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Abstract—The limited durability is one of the key barriers of Proton Exchange Membrane Fuel Cell 

(PEMFC) to large-scale commercial applications. The data-driven prognostic method aims to estimate the 

Remaining Useful Life (RUL) without the need for complete knowledge about the system’s physical 

phenomena. As an improved structure of the recurrent neural network, the Echo State Network (ESN) has 

demonstrated better performances, especially in reducing the computational complexity and accelerating 

the convergence rate. The traditional prognostic methods utilize only the previous state, e.g. stack voltage, 

for prediction. Nevertheless, the current operating conditions, such as stack current, stack temperature and 

the pressures of the reactants (i.e. oxygen and hydrogen) can also contain important degradation 

information in practice. Especially, the stack current is a crucial operating parameter, since it is normally 

taken as the scheduling variable and it could reflect the operating conditions. Compared with the single-

input and single-output (SISO-ESN) structure, the ESN with multiple inputs and multiple outputs (MIMO-

ESN) is proposed in this paper to improve the RUL prediction accuracy. Stack voltage, stack current, stack 

temperature and the pressures of the reactants are combinedly used to predict the RUL. After the 

mathematical modeling and the parameter designing, the prediction performance of SISO-ESN and 

MIMO-ESN are verified and compared on a 1 kW electrical power test bench developed in the laboratory. 

Results show that the MIMO-ESN method has a better performance than the SISO-ESN method under 

both static and quasi-dynamic operating conditions.  

Keywords—proton exchange membrane fuel cell, prognostics, remaining useful life, data-driven, reservoir 

computing, echo state network 

I. INTRODUCTION  

In recent years, increasingly exhausted conventional fossil fuels and deteriorating environmental are two urgent 

problems to be solved [1]. With the advantages of high efficiency, non-pollution, and quiet operation, Fuel Cell 

(FC) is attracting more and more attention and becoming a promising technology to deal with energy and 

environmental issues [2]. Among all kinds of FC, Proton Exchange Membrane Fuel Cell (PEMFC) system is the 

most popular one because of its characteristics such as the rapid startup, high power density (3.8~6.5 kW/m3) and 

low working temperature (50 °C~80 °C) [3]. They are more welcomed in vehicle transportations, portable devices, 

backup power, and distributed generations [4]. But for many years, durability is one of the key barriers to their 

large-scale commercialization [5]. The U.S. Department of Energy (DOE) target of durability lifespan is 5,000 h 

with less than 10 % performance decay in light-duty vehicle transportation applications. Finally, the lifespan target 

can achieve 8,000 h on a lower average-speed drive cycle by 2020. Nevertheless, the evaluation lifespan in 2015 

was 3,900 h before 10 % degradation for the automotive fuel cell systems [6]. 

Prognostic and Health Management (PHM) has the ability to estimate the future condition based on the past 

working profiles and the current operations, and then to extend the lifespan based on the Condition-based 

Maintenance (CBM) [7]. The main objective of prognostic is to predict the Remaining Useful Life (RUL), which is 

commonly regarded as the time before a certain amount of power loss being reached [8]. Over the last few years, 

various prognostic methods have been proposed [9]. According to whether an analytical PEMFC model exists, 

these strategies can be categorized broadly into the model-based, data-driven, and hybrid method [10, 11]. Static or 

dynamical mathematical models are necessary for the model-based method [12]. The accuracy of prognostic relies 

on the precision of the degradation models [13]. However, to the best of the authors’ knowledge, a general 
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modeling approach to describe all the degradation mechanisms does not exist yet. It is well to be reminded that the 

PEMFC is the nonlinear, multi-physics (hydromechanics, electrochemistry, thermodynamics, etc.), and multi-scale 

(time and space) system [14]. Building up a mathematical model to express the aging phenomenon is difficult, and 

the degradation mechanisms of FC are not all fully understood. Nonetheless, the model-based method is the 

simplest method to implement prognostic. In order to retain the prediction accuracy without losing simplicity, some 

scholars introduced the filtering methods and combined them with the degradation models. This combination is 

called the hybrid method. In the general hybrid method, the mathematical models are built first, and then different 

filtering techniques (Unscented Kalman Filter [15], Extend Kalman Filter [16], Particle Filter [17, 18], etc.) are 

used to realize the RUL prediction. Essentially, the hybrid method also relays on the models of PEMFC.  

The data-driven method does not rely on the model of PEMFC. Instead, the historical data of different health 

indicators are used to realize the RUL prediction. With the development of computer science and the availability of 

large amounts of operating data, the data-driven method gains popularity over the last several years. As an 

advanced kernel-based mathematical approach, Relevance Vector Machine (RVM) was use in [19]. Later, the 

modified RVM was introduced in [20] to improve the accuracy and robustness. Adaptive Neuro Fuzzy Inference 

Systems (ANFIS) can be regarded as a combination of feed-forward neural network and fuzzy logic system, and 

this method was used in [21]. The Summation Wavelet-Extreme Learning Machine (SW-ELM) is the combination 

of single-hidden layer feed-forward neural network and wavelet theory, and it was implemented in [22]. The Long 

Short-Term Memory (LSTM) recurrent neural network was used in [23] and [24]. Later, the improved structure of 

grid-LSTM was proposed in [25]. The Recurrent Neural Network (RNN) provides a promising solution to deal 

with the nonlinearity and temporal problems as it has the inherent ability to memorize the previous state [26]. It has 

been proved to be a powerful technique to estimate the RUL [27]. Nevertheless, the problems of bifurcations, high 

computational complexity, and slow convergence rate have limited its practical applications. As a new design and 

training architecture, the Echo State Network (ESN) which was proposed by Prof. Jaeger et al., has overcome the 

shortcomings of the traditional RNN [28]. During the implementation of ESN, only the output weight matrix needs 

to be trained once [29]. As a result, the computational burden is much decreased at the same time while its 

prediction accuracy is ensured. Together with the Liquid State Machine (LSM) [30] and the Back-Propagation De-

Correlation (BPDC) [31], they are three paradigms of Reservoir Computing (RC) [32]. Recently, RC is introduced 

to realize the diagnostic and prognostic of PEMFC [33]. The RC was used in [34] to realize the fault diagnosis 

under dynamic load profile and it was also used in [35] to decrease the diagnostic error rate. The ESN was first 

implemented in [36] to predict the RUL of PEMFC. Both direct and parallel structures with a multi-step prediction 

were implemented to estimate the RUL. Hereafter, Morando et al. improved their work. Direct structure and 

iterative structure with one-step ahead prediction are used in [37] and the error rate was 10 % maximum for the 

RUL estimation of a PEMFC. The Hurst exponent of the signal filtered by wavelet was evaluated in [38]. 

