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ABSTRACT
The different dimensions of the data quality impact the feature selection and the regression in
different ways. Actuaries as others modellers need to deal with this notion of quality. Looking
through GLMs, we show how to find the real impact of variables with heterogeneous quality
using an individualized quality index. Under a simple assumption that inconsistent data have the
same distribution as the real one, we propose a method to estimate the covariate true impact on
the predictor and provide a method to predict the outcome depending on quality indexes values
under several assumptions. Different operational remarks on the creation and the use of quality
index for actuarial uses are done.
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1. Introduction

Actuarial pricing was traditionally limited by the number of variables used and their complex-
ity. Indeed, the number of variables stems from the underwriter answers who has a limited
amount of time to answer all questions and also a limited or imprecised knowledge. To offset
this problem, more and more insurance companies use external data to improve their model.
However, for a same individual, its known features gathered from external data may not be all
as precise. Moreover, the reliability of information gathered from different external databases
varies within a same feature and also depending on individual. Indeed, often gathering pro-
cesses aggregate data sets of various quality from various sources. As is reasonably logical to
expect, modelling should depend on the quality of observations. Then, how can an individu-
alized quality index be used for predicting ?

Because the data quality subject has myriads of applications and issues, literature is stem-
ming from research on evaluating data quality. A consensus has been reached on the need of
a multiple dimension analysis for data quality evaluation ([19]). For instance, completeness is
a research field where numerous methods were developed to deal with missing values ([21],
[12]). These methods are globally based on assumptions such as MCAR (Missing Completely
At Random), MNAR (Missing Not At Random), or MAR (Missing At Random). On mismear-
surement side, the book of Efromovich [6] gives some insight for an analysis in univariate
solution and with biased predictors or response or in a more multivariate case ([14]). In the
present paper, the credibility dimension will be studied further. The uncertainty of observations



is quantified and called quality index and supposed to be perfectly measured. It refers to the
uncertainty of the covariates, where the observed covariate values are generated by a latent
variable model based on the quality. On the uncertainty of covariates, some works exists on
the mismeasurement side using trees algorithm ([20], [18]).

Actuaries, responsible for the data quality within the insurance company (articles 219, 237,
244, 245, 247 from Solvency II Commission Delegated Regulation (EU) 2015/35), must assess
and justify the data quality even if it is coming from a third party : Data used in the internal model
obtained from a third party shall not be considered to be appropriate unless the insurance or reinsurance
undertaking is able to demonstrate a detailed understanding of those data, including their limitations,
article 237. In France, ACPR [1] evaluated that 10% of datas are coming from external parties.
Campbell [3] relates several actuarial examples showing that data quality does not have a
negligible impact.

Therefore, actions must be triggered to assess and to take into account the data quality prob-
lematic. These different notions of quality have already been discussed for actuarial purposes
in exploratory cases from the North Americain side ([7]) or from the UK side [3] for instance.
To the best of our knowledge, advices to take into account data quality are still very qualitative
([8]) for actuaries; basic recommendations such as deleting, imputing or correcting the problem.

Our main assumption is that wrong observations have the same distributions as the empirical
one. Under this assumption, Chatelain and Milhaud [4] considers the case of a basic linear
regression and the correlation matrices. Because GLM are preferred in insurance industry, this
paper will study the GLM cases through the likelihood. The goal is to give a precise answer
to the following question. Given an individualized quality index (here based on credibility
dimension), how can this quality index be used in a multivariate GLM ? How could we set up
a pricing model with a variable having quality problems?

1.0.0.1. Contributions. This paper present two main contributions. First, we show how to take
into account quality indexes in a GLM regression, how to predict with a quality index and some
estimators proprieties are given. Next, several operational and practical remarks are given to
help the creation and the use of quality indexes.

1.0.0.2. Outline of the paper. The paper is built as follows: in the section 2, we introduce the
general framework, the notation and precise how uncertainty is integrated in the covariate
generating process. In the section 3 gives the main algorithm and theoretical results. Hereafter,
a simulation study illustrates the results in the section 4. Next, section 5 brings close the different
assumptions to actuarial uses. Finally, section 6 discusses the creation of quality indexes, the
case of imperfect data quality indexes and links this work with the missing value theory.

2. Data problems and imputation

2.1. Notations

This framework is the same as Chatelain and Milhaud [4] one. We want to take advantage of
the information provided by an individualized quality index related to the confidence we can
have about the i − th observation of the j − th covariate, further denoted Qi j.

In this view, we introduce the following latent variable model :

X = Xreal
◦Ω + Z ◦ (Jn,(p+1) −Ω) (1)



where ◦ corresponds to the Hadamard product, Jn,(p+1) is the n × (p + 1)-identity matrix under
Hadamard multiplication, X = (Xi j) ∈ Mn×(p+1)(R) are the observed covariates, Xreal = (Xreal

i j ) ∈
Mn×(p+1)(R) are the “real” covariates, Z = (Zi j) ∈ Mn×(p+1)(R) are considered as the “wrong”
covariate values having the same distribution as Xreal, and Ω = (ωi j) ∈ Mn×(p+1)(0, 1) is a binary
mask indicating whether the i − th observation of the j − th covariate Xi j is perfectly observed
or not. In other words, Ω tells us if one observes the “real” observation or not. Assume that
covariates distribution have second moment finite.

In practice, the data at disposal is made of individualized quality indexes through some
matrix Q = (qi j) ∈ Mn×(p+1)([0, 1]), together with n iid replications (Yi,Xi)i=1,..,n of (Y,X), where
Yi ∈ R and Xi = (1,Xi1, ...,Xip) ∈ Rp+1. Each element Qi j of the matrix Q informs us on the
quality related to the observed covariate value Xi j. We use Q as the expectation of Ω, leading
to define the quality index as a credibility index. This means that for all i = 1, ...,n, j = 1, ..., p
the quality index Qi j is equal to :

Qi j = E(ωi j) =

P(Xi j = Xreal
i j ) if X j is continuous variable,

P(Xi j = Xreal
i j ) − P(X j = Xreal

i j ) if X j is discrete variable.

We denote for the rest of the paper ( j = 1, ..., p), Q̄ j = 1
n
∑n

i=1 Qi j and assume Q̄ j , 0. This
assumption is not restrictive, especially for real-life applications where such covariates would
simply be removed from the data. However, it does not mean that an individual having all
quality indexes null does not exist.

In this framework, the singularity is that Xreal is not fully observed, which has consequences
on the estimation of the regression coefficients.

2.2. Illustrative example

Let consider a simple example, with a set of observations (Y1, ...,Yn) to study and the corre-
sponding explanatory variables (X1, ...,X4) where each observation is i.i.d associated.Here, only
the last variable X4 has an individualized quality index (Q1, ...,Qn) where Qi ∈ (0, 1). In our
case, the quality index is evaluated as values between 0 and 1 as shown in example 1. If the
index could be use as a weigh in an univariate regression, the use of quality as a weigh in
the regression cannot be done in a multivariate regression. Moreover, the use as a weigh may
bias the regression. Example 1 displays another issue : if an actuary fits a model with medium
quality observations, how should he adapt its prediction for observations where the covariates
value is perfectly known or unknown ?

Table 1.: Dummy example. Here, X1 could refer to occupant age in Year, X2 is the covariate
informing on if the insured person is a tenant or not, X3 to the number of rooms and X4 house
value in e per m2. Arbitrary, Y could be the annual claims amount.

Exposure X1 X2 X3 X4 Q4 Y
0.6 45 True 2 454 0.8 350 e
1 30 True 3 1000 0.6 0 e
1 43 True 2 2500 0 2450 e

0.2 61 False 6 245 0.7 0 e
(a) Example of a training dataset. Each xi;4 ob-
servation has a quality index Qi;4 associated
which is between 0 and 1 - 1 being an observa-
tion of perfect quality and 0 the worst one.

X1 X2 X3 X4 Q4 Y
35 True 3 723 1 ? e
53 True 1 613 0.5 ? e

(b) Testing dataset. From a training data set with an im-
perfect variable, how can we predict the future claim
knowing perfectly a value or in a more general know-
ing imperfectly a value ?



2.3. Deleting and imputation

Let consider the strategy to impute new values on outliers or low quality observations1. Defin-
ing outliers in the multivariate case when the others covariates are not good quality is difficult.
Straightforwardly in our framework, most of the outliers are also incorrect observations. In
the univariate case, the uncertainty can influence the definition of outliers for a regression as
shown in figure 1. Indeed, the outliers’ detection is bias due to the data set’s quality. In that
situation, some perfectly observed observations may be defined as outliers. For instance, in
figure 1, the top-right point corresponds to a real value however using the dataset with a lower
quality, the point would be more considered as an outlier than using the real dataset when Xreal.
This illustrates that data quality influences outliers detection.

Figure 1.: An univariate example where black points are the real observations and grey points
are the wrong observations. The arrows show translations of some data points between the
real value and their observed one. This graph is based on simulated data with X ∼ Γ(1, 2)
and Y = 10 + 1x, Q follows an uniform distribution between 0.5 and 1. The quality here is
defined in the notation subsection 2.1. The thick line is the linear regression estimated on the
true observations and the other on the data set of lower quality.

2.3.0.1. Naive solution. Given a data set and its joint quality index, a naive workaround of
deleting could be done. As before, an easy one is to choose a threshold on the quality indexes
and delete individuals having one of their quality indexes below. This solution can hardly be
done with some low quality data or for highly dimensional datasets. Indeed, this latter issue
was exemplified by Zhu and al. 2019 [22]. With an independent probability of a value missing
equals to 0.05 and 300 covariates, this deleting approach would suppress 0.95% of the data set.

For our framework, suppose assumptions similar to Zhu et al. 2019 [22], i.e. in the case com-
plete independence of quality and observations2. Assume all the quality indexes independently
distributed as Uni f orm(0.4, 0.8). Not only the low quality of the data implies a small threshold,

1Outliers detection or highly influential observations in a multivariate case was well studied in the general case for instance
(Hadi, 1991 [9]) as in linear regression context (Cook 1977 [5]).

2From the notations used in this paper: (C1) with the assumptions (X-A1) and (Z-A1).



but the different observations would highly range around the mean value. For a threshold of
0.5 and 10 variables defined as before, only 6 % rows would have all its covariates above the
threshold in average. Besides, errors can be correlated spatially and this filtering process may
bias the portfolio risks. For open data used in household insurance, this is in particularly true
for urban area zones : covariates have often lower quality in rural areas. Thus, filtering strate-
gies are not optimal. To the best of our knowledge, integrating quality indexes in multivariate
regression was never investigated for GLM.

2.4. Frameworks under study

Several assumptions are looked through. They are linked with Rubin’s nomenclature (Rubin,
1976 [15]), yet contested (Seaman, 2013 [17]). From the equation (1), different cases can be
investigated depending on the correlation structure of (Xreal,Z,Ω). We will consider the four
following situations resume in the Figures 2a, 2b, 2c, 2d.

