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Abstract 

In this paper, forming limit diagrams (FLDs) for an aluminum alloy are predicted through 

numerical simulations using various localized necking criteria. A comparative study is 

conducted for the FLDs determined by using the Lemaitre damage approach and those 

obtained with the modified Gurson−Tvergaard−Needleman (GTN) damage model. To this 

end, both damage models coupled with elasto-plasticity and accounting for plastic anisotropy 

have been implemented into the ABAQUS/Explicit software, through the user-defined 

subroutine VUMAT, within the framework of large plastic strains and a fully three-

dimensional formulation. The resulting constitutive frameworks are then combined with four 

localized necking criteria to predict the limit strains for an AA6016-T4 aluminum alloy. Three 

of these necking criteria are based on finite element (FE) simulations of the Nakazima deep 

drawing test with various specimen geometries, while the fourth criterion is based on 

bifurcation theory. The simulation results reveal that the limit strains predicted by local 

criteria, which are based on FE simulations of the Nakazima test, are in good agreement with 

the experiments for a number of strain paths, while those obtained with the bifurcation 

analysis provide an upper bound to the experimental FLD. 
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1 Introduction 

The good knowledge of the formability of metallic materials is very important for the 

successful forming of sheet metals. The concept of forming limit diagram (FLD), which was 

originally introduced by Keeler and Backofen (1963), and later by Goodwin (1968), has been 

the most widely used tool for the characterization of the formability of sheet metals. This 

strategy allows delimiting the limit strains for stretched sheet metals that should not be 

exceeded in order to ensure a good quality of the final product. The FLDs are determined 

using necking or fracture criteria, which may be based on sound theoretical developments 

(see, e.g., Hill, 1952; Stören and Rice, 1975; Yamamoto, 1978; Abed-Meraim et al., 2014) or 

on finite element (FE) simulations (see, e.g., Zhang et al., 2011; Lumelskyy et al., 2012, 

Martínez-Donaire et al., 2014; Kami et al., 2015). These criteria are generally combined with 

constitutive models for the prediction of limit strains in sheet metal forming. In order to 

describe the behavior of sheet metals in a realistic way, advanced elastic−plastic models 

coupled with damage have been developed in the literature, which can be classified into two 

main approaches, namely the micromechanics damage modeling (MDM) and the continuum 

damage mechanics (CDM). The MDM approach has been first developed by Gurson (1977), 

who considered the initiation of damage as the growth of micro-voids in porous materials 

surrounded by a rigid−plastic matrix. This preliminary modeling approach has subsequently 

received a number of extensions to obtain the so-called Gurson−Tvergaard−Needleman 

(GTN) damage model (see, e.g., Tvergaard, 1982a,1982b; Tvergaard and Needleman, 1984) 

in order to account for all damage mechanisms (i.e., nucleation, growth and coalescence of 

voids) as well as the hardening of the dense matrix. Concurrently, the CDM approach has 

been introduced by the works of Kachanov (1958), and extended later in the framework of 

irreversible thermodynamics (see, e.g., Lemaitre, 1992; Chaboche, 1999). In the CDM 

approach, the damage variable represents the surface density of microcracks across a given 



3 

 

plane, and may be modeled as an isotropic scalar variable (see, e.g., Lemaitre, 1985, 1992), or 

a tensor variable for anisotropic damage (see, e.g., Lemaitre et al., 2000; Brünig, 2003). 

In this work, both the MDM and the CDM approaches are adopted for the modeling of 

ductile damage in sheet metals. More specifically, a classical elastic−plastic model with 

anisotropic plasticity is coupled with the Lemaitre damage theory, while the GTN model is 

combined with the Hill (1948) anisotropic yield surface to account for plastic anisotropy. The 

resulting models are implemented into the finite element code ABAQUS/Explicit, through the 

user-defined subroutine VUMAT, within the framework of large plastic strains and a fully 

three-dimensional formulation. Each of these models is then used for the FE simulations of 

the Nakazima deep drawing test with different specimen geometries in order to predict FLDs. 

The latter are determined using four different criteria for the onset of localized necking. Three 

of these criteria are based on the FE simulations of the Nakazima deep drawing test, while the 

fourth one is based on bifurcation theory (see, e.g., Rudnicki and Rice, 1975; Stören and Rice, 

1975; Rice, 1976). The numerical FLDs obtained with the current approach are compared 

with the experimental results taken from Kami et al. (2015). 

