp)E(log( fY(β̂∗p; Y|Xreal
(∗p))))MXp (−β̂p). (43)

The M1 estimator can be calculated

E(log( fY(β̂; Y|Xreal)))=
1

Qp

(
E(log( fY(β̂; Y|X)))− (1−Qp)E(log( fY(β̂∗p; Y|Xreal

(∗p))))MXp (−β̂p)
)
. (44)

Lemma 3. Let β ∈Rp+1. Under the assumption (X-A3), the derivative of the M2 log-likelihood for j in {0, ..., p− 1} are equal
to :

δ
δβ j
E(log( fY(β; Y|X)))=Qp d j(β)

+ (1−Qp)
δ
δβ j
E(log( fY(β∗p; Y|Xreal

(∗p))))MXp (βp),

δ
δβp

E(log( fY(β; Y|X)))=Qp dp(β)

+ (1−Qp) E(log( fY(β∗p; Y|Xreal
(∗p))))M

′

Xp
(βp),

(45)

where d j is the derivative according to β j of E(log( fY(β; Y|Xreal))) .642

The lemma 3 can not lead to a theorem like in the Log-Poisson case. The minimization of a sum of concave643

function inRp+1 does not necessary lead to βM2
j ∈ [min(β−p

j , β j),max(β−p
j , β j)] where β−p

j is the maximum likelihood644

estimator E(log( fY(β̂∗p; Y|Xreal
(∗p)))) and with β−p

p = 0. Therefore, the Log-Gamma coefficients’ evolution are not easily645

bounded in the general case. Nevertheless, the βM2
p are still continuous according to the quality.646

Under (C2) and (Z-A2), E(log( fY(β̂; Y|X))) is equal :

Qp E(log( fY(β̂; Y|Xreal)))+ (1−Qp)MXreal (−β)E(log( fY(β̂0; Y))). (46)

The proof is no different from the precedents. Still no bound can be state when p> 2.647

A.7 Without multiplicative properties: Inv-Gamma GLM and Probit GLM648

The expected log-likelihood of Inv-Gamma Y ∼ Γ(µ, ν) will be maximized for a known ν. The maximum likelihood649

estimator will maximize the sample analogue of650

E(log( fY(Y|X, β)))∝
∫
Rp+1
−y xβ+ log(xβ)dFX1 ,...,Xp ,Y(x, y). (47)

The expected log likelihood E(log( fY(β̂; Y|X))) is equal to

Qp E(log( fY(β̂; Y|Xreal)))+ (1−Qp)
∫
Rp+1

log(xrealβ∗p + zpβp)dFXreal
1 ,...,Xreal

p−1 ,Y
(xreal, y)dFZp (zp). (48)

Because of log(Xrealβ∗p +Zpβp), the sample analogue can not be estimated using only Xreal and X which will not651

allow us to find a relation between the likelihood using only these two data sets.652

For the Bernoulli distribution using its canonical link function, the expected log-likelihood :

E(log( fY(Y|X, β)))∝
∫
Rp+1
−y xβ+ log(1+ exp(xβ))dFX1 ,...,Xp ,y(x, y), (49)
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can not be calculated using only Xreal. Looking for an approximation, log(1+ exp(x))= log(2+ exp(x)− 1)= log(2)+653

log(1+ (exp(x)− 1)/2)∼ log(2)+ (exp(x)− 1)/2+ o((exp(x)− 1)) when exp(x) is close to 1. Therefore, when xβ is close654

to 0, a fine approximation with a multiplicative structure can be state.655

Appendix B. Various operational remarks656

In this section, let focus on the simplest case of GLM : log-Gaussian.657

B.1 Quality impact and attenuation658

The different results show that the “attenuation”8 on β̂ due to data quality can be explained. However, the quality659

impacts might not always decrease the coefficients, as shown in [4, Chatelain and Milhaud, 2021]. The quality of a660

variable impacts all coefficients related to other correlated variables in the uncentred case. Figure 11 under (X-A2)661

and (Z-A1) in linear regression shows that even in the simple case the ”attenuation” is not always true. With some662

correlation, the coefficient can be higher than the usual one (the true coefficient equal to 1 and is represented the663

line on Figures 11 and 12) and even might change sign.