Ω j

Xreal
j Z j

Ωk

Xreal
k Zk

⊥⊥

No Hyp No Hyp

⊥⊥ ⊥⊥

⊥⊥
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⊥⊥

⊥⊥

(a) Case (C1) - Total uncertainty ( j , k). (No Hyp)
means No hypothesis.
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(b) (C2) - Local imprecision with unrelated errors.
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(c) Case (C3) - Imprecision ( j , k).

Ω j
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j Z j

Ωk

Xreal
k Zk
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No Hyp No Hyp

No Hyp

No Hyp

No Hyp

No Hyp

(d) Case (C4) ( j , k).

Figure 2.: Cases studied.



These assumptions can be linked with the missing value theory. For instance, the MCAR
assumption (Rubins 1976 [15], Heitjan 1996 [10]) can be seen as a particular case of the statement
(C1) when the quality indexes are equal either to 0 or to 1. The multivariate independency
between the variables suggests that the errors are independent. In other words, each observation
of each variable is gathered from different and unrelated sources or with unrelated errors.

In the same way, MAR assumption is a particular case of (C2) and (C3). Indeed, it corresponds
to dependence between quality indexes/missing observation. In the case (C3), the wrong values
Z j are correlated to the real values Xreal

j . A particular case is when (Z j − Xreal
j ) follows a centred

distribution and is related to mismeasurement theory.
The last case (C4) is closely linked to MNAR setting, where no independency exists between

each variable. The frequency of errors Ω and the wrong values Z can depend on the real values
Xreal; the errors are informative which highly complexify the analysis. The different cases are
discussed in section 5.

Remark 2.1. A discrete variable is considered a sum of Boolean variable in regression. In between these
Boolean variable the quality variable Ω are equals. Hence, the case (C2) with fully correlated quality
variables is a necessary assumption.

In this paper, only the case (C1) and (C2) will be studied through GLM and linear regression.
By default, the result are under (C1) or will be mentioned otherwise. We also suppose that the
information brought to the predictor from Z is not distinct from Xreal; Z is informative only
through it correlation with Xreal.

3. Estimation Process

3.1. Reducing the error by mitigating on quality pattern

In this work, X is governed by the underlying process generating the covariates, as in the
equation (1). In OLS regression, the solution β̂ minimizes the Residual Squared Error (RSE)
calculated on the dataset X. In GLM regression, it is the mean deviance (1/n)Dev(β̂|X,Y) cal-
culated on the dataset X which is minimized. Our particular framework enables to group two
individuals i and i′ having the same quality indexes (i.e. Qi = Qi′ ), which define a quality
pattern. Denote P(Q) the set of all quality patterns present in the data. By taking it into account,
the cost metric can be improved since

(1/n)Dev(β̂|X,Y) ≥ (1/n)
∑

K∈P(Q)

∑
i\Qi=K

Dev(β̂K
|Xi,Yi), (2)

where β̂K is the solution found on subset of the data with quality pattern K. The strategy to
calculate these different coefficient is introduced in Section 3.2.

3.2. Prediction using quality index

We study in the sequel GLM, given by

E[Y | Xreal] = g−1(Xrealβ),



and the likelihood associated L(β; Y|Xreal) where the optimization is made using the real data
set Xreal. In most cases, the previous model is unknown in our framework. Hereafter, this model
is called ”real” model.

Denote the following naming :

• M2 (”Naive” model) : Model fitted on the observed dataset X:

E[Y|X] = g−1(XβM2),

where β̂M2 the solution of ArgmaxβLM2(β; Y|X). When LM2(β; Y|X) is estimated using Xreal,
denote it LM2(β; Y|Xreal,Q), we write β̂M2 |Xreal,Q the solution of ArgmaxβLM2(β; Y|Xreal,Q).

• M1 (”Perfect quality” model): Model fitted on the observed dataset X which estimates
the coefficient of the real model, β:

E[Y|X,Q = Jn,p+1] = g−1(XβM1).

In our framework, denote the solution β̂ the solution of ArgmaxβL(β; Y|Xreal) and β̂M1 is
the solution of ArgmaxβLM1(β; Y|X,Q) defined in the section 3.6. L(β; Y|Xreal) can not be
determined in practice, since Xreal is not fully observed;

• M3 (”Pattern-adjusted” models): based on X and Q, obtained from Algorithm 3 the
models depend on each quality pattern:

E[Yi | Xi, K = (Qi j)1≤ j≤p] = g−1(Xiβ
K),

where K denotes the quality pattern associated to the individual i. In this work, notice
that βK is an estimator βM2 when Q = Jn,1K.

For all the proofs, we will suppose all the input centred. Indeed, in linear regression and in
GLM, a simple covariates translation only impacts the intercept’s coefficient β0.

3.3. Algorithm 3 for linear regression and GLM

For linear regression (see [4]), algorithm displayed in figure 3 associated with the Model M3

first assesses the Naive model M2 from X. Using β̂M2 and the correlation matrix empirical Σ̂, an
estimator of the ”perfect quality” correlation matrix Σreal (see A.1) and then coefficients of real
model - β̂M1 - are evaluated thanks to the quality index Q. Finally, the algorithm find β̂K which
minimizes the Residual Squared Errors for each pattern of quality K.

For GLM regression, a similar method is suggested. To that end, the likelihood will be studied
in place of the matrix correlation. However, the algorithm M3 can not be applied as easily. No
closed formula exists to link βM2 and β. Therefore, we will propose to find βM1- an estimator of
β by maximizing an estimator of real model likelihood using Q; X (see section 3.6). Once β̂M1

determined, we propose to use a linear correction to estimate β̂K. This approximation works
well within small values of β (see section 4.2).

In the event that Xreal is known, or a large enough sample X is perfectly observed, β̂K could
be directly estimated from the maximum optimization of the likelihood LM2(β; Y|Xreal,Q) (see
section A.3). If the correlation structure of Xreal is the same as X one, another solution would be
to simulate a new Ynew using X and β̂M1 to apply an estimator proposed in the subsection 3.6.



For linear regression

Y,X,Q

I.a β̂M2 = f (X,Y)

I.b Σ̂ induce by X

II.Σ̂real = f (Σ̂,Q).

III. β̂M1 using β̂M2 , Σ̂real and Σ̂

IV. For given a quality pattern Qi = K ∈
P(Q), each individual i, Xi :

IV.a β̂K using β̂M1 , Σ̂real,K

IV.b Prediction of Yi using β̂K and Xi

For GLM

Y,X Q Xreal

ln(LM2(β; Y|X)) i.a ln(LM1(β; Y|X,Q))

Maximum optimisa-
tion: β̂M2

i.b Maximum optimi-
sation: β̂M1

ii. For given a quality pattern Qi = K ∈
P(Q), each individual i, Xi :

ii.a (Linear approximation): β̂K

using β̂M1 , Σ̂real and K

ii.b Prediction of Yi using β̂K and Xi

ii.a.bis ln(LM2(β; Y|Xreal,Qi))

Maximum optimisa-
tion: β̂K = β̂M2 |Xreal,Qi

Figure 3.: Process to take into account the quality index for linear regression and an approxi-
mation for GLM log-Poisson. In some way, this process adjusts the coefficient to each quality
pattern.

3.4. Two assumptions under study

Assume that each covariate distribution has a finite second-order moment, and recall that
Z j ∼ Xreal

j for j = 1, ..., p. We discuss here the assumptions underlying the correlation structure
between the covariates Xreal, as well as for the random variables Z. Let us thus define the five
following assumptions:

(X-A1) All the random variables Xreal
j ( j = 1, ..., p) are independent.

(X-A2) Each variable Xreal
j is correlated with only one variable Xreal

k ( j , k).
(X-A3) For all k , p, the variable Xreal

k is independent of Xreal
p and Q̄k = 1.

(Z-A1) All the random variables Z j and Zk are independent.
(Z-A2) The vector (Z j,Zk) has the same correlation structure than (Xreal

j ,Xreal
k ), j , k.

For GLM, we do not consider correlation between imperfectly observed covariates, such as
(X-A2). However, for linear regression. (X-A2) is taken into account in [4]. When the assumption
(X-A3) is studied, we denote X(∗p) = (1,X1; · · · ; Xp−1) and it’s observed sample Xi;(∗p). In the same
way, β(∗p) refers to (β0, · · · , βp−1).

Remark 3.1. The choice of the correlation structure of Z depends only on the data. Based on the same
extraction and on the same key (e.g. geocoding), the correlation between two Zi, Z j will be similar to the
Xreal

i , Xreal
j ones for i , j and i, j ∈ {1, ..., p}. In this case, (Z-A2) would be more appropriate. For errors

completely independent, (Z-A1) would be preferred. In some other cases, the correlation structure might
also differ, leading to other assumption on Z structure.



3.5. The likelihood of the model with quality index

For actuarial pricing, most of the model used are not Gaussian but often Poisson distribution
or Gamma one. In the GLM case, the set of coefficient β = (β0, ..., βp)T is found by maximizing
the likelihood or log-likelihood (ML-Maximum likelihood);

argmax
β∈Rp

L(β; Y|X) = argmax
β∈Rp

n∑
i=1

ln( fY(yi|Xi; β)), (3)

where L is the likelihood function of the outcome Y given X and β and fY is the Y density
function.

Because the observations are independent and identically distributed, the previous log like-
lihood is the sample analogue of E(ln( fY(Y|X; β))).We assume mild regularity conditions (see
A.3) for the proper converges of our models. In our framework, these regularity conditions
leads to existence of the moment generating function for each imperfectly observed covariates
when needed. More detail on the theoretical part can be found in the appendixes.
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Previous table shows different results for different GLM. For the most commonly used in
pricing (Log-Gaussian, Log-Poisson and Log-Gamma GLM) some interesting results can be
found whith this framework thanks to the additive or multiplicative structure. For Probit
or Inv-Gamma GLM, no results can be found without approximation. Log-Gaussian GLM
leads to explicit relation between β and βM2. Therefore, the M1 log-likelihood is not needed to
be calculated. Because Log-Gaussian GLM and linear regression are equivalent, we logically



found the same results. It is important to notice that βM2
j only depends on Q j and βk and Q j for

all Xk correlated to X j.
In the case (C1), Log-Poisson and Log-Gamma GLM’s multiplicative structure permit de-

termining ln(LM1(β̂; Y|X,Q)). However, in multivariate case, under (X-A3) and (Z-A1), βM2
p

depends on Qp and MXp(t) and β j for j = 1, ..., p − 1. The main difference is that βM2
j depends

on the distribution of Xp. Under (X-A3) and (Z-A1), if, for Log-Poisson model, βM2
j = β j and

βM2
p has a bounded convergence in probability, for Log-Gamma model βM2

p is not bounded and
moreover the other coefficients, βM2

j , are also impacted by Qp.
In the case (C2) with fully correlated quality variable under (Z-A2), i.e. Ω j = Ωk for all j

and k, Log-Gaussian coefficients βM2
j have a simple affine linear-ship with βM1

j for j = 1, ..., p,.
Regrettably, no proprieties on the estimator can be state for Log-Gamma and Log-Poisson
GLM.