2 Modeling of ductile damage 

In this section, the constitutive equations associated with both the GTN damage model and 

the Lemaitre damage theory are described. Note that both modeling approaches are developed 

within the framework of large strains and three-dimensional formulation. 

2.1 GTN damage model 

Gurson (1977) proposed a yield condition depending on the void volume fraction, which 

represents the density of micro-defects within the material. Subsequently, this model has been 

improved by Tvergaard (1981) and Tvergaard and Needleman (1984) in order to take into 
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account the interaction between voids. The resulting modifications led to the definition of the 

following plastic yield surface: 

 ( )
2

* *2

GTN 1 2 3

3
2 cosh 1 0

2

eq m
σ σ

q f q q f
Y Y

   Φ = + − + ≤   
  

, (1) 

where ( ) 3 : 2eqσ ′ ′=σ σ σ  is the macroscopic von Mises equivalent stress, 
1

:
3

m
σ = σ 1  is the 

hydrostatic stress, 
m
σ′ =σ σ 1−  is the deviatoric part of the Cauchy stress σ , with 1  being the 

second-order identity tensor. The isotropic hardening of the fully dense matrix is described by 

the variable ( )plY ε , function of the equivalent plastic strain plε . The parameters 1q , 2q  and 

3q , introduced by Tvergaard (1981, 1982a), account for void interaction effects. The void 

coalescence mechanism is considered through the introduction of an effective void volume 

fraction ( )*
f f  (see, e.g., Tvergaard, 1982b; Tvergaard and Needleman, 1984). This function 

is defined as 

 ( )
* *

                             for    ,

( )
  for    ,

cr

u cr
cr cr cr R

R cr

f f f

f f f f
f f f f f f

f f

≤
=  − + − < ≤  − 

 (2) 

where f  represents the actual void volume fraction, *

u
f  is the ultimate value of *f , while 

R
f  

is the void volume fraction at fracture. The void coalescence phenomenon occurs when the 

void volume fraction reaches the critical value 
cr

f . 

In order to account for the plastic anisotropy of the material, the GTN plastic yield surface 

(see Eq. (1)) is modified by introducing the Hill (1948) equivalent stress instead of the von 

Mises one (see, e.g., Chen and Butcher, 2013; Kami et al., 2015; Li et al., 2015). The 

corresponding expression of equivalent stress is given by 

 ( ) : :eqσ ′ ′=σ σ M σ , (3) 
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where the fourth-order tensor M  contains the six anisotropy coefficients of the Hill (1948) 

quadratic yield criterion. It is worth noting that the original isotropic GTN model is recovered 

from the anisotropic one when the Lankford coefficients ( 0 45 90, andr r r ) are set to 1. 

Based on the principle of equivalence in plastic work rate (Gurson, 1977), the equivalent 

plastic strain rate plεɺ  of the fully dense matrix material is obtained as follows: 

 ( )
p

pl :

1 f Y
ε =

−
σ D

ɺ , (4) 

where pD  is the macroscopic plastic strain rate tensor. The latter is defined using the classical 

normality rule with respect to the yield function, and is expressed as 

 p

GTNλ=D Vɺ , (5) 

where λɺ  is the plastic multiplier, and GTN GTN= ∂Φ ∂V σ  is the direction of the plastic flow. 

Isotropic hardening for the dense matrix is assumed in this work, which is defined by the 

following expression: 

 pl
Y hε=ɺ ɺ , (6) 

where ( )plh ε  is the plastic hardening modulus of the fully dense matrix material. 

The evolution of the void volume fraction is based on both nucleation of new voids and 

growth of existing voids (see, e.g., Chu and Needleman, 1980). The associated evolution 

equation is given by 

 growth nucleationf f f= +ɺ ɺ ɺ , (7) 

where 

 ( ) p

growth 1 :f f= − D 1ɺ . (8) 
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For the void nucleation, the latter is assumed to be strain controlled in this work. The 

expression of the nucleation rate is given by 

 pl

nucleation N
f A ε=ɺ ɺ , (9) 

where 
N

A  has been defined in Chu and Needleman (1980) by the following normal 

distribution law: 

 

2
pl1

exp
22

N N
N

NN

f
A

ss

ε ε
π

  −
 = −  
   

, (10) 

where 
N

f  is the volume fraction of the inclusions that are likely to nucleate, 
N

ε  is the mean 

equivalent plastic strain of nucleation, and 
N

s  is the corresponding standard deviation. 