Figure 11: Log-Gaussian GLM: Value of βM2
1 wrapped by Q2 and grouped by Q1. The

coefficient β are all equal to 1 and the ratio of the standard deviation
√

Var(Xreal
1 )/Var(Xreal

2 )
equals to 6. The red straight line represents, β1 which is equal to 1.

664

This is especially harmful to insurance pricing, where covariates’ choice must be justified by their impacts.665

Indeed, some coefficients may seem counter-intuitive due to quality impacts. Figures 11 and 12 provide an666

illustration of the impact of Q1 depending on Q2 (β1, β2 always equal to 1). The coefficients’ evolution is not linear667

with the correlation. Figure 11 shows that if ρ < 0, βM2
1 could be negative, even if β1 > 0. Another point is that668

the coefficients could be considered as null even if the variable’s quality is not low. For instance, for Q2 = 0.7669

and ρ≈−0.4, βM2
1 ≈ 0. In this case, dropping the variable X1 would not have any impact on βM2

2 even if the true670

coefficient is different from 0. Moreover, by finding the βM1 - thanks to X and Q, the modeler can find the ”real”671

impact of a variable in models, thus justifying it.672

Remark B.1. Here, the discussion was done with the simplest hypothesis under the case (C1) and for Gaussian distribution673

where the variable quality does not impact others independent variables coefficients. For other distributions, the quality674

impacts would complicate the whole issue further.675

8As called in the econometric literature.
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Figure 12: Log-Gaussian GLM: Value of βM2
2 wrapped by Q2 and grouped by Q1. The

coefficient β are all equal to 1 and the ratio of the standard deviation
√

Var(Xreal
1 )/Var(Xreal

2 )
equals to 6.

B.2 Missing data676

The case of missing values could be seen as a particular case of this framework, where missing values are
observations with a null quality. In the case of linear regression under (C1), (X-A1) and (Z-A1), the mean imputation
is equivalent to the process explained in this paper. Denote the following model E[Y|X]= β0 + β1X1 + β2X2 and ρ
the correlation between the two covariates. First, suppose ρ= 0 and the individual i having its Xi;1 missing ; using
a simple mean imputation, the predicted value of Yi would be

Ŷi = β0 + β1E(Xreal
1 )+ β2Xreal

i;2 , (50)

using the process 3. Under (X-A1) and (Z-A1), the predicted value of yi would be

Ŷi = β
K
0 + β

K
1 Zi;1 + β

K
2 Xreal

i;2 , (51)

where K is the pattern of the quality - here K = (0, 1), β̂K
j is the estimator found thanks to the process 3, j ∈ {0; 1; 2; 3}

and Zi,1 is a value drawn randomly from the empiric distribution of Xreal
1 . Due to the different assumptions and

K = (Q1 = 0,Q2 = 1), the coefficients can be written as

(βK
0 , β

K
1 , β

K
2 )= (β0 + β1E(Xreal

1 ), 0, β2), (52)

showing the equivalence between the two methods. However, in correlated cases for instance under (X-A2) and
(Z-A1), the coefficients would equal to :

(βK
0 , β

K
1 , β

K
2 )= (β0 + β1E(Xreal

1 )−

√√
Var(Xreal

2 )

Var(Xreal
1 )
β1ρE(Xreal

2 ), 0, β2 +

√√
Var(Xreal

2 )

Var(Xreal
1 )
β1ρ). (53)

Thus, the equivalent imputation here for Xreal
i;1 should beE(Xreal

1 )−

√
Var(Xreal

2 )

Var(Xreal
1 )
ρ(E(Xreal

2 )−Xi;2). This imputation677

corresponds to the result of a linear regression to predict Xreal
1 using only Xreal

2 for the individual which is the best one678

according to the linear regression. In fact,

√
Var(Xreal

2 )