Compared to [37], better performance with a mean average percentage error of less than 5 % was obtained in [38]. 

The Multi-reservoir ESN (MR-ESN) was proposed in [39] to increase the prediction accuracy. MR-ESN associated 

many reservoirs with different spectral radius in parallel. Nevertheless, only the mean cell voltage was used in the 

papers above, and the load current stayed constant. Lately, Li et al. also did a lot of work on RUL prediction under 

the various operating conditions and system dynamics [40]. Unlike the traditional health indicators, a virtual 

steady-state stack voltage was formulated by a series of Linear Parameter Varying (LPV) models identified in the 

sliding data segments. An ensemble ESN in time-varying model space was implemented in [41] to enhance the 

adaptability of prognostic and the long-term tests on a low power-scale PEMFC stack in different operating 

conditions were carried out.  

Furthermore, the ESN with single input and single output (SISO-ESN) was used in many papers to predict the 

RUL of PEMFC. In the SISO-ESN structure, with the previous voltage as the single input and the predicted voltage 

as the single output. In practice, the ESN has the intrinsic property of dealing with multi-input and multi-output 

problems. During the implementation of ESN, increasing the inputs improves the dimension of the output weight 

matrix and the ability to deal with non-linearity issues. The output weight matrix with a high dimension contains 

more system characteristics and can mimic more accurately the degradation phenomena in the PEMFC system. 

During the operation of PEMFC, different parameters such as stack current, the temperatures of hydrogen and air, 

the pressures of hydrogen and air can be easily obtained by the sensors. These parameters can also contain the 

degradation information of the PEMFC to some extent. Among all the operation parameters, the stack current is the 

most interesting one because it is normally taken as the scheduling variable. In order to improve the RUL 

prediction of PEMFC, different operating parameters are investigated together with the stack voltage as the inputs 

of ESN. As the chosen health indicator of PEMFC, the stack voltage is regarded as the main output of ESN. Other 

operating parameters can also be predicted at the same time. To the best of the authors’ knowledge, the use of ESN 
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with multiple inputs and multiple outputs (MIMO-ESN) for the RUL prediction is originally explored and studied 

in this work. This paper is organized as follows. In Section II, mathematical models and design principles of ESN 

are introduced. Section III presents the experimental platform of the PEMFC system, the analysis of the 

degradation characteristic, and then the MIMO-ESN implementation process is described. The experiment results 

are given and further analyzed in Section IV and the conclusions are presented in Section V. 

II. ECHO STATE NETWORK 

To overcome the weakness of RNN, the structure of the ESN is proposed. The hidden layer of RNN is replaced 

by a large dynamic “reservoir” which can be excited by suitable inputs. Unlike RNN, the input weight matrix and 

recurrent weight matrix are not changed once the structure is fixed, and just the output weight matrix is to be 

optimized by linear regression methods. Therefore, the computation efficiency of ESN is much improved. 

A. Mathematical Models 

There are three distinct parts of the ESN structure: an input layer, a reservoir, and an output layer. The stack 
voltage is regarded as a health indicator in this task, and the input layer receives the historical data of stack voltage, 
temperature, pressure, etc. In general, the more neurons are used in the reservoir, the less difficulty exists in the 
liner separation. Finally, the expected output is optimized via a multi-linear regression. The general structure of the 
ESN is illustrated in Fig. 1. 

 

Fig. 1. The structure of Echo State Network 

In discretized time, the typical model of ESN can be represented as 

 ( ) ( ( ) ( 1))inn f n n= + −x W u Wx%  (1) 

 ( ) (1 ) ( 1) ( )n n nα α= − − +x x x%  (2) 

Where ( )f ⋅  is the nonlinear neuron activation function and tanh( )⋅  is commonly used, (0,1]α ∈  is the leakage 

rate, ( ) uN
n ∈u R  is the input vector, ( ) xN

n ∈x R  is the vector of reservoir neuron activation and ( ) xN
n ∈x% R  is its 

update at time step n, x uN N

in

×∈W R  and x xN N×∈W R  are respectively the input weight matrix and recurrent weight 

matrix. When the ESN has K inputs, N reservoir neurons, and L outputs, the ( )nu and ( )nx  can be expressed as  

 1( ) ( ( ) , ... , ( )), 1, ... ,Kn n n n T= =u u u  (3) 

 1( ) ( ( ) , ... , ( )), 1, ... ,Nn n n n T= =x x x  (4) 

The linear readout layer of ESN is defined as  

 ( ) [ ( ); ( )]outn n n=y W u x  (5) 

Where ( ) yN
n ∈y R  is the output vector, ( )y u xN N N

out

× +∈W R  is the output weight matrix, and [; ]  stands for a vertical 

vector concatenation. The ( )ny  can be expressed as 

 1 L( ) ( ( ), ... , ( )), 1, ... ,n n n n T= =y y y  (6) 

The 
out

W  can be calculated by minimizing the Root Mean Square Error (RMSE) between the predicted value 

( )ny  and the target value target ( )ny .  

 
target 2

1

1
argmin ( ( ) ( ))

m

out i i

i

n n
m =

= −∑W y y  (7) 
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Where m  is the number of data points in the training data set. Ridge regression is the most universal and stable 

way to calculate the output weight matrix.  

 
target T T -1= ( + )out βW Y X XX I  (8) 

Where X  represents the output of the reservoir, 
targetY  is the target output signal, β  is the regularization 

parameter, and I is the identity matrix.  