The consistency condition for the GTN model, which ensures plastic loading, may be 

written in the following form: 

 *GTN GTN GTN: 0
Y f

V Y V fδΦ = + + =V σ ɺɺɺ ɺ , (11) 

where 

 

*

*

GTN
GTN 1 2 22

2

*GTN
1 2 23 2

*GTN
1 2 3*

: 3
2 sinh

2

3
2 3 sinh

2

3
2 cosh 2

2

m

eq m m
Y

m

f

σf
q q q

Y Y Y
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σ
V q q q f

f Y

′ ∂Φ  = = +   ∂  
 ∂Φ  = = − −  ∂  
 ∂Φ  = = −  ∂  

M σ
V 1

σ

, (12) 

and 

 *
GTN

1        for    

  for    

cr

u cr
cr R

R cr

f f

f f
f f f

f f

δ
≤

= − < ≤ −

. (13) 

In the co-rotational frame, which is associated with the Jaumann objective derivative, the 

Cauchy stress–strain relationship is obtained using the classical hypoelastic law defined by 
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 ( )p

GTN: :e ep= − =σ C D D C Dɺ , (14) 

where e
C  is the fourth-order elasticity tensor, GTN

ep
C  is the elastic–plastic tangent modulus for 

the GTN model, and D  is the strain rate tensor. 

By substituting Eqs. (4)–(9) into the consistency condition (11), the expression of the 

plastic multiplier ɺλ  is obtained as follows: 

 GTN

GTN

: :e

H
λ = V C D
ɺ , (15) 

where 

   ( ) ( )* *

GTN
GTN GTN GTN GTN GTN GTN

:1
: : 1 :

1

e

Y N f f
H hV A V f V

f Y
δ δ = − + − −

 −
σ V

V C V V 1 . (16) 

The analytical expression of the elastic–plastic tangent modulus for the GTN model is 

obtained by substituting the expression of the plastic multiplier (Eq. (15)) into the hypoelastic 

relationship (14) 

 
( ) ( )GTN GTN

GTN

GTN

: :e e

ep e

H
α

⊗
= −

C V V C
C C , (17) 

where 0α =  for elastic loading/unloading, and 1α =  for strict plastic loading. 

2.2 Lemaitre damage model 

The second approach to ductile damage considered in this work is based on the works of 

Lemaitre (1985, 1992), which was originally introduced by Kachanov (1958). In the 

literature, this approach is referred to as Continuum Damage Mechanics (CDM) theory, which 

provides a phenomenological description for ductile damage, in contrast to the 

micromechanics-based Gurson damage model. In the CDM theory, the damage variable, 

which may be scalar isotropic or tensor-valued anisotropic, represents the surface density of 

microdefects. In the current work, the adopted elasto-plastic model coupled with ductile 
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damage takes into account the initial anisotropy of the material, using the Hill’48 quadratic 

yield function, while hardening is taken to be isotropic. 

Based on the strain equivalence principle (Lemaitre and Chaboche, 1978), the material 

behavior is affected by continuum damage through the introduction of an effective stress 

tensor σɶ  given by 

 
1 d

=
−
σ

σɶ , (18) 

where the scalar damage variable d  varies between 0 to 1, with 0d =  for an undamaged 

material, and 1d =  for a fully damaged material. 

The plastic yield function F  is written in the following form: 

 F ( ) 0
eq
σ Y= − ≤σɶ , (19) 

where ( ) : :eqσ ′ ′=σ σ M σɶ ɶ ɶ  is the Hill’48 effective equivalent stress, and ′σɶ  is the deviatoric 

part of the effective stress. 