Var(Xreal
1 )
βM1

1 ρE(Xreal
2 ) corresponds to the linear part of the information679

Xreal
1 already taken into account by Xreal

2 .680

Multivariate case By extrapolating these results, it seems that for one missing observation the equivalent681

imputation should be the prediction of the linear regression of the other covariates. However, this remark does682

not take into account the issue with other covariates’ quality. To go further than the case (C1), the credibility of683

other covariates may be also correlated with the fact that a value is missing. This remark is close to the analysis of684

Seaman 2014 [18, Seaman and White, 2014] about how to impute with fully conditional specifications.685
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For Log-Poisson GLM, it has been shown that under (X-A3) and (Z-A1) the mean imputation is also equivalent,686

which is not always true for other assumptions. For instance, in Log-Gamma model the other coefficients are also687

impacted. To find the best solution into account, one should find βK and modify all the other coefficients.688

Appendix C. Proofs689

C.1 Proof of the Theorem 3.1690

Proof. Let (Y,X,Xreal,Q) be the data sets as defined by the equation 1. In the univariate case p= 1, the expected
log-likelihood of the model M2 depends on the quality index,

E(log( fY(Y|X; β)))=E(log( fY(Y|Xreal; β))|Ω= 1)×E(Ω= 1)

+E(log( fY(Y|Z; β))|Ω= 0)×E(Ω= 0),
(54)

thanks to the independance between Ω and respectively Xreal and Z. The first term is known and because Z is
independent of Y, the second can rewritten, using Fubini’s theorem :

E(log( fY(Y|Z; β̂)))=EY

∫
R

log( fY(Y|z; β))dFZ1 (z). (55)

Because Z1 have the same distribution as the Xreal
1 , Xreal

1 can be used to estimate the density fZ1 so dFZ1 (s)= dFXreal
1

(s).

Finally, the previous equation can be estimated by the mean sample. Because {Xreal
1;1 , ...,X

real
n;1 } are i.i.d observations,

the sample estimator would be

1
n

n∑
i=1

1
n

n∑
h=1

log( f (yi|Xreal
h,1 ; β̂)). (56)

Having E(|log( fY(Y| Z, β)|)<∞ using the strong law of large numbers, this sample estimator converges almost
surely. The sample estimator

∑
log( fY(yi|Xreal

i;1 ; β̂)) converges almost surely toE(log( fY(Y|Xreal; β̂)). Using the strong
law of large number, Q̄1 converges in probability towards Q1. Thus,

Q̄1

n∑
i=1

log( fY(yi|Xreal
i,1 ; β̂))+ (1− Q̄1)×

n∑
i=1

1
n

n∑
h=1

log( fY(yi|Xreal
h,1 ; β̂)). (57)

converges almost surely to E(log( fY(Y|X; β̂))). Denote this estimator log(LM2 (β|Y,Xreal,Q)).691

Finally, the following points are true :692

• observations are i.i.d and the density is Lebesgue measurable;693

• the parameter space of β is compact and open;694

• the previous estimator is concave as sum of concave function and is differentiable according to β;695

• Identifiability : the estimator function is a smooth function of β and converges in probability for all β696

towards E(log( fY(Y|X; β̂))) which has the unique solution.697

Therefore, using the Cramer-Rao conditions - Collorary 3.8 of [13, Lehmann and Casella, 1998], the global maximum
exists, is unique and converges in probability to βM2 , i.e.

β̂M2 |Xreal ,Q P.
→ βM2 ,

meaning that the estimator is consistent. □698
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C.2 Log-Gaussian proofs699

C.2.1 Proof of equation 30700

Proof. Remind that Xreal
1 is supposed centred. The likelihood maximization solution can be found as the solution

of the derivative equal to 0. Deriving by β, the derived sample estimator can be written as follows :

δE(log( f (Y|X, β̂M2))
δβ

=
δE(log( fY(Y|Xreal; β)))

δβ
×Q1 +

δE(log( fY(Y|Z; β)))
δβ

× (1−Q1)

=Q1
δ
δβ

∫
R2

(y− xβ1 + β0)2dFXreal
1 ,Y(x, y)

+ (1−Q1)
δ
δβ

∫
R

∫
R

(y− zβ1 − β0)2dFZ1 (z)dFY(y)= 0.