B. Designing Principles 

The parameters in ESN can be divided into three groups: assigned parameters, adjustable parameters, and 
calculated parameters. The assigned parameters include the input weight matrix 

inW , recurrent weight matrix W, 

input units K, and output units L. Gaussian distributions, symmetrical uniform, and normal distribution centered 
around zero are commonly used principles to generated the input and recurrent weight matrix. These two matrices 
are assumed to be fixed once they are generated randomly. The adjustable parameters include the spectral radius ρ , 

the leakage rate α , and the number of reservoir neurons N res
. The spectral radium is the maximal absolute 

eigenvalue of the matrix W . It is an important parameter that controls the dynamic regime of the reservoir. To 

ensure the echo state property, the spectral radius is always less than 1 for zero inputs. Nevertheless, for nonzero 
inputs, the system usually has better performance when the spectral radius is bigger than 1 in practice [42]. The 
leakage rate represents the update speed of the neurons in the reservoir. The dynamic of the reservoir increases with 
the value of leakage rate, and a large value of leakage rate means that the output value of the reservoir at time step 
(t-1) has little impact on the reservoir state at time step (t). Generally speaking, when the reservoir includes more 
neurons, the performance would be better. It is easier to find a linear combination of the inputs to target outputs 
when the dimension of the reservoir increases. However, the computation time would increase at the same time. 
The selection of reservoir neurons is to find a tradeoff between the prediction accuracy and the computation 
complex. The regularization parameter is set manually. The calculated parameter is the output weight matrix 

outW , 

and it can be calculated by the multi-linear regression.  

According to the above designing rules, the ESN for predicting the RUL of PEMFC is developed. The 
parameters of ESN are determined after several repeated attempts to implement the RUL estimation. 

Implementation framework of the proposed ESN and some parameters are shown in Fig. 2 and Table Ⅰ.  

 

Fig. 2. Implementation framework of the ESN method 

TABLE Ⅰ. KEY PARAMETERS OF ESN 

Parameter Values 

reservoir neurons N
res

 400 

leakage rate α  [0.3, 0.5] 

spectral radius ρ  [0.4, 1.0] 

regularization parameter β  8×10-2 

input weight matrix 
in

W  [-0.5, 0.5] 

recurrent weight matrix W  [-0.5, 0.5] 
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III. AGING EXPERIMENTAL IMPLEMENTATION 

A. Experimental Platform 

The experiment is applied to the data of PEMFC from the IEEE PHM 2014 Data Challenge [8]. The PEMFC 

platform which is adapted for 1 kW electrical power was built for the experiment. This test bench has 5 cells, and 

each cell has an active area of 100 cm2. The nominal current density of the stack is 0.7 A/cm2, and the maximal 

current density is 1.0 A/cm2. Hydrogen loop and air loop are two reactant loops of the test bench. Two independent 

boilers (air and hydrogen boilers) are placed upstream of the stack to realize the reactant humidification. The air 

boiler is heated in order to get the desired relative humidity of the air, and the hydrogen boiler remains at room 

temperature. The supplication rate of reactants is adjusted by the pressure and flow valves in order to avoid the FC 

stack “starvation” [43]. The temperature of the stack is controlled by a cooling water system. Moreover, the FC 

stack enables normal and accelerated aging tests under constant and dynamic operating conditions. The physical 

parameters in the test bench can be measured and controlled in order to manage the PEMFC operating conditions as 

accurately as possible. Health monitoring data like the voltage, current, pressure, temperature, etc. are monitored by 

different sensors. Some of the controllable and operating parameters are presented in Table Ⅱ, and the test bench is 

shown in Fig. 3. 

TABLE Ⅱ. PHYSICAL AND OPERATING PARAMETERS OF THE TEST BENCH 

Parameter Control range 

Temperature 20 ℃~ 80 ℃ 

Cooling flow 0~10 L/min 

Gas temperature 20 ℃~ 80 ℃ 

Gas humidification 0~100 % RH 

Air flow 0~100 L/min 

H2 flow 0~30 L/min 

Gas pressure 0~2 Bar 

Fuel current 0~300 A 

TinH2 ; ToutH2  Inlet/Outlet temperatures of H2 (℃) 

TinAir ; ToutAir Inlet/Outlet temperatures of air (℃) 

TinWat ; ToutWat Inlet/Outlet temperatures of water (℃) 

PinH2 ; PoutH2 Inlet/Outlet pressure of H2 (mBar) 

PinAir ; PoutAir Inlet/Outlet pressure of air (mBar) 

 

Fig. 3. The 1 kW test bench of PEMFC system developed in the laboratory 

B. Characteristic Analysis 

Two long-term durability tests for more than 1,000 h were implemented: the first test was operated under a 

static current operating condition (FC1), and the second test was operated under a quasi-dynamic current operating 

condition (FC2) [44]. The constant load current of 70 A is imposed to the aging test of FC1. In the aging test of 
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FC2, a triangular ripple current of 7 A with 5 kHz is superimposed to the constant current of 70 A. The durability 

tests of different load currents are shown in Fig. 4. The Electrochemical Impedance Spectroscopy (EIS) test and 

polarization curve measurements were implemented in the test bench to analyze the quasi-dynamic and static 

properties of the PEMFC. Polarization curves of the single cells and stack were measured under a current ramp 

from 0 A/cm2 to 1 A/cm2 during 1000 s. The polarization curves of the two tests are shown in Fig. 5. They show 

that the stack voltage decreases with the increase of the stack current at each duration time. At the same duration 

time (e.g., 515 h), the degradation is more serious under the quasi-dynamic current operating conditions (from P to 

Q in Fig. 5). In general, the longer the duration time is, the more serious the stack degradation is. More properly, 

the single-cell and stack voltage decrease as time grows, which depicts the degradation phenomena of the test 

bench. In the PEMFC system, the stack voltage sensors are easy for installation and implementation, and the 

voltage is always supervised for control purposes. For convenience, the stack output voltage is also widely accepted 

as a health indicator of PEMFC systems. Nevertheless, the raw data contain lots of disturbance noise and large 

peaks, which would have an effect on the RUL prediction. Before using this data to predict the RUL, the Moving 

Average Filtering (MAF) method is applied here to remove the peaks and noise.  