The plastic flow rule is given by the normality law, which defines the plastic strain rate 

tensor pD  as 

 P

CDM CDM

F 1

1
λ λ λ

d

∂= = =
∂ −

D V V
σ

ɺ ɺ ɺɶ , (20) 

where 

 CDM

1

1 eqd σ

′:=
−

M σ
V

ɶ
ɶ . (21) 

With a special choice of co-rotational frame, which is associated with the Jaumann 

objective derivative, the constitutive relation is written in the following form: 

 P P( ) (1 ) ( )
1

e e d
d

d
= : −  = − : − −

−
σ C D D σ C D D σ

ɺ
ɺɶ ɺ  . (22) 
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The evolution law for the damage variable is expressed by the following equation: 

 ( )
1

if
1

0 otherwise

s
e e

e ei
iβ

d

Y Y
λ Y Y

d H λ Sd

  −
 ≥ = =  −  



ɺ
ɺ ɺ , (23) 

where eY  is the strain energy density release rate (see, e.g., Lemaitre, 1992; Lemaitre et al., 

2000). Its expression is given, in the case of linear isotropic elasticity, by the following 

relationship: 

 ( ) ( )
2

2

2

2

2
1 3 1 2

2 3

H
e J σ

Y ν ν
E J

  
 = + + −  
   

ɶ
, (24) 

where 2

3
:

2
J ′ ′= σ σɶ ɶ  is the equivalent effective stress in the sense of von Mises, 

1
:

3

Hσ = σ 1ɶɶ  

is the hydrostatic effective stress, while E  and ν  denote, respectively, the Young modulus 

and the Poisson ratio. 

It is easy to show that the expression of the Cauchy stress rate tensor given by Eq. (22) can 

be rewritten in the form 

 CDM :ep=σ C Dɺ , (25) 

where CDM

ep
C  is the elastic–plastic tangent modulus for the Lemaitre damage model. 

The consistency condition F 0=ɺ  allows the determination of the plastic multiplier ɺλ , 

which writes 

 CDM

CDM

e

λ
H

: := V C D
ɺ , (26) 

where 

 CDM CDM CDM

e

Y
H H= : : +V C Vɶ . (27) 
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where 
Y

H  is the scalar isotropic hardening modulus, which governs the evolution of isotropic 

hardening (i.e., YY H λ= ɺɺ ). By substituting the expression of the plastic multiplier (Eq. (26)) 

into the hypoelastic relationship (22), the elastic‒plastic tangent modulus CDM

ep
C  for the 

Lemaitre damage model is given by 

 
( )CDM CDM

CDM

CDM

(1 )

e e

dep e
H

d α
H

  : + ⊗ :  = − −
 
 

C V σ V C
C C

ɶ

, (28) 

where 1α =  for strict plastic loading and 0  otherwise. 

2.3 Numerical implementation of the constitutive equations 

In this work, both the modified anisotropic GTN model and the Lemaitre damage model 

are implemented into the commercial finite element code ABAQUS/Explicit via the user-

defined material subroutine VUMAT. The same explicit time integration scheme is used for 

both damage models, which is based on the fourth-order Runge−Kutta method. This 

algorithm allows updating the stress state and all of the internal state variables at the end of 

the loading increment starting from a known state at the beginning of the loading increment. 

This time integration scheme has the advantage of being straightforward and robust, since no 

iterative procedure is needed, unlike implicit time integration schemes (see, e.g., Aravas, 

1987). However, the time increment must be kept small enough to ensure accuracy and 

stability (see, e.g., Li and Nemat-Nasser, 1993; Kojic, 2002). 

It can be shown that the evolution equations for both the GTN damage model and the 

Lemaitre damage model can be written in the following compact form of general differential 

equation: 

 ( )= uu h uɺ , (29) 
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where vector u  encompasses all of the internal variables and stress state, while vector ( )uh u  

includes all evolution laws for each damage model. The above condensed differential 

equation is then integrated over each loading increment, using the forward fourth-order 

Runge–Kutta time integration scheme. The resulting algorithms for both damage models are 

implemented into the finite element code ABAQUS/Explicit, via VUMAT user-defined 

material subroutines, within the framework of large strains and a fully three-dimensional 

formulation. 

3 Determination of material parameters 

The material considered in this work is the AA6016-T4 aluminum sheet (see Kami et al., 

2015). For this material, the experimental FLD and the material parameters corresponding to 

the anisotropic GTN damage model have been determined by Kami et al. (2015). In the latter 

reference, the Swift isotropic hardening law has been considered, which is defined by the 

following expression: 

 ( )pl

0

n

Y k ε ε= + , (30) 

where k , 0ε  and n  are the hardening parameters. The associated elastic–plastic parameters 

are summarized in Table 1. 