(58)

Remind that the MLE solution exists and is unique. It is a well-known fact that, if the identity
∫

fY(y; β)d(y)= 1
is twice differentiable with respect to β and, both derivatives can be passed under the integral sign. Therefore,the
theorem of differential under the integral can be applied and leads to the first Bartlett identity,

δE(log( f (Y|X, β̂M2))
δβ0

=−2 Q1

∫
R2

(y− xβ1 − β0)dFXreal
1 ,Y(x, y)

− 2 (1−Q1)
∫
R

∫
R

(y− zβ1 − β0)dFZ1 (z)dFY(y)= 0,

δE(log( f (Y|X, β̂M2))
δβ0

=−2 Q1

∫
R2

x(y− xβ1 − β0)dFXreal
1 ,Y(x, y)

− 2 (1−Q1)
∫
R

∫
R

z(y− zβ1 − β0)dFZ1 (z)dFY(y)= 0.

(59)

Remind that
∫
R

zdFZ1 (z)= 0=
∫
R

xdFXreal
1

(x). Therefore, the solutions of the precedent equations are :

βM2
0 =Q1

∫
R2

ydFXreal
1 ,Y(x, y)+ (1−Q1)

∫
R

∫
R

ydFZ1 (z)dFY(y),

=

∫
R

ydFY(y)= β0,

βM2
1 =

Q1
∫
R2 xydFXreal

1 ,Y(x, y)

Q1
∫
R2 x2dFXreal

1 ,Y(x, y)+ (1−Q1)
∫
R

∫
R

z2dFZ1 (z)dFY(y)
=Q1β1.

(60)

Let end the proof by replacing the β0, Q1 and β1 by their estimators. Each of them converges in probabilities;701

β̂0 and β̂1 thanks to the asymptotics MLE proprieties and Q̄1 using the strong law of large number. The proof can702

be generalized exactly in the same way under (X-A1) and (Z-A1) for p> 1. □703

C.2.2 Proof of equation 31704

Proof. The first Bartlett identities under the assumption (X-A3) are equal, for j= 1, ..., p− 1:

δE(log( f (Y|X, βM2 ))
δβ0

=−2 Q1

∫
Rp+1

(y− xreal
∗p β

∗p;M2 − xreal
p β

M2
p )dFXreal

1 ,...,Xreal
p ,Y(xreal

∗p , x
real
p , y)

− 2 (1−Q1)
∫
Rp

∫
R

(y− xreal
∗p β

∗p;M2
− zpβ

M2
p )dFZp (zp)dFXreal

1 ,...,Xreal
p−1 ,Y

(xreal
∗p , y)= 0,

δE(log( f (Y|X, βM2))
δβ j

=−2 Q1

∫
Rp+1

xreal
j (y− xreal

∗p β
∗p;M2 − xreal

p β
M2
p )dFXreal

1 ,...,Xreal
p ,Y(xreal

∗p , x
real
p , y)

− 2 (1−Q1)
∫
R

∫
Rp

xreal
j (y− xreal

∗p β
∗p;M2 − zpβ

M2
p )dFZp (zp)dFXreal

1 ,...,Xreal
p−1 ,Y

(xreal
∗p , y)= 0,

δE(log( f (Y|X, βM2))
δβp

=−2 Q1

∫
Rp+1

xreal
p (y− xreal

∗p β
∗p;M2 − xreal

p β
M2
p )dFXreal

1 ,...,Xreal
p ,Y(xreal

∗p , x
real
p , y)

− 2 (1−Q1)
∫
Rp

∫
R

zp(y− xreal
∗p β

∗p;M2 − zpβ
M2
p )dFZp (zp)dFXreal

1 ,...,Xreal
p−1 ,Y

(xreal
∗p , y)= 0.