3.6. Deduce βM3

As already mentioned in Section 3.2, the vector βK exactly matches βM1 when all individualized
quality indexes equal 1, i.e. when K = J1,p+1. In full generality, when K = Qi is made of terms
Qi j , 1, the coefficients β̂K need to be calculated, β̂K=Qi is an estimator of βM2 when the model is
fitted on dataset X but in the case Q = Jn,1 Qi. Therefore, the coefficient β̂K is the one minimizing
the mean Dev(β̂K

|X,Y) for a given pattern of quality K as we wanted (see the equation 2).
For any distribution and link function g, it is possible to estimate the expected M2 log-

likelihood for a given Q using Xreal in the univariate case.

Theorem 3.1. Let (Y,X,Q) be the data sets as defined by equation 1. Suppose the assump-
tion (C1) in the univariate case p = 1. We assume mild regularity assumptions, especially∫
R2 |ln( fY(y|z; β))|dFZ1(z)dFY(y) < ∞ for any value of y and β. Knowing (Y,Xreal,Q), a sample es-

timator of E(ln( fY(Y|X; β))) is

Q̄1

n∑
i=1

ln( fY(yi|Xreal
i1 ; β))

+ (1 − Q̄1) ×
n∑

i=1

1
n

n∑
h=1

ln( fY(yi|Xreal
h1 ; β)).

(4)

This estimator which converges almost surely, is denoted ln(LM2(β; N|Xreal,Q)). The associated maxi-
mum likelihood estimator β̂M2|Xreal,Q converges in probabilities into β, i.e.

β̂M2|Xreal,Q P.
→ β.

Proof. See A.11. �

The theorem can be easily extended to multivariate hypothesis (X-A3) and (Z-A1).



Theorem 3.2. Under the assumption (X-A3) - (Z-A1) and the same hypothesis as in the univariate
case, the sample analogue of E(ln( fY(Y|X; β)))

Q̄p

n∑
i=1

ln( fY(yi|Xreal
i;(∗p),Xi;p = Xreal

i;p ; β̂)

+ (1 − Q̄p)
n∑

i=1

1
n

n∑
h=1

log( fY(yi|Xreal
i;(∗p),Xi;p = Xreal

h;p ; β̂)).

(5)

is consistent. The associated maximum likelihood estimator β̂M2|Xreal,Q converges in probabilities into β,
i.e.

β̂M2|Xreal,Q P.
→ β.

Remark 3.2. In fact, for any correlation structure in between Xreal, Ω, Zreal, we could find estimate
of the expected likelihood of M2 easily. The only constraints needed are that mild regularity conditions
must be verified under the chosen correlation structure.

A downside of these methods is that Xreal must be known which is not our case. Nonetheless,
if X has the same the correlation structure than Xreal3, a solution would be to simulate Ynew from
X using β̂ and therefore calculate the previous estimator.

3.7. Deduce βM1 for log-Poisson GLM

In this part we will focus on Log-Poisson GLM under (X-A3) and (Z-A1). Estimators for other
distributions or assumptions would be created exactly in the same way. We denote Y = N and
V the exposure to have more traditional notations for count distributions.

Remind that only Xp has a heterogeneous quality. Using the equation A9, an estimator of
ln(L(β̂; N|Xreal)) can be found as follows :

ln(LM1(β̂; N|X,Q)) =
1

Q̄p

[
ln(LM2(β̂; N|X)

− (1 − Q̄p) × ln(L(β̂∗p; N|Xreal
(∗p)))

− (1 − Q̄p) × Veβ̂
∗pXreal

(∗p)(1 −MXp(β̂p))
]
.

(6)

All the right terms are known and can be evaluated. Indeed,

• ln(LM2(β̂; N|X)) is the M2 model log-likelihood using all the covariates;
• MXp(β̂p) can be estimated or for particularly distributions, given the distribution param-

eters, the moment generating function is explicitly known ;
• ln(L(β̂∗p; N|Xreal

(∗p))) is the M2 model log-likelihood using all the covariables except for Xp;

under the assumption (X-A3), ln(L(β̂∗p; N|Xreal
(∗p))) is equal to ln(L(β̂∗p; N|X(∗p))).

3i.e in the (C1) case under (X-A1) and (Z-A1) or in the (C2) case fully correlated quality variables and (Z-A2).



In the same spirit, another estimator can be put forward as sum of the previous estimator
conditioned by pattern of quality Kp :

ln(LM1(β̂; N|X,Q)) =
∑

Kp∈P(Qp),Kp,0

1
Kp

[
ln(LM2(β̂; N|XQp=Kp)

− (1 − Kp) × ln(L(β̂∗p; N|Xreal
(∗p);Qp=Kp

))

− (1 − Kp) × Veβ̂
∗pXreal

(∗p);Qp=Kp (1 −MXp(β̂p))
]
.

(7)

where XQ=Kp represents the dataset where only the individual i such as Qi;p = Kp are kept. The
second estimator ln(LM1(β̂; N|X,Q)) from the equation 7 is often more precise by construction
than the equation, 6 however individual having null quality index are not taken into account.
Therefore, in the following part, we will use the second estimator. These two estimators con-
verge in probabilities to ln(L(β̂; N|Xreal,Q)). In the same way, the solution of the maximum
likelihood converges in probability.

3.7.0.1. Optimisation program. On the contrary of the classical optimization method: the iter-
ative weighted least square algorithm used to fit GLM parameters can not be used. Empirically,
the Nelder-Mean optimization from the optim function from stats package (R software) seems
to have a more stable convergence than Newton-Raphson algorithm.

Indeed for some distributions, the moment generating function may not exist or has ex-
tremely high value for some values of β̂p. In this case, the estimated derivative may be im-
portant. For these reasons, Newton-Raphson method can lead to important staring oscillations
depending on β̂p and Xp distribution. This is why Nelder-Mean optimization is here preferred
and starting at β̂p = 0.

4. Simulation study - M1 estimator

We aim to check our theoretical results on the estimator properties for Log-Poisson GLM. In
this view, all the simulated examples are created using the following steps involving all the
aforementioned quantities required to generate the right data :
Step 1: Q is in practice given. For the simulation, it is randomly generated;
Step 2: Xreal is simulated given the marginals and the correlation structure;
Step 3: Z = (Z1, ...,Zp) is simulated given Xreal and the assumptions;
Step 4: Y is simulated from its relationship with Xreal;
Step 5: Ω is simulated from Q through Bernoulli trials;
Step 6: X is deduced thanks to the equation (1).

The study is performed using R ([13]) statistical software.

4.1. Find β̂M1 model

Let E(Y|Xreal) = 1 + 0.4Xreal
1 + 0.5Xreal

2 + 0.6Xreal
3 + 0.07Xreal

4 with X1 ∼ Γ(2, 1),Xreal
2 ∼ N(0, 1),X3 ∼

Pois(2), X4 ∼ N(0, 10) and Y following a Poisson distribution. The quality index follows an
independent discrete distribution on the values (0.5; 0.75; 1) with the probability (0.25; 0.25;
0.5) for Q4. Let all the other covariates be perfectly observed, e.g. Qi, j = 1 for all i ∈ 1, ...,n and
j ∈ {1, 2, 3}.



Figure 4.: Estimation of the M1 log-likelihood for log-Poisson GLM using equation 6 for a given
X and Q. The moment function is estimated using its empirical estimator. The true function
leads to the same graph but with a smaller variance. 2000 simulations are done for a given Xreal

and Q.

Using the precedent result, M1 likelihood can be estimated as shown figure 4. The use of
imperfectly observed dataset implies a wider variance of the estimator M1 than the real model
one. Here, the first estimator has wider variance than the second estimator. As shown by
equation A11, the coefficients of β1, β2, β3 did not change due to the independence in between
the variables - figure 5 - and the coefficient associated to X4 is corrected - figure 6.

4.2. Adapt the coefficient to the quality

Unlike linear regression, no explicit relation exists between the β and βM2 or βK in function of
the quality. It has been shown that the coefficient is a barycenter of the β̂M1 and 0. Moreover,
β̂M2

p converges to 0 when Qp tends to 0. We suggest using the linear approximation, e.i. β̂K=Qp
p =

Qp × β̂
M1
p . Indeed, as shown on the figure 7, for small values of β4 (≈ 0.07), the impact of the

moment on the likelihood is lower than for higher value of β4 = 4. Therefore, the coefficient
could be estimated linearly only for E(Y) small, but would overestimate the coefficient for
higher values.

5. Discussion

The following example comes straight up from a project on household pricing using the geolo-
calised address to add external data.

5.1. Example for each case

In this part, we will discuss the different cases from the scope of a pricing case using house
geolocalisation. Here, the goal is to model the frequency or the claim of a household insurance



Figure 5.: The quality of the variable X4
does not impact the estimation of β1, β2,
β3; here, highlighted by β1 with Xreal

i stan-
dard normal distribution and Y following a
Poisson distribution. Other distributions of
Xreal

i have also been tested and leads to the
same results. 2000 simulations are done for
a given Q.

Figure 6.: βM2
4 is smaller than β̂ because of

the quality of the variable and βM1
4 is unbi-

ais but have a wider variance than the real
coefficients.

Figure 7.: 1000 simulation for each quality. As for linear regressions, a linear evolution through
the quality can be seen for low coefficient however for higher values the relationship is not
proportional to the quality.



using only the address and external data. To find the different covariates associate to charac-
teristics of the individual, the first step is to link the address with its geocoding, then to link
the geocoding to the right parcel or/then with the building. Finally, the goal is to evaluate the
different characteristics thanks to external data or the picture analysis. The output to model is
given by insurers departments. It corresponds to the frequency or claims cost and is supposed
to be perfectly observed.

Here, the collected data’s quality is mainly looked through the credibility dimension. If
the geocoding is wrong, all the observations would be taken on another building. Finally, the
consistency of the variable and the way it is collected change also the data quality. However,
all the variables are not impacted in the same way.

Let discussed the different assumptions on the example of pricing of home insurance using
geocoding.

5.1.0.1. Example of case C1. The collection of the variable : the presence of pool and pres-
ence of solar panels can fit the description. Suppose that the pool variable collection uses a
governmental data set based on inhabitants’ declaration and the solar panels variable uses
the geocoding to determine picture to analysis. Both may be correlated due to wealth, but the
collection of the two variables are not correlated. The case (C1) and the assumption (Z-A1)
would be appropriate. Indeed, if one is wrongly observed it does not induce the other one to
be, i.e. Q, Xreal and Z are independent.

5.1.0.2. Example of case C2. The living surface, the number of rooms and the footprint are
globally one of the most segmenting features in household pricing. Different data-sets and
methods are available in France to collect them such as DVF 4. This database geolocates the
parcel and contains different features such as the value of property values, the number of
rooms, the surface of the parcel or the living surface among others. The database is updated
after a property transfer since 2015. On the uncertainty dimension, errors are coming from the
link between geocoding and the address or between the address and the building, each of these
steps impact the data’s quality depending on the feature. A wrong geocoding would imply
that the observations are taken from another building. For all these variables, the case (C2) and
the assumption (Z-A2) would be appropriate since they are collected from the same building.