As mentioned in Section 2.1, the GTN yield surface has been modified to account for the 

planar plastic anisotropy. The Hill’48 anisotropy coefficients are determined using the 

Lankford coefficients 0r , 45r  and 90r , which were identified by Kami et al. (2015) on the basis 

of three uniaxial tensile tests performed along three sheet orientations, namely 0° , 45°  and 

90°  with respect to the rolling direction. The corresponding r -values are reported in Table 2. 

For the GTN damage parameters, the latter were identified in Kami et al. (2015) using an 
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inverse identification procedure that combines the response surface methodology and the 

simulation of a uniaxial tensile test. The associated parameters are listed in Table 3. 

For the Lemaitre damage model, the modeling of the material hardening and the 

description of the plastic anisotropy are taken the same as in the case of the GTN damage 

model. In the current contribution, the Lemaitre damage parameters are calibrated using an 

inverse identification procedure along with the experimental uniaxial tensile test for the 

AA6016-T4 aluminum sheet. This inverse identification strategy is based on least-squares 

minimization of the difference between the experimental and numerical load–displacement 

response for a uniaxial tensile test. The identified values of the Lemaitre damage model are 

summarized in Table 4. 

Table 1 

Elastic properties and Swift’s hardening parameters. 

Material E  (MPa) ν  k  (MPa) 0ε   n  

AA6016-T4 70,000  0.33 525.77 0.011252 0.2704 

 

Table 2 

r-values for the AA6016-T4 aluminum sheet. 

Material 0r  45r  90r  

AA6016-T4 0.5529 0.4091 0.5497 

 

Table 3 

Damage parameters for the GTN damage model. 

Material 0f  N
s

 N
ε

 N
f

 cr
f

 R
f  1q

 2q
 3q

 

AA6016-T4 0.00035 0.10 0.30 0.05 0.05 0.15 1.5 1.0 2.25 
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Table 4 

Damage parameters for the Lemaitre damage model. 

Material β  S  s  
e

i
Y  

AA6016-T4 12 4.0 1.3 0.0 

 

In order to better emphasize the identification results as well as the performance of the 

numerical implementation of both damage models, Fig. 1 compares the simulated load–

displacement responses, obtained using both damage models, with the experimental 

counterpart given in Kami et al. (2015). This figure clearly shows that the simulated responses 

for both damage models are in very good agreement with the experimental curve and, in 

particular, demonstrates the ability of the implemented models to reproduce the sudden load 

drop that precedes the final fracture. 

0 5 10 15 20 25
0

2000

4000

6000

 Experiment (from Kami et al., 2015)

 Lemaitre damage model

 GTN damage model

F
o
rc

e 
(N

)

Displacement (mm)  

Fig. 1. Tensile load−displacement responses simulated with the GTN and the Lemaitre 

damage models, along with the experimental curve taken from Kami et al. (2015). 
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4 Finite element model 

4.1 Nakazima deep drawing test 

The implemented GTN and Lemaitre damage models, with their associated material 

parameters, are used in the simulation of the Nakazima deep drawing test (see Fig. 2) in order 

to determine the FLD of the AA6016-T4 aluminum sheet. The geometric parameters for the 

Nakazima deep drawing process are summarized in Table 5. According to the standard 

procedure described in ISO 12004-2 (2008), seven specimens with different geometries are 

considered in the simulations. Each specimen allows for the reproduction of a particular strain 

path, which is typically encountered in sheet metal forming processes. The general geometry 

for a given specimen width is illustrated in Fig. 3. The seven specimens are designed by 

varying the width parameter W from 30 mm to 185 mm, which leads to different strain paths 

in the central part of the specimens, ranging from uniaxial tension to balanced biaxial tension. 

Punch

Die

Specimen

Holder

 

Fig. 2. FE representation of the Nakazima deep drawing test with sheet specimen of 70 mm 

width. 
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Table 5 

Geometric parameters for the Nakazima deep drawing test. 

Punch diameter 100 mm 

Die opening diameter 110 mm 

Die profile radius 10 mm 

Initial sheet thickness 1 mm 

 

+

+

25 mm

R25 mm

W
 

Fig. 3. Specimen geometry and dimensions used in the Nakazima deep drawing test. 