(61)
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Remind that
∫
R

z jdFZ j (z j)= 0=
∫
R

xreal
j dFXreal

j
(xreal

j ) for j= 1, ..., p. Therefore, the solutions of the precedent

equations are:

βM2
0 = β0, βM2

j = β j, βM2
p =Qpβp, j= 1, ..., n. (62)

Let end the proof by replacing the βM2 and Q1 by their estimators. Each of them converges in probabilities; β̂M2705

thanks to asymptotics MLE proprieties and Q̄1 using the strong law of large number. □706

C.2.3 Proof of equation 32707

Proof. For this proof, denote β∗ = (β1, ..., βp). In the case (C2) with perfectly correlated quality variable , i.e., Ω j =
Ωk→ Q j =Qk ( j, k), it leads to the following equation,

δE(log( f (Y|X, βM2 ))
δβ

= 0

=
δE(log( fY(Y|Xreal; βM2 )))

δβ
×Q1 +

δE(log( fY(Y|Z; βM2 )))
δβ

× (1−Q1)

=Q1
δ
δβ

∫
Rp+1

(y− xrealβM2
∗ − β

M2
0 )2dFXreal

1 ,...,Xreal
p ,Y(x, y)

+ (1−Q1)
δ
δβ

∫
R

∫
Rp

(y− zβM2
∗ − β

M2
0 )2dFZ1 ,...,Zp (z)dFY(y).

(63)

The first Bartlett identity under the assumption (Z-A2) are equal:

δE(log( f (Y|X, βM2 ))
δβ0

=−2 Q1

∫
Rp+1

(y− xrealβM2
∗ − β

M2
0 )dFXreal

1 ,...,Xreal
p ,Y(xreal, y)

− 2 (1−Q1)
∫
R

∫
Rp

(y− zβM2
∗ − β

M2
0 )dFZ1 ,...,Zp (z)dFY(y)= 0,

δE(log( f (Y|X, βM2 ))
δβ j

=−2 Q1

∫
Rp+1

xreal
j (y− xrealβM2

∗ − β
M2
0 )dFXreal

1 ,...,Xreal
p ,Y(xreal, y)

− 2 (1−Q1)
∫
R

∫
Rp

z j(y− zβM2
∗ − β

M2
0 )dFZ1 ,...,Zp (z)dFY(y)= 0.

(64)

Remind that
∫
R

z jdFZ j (z j)= 0=
∫
R

xreal
j dFXreal

j
(xreal

j ) for j= 1, ..., p. Under the assumption (Z-A2),∫
Rp z jzdFZ1 ,...,Zp (z)=

∫
Rp

∫
R

xreal
j xrealdFXreal

1 ,...,Xreal
p

(xreal). Therefore, the solutions of the precedent equations are:

βM2
0 = β0, βM2

j =Q jβ j, j= 1, ..., n. (65)

Let end the proof by replacing the βM2 and Q1 by their estimators. Each of them converges in probabilities; β̂M2708

thanks to asymptotics MLE proprieties and Q̄1 using the strong law of large number. □709
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C.3 Proof for the GLM Log-Poisson710

C.3.1 Proof of equations 34 and 36711

Proof. To keep the notation simple, I omit the exposure V in E(log( fY(Y|X; β))). Under the assumption (X-A3),
using the Fubini’s theorem, the expected likelihood (without the constant part) is equal to

E(log( fY(Y|X; β)))∝QpE(log( fY(Y|Xreal; β)))

+ (1−Qp)
∫
R

∫
Rp+1
−veβ

∗pxreal
(∗p)+βpz

+ n(β∗pxreal
(∗p) + βpz)dFXreal

1 ,...X
real
p−1 ,V,Y

(xreal
(∗p), v, y)dFZp (z)

∝QpE(log( fY(Y|Xreal; β)))