5.1.0.3. Example of case C3. The previous example acts also on the mismeasurement dimension
where Z and Xreal are correlated. Data quality, due to the consistency of the collection of the
database, acts on it due to the timeless dimension; houses might have change since the last
property transfer. Indeed, precision of the house’s size may be bias after expansion of a house if
the database is not updated in the meantime. Moreover, correlations between Xreal and Z come
also from the way variables are collected; the best example is spatial correlation. For instance,
lets look to a variable informing on number of floors being collected from pictures analysis.
The impact of geocoding uncertainty is not globally the same as before. Indeed, neighbour’s
houses have often the same height or number of floor. Then, even if the collection of the data
is done on the wrong building, Z will be correlated with Xreal.

5.1.0.4. Example of a case C4. All variables mentioned earlier can fit in this category due to
spatial correlation. For instance, if in megalopolis the detection of the house size may be difficult
due to the building’s density, a systematic uncertainty could appear on this variable for urban

4This data-set comes from a certified public service relating to the property values declared during property transfers available
in open data at https://www.data.gouv.fr/fr/datasets/5c4ae55a634f4117716d5656/

https://www.data.gouv.fr/fr/datasets/5c4ae55a634f4117716d5656/


houses - globally smaller. Then Z would be correlated with the Xreal automatically but also with
Q. The same analysis could be done on high buildings for the number of floor for instance.

One of the most difficult cases is when the quality depends on others variables; for instance
the material of the roof and the analysis of a roof to detect a window - see figure 8 and 9. In this
case, the modality of dark slate inform on the risk, not because dark slate changes it but due to
the low quality of the variable roof-windows associated to it.

Figure 8.: The detection of a window on a
roof is immediate from the IGN cartography
(47.183722, -1.812768) -© IGN 2018.

Figure 9.: The detection of a window on a
roof is difficult because of the dark slate
roof from the IGN cartography (47.179068,
-1.814216) -© IGN 2018

5.2. Actuarial justification of this framework assumptions

5.2.0.1. Integrity of dataset and assumption on Z. In all examples seen above, the wrong ob-
servations Z are coming from real individual, which justify the main assumption that “wrong”
values Z j follow the same distribution as Xreal

j (equation 1). However, the assumption is true
only if the integrity of the data-set is valid. Indeed, for instance, if some wrong observations
are taken from commercial buildings or flats when pricing residential household insurance,
this assumption would not be verified.

5.2.0.2. Assumption (X-A3). The assumption (X-A3) is a very restrictive assumption. Nonethe-
less, it can be appropriate for underwriting used. First, the use of several imperfectly observed
covariates is not recommended and not adapted when aiming to a stable model. Moreover,
traditional covariates used are well-known covariates of good quality, so one or two variables
with heterogeneous quality would in practice be integrated at the most. Moreover, adding some
imperfect variables correlated to others also bias the coefficients of these perfectly observed
variables.

5.2.0.3. Use of the linear approximation to find adapted model. As shown in section 4, linear
approximation can be a good approximation for small values of the coefficients. In other words,
the approximation can be valid when the claim count modelling is done at the individual case.
Indeed, in household insurance, the mean damage frequency is around 0.1 % (by example for
water damage or fire damage coverage. The other benefit is that only one model is fitted.

Lastly, our framework can be used to estimate β for a new covariate. Without a data set
and claims associated to it, the observations of this new variable have to be determined using
external data or models. Indeed, it is impossible to request a completly new information once
the contract signed. However, a question can be added in underwriting questionnaire during a



quotation and therefore the covariate can be used in the new tariff. Logically, information from
underwriting questionnaire are much better quality and are often suppose perfectly observed.
So the tariff muss use β, adapted to perfectly observed variables, and not βM2.

6. Operational applications

6.1. Quality impact and attenuation

The different results show that the “attenuation”5 on β̂ due to data quality can be explained.
However, the quality impacts might not always decrease the coefficients as shown in Chatelain
and Milhaud [4]. The quality of a variable impacts all coefficients related to other correlated
variables, as well as the intercept. Figure 10 under (X-A2) and (Z-A1) in linear regression shows
that even in the simple case the ”attenuation” is not always true. With some correlation, the
coefficient can be higher than the usual one (the true coefficient equal to 1 and is represented
the line on Figures 10 and 11) and even might change sign.

Figure 10.: Log-Gaussian GLM: Value of βM2
1 wrapped by Q2 and grouped by Q1. The coefficient

β are all equal to 1 and the ratio of the standard deviation
√

Var(Xreal
1 )/Var(Xreal

2 ) equals to 6.
The red straight line represents, β1 which is equal to 1.

This is especially harmful to insurance pricing where covariates’ choice must be justified
by their impacts. Indeed, some coefficients may seem counter-intuitive due to quality impacts.
Figures 10 and 11 provide an illustration of the impact of Q1 depending on Q2 (β1, β2 always
equal to 1). The coefficients’ evolution is not linear with the correlation. Figure 10 shows that
if ρ < 0, βM2

1 could be negative, even if β1 > 0. Another point is that the coefficients could
be considered as null even if the variable’s quality is not low. For instance, for Q2 = 0.7 and
ρ ≈ −0.4, βM2

1 ≈ 0 and βM2
2 , 0. In this case, dropping the variable X1 would not have any impact

on βM2
2 even if the true coefficient is different from 0. Moreover, by finding the βM1 - thanks to

X and Q, the modeler can find the ”real” impact of a variable in models, thus justifying it.

5As called in the econometric literature.



Figure 11.: Log-Gaussian GLM: Value of βM2
2 wrapped by Q2 and grouped by Q1. The coefficient

β are all equal to 1 and the ratio of the standard deviation
√

Var(Xreal
1 )/Var(Xreal

2 ) equals to 6.

Remark 6.1. Here, the discussion was done with the simplest hypothesis under the case (C1) and for
Gaussian distribution where the variable quality does not impact others independent variables coefficients.
For other distributions, the quality impacts would complicate the whole issue further.

6.2. Use interactions with quality indexes

The different results also help to understand how to deal with a finite number of quality groups
within a variable. Indeed, the quality effect could be taken into account by adding an interaction
between the Q j and the Xk, k , j. Denote the following log-Gaussian GLM :

E[Y|X] = β0 + β1X1 + β2X2

and ρ the correlation between the two covariates. Suppose that the data-set has another variable
Q1 with two modalities (High and Low) informing on the quality of X1. From the results earlier,
adding some interactions between X1 not centered and Q1 only, i.e,

E[Y|X,Q1] = 1Q1=L(βQ1=L
0 + βQ1=L

1 X1) + 1Q1=H(βQ1=H
0 + βQ1=H

1 X1) + β2X2

would be the best option only if ρ = 0. The interaction should be on both variables :

E[Y|X,Q1] = 1Q1=H(βQ1=H
0 + βQ1=H

1 X1 + βQ1=H
2 X2) + 1Q1=L(βQ1=L

0 + βQ1=L
1 X1 + βQ1=L

2 X2).

Obviously, with more covariates and quality indexes, it adds a lot more parameters to fit
exactly n × 2h−n where h is the sum of modalities’ number of each quality index. Moreover,
the coefficients β̂Q1=H

2 and β̂Q1=L
2 could have different signs. Such as the remark of the previous

section 6.1 state, for other distributions the whole issue is much more complex. Therefore, in



such case limiting the correlation in between the variable should be the priority and then to
limit the number of variable.

6.3. Missing data

The case of missing values could be seen as a particular case of this framework, where missing
values are observations with a null quality. In the case of linear regression under (C1), (X-
A1) and (Z-A1), the mean imputation is the equivalent to the process explained in this paper.
Denote the following model E[Y|X = x] = β0 + β1x1 + β2x2 and ρ the correlation between the
two covariates. First, suppose ρ = 0 and the individual i having its xi;1 missing ; using a simple
mean imputation, the predicted value of yi would be

yi = β0 + β1E(Xreal
1 ) + β2xreal

i;2 ,

using the process 3.Under (X-A1) and (Z-A1), the predicted value of yi would be

yi = βK
0 + βK

1 z1 + βK
2 xreal

i;2 ,

where K is the pattern of the quality - here K = (0, 1), β̂K
j is the estimator found thanks to the

process 3, j ∈ {0; 1; 2; 3} and z1 is a value drawn randomly from the empiric distribution of Xreal
1 .

Due to the different assumptions and K = (Q1 = 0,Q2 = 1), the coefficient can be written as

(βK
0 , β

K
1 , β

K
2 ) = (β0 + β1E(Xreal

1 ), 0, β2),

which shows the equivalence between the two methods. However, in correlated cases for
instance under(X-A2) and (Z-A1), the coefficients would equal to :

(βK
0 , β

K
1 , β

K
2 ) = (β0 + β1E(Xreal

1 ) −

√
Var(Xreal

2 )

Var(Xreal
1 )

β1ρE(Xreal
2 ), 0, β2 +

√
Var(Xreal

2 )

Var(Xreal
1 )

β1ρ).

Thus, the equivalent imputation here for xreal
i;1 should be E(Xreal

1 ) −

√
Var(Xreal

2 )
Var(Xreal

1 )
ρ(E(Xreal

2 ) −

xi;2). This imputation corresponds to the result of a linear regression to predict Xreal
1 using

only Xreal
2 for the individual which is the best one according to the linear regression. In fact,√

Var(Xreal
2 )

Var(Xreal
1 )
βM1

1 ρE(Xreal
2 ) corresponds to the linear part of the information Xreal

1 already taken into

account by Xreal
2 .

6.3.0.1. Multivariate case. By extrapolating these results, it seems that for one missing obser-
vation the equivalent imputation should be the prediction of the linear regression of the other
covariates. However, this remark does not take into account the issue with other covariates’
quality. To go further than the case (C1), the credibility of other covariates may be also corre-
lated with the fact that a value is missing. This remark is close to the analysis of Seaman 2014
[16] about how to impute with fully conditional specifications.

For Log-Poisson GLM, we showed that under (X-A3) and (Z-A1) the mean imputation is also
equivalent, which is not always true for other assumptions. For instance, in Log-Gamma model



Figure 12.: Ratio of the living surface coefficient of Log-Poisson. Because they are too few ”very
high” quality observations, there were regrouped with ”high” quality observations. Different
filters based the building geolocalisation information are done on the data set to challenge the
quality index.

the other coefficients are also impacted. To find the best solution into account, one should find
βK and modify all the other coefficients.

6.4. Determine quality indexes and the impact of imperfect quality indexes

In a pricing data set studied, the quality index was given as an ordered variable with the follow-
ing modality (”very low”, ”low”, ”medium”, ”high”,”very high”). Is it possible to determine
the equivalent quality index by modality ?