 

Fig. 4. Durability tests of FC1 and FC2 

 

Fig. 5. Polarization curves of FC1 and FC2 

C. Implementation of the MIMO-ESN  

During the fuel cell running, many operating parameters are supervised to guide a more durable working 
lifespan. The operating parameters of FC1 and FC2 are shown in Fig. 6 and Fig. 7. The characteristics of all the 

parameters are shown in Table Ⅲ. Signal-to-Noise Ratio (SNR) is used to measure the quality of parameters, and it 

can be expressed as  

10SNR=10 * log ( / )Ps Pn  (9) 

Where Ps  is the power of the signal and Pn  is the power of the noise. Among all the parameters, the stack 

current (Is) has the highest SNR both in FC1 and FC2. In this paper, MIMO-ESN is defined as 
Single-input ESN: the input is the stack voltage (Us). 
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Two-input ESN: the inputs are the combination of Us and one of the parameters in Table Ⅲ.  

Three-input ESN: the combination of Us and two of the parameters in Table Ⅲ.  

So, there are 1

11C  = 11 combinations in 2-input ESN, and 2

11C  = 55 combinations in 3-input ESN. 

TABLE Ⅲ. THE SIGNAL-TO-NOISE RATIO OF FC 

Parameter characteristics SNR of 

FC1(dB) 

SNR of 

FC2(dB) 

Is Regulated (A) 78.72 70.33 

TinH2 Measured (°C) 65.51 62.85 

ToutH2 Measured (°C) 45.58 43.06 

TinAir Measured (°C) 55.25 52.32 

ToutAir Measured (°C) 61.42 57.18 

TinWat Regulated (°C) 55.39 52.65 

ToutWat Regulated (°C) 59.42 56.12 

PinAir Measured (mBar) 58.83 58.84 

PoutAir Regulated (mBar) 59.39 58.79 

PinH2 Regulated (mBar) 50.93 51.57 

PoutH2 Regulated (mBar) 51.31 52.02 
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0 200 400 600 800 1000
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0 200 400 600 800 1000
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Fig. 6. Operating parameters of FC1 
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Fig. 7. Operating parameters of FC2 

( )out s
W

ˆ
s q

y +

inW W β

ραNres

1
ˆ ˆ, ,s s Hy y+ +⋅ ⋅ ⋅

1[ , , ]s H p s Hy y+ − + −⋅ ⋅ ⋅
1[ , , ]s H p s Hz z+ − + −⋅ ⋅⋅

1[ , , ]s H p s Hx x+ − + −⋅ ⋅ ⋅

( )out s
W

 

Fig. 8. Calculation flow chart of the MIMO-ESN prediction process 

The calculation flow chart of the MIMO-ESN method is shown in Fig. 8, where H denotes the final prediction 

points, p is the number of past discrete values used for prediction and q is the prediction steps.  

For single-input ESN, an iterative one-step prediction method is utilized for the multi-step prediction. The 

sampling points of the stack voltage (Us) can be expressed as
1 1

{( , ), ..., ( , ),..., ( , )}
i i M M

t y t y t y , where 
it represents the 

sampling time, 
iy  represents the stack voltage at time 

it , and index M denotes the total number of data points. The 
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time interval of each two points is 30 minutes. Firstly, the sampling points 
1 1

{( , ), ..., ( , )}
s s

t y t y  are trained to 

calculate the output weight matrix ( )out sW . Once ( )out sW is obtained during the training process, it is fixed. Then based 

on ( )out sW  and 
sy , the voltage value of the next step is predicted as 

1
ˆ

sy + . When the system reaches time 
1st + , 

1
ˆ +sy and ( )out sW  are used to predict the 

2
ˆ

sy + . The same sequence is repeated for 
3

ˆ
sy + , 

4
ˆ

sy +  … etc. 

For multi-input ESN, besides the one-step iterative prediction method for stack voltage, a one-step ahead 

prediction method is applied to the operating parameters. Taking the double inputs stack voltage (Us) and stack 

current (Is) for example, the sampling data points can be expressed as 
1 1

{( , ), ..., ( , ),..., ( , )}
i i M M

t y t y t y  and 

1 1
{( , ), ..., ( , ),..., ( , )}

i i M M
t z t z t z . Where 

iz represents the stack current at the time 
it . Firstly, the sampling points 

1 1
{( , ), ..., ( , )}

s s
t y t y and 

1 1
{( , ), ..., ( , )}

s s
t z t z  are trained to calculate the output weight matrix ( )out sW . Then based on 

( )out sW , 
sy and 

sz , the voltage value of the next step is predicted as 
1

ˆ +sy  and 
1

ˆ +sz . After that, 
1

ˆ +sy , 
1sz + and ( )out sW  are 

used to predict the 
2

ˆ
sy +  and 

2
ˆ +sz . The same sequence is repeated for 

3
ˆ

sy + , 
4

ˆ
sy +  … etc. It should be taken attention 

that the operating parameters such as stack current are usually scheduling variables and cannot be predicted in the 

same iterative way as the stack voltage. A major potential assumption herein is that the operating parameters can be 

schedulable or programmable such as in the homemade test benches and Combined Heat and Power (CHP) 

applications. 