+ (1−Qp)
∫
R

∫
Rp+1
+veβ

∗pxreal
(∗p) − veβ

∗pxreal
(∗p)+βpzdFXreal

1 ,...X
real
p−1 ,V,Y

(xreal
(∗p), v, y)dFZp (z)

+ (1−Qp)
∫
R

∫
Rp+1
−veβ

∗pxreal
(∗p) + y(β∗pxreal

(∗p) + βpz)dFXreal
1 ,...,X

real
p−1 ,V,Y

(xreal
(∗p), v, y)dFZp (z)

∝QpE(log( fY(Y|Xreal; β)))+ (1−Qp)E(log( fY(Y|Xreal
(∗p); β

∗p)))

+ (1−Qp)
∫
Rp+1

veβ
∗pxreal

(∗p) dFXreal
1 ,...X

real
p−1 ,V,Y

(xreal
(∗p), v, y)(1−MXp (βp)).

(66)

Because all the input centred, the last term of the integral is null. Moreover, the moment generating function
MXreal

p
(t) exists for all t ∈R and the expected likelihood has at sample analogue using only Xreal

Q̄p log(L(β|Y,Xreal))+ (1− Q̄p) log(L(β∗p|Y,Xreal
∗p ))

+ (1− Q̄p)
n∑

i=1

vie
β∗pXreal

i;(∗p) (1−MXp (βp)).
(67)

If Xp is bounded, the Hoeffding Lemma gives us a proper upper bound and Jensen inequality gives us the
inferior one. Indeed,

exp
(
βE(X)

)
≤E(eβX)≤ exp

(
βE(X)+

β2(max(X)−min(X))2

8

)
.

With Hoeffding inequality, another bound can be deduced without needing a bounded variable9 :

exp
(
βE(X)

)
≤E(eβX)≤ exp

(
βE(X)+

β2V(X)
2

)
.

These inequalities lead to the equation 36. □712

C.3.2 Proof of the Lemma 2713

Proof. For j in 0, ..., p, the gradient

δ
δβ j
E(log( fY(Y|X; β)))= Qp

δ
δβ j
E(log( fY(N|Xreal; β)))

+ (1−Qp)
∫
R

∫
Rp
−vxreal

j e
β∗pxreal

(∗p)+βpz
+ nxreal

j dFXreal
1 ,...Xreal

p−1 ,N
(xreal

(∗p), n)dFZp (z)
(68)

can be separated in two part. Remind that dFZp (z)= dFXreal
p

(x) because Zp and Xreal
p have the same distribution.

Under the assumption (X-A3), dFXreal
1 ,...Xreal

p
(xreal)= dFXreal

1 ,...Xreal
p−1

(xreal
(∗p))dFXreal

p
(xreal

p ) for j= 1, ..., p− 1. By replacing these

9Recall that Xp is assumed to possess a second moment through the mild regularity conditions A.1 -A.2.
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values in the previous equation, we have :

δ
δβ j
E(log( fY(Y|X; β)))= Qp

δ
δβ j
E(log( fY(N|Xreal; β)))

+ (1−Qp)
∫
Rp+1
−vxreal

j eβx
real
+ nxreal

j dFXreal
1 ,...Xreal

p ,N(xreal, n)

= Qp
δ
δβ j
E(log( fY(N|Xreal; β)))

+ (1−Qp)
δ
δβ j
E(log( fY(N|Xreal; β)))= d j(β),

(69)

The derivative according to βp is calculated thanks to equation 67 without difficulty.714

This end the proof for equation 37. □715

C.3.3 Proof of the theorem A.2716

Proof. The solution (MLE) βM2 exists and is unique. Moreover, the solution βM2 is a global maxima. Therefore, the
solution βM2 nullifies the partial derivatives, dM2

j for j= 0, ..., p, i.e dM2
j (βM2 )= 0. In the same way, d j(β)= 0. One

can remark that

d j(β)=
∫
R

∫
Rp
−vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1 ,N
(xreal

(∗p), n)dFXreal
p

(xreal)