By evaluating a model by modality, quality indexes can be easily found given baseline
coefficients - by example β (known or evaluated thanks to the best quality points). The difficulty
resides in the way that the quality is given. In this case, a modality may regroup different levels
of quality. In other word, quality index is not perfectly determine. Fitting an univariate linear
model with variables centred and with an interaction with the covariate K(X1) with M modalities
and a :

E[Y|X,K(X1)] = βM2
0 +

∑
m=1,...,M

βM2,K(X1)=m
1 X11K(X1)=m.

If we assume the modality K(X1) = 1 corresponds to perfect quality observations, the quality
index value would be of the m modality is equal to Q̂m = βK(X1)=m

1 /βK(X1)=1
1 .



Figure 12 shows a real example of a quality index assessment. The model used is an univariate
log-Poisson GLM using only the living surface to predict a water damage frequency. The values
of living surface is at first coming from labels using DVF by associating a building to property
sale. Then to complete the missing information, a Machine Learning method is done using the
house characteristics. If the confidence into the database geocoding is perfect, the confidence
associated is ”very high” otherwise the confidence is degraded depending on the confidence of
geocoding property sales database. On the other hand, Machine Learning values are associated
with a maximum of ”medium” and the confidence is degraded depending on the quality of the
covariates and the score associated to each result. Two filters are considered on the addresses
geolocalisation : a filter keeping all the building considered as the main one on the parcel and
a second keeping only the building if it is link only to one address. Figure 12 helps to evaluate
the quality indexes values. Supposing βHigh = β perfect and using a linear approximation,
”medium” quality value would be estimate by 0.6, ”low” quality value by 0.5. However, the
coefficient of very low quality values has an opposite sign. In fact, very low quality values are
link to rural zone. Therefore, the case (C4) is the most appropriate and our evaluation method
can not be used. In the same way, ”low” quality values observations are also a bit more link to
rural density than ”medium” one or ”high”6. In consequence, the associated value to medium
quality 0.5 can be debated. Indeed, the ”low” and ”very low” quality are correlated with others
characteristics impacting the risks. The coefficients calculated on the database are therefore
highly impacted. In such case, using a threshold to set aside ”very low” quality observations
is recommended so that the dataset verify our assumptions. Finally, the different filters on
geocoding show that leaner detail could be added within a value of the quality index.

In practice, a modality might regroup observation of different quality. Looking into the case
of modalities regrouping two type observations with distinct quality index, denote K(X1) = m
a modality of n observations which regroups nα (nκ) number observations with the quality Qα

(Qκ respectively). The difference between model’s coefficients deduce and the real model can
be expressed as a barycenter of the sum of the group’s quality under (X-A1):

βM2,Q̂m
1 − β1 =

nα
n

(Qα − 1)β1 +
nκ
n

(Qκ − 1)β1. (8)

Equation 8 can be easily extended to higher dimension. If groups of different quality are
mixed together and are given the same value Q, the best one should be the pondered mean
of each quality in a context of linear regression with the Assumption (X-A1). However, with
the Assumption (X-A2), the aggregation of the quality influence the coefficients value of other
correlated covariates.

Proposition 1 Under Assumptions (X-A2) and (Z-A1), given k and j such as ρreal
k j = ρ, Qk , 0

and Q j , 0, if ρβM1
k ≥ −

√
Var(X j)
Var(Xk)β

M1
j ,

βM2
k :]0, 1]→ R

Qk 7→ βM2
k (Qk|Q j).

is an increasing convex function. Otherwise, it is decreasing concave.

Proof. See appendix B. �

6Here, the mismearsurment side is set aside.



Therefore, the weighted mean of the quality is a biased approximation. Indeed, accordingly

to the Proposition 1, if ρβk ≥ −

√
Var(X j)
Var(Xk)β j, for i , j :

∀Qα,Qκ ∈ [0, 1], βM2
k (

nα
n

Qα +
nκ
n

Qκ) ≤
nα
n
βM2

k (Qα) +
nκ
n
βM2

k (Qκ). (9)

In consequence, regrouping two groups of different quality bias the coefficient accordingly
to the correlation. The equivalent quality index in linear regression under this assumption
should be lower than the pondered mean of the quality. Because the convexity depends on the
correlation, the pondered mean of the quality may be a fine approximation with low correlation
between covariates.

In a nutshell, because the evaluation of a quality index is never perfect, a practical recom-
mendation with the use of quality indexes would be to prefer covariates with low correlation
in between them.

7. Conclusion

In this paper we extend a method to take into account index quality on the credibility dimension
for GLM regression. In pricing, it could correspond to an external score when open/external
data are added to a traditional dataset. Moreover, as for Rubin’s nomenclature, different cases
exists depending on the relation structure between qualities indexes, real observations and
wrongs one. Relaxing the different assumption, especially of some hypothesis between quality
variable and the variable, will be the next step. These results are very useful for actuaries
which are in charge of the data quality they use and models following. The different cases
have been discussed under a real pricing using the geolocalised address to find external in-
formation. Finally, actuaries should keep in mind that they are answerable of the data quality
they use. Therefore, this work suggests a method to evaluate data quality and put forwards
recommendation with data quality indexes in use.

To use data’s quality index in multivariate correlated covariate, further research is ongoing to
adapted decision trees to this use. Several issues remain generalizing for penalized likelihood
optimization and quality index evaluation.
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Appendix A. Theoretical framework

A.1. The covariance impacted by quality index

Given a data set with two covariates and their joint quality (X j,Q j), (Xk,Qk), j , k as in
the equation (1), we now state the relation between real covariance Covreal

jk under various
assumptions :

Lemma A.1. In the case (C1), the relation yields

Under (Z-A1) Cov jk = Q jQk × Covreal
jk . (A1)



Under(Z-A2) Cov jk = (1 + 2Q jQk −Q j −Qk) × Covreal
jk . (A2)

In case (C2), if Xreal
j and Xreal

k are independent, both (A3) and (A4) hold true. Otherwise, if the joint
quality are completely and positively dependant, we have :

Under (Z-A1) Cov jk = Q j × Covreal
jk , (A3)

Under (Z-A2) Cov jk = Covreal
jk . (A4)

The proof of the case (C1) is available in (author?) [4]. The proof of the case (C2) is a trivial
extension of the precedent. In case (C3), an additional term corresponding to the correlation
between “wrong” value and the “right” one would appear. The results could therefore be ex-
tended to such cases both under (Z-A1) or (Z-A2), but one would need to specify the correlation
structure between Xreal and Z. Because each covariate Xreal and Z have the same distribution,
Var(X j) = Var(Xreal

j ) = Var(Z j). Therefore, we have the same relation between Pearson’s corre-
lation. Thanks to Lemma A.1, Σreal can be evaluated from Q and Σ.

A.2. Regression model under consideration

Given the independent variables (Y1, ...,Yn), the corresponding explanatory variables
(X1, ...,Xn), and individualized quality indexes (Q1, ...,Qn) where Qi = (Qi1, ...,Qip), we will
study Generalize Linear Model (GLM). GLM is defined by three components : The distribu-
tion’s response variable Y which is a distribution from the exponential family, a linear predictor
Xβ and a link function g defined such as

µ = E[Y|X = x] = g−1(xβ). (A5)

where X is the vector of covariates including a constant (see Section 2.1), and β = (β0, β1, ..., βp) ∈
Rp+1 is the vector of regression coefficients. β is found through maximum likelihood optimiza-
tion. The classical linear regression model is a particular case of GLM where Y ∼ N(xβ, σ2)
and the link g is the log-function. The following sections aim to link E(ln( fY(Y|X; β))) and
E(ln( fY(Y|Xreal; β))).

A.3. Univariate analysis in GLM

In this section we focus on the univariate case (p = 1). For β inR2, the model M2 maximizes the
following log-likelihood

E(ln( fY(Y|X; β))) = E(ln( fY(Y|Xreal; β))|Ω = 1) × P(Ω = 1)
+ E(ln( fY(Y|Z; β))|Ω = 0) × P(Ω = 0).

(A6)

In the equation A6,the expected value of Ω = 0, equals to Q1, is known and when Ω = 0,
Xreal

1 is not observed and Z1 is given.



In the case (C1), (C2) and (C3), the quality variableΩ is independent of the others variables,
which means :

E(ln( fY(Y|Xreal; β)))|Ω = 1) = E(ln( fY(Y|Xreal; β))),
E(ln( fY(Y|Z; β))|Ω = 0) = E(ln( fY(Y|Z; β))).

How could we estimate E(ln( fY(Y|Z1; β))) with Xreal
1 ? In the multivariate case, the value zi1

could be estimated using the other covariables. If Xreal
1 and Z1 are correlated or dependent,

a function g could exist such as g(Xreal
1 ) is a good estimator of Z1. Under the case (C1), none

of these solutions can be applied. Indeed, the quality index Q1, the real data-set Xreal
1 and the

wrong values Z1 are completely independent.
Beforehand, recall one main regularity condition which are mandatory for the MLE con-

vergence of the exponential family based Xreal (see section 6.2 of [11] for all the conditions
needed):

Regularity condition A.1. Assume that for every β, ln( fY(Y|Xreal; β)) is integrable , i.e,
E(|ln( fY(Y|Xreal; β))|) < +∞.

Assumption A.2 and the other one for the exponential family lead to the Bartlett identities
and both derivatives can be passed under the integral sign ([2]). The Bartlett identities are :

E
( δ
δβ

ln( fY(Y|Xreal; β))
)

= 0,

Var
( δ
δβ

ln( fY(Y|Xreal; β))
)

= −E
( δ2

δβ2 ln( fY(Y|Xreal; β))
)
.

Moreover, the same assumptions on Z are also needed mandatory for the MLE convergence of
the exponential family based on X :

Regularity condition A.2. Assume that for every β, ln( fY(y|z; β)) is integrable , i.e,
E(|ln( fY(y|z; β))|) < +∞.

Because Z j has the same marginal distribution than Xreal
j , the regularity conditions A.1 and

A.2 highly overlap. The main difference is the independence Z from Y. Therefore, the Bartlett
identities are still verified.

Remark A.1. In the univariate case, the sufficient condition
∫
R
|ln( fY(y|z; β))|dFZ1(z)dFY(y) < ∞

implies
∫
R
|ln( fY(y| z; β)) |dFZ1(z) < ∞ for any value of y and β. Remind that Z1 distribution has the

same distribution than Xreal
1 . Hereafter, we use the canonical link function. In this case the log-likelihood

maximized can be written as follow :∑
yi(β0 + β1x1) − b(β0 + β1x1) + Cst,



where Cst is a constant independent of β and X. In the Bernoulli case supposing β1 ≥ 0 without loss of
generality, the case β1 = 0 being trivial,the condition∫

R

|ln( fY(y|z; β))|dFZ1(z) ≤
Triangle ineq.