 

The forming tools are modeled as discrete rigid bodies, while the blank is modeled with the 

eight-node three-dimensional continuum finite element with reduced integration (C3D8R), 

which is available in the ABAQUS/Explicit software. Note that, in order to save 

computational time, particular attention has been paid to optimizing the mesh of the blank, as 

illustrated in Fig. 4. Indeed, the central part of the blank, which is subjected to large plastic 

strains, is discretized with a fine mesh, while the rest of the blank is discretized with a coarse 

mesh. 
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Fig. 4. FE mesh used for the specimen of 70 mm width. 

 

4.2 Mesh sensitivity analysis 

As already pointed out by several authors in the literature (see, e.g., Tvergaard and 

Needleman, 1984; Besson et al., 2001; Peerlings et al., 2001), it is nowadays well known that 

the mesh size has an important influence on the occurrence of strain localization, and 

particularly for behavior models exhibiting damage-induced softening. In order to analyze the 

effect of the mesh size on the numerical results, several meshes are used in the simulation of 

the Nakazima deep drawing test with the specimen of 30 mm width. 

First, the effect of the number of elements in the thickness direction is analyzed by 

considering, successively, two, three, four and five element layers. Note that for these four 

different through-thickness FE discretizations, the same in-plane mesh discretization is used, 

which consists of 0.5×0.5 mm2 in the central part of the specimen. Figures 5 and 6 show the 

effect of the number of elements in the thickness direction on the evolution of the thickness 

strain and the punch force−displacement response, respectively. These figures reveal that the 

number of element layers in the thickness direction has a very small effect on the evolution of 

the thickness strain, while it has a relatively more noticeable effect on the maximum punch 

force. 
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Fig. 5. Effect of the number of elements in the thickness direction on the evolution of the 

strain thickness during the Nakazima test with the specimen of 30 mm width. 
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Fig. 6. Effect of the number of elements in the thickness direction on the punch 

force−displacement response for the Nakazima test with the specimen of 30 mm width. 

 

Then, the impact of the in-plane mesh size on the evolution of the thickness strain and the 

punch force−displacement response is investigated. To this end, the Nakazima deep drawing 

test is performed again for the specimen of 30 mm width, using four different in-plane meshes 

for the central part of the specimen. These in-plane FE discretizations represent coarse, 
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intermediate, fine and very fine meshes, which correspond to mesh sizes of 1×1 mm2, 

0.75×0.75 mm2, 0.5×0.5 mm2 and 0.25×0.25 mm2, respectively. Note that, for these four 

different in-plane mesh discretizations, four element layers in the thickness direction are used. 

Figures 7 and 8 show the simulated results that are obtained with the four in-plane mesh sizes. 

Similar to the effect of the number of elements through the thickness, the in-plane mesh size 

has a small effect on the evolution of the thickness strain, while it has a relatively more 

perceptible effect on the maximum punch force and on the final punch stroke (i.e., after the 

sudden load drop). 

In conclusion, the above mesh sensitivity analysis suggests using the fine in-plane mesh 

(i.e., 0.5×0.5 mm2) with four element layers through the thickness in the remaining 

simulations of the current study. Indeed, this choice appears as a pragmatic compromise in 

terms of accurate description of the various nonlinear phenomena and reasonable 

computational times. 
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Fig. 7. Effect of the in-plane mesh size on the evolution of the thickness strain during the 

Nakazima test with the specimen of 30 mm width. 
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Fig. 8. Effect of the in-plane mesh size on the punch force−displacement response for the 

Nakazima test with the specimen of 30 mm width. 

 

5 Localized necking criteria 

In this section, four necking criteria are presented, which will be subsequently used for the 

prediction of strain localization in sheet metals. Three of these criteria are based on the FE 

analysis of deep drawing process, while the fourth one is based on bifurcation theory. Note 

that, none of these criteria requires the introduction of additional user-defined parameters, in 

contrast to the Marciniak and Kuczynski (1967) criterion. 

5.1 Criterion of maximum second derivative of thickness strain 

This criterion is based on the analysis of the evolution of thickness strain during the 

Nakazima deep drawing test. More specifically, the onset of strain localization is associated 

with the maximum of the second derivative of thickness strain (see, e.g., Zhang et al., 2011; 

Lumelskyy et al., 2012; Martínez-Donaire et al., 2014). After the maximum in the second 

derivative of thickness strain is reached, the localized thinning in the sheet proceeds gradually 

until the onset of fracture. Based on this numerical criterion, Fig. 9 shows an illustration of 
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the onset of localized necking during the simulation of the Nakazima deep drawing test with 

the specimen of 30 mm width. 
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Fig. 9. Prediction of localized necking based on the maximum of the 2nd derivative of 

thickness strain. 