=

∫
Rp
−vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1 ,N
(xreal

(∗p), n)
∫
R

eβpxreal
dFXreal

p
(xreal)︸                     ︷︷                     ︸

>0

= 0, (70)

which leads to
∫
Rp −vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1 ,N
(xreal

(∗p), n)= 0.717

Denote b a set of coefficient such as b∗p = β∗p and bp ∈R
∗, j= 1, ..., p− 1. The derivative dM2

j (βM2 ),

dM2
j (b)= d j(b)=

∫
R

∫
Rp
−vxreal

j e
β∗pxreal

(∗p)+bpxreal
dFXreal

1 ,...Xreal
p−1 ,N

(xreal
(∗p), n)dFXreal

p
(xreal)

=

∫
Rp
−vxreal

j eβ∗pxreal
∗p dFXreal

1 ,...Xreal
p−1 ,N

(xreal
(∗p), n)︸                                              ︷︷                                              ︸

=0

∫
R

ebpxreal
dFXreal

p
(xreal), (71)

is null for j= 1, ..., p− 1. Deriving by βp, the derivatives equals to

dM2
p (b)=Qp dp(b)− (1−Qp)

∫
Rp

ve
β∗pXreal

i;∗p dFXreal
1 ,...Xreal

p−1 ,N
(xreal

(∗p), n)M
′

Xp
(bp). (72)

If bp > βp, dp(b)> 0 and if bp < 0, dp(b)< 0. In the same way, if bp > βp, −M
′

Xp
(bp)> 0 and if bp < 0, −M

′

Xp
(bp)< 0.718

These inequalities lead to if bp > βp, dM2
p (b)< 0 and if bp < 0, dM2

p (b)> 0.719

Because b 7→ dM2
p (b) is a continuous function, a bp ∈ [0, βM1

p ] exists, such as dM2
p (b)= 0.720

We have proven that it exists b with the following characteristic’s b∗p = β∗p and bp ∈ [0, βM1
p ] such as :

dM2
j (b)= 0, dM2

p (b)= 0. (73)

Because the solution of M2 log-likelihood maximization is unique, the previous solution is the global maximum721

βM2 .722

For j= 1, ..., p, we end the proof by replacing the β j, Q1 and β j by their estimators. Each of them converges in
probabilities; β̂0 and β̂p the asymptotics MLE proprieties and Q̄1 using the strong law of large number,

β̂M2
j

P.
→ β j, β̂

M2
p

P.
→ [0; βp], j ∈ 0, ..., p− 1. (74)

□723
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C.3.4 Proof of the Log-poisson results for (C2) assumption724

Proof. Denote β∗ = (β1, ..., βp). In the case (C2) with perfectly correlated quality variables, i.e. Ω j =Ωk→ Q j =Qk
( j, k), the equation under (Z-A2) can be written:

E(log( f (Y|X, β))=Q1E(log( fY(Y|Xreal; β)))+ (1−Q1)E(log( fY(Y|Z; β)))

=Q1E(log( fY(Y|Xreal; β)))+ (1−Q1)E(log( fY(Y|β0)))

+ (1−Q1)
∫
R

∫
Rp
−veβ0+β∗z + n(β0 + β∗z)dFZ1 ,...Zp (z)dFN(n)

=Q1E(log( fY(Y|Xreal; β)))+ (1−Q1)E(log( fY(Y|β0)))

+ (1−Q1) vexp(β0) MZ(β∗),

(75)

where MZ(β∗) is the multivariate generating function of Z1, ...,Zp and under (Z-A2) is equals to MXreal (β∗). The first
of Bartlett identities,

δE(log( f (Y|X, βM2))
δβ

=Q1
δ
δβ
E(log( fY(Y|Xreal; βM2 )))+ (1−Q1)

δ
δβ
E(log( fY(Y|βM2

0 )))

+ (1−Q1)V
δ
δβ

(
exp(βM2

0 )(1−MXreal (β
M2
∗ ))

)
= 0,

(76)

does not permit to find a bound on βM2 (see the remark for log-Gamma GLM). However, E(log( fY(Y|Xreal; β))) can
be calculated using only X,

E(log( fY(Y|Xreal; β)))=
1

Q1

(
E(log( f (Y|X, β))− (1−Q1)E(log( fY(Y|β0)))

− (1−Q1) V exp(β0) MXreal (β∗)
)
.