∫
R

yi|β0 + β1z1|dFZ1(z) +

∫
R

|ln(1 + exp(β0 + β1z1))|dFZ1(z),

≤
x

1+x≤ln(x)≤x

∫
R

yi|β0 + β1z1|dFZ1(z) +

∫
R

exp(β0 + β1z1)dFZ1(z),

can be fulfilled with a condition on the Z1 generating moment function existence for all β and with
E(|Z1|) < +∞. In the Poisson case, the same sufficient condition can easily be shown :∫
R

|yi(β0 + β1x1) − exp(β0 + β1x1)|dFZ1(z) ≤
Triangle ineq.

∫
R

yi|β0 + β1z1|dFZ1(z) +

∫
R

exp(β0 + β1z1)dFZ1(z).

As the second moment existence was needed for linear regression convergence, the moment function
existence is also needed for a proper maximum likelihood convergence.

In the multivariate case, the previous assumptions easily be extended depending on the cor-
relation structure. Under assumption (X-A3) and (Z-A1), we remind that we used the following
notation X(∗p) = (1,X1; · · · ; Xp−1) and its observed sample xi;(∗p). In the same way, β(∗p) refers to
(β0, · · · , βp−1). The expected likelihood

E(ln( fY(β; Y|X))) = Qp E(ln( fY(Y|Xreal
(∗p),Xp = Xreal

p ; β)))

+ (1 −Qp)
∫
R

E(ln( fY(Y|Xreal
(∗p),Xp = z; β̂))) fZp(z)dz.

(A7)

can be written in a similar way than in the univariate case, using Fubini’s theorem under the
mild regulatory conditions.

Under these assumptions, each estimator β̂ and β̂M2 converges in probabilities respectively
to β and βM2 .

A.4. Example 1: Log-Gaussian GLM

In this section, let focus on Log-Gaussian GLM case. Without loss of generality, remind that we
can assume the covariate centered. (See the paper for uncentered case)

Let β ∈ Rp+1. The likelihood to optimise is :

ln(LM2(β; Y|X)) ∝
n∑

i=1

(yi − xiβ)2, (A8)

where for the purposes of notation xi = t(1, xi) and β = t(β0, β1).
In the univariate case, the Bartlett identities give the same results as the OLS’ one :

β̂M2
0

P.
→ β0,

β̂M2
1

Q̄1

P.
→ β1.

Indeed, linear regressions and Log-Gaussian GLM models are equivalent. This proof can be
easily extended in the multivariate case under the assumption (X-A1) and (Z-A1).



Under the assumption (X-A3) and (Z-A1), only the βp is impacted by

β̂M2
j

P.
→ β j,

β̂M2
p

Q̄p

P.
→ βp, j = 0, ..., p − 1.

In the particular case (C2) when the quality variables are fully correlated i.e, Ω j = Ωk →

Q j = Qk ( j , k), under the assumption (Z-A2) without any assumption on correlation structure
of Xreal, we can show that :

β̂M2
0

P.
→ β0,

β̂M2
j

Q̄ j

P.
→ βp, j = 0, ..., p.

The proof of these results are in A.8.

A.5. Example 2: Log-Poisson GLM

In the Poisson case, the additive structure simplifies some calculus. Under assumptions (X-A3)
and (Z-A1), the existence of moment generating function MXreal

p
(t) = MXp(t) = MZp(t) for all t ∈ R

and its derivatives’ existence are ensured by the mild regularity condition A.2. We denote Y = N
and v the exposure to have more traditional notations. Let β ∈ Rp+1. The sample estimator of
the expected likelihood is equal to

ln(LM2(β; N|X)) = Qp ln(L(β; N|Xreal) + (1 −Qp) ln(L(β∗p; N,Xreal
(∗p)))

+ (1 −Qp)
n∑

i=1

vie
β∗pXreal

i;(∗p)(1 −MXreal
p

(βp)).
(A9)

Under (X-A3) and (Z-A1), Xreal
(∗p) = X(∗p) allows us to evaluate the M1 using only X(∗p) and Q

ln(LM1(β̂; N|X,Q)) =
1

Q̄p
(ln(LM2(β̂; N|X) − (1 − Q̄p) × ln(L(β̂∗p; N|X(∗p)))

− (1 − Q̄p) ×
n∑

i=1

vie
β̂∗pXreal

i;(∗p)(1 −MXp(β̂p))).

The expected likelihood can be bounded :

Qp ln(L(β; N|Xreal)) + (1 −Qp) ln(L(β∗p; N,Xreal
(∗p)))

+ (1 −Qp)
n∑

i=1

vie
β∗pXreal

(i);(∗p)

1 − exp

β2
pV(Xreal

p )

2


≤ ln(LM2(β; N|X)) ≤ Qp ln(L(β; N|Xreal)) + (1 −Qp) ln(L(β∗p; N,Xreal

(∗p))).

(A10)

By introducing the normalize coefficient bp =
βp

√
V(Xreal

p )
,one can see that a small normalize

coefficient implies a narrow the interval. In other words, the impacts of variable quality on the
likelihood logically depends on the normalize coefficient.



Proof. See A.9.1. �

Lemma A.2. Let β ∈ Rp+1. Under the assumption (X-A3), the derivative of the M2 log-likelihood for j
in {0, ..., p − 1} are equal to :

δ
δβp

E(ln( fN(β; N|X))) = Qp dp(β)

− (1 −Qp)
∫
Rp−1

veβ
∗pxreal

(∗p)dFXreal
(∗p)

(xreal
(∗p)) M

′

Xp
(β̂p);

δ
δβ j
E(ln( fN(β; N|X))) = d j(β),

(A11)

where di is the derivative according to βi of E(ln( fN(β; N|Xreal))) .

Remark A.2. Unlike the Log-gaussian case, the difference βM2
p and βp depends on the Xp distribution

and the value of the other coefficients.

Proof. See A.9.1. �

When β̂p → 0, M′

Xp
(β̂p) → 0. It can be easily shown that the derivative - equation A11 is a

constant function of the mean quality. Therefore, the following proposition can be deduced.

A.5.0.1. Proposition 1. Suppose the framework of this paper with log-Poisson distribution. Under
the Assumptions (X-A3), e.g. Q j = 1 for j ∈ {1, · · · , p − 1} and Qp ∈ (0, 1),

βM2
p :[0, 1]→ R

Qp 7→ βM2
p (Qp)

is a monotonic function of the quality.
Using the Lemma A.2 it is straightforward to show the following theorem :

Theorem A.3. Under the assumption (X-A3) and (Z-A1),

β̂M2
j

P.
→ β j, j ∈ 0, ..., p − 1,

β̂M2
p

P.
→ [0; βp].

Proof. See A.9.1. �

A particular application of this theorem would be under the univariate case p = 1. Remark
that in the univariate case (C1) and (C2) are equal. Under (Z-A2) and (C2) with fully corre-
lated quality variable and without any assumption on the structure of Xreal, the expected log
likelihood can be written only using X and the quality index Q, (see A.9.4) :

E(ln( fN(N|Xreal; β))) =
1

Q1

(
E(ln( f (N|X, β)) − (1 −Q1)

(
E(ln( f (N|β0)) + vexp(β0) (1 −MXreal(β∗)

))
,

(A12)

where MXreal(β∗) is the multivariate generating function of Xreal
1 , ...,Xreal

p and β∗ = t(β1, ...., βp).
Unfortunately, no bounds can be state.



A.6. Example 3: Log-Gamma GLM

The expected log-likelihood of Log-Gamma Y ∼ Γ(µ, ν) can be written :

E(ln( fY(Y|X, β))) =

∫
Rp+1

ν(−y exp(−xβ) − xβ + (ν − 1)ln(y) − ln(Γ(ν))dFX1,...,Xp,Y(x, y).

Here, we are only interested to maximize the log likelihood according to β for a known ν.
Therefore, we will study

E(ln( fY(Y|X, β))) ∝
∫
Rp+1
−y exp(−xβ) − xβdFX1,...,Xp,Y(x, y).

Under (X-A3) and (Z-A1), the expected log likelihood E(ln( fY(β̂; Y|X))) is equal to

Qp E(ln( fY(β̂; Y|Xreal))) + (1 −Qp)E(ln( fY(β̂∗p; Y|Xreal
(∗p))))MXp(−β̂p).

The M1 estimator can be calculated

E(ln( fY(β̂; Y|Xreal))) =
1

Qp

(
E(ln( fY(β̂; Y|X))) − (1 −Qp)E(ln( fY(β̂∗p; Y|Xreal

(∗p))))MXp(−β̂p)
)
.

Lemma A.4. Let β ∈ Rp+1. Under the assumption (X-A3), the derivative of the M2 log-likelihood for j
in {0, ..., p − 1} are equal to :

δ
δβ j
E(ln( fY(β; Y|X))) = Qp d j(β)

+ (1 −Qp)
δ
δβ j
E(ln( fY(β∗p; Y|Xreal

(∗p))))MXp(βp),

δ
δβp

E(ln( fY(β; Y|X))) = Qp dp(β)

+ (1 −Qp) E(ln( fY(β∗p; Y|Xreal
(∗p))))M

′

Xp
(βp),

(A13)

where d j is the derivative according to β j of E(ln( fY(β; Y|Xreal))) .

The lemma cannot lead to a theorem like in the Log-Poisson case. The minimization of a sum
of concave function in Rp+1 does not necessary lead to βM2

j ∈ [min(β−p
j , β j),max(β−p

j , β j)] where

β−p
j is the maximum likelihood estimator E(ln( fY(β̂∗p; Y|Xreal

(∗p)))) and with β−p
p = 0.Therefore, the

Log-Gamma coefficients’ evolution are not bounded in the general case. Nevertheless, the βM2
p

are still continuous according to the quality.

Proof. See A.10.1 �

Under (C2) and (Z-A2), E(ln( fY(β̂; Y|X))) is equal :

Qp E(ln( fY(β̂; Y|Xreal))) + (1 −Qp)MXreal(−β)E(ln( fY(β̂0; Y))).

The proof is no different from the precedents. Still no bound can be state when p > 2.



A.7. Without multiplicative propreties: Inv-Gamma GLM and Probit GLM

The expected log-likelihood of Inv-Gamma Y ∼ Γ(µ, ν) will be maximise for a known ν. The
maximum likelihood estimator will maximise the sample analogue of

E(ln( fY(Y|X, β))) ∝
∫
Rp+1
−y xβ + ln(xβ)dFX1,...,Xp,Y(x, y).

The expected log likelihood E(ln( fY(β̂; Y|X))) is equal :

Qp E(ln( fY(β̂; Y|Xreal))) + (1 −Qp)
∫
Rp+1

ln(xrealβ∗p + zpβp)dFXreal
1 ,...,Xreal

p−1,Y
(xreal, y)dFZp(zp).

Because of ln(xrealβ∗p + zpβp), the sample analogue can not be estimated using only Xreal and X
which will not allowed us to find a relation between the likelihood using only these two data
sets.

For the Bernoulli distribution using its canonical link function, the expected log-likelihood :

E(ln( fY(Y|X, β))) ∝
∫
Rp+1
−y xβ + ln(1 + exp(xβ))dFX1,...,Xp,y(x, y),

can not be calculated using only Xreal. ln(1+exp(x)) = ln(2+exp(x)−1) = ln2+ln(1+(exp(x)−1)/2) ∼
ln2 + (exp(x) − 1)/2 + o((exp(x) − 1)) when exp(x) is close to 1. Therefore, when xβ is close to 0, a
fine approximation with a multiplicative structure can be state.