Based on the MIMO-ESN, the stack voltage is not only dependent on the historical profile but also related to the 

operating conditions. Finally, the prediction voltages and the actual voltages are compared to evaluate the 

prediction performance. In the practical application, the output weight matrix Wout is firstly calculated offline, then 

the stack voltage at time step (t) and the Wout are used to predict the new value at the time step (t+1). The 

computing time during the prediction process is about 20 seconds (Matlab 2018a, 8G RAM, Core i5-2450 CPU @ 

2.50 GHz) in this paper and it is short enough for the several hundred hours’ lifespan prediction. The block diagram 

of single-input and multi-input ESN is shown in Fig. 9. 

1
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ˆ
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1
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z −

sy 2
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s
y +

s
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1
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z
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ˆ
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s
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z
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3

y
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sx
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1
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1
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( )out s
w
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w
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w

 

Fig. 9. Block diagram of single-input and multi-input ESN for one example with 2 steps in each case (where yi represents Us at time ti, zi 

represents the Is at time ti, xi represents PoutH2 at time ti, 
1

ˆ
s

y +
 and 

2
ˆ

s
y +

are next-step predicted stack voltage value, ( )out sW  represents the output 

weight matrix) 

IV. EXPERIMENTAL RESULTS 

A. Criteria of Prediction Accuracy 

In the experiments of FC1 and FC2, the RUL is regarded as the time before a certain amount of voltage loss is 

reached. More precisely, 3.0 %, 3.5 %, 4.0 %, 4.5 %, and 5.0% of initial voltage (Vinit = 3.35 V) are considered to 

be the failure thresholds (FT) of FC1. The stack voltage under the quasi-dynamic condition decreases more 

seriously than that under the static condition. Similar with the static operation, the 3.5 %, 4.0 %, 4.5 %, 5.0 % and 



10 

5.5 % of initial voltage (Vinit = 3.33 V) are considered to be the FT of FC2. The first intersection of the filtered 

voltage and FT is regarded as the failure point.  

Three quantitative metrics are used to evaluate the prediction performance: 1) Root Mean Square Error (RMSE) 

which is commonly used to quantify the difference between the real signal ( target ( )i ny ) and its forecasted value 

( ( )
i

ny ) during the RUL time ( m  data points), 2) Mean Average Percentage Error (MAPE), which is also a 

quantification measurement between two signals, and 3) the percentage error (%ErFT) between the actual RUL 

(
act

RUL
t ) and the prediction one (

pre

RUL
t ) which is also defined to evaluate the accuracy of ESN.  

 
target 2

1

1
RMSE ( ( ) ( ))

m

i i

i

n n
m =

= −∑ y y  (10) 

 
target

1

( ) ( )1
MAPE

( )

m
i i

i i

n n

m n=

−
= ∑

y y

y
 (11) 

 FT%Er 100
−

= ×
act pre

RUL RUL

act

RUL

t t

t
 (12) 

Regarding the RUL estimation, there are two cases: 1) the estimation is smaller than the actual RUL, it is an 

early prediction, or 2) the estimation is greater, it is a late prediction. In practical, good performance of estimations 

relates to early predictions of RUL (i.e. cases where %ErFT > 0), with a deduction to early removal, and more 

severe deductions for RUL estimates that exceed actual RUL (i.e. cases where %ErFT < 0).  

B. Prognostic under Static Operation 

In the static operation task, the data that are used for the experiment come from a 1050 h duration test on the 

PEMFC stack. The data between 0 h and tpredict are used for training, and the rest of the data are used for the 

prediction. The RUL time (tRUL) can be considered as the time between the prediction time (tpredict) and the failure 

time (tfailure). For FC1, the actual values at different FT are 95.8 h (3.0 %), 127.1 h (3.5 %), 277.6 h (4.0 %), 284.1 h 

(4.5 %), and 354.5 h (5.0 %) respectively. In the static operation, the data from 0 h to 550 h are applied to training, 

and the data from 550 h to 1050 h are used for the prediction. The RUL prediction of FC1 based on single-input 

(Us) ESN is shown in Fig. 10.  

st
ac

k
 v

o
lt

ag
e(

V
)

training

prediction

threshold-3.0% Vinit

predict
t

failure point

RUL
t

failuret

threshold-3.5% Vinit

threshold-4.0% Vinit

threshold-4.5% Vinit

threshold-5.0% Vinit

 

Fig. 10. The RUL prediction of FC1 based on single-input ESN 

With all the other parameters remaining unchanged, the number of inputs is increased to test the prediction 

performance. The RUL predictions of FC1 based on 2-input ESN are shown in Fig. 11 and the prediction results of 

4 combinations at different failure thresholds are given in Table Ⅳ. The RMSE and MAPE of 2-input ESNs are 

lower than single-input ESN. Results represent that the prediction accuracy of 2-input (“Us+ToutAir”, “Us+Is”, 

“Us+TinWat”, “Us+PoutH2”) ESN is higher than single-input ESN. It also means that 2-input data are more sufficient 

to mimic the degradation characteristics, and the prediction accuracy is improved by increasing another input to the 

ESN.  
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Fig. 11. The RUL prediction of FC1 based on 2-input ESN: (a) stack voltage (Us) and outlet temperature of air (ToutAir). (b) stack voltage 
(Us) and stack current (Is). (c) stack voltage (Us) and inlet temperature of water (TinWat). (d) stack voltage (Us) and outlet pressure of H2 

(PoutH2). 