(77)

□725

C.4 Proof for GLM log gamma726

C.4.1 Proof of the lemma 3727

Proof. The expected log-likelihood to maximize is equivalent to:∫
Rp+1
−y exp(−xβ)− xβdFX1 ,...,Xp ,Y(x, y). (78)

The expected log likelihood E(log( fY(β̂; Y|X))) is equal to

Qp E(log( fY(β̂; Y|Xreal)))+ (1−Qp)E(log( fY(β̂∗p; Y|Xreal)))MXp (−β̂p). (79)

Under the assumption (X-A3), the derivative of the M2 log-likelihood for j in {0, ..., p− 1} are equal to728

δ
δβ j
E(log( fY(β; Y|X)))=Qp d j(β)+ (1−Qp)

δ
δβ j

∫
R

∫
Rp
−y exp(−xreal

∗p β∗p − zpβp)− xreal
∗p β∗p − zpβpdFXreal

1 ,...,Xp−1 ,Y
(xreal
∗p , y)dFZp (zp)

=Qp d j(β̂)+ (1−Qp)∫
R

∫
Rp
−yxreal

j exp(−xreal
∗p β∗p − zpβp)dFXreal

1 ,...,Xp−1 ,Y
(xreal
∗p , y)dFZp (zp)

=Qp d j(β)+ (1−Qp)
δ
δβ j
E(log( fY(β∗p; Y|Xreal)))MXp (−βp),

δ
δβp

E(log( fY(β; Y|X)))=Qp dp(β)+ (1−Qp)∫
R

∫
Rp
−yzpexp(−xreal

∗p β∗p − zpβp)dFXreal
1 ,...,Xp−1 ,Y

(xreal
∗p , y)dFZp (zp)

=Qp d j(β)− (1−Qp)E(log( fY(β∗p; Y|Xreal)))M
′

Xp
(−βp).

(80)

□729
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C.5 Convexity: Propositions 1730

Proof. Denote the covariates X j, Xk (i, j) with a Pearson correlation ρ for which |ρ|, 1 and suppose βk and β j731

non-null. Using the corollary of [4, Chatelain and Xavier, 2021], the following derivatives are found :732

δβM2
k (Qk |Q j)

δQk
=A×

1+Q2
j Q2

kρ
2

(1−Q2
j Q2

kρ
2)2
,

δ2βM2
k (Qk |Q j)

δQ2
k

=A×
2Q2

j Qkρ
2

(1−Q2
j Q2

kρ
2)3

(3+Q2
kQ2

jρ
2),

(81)

with A= βk(1−Q2
jρ

2)+

√
Var(X j)
Var(Xk)β jρ(1−Q2

j ).733

A is positive only if ρβk >−

√
Var(X j)
Var(Xk)β j. Indeed,734

0≤βk(1−Q2
jρ

2)+

√
Var(X j)

Var(Xk)
βM1

j ρ(1−Q2
j )

0≤βk +

√
Var(X j)

Var(Xk)
β jρ−Q2

j (ρ2βk −

√
Var(X j)

Var(Xk)
β jρ),

if ρ≥−

√
Var(X j)

Var(Xk)

β j

βk
and βk ≥ 0 or ρ≤−

√
Var(X j)

Var(Xk)

β j

βk
and βk ≤ 0.

(82)

Then βM2
k (Qk |Q j)) is convex if ρ≥−

√
Var(X j)
Var(Xk)

β j
βk

and βk ≥ 0 or ρ≤−

√
Var(X j)
Var(Xk)

β j
βk

and βk ≤ 0 and concave in the735

two other cases. If Q1, Q2 or ρ are null,
δ2β

M2
k (Qk)

δQ2
k
= 0 which ends the proof. □736
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