 

5.2 Criterion based on the ratio of equivalent plastic strain increment 

In order to determine the onset of localized necking, a criterion based on the ratio of 

equivalent plastic strain increment is used as numerical necking criterion (see, e.g., 

Narasimhan and Wagoner, 1991; Chung et al., 2014). This ratio of equivalent plastic strain 

increment is associated with two elements: a critical element and its neighboring element. 

More specifically, the critical element (referred to here as element B) is preliminarily 

identified during the Nakazima test, which is generally located in the central part of the 

specimen that is in contact with the punch. Then, the neighboring element is also identified 

(referred to here as element A), which is located five elements away from the critical element 

along the rolling direction. With elements A and B thus identified, the onset of localized 

necking is detected when the ratio of equivalent plastic strain increment in element B to that 

in element A becomes larger than 10, as illustrated in Fig. 10. 
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Fig. 10. Prediction of localized necking based on the ratio of equivalent plastic strain 

increment. 

 

5.3 Maximum punch force criterion 

Several theoretical criteria based on the maximum force principle have been developed in 

the literature for the prediction of diffuse or localized necking in sheet metals (see, e.g., Swift, 

1952; Hora et al., 1996; Mattiasson et al., 2006). Based on these earlier contributions, the 

maximum in the punch force−displacement response during the simulation of the Nakazima 

test is used here as numerical criterion for the prediction of localized necking (see the 

illustration in Fig. 11). 
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Fig. 11. Prediction of localized necking based on the maximum in the punch 

force−displacement response. 

 

5.4 Loss of ellipticity criterion 

In contrast to the three numerical criteria presented above, a more theoretically-based 

criterion is proposed here for the prediction of localized necking in sheet metals, which is 

based on bifurcation theory. This criterion has been established by Rice and co-workers (see, 

e.g., Rudnicki and Rice, 1975; Stören and Rice, 1975; Rice, 1976) to predict strain 

localization in the form of an infinite band in a solid otherwise homogeneous. This approach 

corresponds to the loss of ellipticity (LE) of the partial differential equations governing the 

associated boundary value problem. The condition of localization, which may be derived from 

the Hadamard compatibility condition and the static equilibrium equation, is given by the 

following relation: 

 ( ) ( )det det 0= ⋅ ⋅ =A n L n , (31) 

where A  denotes the so-called acoustic tensor, n  is the normal to the localization band, 

while L  represents the tangent modulus that relates the nominal stress tensor to the velocity 
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gradient. The expression of the latter is given by the following relationship (see, e.g., Haddag 

et al., 2009; Mansouri et al., 2014): 

 1 2 3

ep= + − −L C L L L , (32) 

where ep
C  is the analytical tangent modulus derived from the constitutive equations, which 

corresponds to GTN

ep
C  for the GTN damage model, and CDM

ep
C  for the Lemaitre damage model 

(see Eqs. (17) and (28), respectively). The fourth-order tensors 1L , 2L  and 3L , which only 

depend on Cauchy stress components, result from the large strain framework. Their detailed 

expressions can be found in Haddag et al. (2009). 

The loss of ellipticity condition given by Eq. (31) is numerically assessed by computing 

the determinant of the acoustic tensor A  for each loading increment. The numerical detection 

of strain localization is achieved when the minimum of the determinant of the acoustic tensor 

A , over all possible orientations for the normal n  to the localization band, becomes non-

positive, as illustrated in Fig. 12. 
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Fig. 12. Prediction of localized necking based on the loss of ellipticity criterion. 
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It is worth noting that the LE criterion is based on a three-dimensional bifurcation analysis 

from a homogeneous pre-localization state. This state of uniform deformation is achieved by 

considering a single finite element with one integration point, which is subjected to various 

linear strain paths that are typically applied to sheet metals under in-plane biaxial stretching 

(i.e., ranging from uniaxial tension to balanced biaxial tension). 

6 Prediction of FLDs and comparison with experiments 

The necking criteria presented in the previous section are combined here with both the 

GTN and the Lemaitre damage models to predict the FLDs of the AA6016-T4 aluminum 

sheet. Figure 13 shows a comparison of the FLDs predicted by the four necking criteria, along 

with the experimental FLD provided by Kami et al. (2015). 