TABLE Ⅳ. PREDICTION RESULTS OF FC1 BASED ON 2-INPUT ESN 

inputs 
Prediction 

values (h) 
%ErFT RMSE MAPE 

Us 

54.2 43.4 0.01188 0.00343 

136.8 -7.6 0.01077 0.00300 

208.5 24.9 0.02039 0.00560 

272.3 4.2 0.02018 0.00551 

329.5 7.1 0.02710 0.00709 

Us+ 

ToutAir 

45.5 52.51 0.01281 0.00341 

91.5 28.01 0.01146 0.00289 

320.0 -15.27 0.01190 0.00330 

441.2 -55.30 0.01211 0.00336 

500.0 -41.04 0.01339 0.00375 

Us+Is 

48.7 49.16 0.01143 0.00312 

175.5 -38.08 0.01048 0.00275 

281.8 -1.51 0.01295 0.00365 

366.5 -29.00 0.01297 0.00367 

456.0 -28.63 0.01532 0.00429 

Us+ 

TinWat 

59.6 37.79 0.00902 0.00242 

209.3 -64.67 0.00808 0.00205 

344.6 -24.14 0.00931 0.00249 

500.0 -75.99 0.00972 0.00258 

500.0 -41.04 0.01106 0.00295 

Us+ 

PoutH2 

77.0 19.62 0.00910 0.00245 

194.7 -53.19 0.00815 0.00207 

310.0 -11.67 0.01017 0.00281 

431.6 -51.92 0.01045 0.00288 

500.0 -41.04 0.01236 0.00339 
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Fig. 12. The RUL prediction of FC1 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 
(PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet 

temperature of air (TinAir) and outlet temperature of water (ToutWat). (d) stack voltage (Us), outlet pressure of H2 (PoutH2), and inlet pressure 
of H2 (PinH2). 

TABLE Ⅴ. PREDICTION RESULTS OF FC1 BASED ON 3-INPUT ESN 

inputs 
Prediction 

values (h) 
%ErFT RMSE MAPE 

Us 

+TinH2 

+PinH2 

71.6 25.26 0.00937 0.00239 

98.2 22.74 0.00930 0.00239 

358.5 -29.14 0.00850 0.00226 

500.0 -75.99 0.00930 0.00239 

500.0 -41.04 0.01051 0.00271 

Us 

+ToutH2 

+ToutAir 

41.5 56.68 0.01047 0.00284 

186.8 -46.97 0.00956 0.00252 

347.5 -25.18 0.00959 0.00258 

500.0 -75.99 0.01001 0.00267 

500.0 -41.04 0.01075 0.00287 

Us 

+ToutWat 

+TinAir 

73.2 23.59 0.00904 0.00236 

188.4 -48.23 0.00817 0.00207 

307.4 -10.73 0.01061 0.00293 

436.8 -53.75 0.01080 0.00298 

500.0 -41.04 0.01266 0.00349 

Us  

+PoutH2 

+PinH2 

81.2 15.24 0.00789 0.00199 

226.1 -77.89 0.00722 0.00177 

370.3 -33.39 0.00819 0.00219 

500.0 -75.99 0.00898 0.00232 

500.0 -41.04 0.01027 0.00265 
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Furthermore, more parameters are regarded as the inputs of ESN to investigate its prediction performance. The 

RUL predictions of FC1 based on 3-input ESN is shown in Fig. 12. The prediction results of 3-input ESN at 

different failure thresholds are given in Table Ⅴ . Results represent that some of the 3-input ESN 

(“Us+TinH2+PinH2” and “Us+ToutH2+ToutAir”) have a better prediction performance than 2-input ESN. Sometimes, 

they are worse than 2-input ESN (“Us+TinAir+ToutWat” and “Us+PoutH2+PinH2”).  

C. Prognostic under Quasi-Dynamic Operation 

In the quasi-dynamic operation task, the data set come from a 1020 h duration test on the PEMFC. For FC2, the 

actual values at different FT are 21.4 h (3.5 %), 194.2 h (4.0 %), 209.7 h (4.5 %), 384.3 h (5.0 %), and 386.7 h (5.5 

%) respectively. The data from 0 h to 550 h are applied to training, and the data from 550 h to 1020 h are used for 

prediction. The RUL prediction of FC2 based on single input ESN is shown in Fig. 13. The RUL prediction of FC2 

based on 2-input ESN is shown in Fig. 14 and the prediction results of 4 combinations at different failure thresholds 

are given in Table Ⅵ. The RMSE and MAPE of 2-input ESN are lower than the single-input one. Under the quasi-

dynamic condition, the prediction results of 2-input (“Us+ToutAir”, “Us+Is”, “Us+TinWat”, and “Us+PoutH2”) ESN 

perform better than single-input ESN. They also represent that the prediction accuracy is improved by increasing 

the number of inputs. The prediction error of FC2 is bigger than FC1 when the training length (0~550 h) is the 

same. Because of the prediction processes of FC2 have more perturbations (two faults in Fig. 13) than FC1. The 

results also mean that the ESN structure has more difficulties to mimic the quasi-dynamic operation when 

compared with the static operation. The RUL predictions of FC2 based on 3-input ESN are shown in Fig. 15. The 

prediction results of 3-input ESN at different failure thresholds are given in Table Ⅶ. Results represent that some 

of the 3-input ESN (“Us+TinWat+PinH2” and “Us+PoutAir+TinAir”) have a better prediction performance than 2-

input ESN. Sometimes, they are worse than 2-input ESN (“Us+TinH2+PinH2” and “Us+ToutH2+ToutAir”).  

predictt
failuret

RUL
t

 

Fig. 13. The RUL prediction of FC2 based on single-input ESN 
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(a) (b)

(c) (d)  

Fig. 14. The RUL prediction of FC2 based on 2-input ESN: (a) stack voltage (Us) and outlet temperature of air (ToutAir). (b) stack voltage 

(Us) and stack current (Is). (c) stack voltage (Us) and inlet temperature of water (TinWat). (d) stack voltage (Us) and outlet pressure of H2 

(PoutH2). 