A.8. Log-Gaussian proofs

A.8.1. Proof of equation A.4

Proof. We remind that Xreal
1 is supposed centered. The likelihood maximization solution can

be found as the solution of the derivative equal to 0. Deriving by β, the sample estimator can
be written as follows :

δE(ln( f (N|X, β̂M2))
δβ

=
δE(ln( fY(Y|Xreal; β)))

δβ
×Q1 +

δE(ln( fY(Y|Z; β)))
δβ

× (1 −Q1)

=Q1
δ
δβ

∫
R2

(y − xβ1 + β0)2dFXreal
1 ,Y(x, y)

+ (1 −Q1)
δ
δβ

∫
R

∫
R

(y − zβ1 − β0)2dFZ1(z)dFY(y) = 0.

(A14)

We remind that the MLE solution exists and is unique. It is a well-known fact that, if the identity∫
fY(y; β)d(y) = 1 is twice differentiable with respect to β and, both derivatives can be passed

under the integral sign. Therefore, we can apply the theorem of differential under the integral



and use the first Bartlett identity.

δE(ln( f (N|X, β̂M2))
δβ0

= −2 Q1

∫
R2

(y − xβ1 − β0)dFXreal
1 ,Y(x, y)

− 2 (1 −Q1)
∫
R

∫
R

(y − zβ1 − β0)dFZ1(z)dFY(y) = 0,

δE(ln( f (N|X, β̂M2))
δβ0

= −2 Q1

∫
R2

x(y − xβ1 − β0)dFXreal
1 ,Y(x, y)

− 2 (1 −Q1)
∫
R

∫
R

z(y − zβ1 − β0)dFZ1(z)dFY(y) = 0.

We remind that
∫
R

zdFZ1(z) = 0 =
∫
R

xdFXreal
1

(x). Therefore, the solutions of the precedent
equations are :

βM2
0 = Q1

∫
R2

ydFXreal
1 ,Y(x, y) + (1 −Q1)

∫
R

∫
R

ydFZ1(z)dFY(y),

=

∫
R

ydFY(y) = β0,

βM2
1 =

Q1

∫
R2 xydFXreal

1 ,Y(x, y)

Q1

∫
R2 x2dFXreal

1 ,Y(x, y) + (1 −Q1)
∫
R

∫
R

z2dFZ1(z)dFY(y)
= Q1β1.

We end the proof by replacing the β0, Q1 and β1 by their estimators. Each of them converges
in probabilities; β̂0 and β̂1 thanks to the asymptotics MLE proprieties and Q̄1 using the strong
law of large number. The proof can be done exactly in the same way under (X-A1) and (Z-A1)
for p > 1. �

A.8.2. Proof of equation A.4

Proof. The first Bartlett identity under the assumption (X-A3) are equal:

δE(ln( f (N|X, βM2))
δβ0

= −2 Q1

∫
Rp+1

(y − xreal
∗p β

∗p;M2 − xreal
p βM2

p )dFXreal
1 ,...,Xreal

p ,Y(xreal
∗p , x

real
p , y)

− 2 (1 −Q1)
∫
Rp

∫
R

(y − xreal
∗p β

∗p;M2
− zpβ

M2
p )dFZp(zp)dFXreal

1 ,...,Xreal
p−1,Y

(xreal
∗p , y) = 0,

δE(ln( f (N|X, β̂M2))
δβ j

= −2 Q1

∫
Rp+1

xreal
j (y − xreal

∗p β
∗p;M2 − xreal

p βM2
p )dFXreal

1 ,...,Xreal
p ,Y(xreal

∗p , x
real
p , y)

− 2 (1 −Q1)
∫
R

∫
Rp

xreal
j (y − xreal

∗p β
∗p;M2 − zpβ

M2
p )dFZp(zp)dFXreal

1 ,...,Xreal
p−1,Y

(xreal
∗p , y) = 0,

δE(ln( f (N|X, βM2))
δβp

= −2 Q1

∫
Rp+1

xreal
p (y − xreal

∗p β
∗p;M2 − xreal

p βM2
p )dFXreal

1 ,...,Xreal
p ,Y(xreal

∗p , x
real
p , y)

− 2 (1 −Q1)
∫
Rp

∫
R

zp(y − xreal
∗p β

∗p;M2 − zpβ
M2
p )dFZp(zp)dFXreal

1 ,...,Xreal
p−1,Y

(xreal
∗p , y) = 0.



We remind that
∫
R

z jdFZ j(z j) = 0 =
∫
R

xreal
j dFXreal

j
(xreal

j ) for j = 1, ..., p. Therefore, the solutions
of the precedent equations are:

βM2
0 = β0, βM2

j = β j, βM2
p = Qpβp, j = 1, ...,n.

We end the proof by replacing the βM2 and Q1 by their estimators. Each of them converges in
probabilities; β̂M2 thanks to asymptotics MLE proprieties and Q̄1 using the strong law of large
number. �

A.8.3. Proof of equation A.4

Proof. Just for this proof, denote β∗ = (β1, ..., βp). In the case (C2) with perfectly correlated
quality variable , i.e., Ω j = Ωk → Q j = Qk ( j , k), we can write :

δE(ln( f (N|X, βM2))
δβ

= 0

=
δE(ln( fY(Y|Xreal; βM2)))

δβ
×Q1 +

δE(ln( fY(Y|Z; βM2)))
δβ

× (1 −Q1)

=Q1
δ
δβ

∫
Rp+1

(y − xrealβM2
∗ − β

M2
0 )2dFXreal

1 ,...,Xreal
p ,Y(x, y)

+ (1 −Q1)
δ
δβ

∫
R

∫
Rp

(y − zβM2
∗ − β

M2
0 )2dFZ1,...,Zp(z)dFY(y).

(A15)

The first Bartlett identity under the assumption (Z-A2) are equal:

δE(ln( f (N|X, βM2))
δβ0

= −2 Q1

∫
Rp+1

(y − xrealβM2
∗ − β

M2
0 )dFXreal

1 ,...,Xreal
p ,Y(xreal, y)

− 2 (1 −Q1)
∫
R

∫
Rp

(y − zβM2
∗ − β

M2
0 )dFZ1,...,Zp(z)dFY(y) = 0,

δE(ln( f (N|X, βM2))
δβ j

= −2 Q1

∫
Rp+1

x j(y − xrealβM2
∗ − β

M2
0 )dFXreal

1 ,...,Xreal
p ,Y(xreal, y)

− 2 (1 −Q1)
∫
R

∫
Rp

z j(y − zβM2
∗ − β

M2
0 )dFZ1,...,Zp(z)dFY(y) = 0.

We remind that
∫
R

z jdFZ j(z j) = 0 =
∫
R

xreal
j dFXreal

j
(xreal

j ) for j = 1, ..., p. Under the assumption (Z-

A2),
∫
Rp z jzdFZ1,...,Zp(z) =

∫
Rp

∫
R

xreal
j xrealdFXreal

1 ,...,Xreal
p

(xreal). Therefore, the solutions of the precedent
equations are:

βM2
0 = β0, βM2

j = Q jβ j, j = 1, ...,n.

We end the proof by replacing the βM2 and Q1 by their estimators. Each of them converges in
probabilities; β̂M2 thanks to asymptotics MLE proprieties and Q̄1 using the strong law of large
number. �



A.9. Proof for the GLM Log-Poisson

A.9.1. Proof of equations A9 and A10

Proof. Under the assumption (X-A3), using the Fubini’s theorem, the expected likelihood
(without the constant) is equal to

E(ln( fN(N|X; β))) ∝QpE(ln( fN(N|Xreal; β)))

+ (1 −Qp)
∫
R

∫
Rp
−veβ

∗pxreal
(∗p)+βpz

+ n(β∗pxreal
(∗p) + βpz)dFXreal

1 ,...Xreal
p−1,N

(xreal
(∗p),n)dFZp (z)

∝QpE(ln( fN(N|Xreal; β)))

+ (1 −Qp)
∫
R

∫
Rp

+veβ
∗pxreal

(∗p) − veβ
∗pxreal

(∗p)+βpzdFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)dFZp (z)

+ (1 −Qp)
∫
R

∫
Rp
−veβ

∗pxreal
(∗p) + n(β∗pxreal

(∗p) + βpz)dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)dFZp (z)

=QpE(ln( fN(N|Xreal; β))) + (1 −Qp)E(ln( fN(N|Xreal
(∗p); β

∗p)))

+ (1 −Qp)
∫
Rp

veβ
∗pxreal

(∗p) dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)(1 −MXp (βp)).

(A16)

Because all the input centred, the last term of the integral is null. Moreover, we know that the
moment generating function MXreal

p
(t) exists for all t ∈ R, the expected likelihood has at sample

analogue using only Xreal

Q̄p ln(L(β|N,Xreal)) + (1 − Q̄p) ln(L(β∗p|N,Xreal
∗p ))

+ (1 − Q̄p)
n∑

i=1

vie
β∗pXreal

i;(∗p)(1 −MXp(βp)).
(A17)

If Xp is bounded the Hoeffding Lemma, gives us a proper upper bound and Jensen inequality
gives us the inferior one. Indeed,

exp
(
βE(X)

)
≤ E(eβX) ≤ exp

(
βE(X) +

β2(max(X) −min(X))2

8

)
.

With Hoeffding inequality, another bound can be deduced without needing a bounded vari-
able7 :

exp
(
βE(X)

)
≤ E(eβX) ≤ exp

(
βE(X) +

β2V(X)
2

)
.

These inequalities leads to the equation A10. �

7Recall that Xp is assume to possess a second moment through the mild regularity conditions A.1 -A.2.



A.9.2. Proof of the Lemma A.2

Proof.

δ
δβ j
E(ln( fN(N|X; β))) = Qp

δ
δβ j
E(ln( fN(N|Xreal; β)))

+ (1 −Qp)
∫
R

∫
Rp
−vxreal

j eβ
∗pxreal

(∗p)+βpz
+ nxreal

j dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)dFZp(z)

(A18)

We remind that dFZp(z) = dFXreal
p

(x) because Zp and Xreal
p have the same distribution. Under

the assumption (X-A3), dFXreal
1 ,...Xreal

p
(xreal) = dFXreal

1 ,...Xreal
p−1

(xreal
(∗p))dFXreal

p
(xreal

p ) for j in {1, ..., p − 1}. By
replacing these values in the previous equation, we have :

δ
δβ j
E(ln( fN(N|X; β))) = Qp

δ
δβ j
E(ln( fN(N|Xreal; β)))

+ (1 −Qp)
∫
Rp+1
−vxreal

j eβxreal
+ nxreal

j dFXreal
1 ,...Xreal

p ,N(xreal,n)

= Qp
δ
δβ j
E(ln( fN(N|Xreal; β)))

+ (1 −Qp)
δ
δβ j
E(ln( fN(N|Xreal; β))) = d j(β),

(A19)

The derivative according to βp is calculated thanks to equation A17 without difficulty.
This end the proof for equation A11. �

A.9.3. Proof of the theorem A.3

Proof. We know that the solution βM2 exists and is unique. Moreover, the solution βM2 is a
global maxima. Therefore, the solution βM2 nullifies the partial derivatives, dM2

j for j = 0, ..., p,

i.e dM2
j (βM2) = 0. In the same way, d j(β) = 0. One can remark that

d j(β) =

∫
R

∫
Rp
−vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)dFXreal
p

(xreal)

=

∫
Rp
−vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)
∫
R

eβpxreal
dFXreal

p
(xreal)︸                   ︷︷                   ︸

>0

= 0 (A20)

which leads to
∫
Rp −vxreal

j eβ
∗pxreal
∗p +βpxreal

dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n) = 0.