On the whole, the FLDs predicted by the two damage models are close to each other, and 

are also comparable to the experimental FLD in terms of order of magnitude. More 

specifically, the limit strains obtained with the criterion based on the maximum of the 2nd 

derivative of thickness strain are in good agreement with the experimental results in the left-

hand side of the FLD (see Fig. 13a), while these limit strains are well predicted by the 

criterion of equivalent plastic strain increment ratio in the neighborhood of the plane-strain 

tension path (see Fig. 13b). However, for the two above-discussed criteria, the predicted limit 

strains are overall underestimated in the right-hand side of the FLD, which is probably due to 

the material parameter identification and, particularly, to the identification of damage 

parameters. Indeed, the latter are identified using only one type of mechanical tests (i.e., a 

uniaxial tension test) for both the GTN and the Lemaitre damage models, which results in 

non-negligible error in the right-hand side of the FLD. It is now widely recognized that the 

accurate calibration of material parameters requires an identification procedure that is based 

on various types of mechanical tests (i.e., standard uniaxial tension test, plane-strain tension 
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test, Bulge test …), and/or on heterogeneous mechanical tests. Such advanced identification 

techniques are likely to improve the reliability of the material parameters for various strain 

paths and, in turn, the accuracy of the corresponding FLD predictions. For the maximum 

punch force criterion, the predicted FLDs are markedly different from those obtained by the 

two previous necking criteria, and even the shape of the predicted FLDs does not seem to be 

usual (see Fig. 13c). Indeed, the punch force represents some averaged information during the 

forming process, and its use to detect local phenomena, such as localized necking, does not 

seem to be suitable. For the LE criterion, the FLDs predicted by the two damage models are 

overestimated for almost all strain paths, except in the extreme right-hand side of the FLD, 

where the limit strains are rather underestimated. It is worth noting that the LE criterion is 

based on a three-dimensional bifurcation analysis from a homogeneous pre-localization state, 

with the only consideration of material instability, without taking into account any structural 

(geometric) effects. Consequently, the FLDs predicted by the LE criterion are expected to set 

an upper bound to the experimental ones, which is observed here indeed for most strain paths. 
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Fig. 13. Prediction of FLDs using the four localized necking criteria: (a) maximum of the 

2nd derivative of thickness strain, (b) ratio of equivalent plastic strain increment, (c) maximum 

of punch force, and (d) loss of ellipticity. 

 

7 Conclusions 

In this work, four different necking criteria have been proposed and compared for the 

prediction of FLDs for the AA6016-T4 aluminum alloy. For the material constitutive 

modeling, two approaches to ductile damage have also been considered: the Lemaitre 

continuum damage theory and the GTN damage description, which was extended to the 
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Hill’48 quadratic yield surface to account for the plastic anisotropy of the material. Both 

damage models have been numerically implemented into the commercial finite element code 

ABAQUS/Explicit via the user-defined material subroutine VUMAT. The main contributions 

of the current study and associated conclusions may be summarized as follows: 

• The Lemaitre damage parameters have been identified using an inverse identification 

procedure based on FE fitting of an experimental load–displacement response of a 

standard tensile test; 

• Based on FE simulations of the Nakazima deep drawing test and four different 

localized necking criteria, numerical FLDs have been determined for the AA6016-T4 

aluminum sheet and compared with the experimental FLD. The obtained results 

suggest that two of the local criteria (i.e., those based on the maximum of the 2nd 

derivative of thickness strain, and the ratio of equivalent plastic strain increment) yield 

results that are in good agreement with the experiments in the left-hand side of the 

FLD and in the neighborhood of the plane-strain tension path, while the global 

criterion based on the maximum punch force does not seem to be suitable to the 

prediction of localized necking; 

• The predictions using the LE criterion provide upper bounds to the classical 

experimental FLD, which is consistent with the theoretical foundations on which the 

bifurcation approach is based. On the other hand, this bifurcation approach could be 

advantageously used to design new materials with improved ductility, by classifying 

them in terms of formability limits; 

• The accuracy of the numerically predicted FLDs with respect to experiments may be 

improved by considering various mechanical tests in the identification procedure. 

Indeed, a number of simple and complex strain paths should be included in the 
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identification procedure in order to provide reliable material parameters, thus 

improving the accuracy of the predicted FLDs. 
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