TABLE Ⅵ. PREDICTION RESULTS OF FC2 BASED ON 2-INPUT ESN 

inputs 
Prediction 

values (h) 
%ErFT RMSE MAPE 

Us 

12.5 41.6 0.01839 0.00520 

36.0 81.5 0.02915 0.00868 

122.5 41.6 0.02900 0.00866 

222.8 42.0 0.03811 0.01082 

314.2 18.7 0.03789 0.01078 

Us+ 

ToutAir 

34.8 -62.62 0.00652 0.00154 

100.2 48.40 0.01864 0.00484 

189.1 9.82 0.01878 0.00495 

322.2 16.16 0.02532 0.00640 

428.5 -10.81 0.02495 0.00627 

Us+Is 

35.2 -64.49 0.00820 0.00205 

63.0 67.56 0.02692 0.00749 

117.7 43.87 0.02677 0.00751 

238.2 38.02 0.03271 0.00906 

383.6 0.80 0.03231 0.00892 

Us + 

TinWat 

104.3 -387.38 0.00516 0.00126 

134.8 30.59 0.01639 0.00401 

173.1 17.45 0.01640 0.00408 

262.2 31.77 0.02959 0.00710 

335.8 13.16 0.02921 0.00700 

Us + 
10.4 51.40 0.02166 0.00623 

27.9 85.63 0.03287 0.00989 
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PoutH2 94.5 54.94 0.03268 0.00986 

202.5 47.31 0.03828 0.01116 

344.5 10.91 0.03783 0.01099 

 
Fig. 15. The RUL prediction of FC2 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 

(PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet 

temperature of air (TinAir) and outlet pressure of air (PoutAir). (d) stack voltage (Us), inlet temperature of water (TinWat), and inlet pressure of 

H2 (PinH2). 

TABLE Ⅶ. PREDICTION RESULTS OF FC2 BASED ON 3-INPUT ESN 

inputs 
Prediction 

values (h) 
%ErFT RMSE MAPE 

Us  

+TinH2 

+PinH2 

5.9 72.43 0.02594 0.00787 

18.2 90.63 0.03147 0.00959 

119.5 43.01 0.03122 0.00953 

220.1 42.73 0.03608 0.01052 

376.5 2.64 0.03564 0.01036 

Us  

+ToutH2 

+ToutAir 

9.5 55.61 0.01677 0.00493 

66.0 66.01 0.02405 0.00705 

147.2 29.80 0.02404 0.00708 

232.1 39.60 0.03522 0.00974 

308.1 20.33 0.03487 0.00964 

Us  

+TinAir 

+PoutAir 

6.0 71.96 0.02631 0.00799 

15.5 92.02 0.02048 0.00587 

234.6 -11.87 0.01985 0.00561 

500.0 -30.11 0.02042 0.00520 

500.0 -29.30 0.02024 0.00516 

Us  

+TinWat 

114.7 -435.98 0.00593 0.00141 

148.1 23.74 0.01175 0.00300 

246.5 -17.55 0.01140 0.00288 
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+PinH2 309.2 19.54 0.02466 0.00554 

500.0 -29.30 0.02435 0.00548 

D. Multi-Input Analysis 

In order to test all possible combinations, the prediction results based on all the 2-input ESN of FC1 and FC2 

are shown in table Ⅷ and table Ⅸ, respectively. The RMSEi (i =1, 2, …, 5) are the RMSE between the prediction 

time and the different failure times. In FC1, the RMSE5 is the RMSE between 550.0 h to 904.5 h and the RMSE5 

in FC2 is the RMSE between 550.0 h to 936.7 h. Therefore, the RMSE5 is used to quantify the prediction 

accuracy. The RMSE5 of single-input ESN in FC1 and FC2 are 0.02710 and 0.03789, respectively. Results show 

that the RMSE5 of randomly 2-input ESN is smaller than single-input ESN both in FC1 and FC2. The optimal 

combination in FC1 is the Us with TinWat (improved 59.20 %) and the optimal combination in FC2 is the Us with 

ToutAir (improved 34.15 %). All the other 3-input combinations are tested to verify the prediction accuracy. The 

results of FC1 and FC2 are shown in Table Ⅹ and Table Ⅺ, respectively. The numbers (from 9 to 19) in Table Ⅹ 

and Table Ⅺ represent the inputs (from Is to PinH2) in Table Ⅷ and Table Ⅸ. Compared the results of 2-input 

ESN and 3-input ESN in both FC1 and FC2, some of the 3-input ESN have a better performance than 2-input 

ESN, but some combinations have worse performance instead. Even some 3-input ESN combinations are worse 

than single-input ESN.  

In the results of 3-input ESN, “better” (in green) means the RMSE5 is smaller than any 2-input combinations, 

“worse” (in purple) means the RMSE5 is bigger than any 2-input combinations, and “middle” (in blue) means the 

RMSE5 is in between of the 2 combinations of 2-input. For example, in table Ⅹ, the “Us+10+11” is “better”, and 

the RMSE5 of “Us+10+11” (0.01216) is small than “Us+10” (0.01294) or “Us+11” (0.01380); the “Us+9+12” is 

“middle”, and the RMSE5 of “Us+9+12” (0.01505) is bigger than “Us+12” (0.01260) and small than “Us+9” 

(0.01532); the “Us+18+19” is “worse”, and the RMSE5 of “Us+18+19” (0.01027) is bigger than “Us+18” 

(0.01236) and “Us+19” (0.01168). There are 39 “better” combinations and 11 “middle” combinations in FC1 and 

the “Us+13+14” has the best performance. There are 21 “better” combinations and 24 “middle” combinations in 

FC2 and the “Us+12+17” has the best performance. Besides, when compared all the “better” combinations of 3-

input to the 2-input ESN, there are 12 combinations in FC1 have a smaller RMSE5 than the 2-input ESN of 

“Us+TinWat”. Nevertheless, there are 3 combinations (“Us+9+12”, “Us+12+17”, and “Us+14+19”) in FC2 could 

have a smaller RMSE5 than the 2-input ESN of “Us+ToutAir”. The results show that 3-input ESN has the potential 

ability to improve the performance than 2-input ESN, especially under the static condition. But when considering 

the interaction of input variables, the selection of inputs is a rewarding area for further study. Considering the 

prediction accuracy and the computational complexity, the 2-input ESN has a top priority in both FC1 and FC2. 