Denote b a set of coefficient such as b∗p = β∗p and bp ∈ R
∗, j = 1, ..., p − 1. The derivative

dM2
j (βM2),

dM2
j (b) = d j(b) =

∫
R

∫
Rp
−vxreal

j eβ
∗pxreal

(∗p)+bpxreal
dFXreal

1 ,...Xreal
p−1,N

(xreal
(∗p),n)dFXreal

p
(xreal)

=

∫
Rp
−vxreal

j eβ
∗pxreal
∗p dFXreal

1 ,...Xreal
p−1,N

(xreal
(∗p),n)︸                                          ︷︷                                          ︸

=0

∫
R

ebpxreal
dFXreal

p
(xreal) = 0. (A21)

is null for j = 1, ..., p. Deriving by βp, the derivatives equals to

dM2
p (βM2) = Qp dp(βM2) − (1 −Qp)

∫
Rp

veβ
∗pXreal

i;∗p dFXreal
1 ,...Xreal

p−1,N
(xreal

(∗p),n)M
′

Xp
(bp). (A22)

If bp > βp, dp(b) > 0 and if bp < 0, dp(βM2) < 0. In the same way, if bp > βp, −M′

Xp
(bp) > 0 and if

bp < 0, −M′

Xp
(bp) < 0. These inequalities lead to if bp > βp, dM2

p (b) < 0 and f bp < 0, dM2
p (b) > 0.

Because b 7→ dM2
p (b) is a continuous function, a bp ∈ [0, βM1

p ] exists such as dM2
p (b) = 0.

We have proven that it exists b with the following characteristic’s b∗p = β∗p and bp ∈ [0, βM1
p ]

such as :

dM2
j (b) = 0, dM2

p (b) = 0.

Because the solution of M2 log-likelihood maximization is unique, the previous solution is
the global maximum βM2 .

For j = 1, ..., p, we end the proof by replacing the β j, Q1 and β j by their estimators. Each of
them converges in probabilities; β̂0 and β̂p the asymptotics MLE proprieties and Q̄1 using the
strong law of large number,

β̂M2
j

P.
→ β j, β̂M2

p
P.
→ [0; βp], j ∈ 0, ..., p − 1.

�

A.9.4. Proof of the Log poisson results for (C2) assumption

Proof. Just for this proof, denote β∗ = (β1, ..., βp). In the case (C2) with perfectly correlated
quality variables, i.e., Ω j = Ωk → Q j = Qk ( j , k), we can write under (Z-A2):

E(ln( f (N|X, β)) =Q1E(ln( fN(N|Xreal; β))) + (1 −Q1)E(ln( fN(N|Z; β)))

=Q1E(ln( fN(N|Xreal; β))) + (1 −Q1)E(ln( fN(N|β0)))

+ (1 −Q1)
∫
R

∫
Rp
−veβ0+β∗z + n(β0 + β∗xreal

(∗p) + βpz)dFZ1,...Zp(z)dFN(n)

=Q1E(ln( fN(N|Xreal; β))) + (1 −Q1)E(ln( fN(N|β0)))
+ (1 −Q1) vexp(β0) MZ(β∗),

(A23)



where MZ(β∗) is the multivariate generating function of Z1, ...,Zp and under (Z-A2) is equals to
MXreal(β∗). The first of Bartlett identities,

δE(ln( f (N|X, βM2))
δβ

=Q1
δ
δβ
E(ln( fY(Y|Xreal; βM2))) + (1 −Q1)

δ
δβ
E(ln( fY(Y|βM2

0 )))

+ (1 −Q1)v
δ
δβ

(
exp(βM2

0 )(1 −MXreal(βM2
∗ ))

)
= 0,

does not permit to find a bound on the estimator (see the remark for log-Gamma GLM).
However, E(ln( fY(Y|Xreal; β))) can be calculated using only X,

E(ln( fY(Y|Xreal; β))) =
1

Q1

(
E(ln( f (N|X, β)) − (1 −Q1)E(ln( fY(Y|β0))) − (1 −Q1) vexp(β0) MXreal(β∗)

)
.

(A24)

�

A.10. Proof for GLM log gamma

A.10.1. Proof of the lemma A.6

Proof. The expected log-likelihood to maximize is equivalent to:∫
Rp+1
−y exp(−xβ) − xβdFX1,...,Xp,Y(x, y).

The expected log likelihood E(ln( fY(β̂; Y|X))) is equal to

Qp E(ln( fY(β̂; Y|Xreal))) + (1 −Qp)E(ln( fY(β̂∗p; Y|Xreal)))MXp(−β̂p).



Under the assumption (X-A3), the derivative of the M2 log-likelihood for j in {0, ..., p − 1} are
equal to

δ
δβ j
E(ln( fY(β; Y|X))) = Qp d j(β) + (1 −Qp)

δ
δβ j

∫
R

∫
Rp
−y exp(−xreal

∗p β∗p − zpβp) − xreal
∗p β∗p − zpβpdFXreal

1 ,...,Xp−1,Y(xreal
∗p , y)dFZp(zp)

= Qp d j(β̂) + (1 −Qp)∫
R

∫
Rp
−yxreal

j exp(−xreal
∗p β∗p − zpβp)dFXreal

1 ,...,Xp−1,Y(xreal
∗p , y)dFZp(zp)

= Qp d j(β) + (1 −Qp)
δ
δβ j
E(ln( fY(β∗p; Y|Xreal)))MXp(−βp),

δ
δβp

E(ln( fY(β; Y|X))) = Qp dp(β) + (1 −Qp)∫
R

∫
Rp
−yzpexp(−xreal

∗p β∗p − zpβp)dFXreal
1 ,...,Xp−1,Y(xreal

∗p , y)dFZp(zp)

= Qp d j(β) − (1 −Qp)E(ln( fY(β∗p; Y|Xreal)))M
′

Xp
(−βp).

(A25)

�

A.11. Proof of the Theorem 3.1

Proof. Let (Y,X,Q) be the data sets as defined by the equation 1. In the univariate case p = 1,
the expected log-likelihood of the model M2 depends on the quality index,

E(ln( fY(Y|X; β))) = E(ln( fY(Y|Xreal; β))|Ω = 1) × P(Ω = 1)
+ E(ln( fY(Y|Z; β))|Ω = 0) × P(Ω = 0).

(A26)

The first term is known and as Z is independent of Y, the second can rewritten, using Fubini’s
theorem :

E(ln( fY(Y|Z; β̂))) = EY

∫
R

ln( fY(Y|z; β))dFZ1(z). (A27)

Because Z1 have the same distribution as the Xreal
1 , Xreal

1 can be used to estimate the density
fZ1 so dFZ1(s) = dFXreal

1
(s). Finally, the previous equation can be estimated by the mean sample.

Because {Xreal
1;1 , ...,X

real
n;1 } are iid observations, the sample estimator would be

1
n

n∑
i=1

1
n

n∑
h=1

log( f (yi|Xreal
h,1 ; β̂)). (A28)

Having E(|log( fY(Y| Z, β)|) < ∞ from the strong law of large numbers, this sample estimator
converges almost surely. The sample estimator

∑
ln( fY(yi|Xreal

i;1 ; β̂)) converges almost surely



E(ln( fY(Y|Xreal; β̂)). Using the strong law of large number, Q̄1 converges in probability towards
Q1. Thus,

Q̄1

n∑
i=1

ln( fY(yi|Xreal
i,1 ; β̂)) + (1 − Q̄1) ×

n∑
i=1

1
n

n∑
h=1

ln( fY(yi|Xreal
h,1 ; β̂)). (A29)

converges almost surely to E(ln( fY(Y|X; β̂))). Denote this estimator ln(LM2(β|Y,Xreal,Q)).
Finally, we know that :

• observations are i.i.d and the density is Lebesgue measurable;
• the parameter space of β is compact and open;
• the previous estimator is concave as sum of concave function and is differentiable accord-

ing to β;
• Identifiability : the estimator function is a smooth function of β and converges in proba-

bility for all β towards E(ln( fY(Y|X; β̂))) which has the unique solution;

Therefore, using the Cramer-Rao conditions - Collorary 3.8 of [11], the global maximum exists,
is unique and converges in probability to βM2, i.e.,

β̂M2|Xreal,Q P
→ βM2,

meaning that the estimator is consistent. �

Appendix B. Convexity: Propositions 1 and 2

Proof. Denote X j, Xk (i , j) the covariates with a Pearson correlation of |ρ| , 1 and suppose
βM1

k and βM1
j non null. Using the Corollary 3.5.1 of [4], the following derivatives are found :

δβM2
k (Qk|Q j)

δQk
= A ×

1 + Q2
j Q

2
kρ

2

(1 −Q2
j Q

2
kρ

2)2
,

δ2βM2
k (Qk|Q j)

δQ2
k

= A ×
2Q2

j Qkρ2

(1 −Q2
j Q

2
kρ

2)3
(3 + Q2

kQ2
jρ

2),

with A = βk(1 −Q2
jρ

2) +

√
Var(X j)
Var(Xk)β jρ(1 −Q2

j ).

A is positive only if ρβk > −
√

Var(X j)
Var(Xk)β j. Indeed,



0 ≤βk(1 −Q2
jρ

2) +

√
Var(X j)
Var(Xk)

βM1
j ρ(1 −Q2

j )

0 ≤βk +

√
Var(X j)
Var(Xk)

β jρ −Q2
j (ρ

2βk −

√
Var(X j)
Var(Xk)

β jρ),

if ρ ≥ −

√
Var(X j)
Var(Xk)

β j

βk
and βk ≥ 0 or ρ ≤ −

√
Var(X j)
Var(Xk)

β j

βk
and βk ≤ 0.

Then βM2
k (Qk|Q j)) is convex if ρ ≥ −

√
Var(X j)
Var(Xk)

β j

βk
and βk ≥ 0 or ρ ≤ −

√
Var(X j)
Var(Xk)

β j

βk
and βk ≤ 0 and

concave in the two other cases. If Q1, Q2 or ρ are null,
δ2β

M2
k (Qk)
δQ2

k
= 0 which ends the proof. �
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