TABLE Ⅷ. THE IMPROVEMENT RESULTS OF FC1 BASED ON 2-INPUT ESN  

Inputs RMSE5 improvement (%) 

Us 0.02710 -- 

Us+TinWat(14) 0.01106 59.20 

Us+PinH2(19) 0.01168 56.90 

Us+PoutH2(18) 0.01236 54.37 

Us+TinAir(12) 0.01260 53.51 

Us+PinAir(16) 0.01265 53.31 

Us+TinH2(10) 0.01294 52.24 

Us+PoutAir(17) 0.01336 50.71 

Us+ToutAir(13) 0.01339 50.59 

Us+ToutH2(11) 0.01380 49.08 

Us+ToutWat(15) 0.01440 46.84 

Us+Is(9) 0.01532 43.47 

TABLE Ⅸ. THE IMPROVEMENT RESULTS OF FC2 BASED ON 2-INPUT ESN 

Inputs RMSE5 improvement (%) 
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Us 0.03789 -- 

Us+ToutAir(13) 0.02495 34.15 

Us+TinWat(14) 0.02921 22.90 

Us+TinAir(12) 0.03023 20.21 

Us+ToutH2(11) 0.03039 19.79 

Us+Is(9) 0.03231 14.74 

Us+TinH2(10) 0.03242 14.43 

Us+PoutAir(17) 0.03292 13.13 

Us+ToutWat(15) 0.03587 5.34 

Us+PinH2(19) 0.03589 5.30 

Us+PinAIR(16) 0.03715 1.96 

Us+PoutH2(18) 0.03783 0.16 

 

TABLE Ⅹ. THE PREDICTION RESULTS BASED ON ALL 3-INPUT COMBINATIONS OF FC1 

Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 

Us+9+10 0.01179 Us+10+12 0.01053 Us+11+15 0.01231 Us+12+19 0.01070 Us+14+19 0.01020 

Us+9+11 0.01369 Us+10+13 0.01158 Us+11+16 0.01161 Us+13+14 0.00981 Us+15+16 0.01459 

Us+9+12 0.01505 Us+10+14 0.01052 Us+11+17 0.01227 Us+13+15 0.01227 Us+15+17 0.01461 

Us+9+13 0.01401 Us+10+15 0.01155 Us+11+18 0.01205 Us+13+16 0.01221 Us+15+18 0.01463 

Us+9+14 0.01119 Us+10+16 0.01090 Us+11+19 0.01120 Us+13+17 0.01252 Us+15+19 0.01374 

Us+9+15 0.01168 Us+10+17 0.01149 Us+12+13 0.01163 Us+13+18 0.01242 Us+16+17 0.01387 

Us+9+16 0.01187 Us+10+18 0.01134 Us+12+14 0.01120 Us+13+19 0.01141 Us+16+18 0.01166 

Us+9+17 0.01230 Us+10+19 0.01051 Us+12+15 0.01266 Us+14+15 0.01142 Us+16+19 0.01109 

Us+9+18 0.01193 Us+11+12 0.01175 Us+12+16 0.01100 Us+14+16 0.01035 Us+17+18 0.01210 

Us+9+19 0.01215 Us+11+13 0.01075 Us+12+17 0.01179 Us+14+17 0.01068 Us+17+19 0.01180 

Us+10+11 0.01216 Us+11+14 0.01135 Us+12+18 0.01125 Us+14+18 0.01087 Us+18+19 0.01027 

TABLE Ⅺ. THE PREDICTION RESULTS BASED ON ALL 3-INPUT COMBINATIONS OF FC2 

Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 Inputs RMSE5 

Us+9+10 0.03104 Us+10+12 0.02763 Us+11+15 0.03620 Us+12+19 0.03097 Us+14+19 0.02435 

Us+9+11 0.03055 Us+10+13 0.03467 Us+11+16 0.03334 Us+13+14 0.02912 Us+15+16 0.03511 

Us+9+12 0.02371 Us+10+14 0.03659 Us+11+17 0.03037 Us+13+15 0.03288 Us+15+17 0.03261 

Us+9+13 0.02727 Us+10+15 0.03661 Us+11+18 0.03497 Us+13+16 0.02782 Us+15+18 0.03782 

Us+9+14 0.03248 Us+10+16 0.03377 Us+11+19 0.03457 Us+13+17 0.02709 Us+15+19 0.03675 

Us+9+15 0.03865 Us+10+17 0.03055 Us+12+13 0.02817 Us+13+18 0.02911 Us+16+17 0.03146 

Us+9+16 0.03555 Us+10+18 0.03560 Us+12+14 0.03250 Us+13+19 0.02765 Us+16+18 0.03498 

Us+9+17 0.02954 Us+10+19 0.03564 Us+12+15 0.03202 Us+14+15 0.03558 Us+16+19 0.03295 

Us+9+18 0.03272 Us+11+12 0.02523 Us+12+16 0.02778 Us+14+16 0.02946 Us+17+18 0.02985 

Us+9+19 0.02982 Us+11+13 0.03487 Us+12+17 0.02024 Us+14+17 0.02904 Us+17+19 0.02831 

Us+10+11 0.02674 Us+11+14 0.03625 Us+12+18 0.03119 Us+14+18 0.02825 Us+18+19 0.03775 
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V. CONCLUSION 

Echo state network (ESN) is an interesting and promising data-driven tool to implement the RUL prediction for 

the PEMFC systems. Unlike the model-based and hybrid RUL prediction methods, the mathematical model is 

unnecessary for the ESN method and the degradation tendency can be directly extracted from a large amount of 

historical data. As the improvement structure of recurrent neural network, the ESN has the advantages of low 

computational complexity and fast convergence rate. Therefore, the ESN based data-driven method has a rapid 

response on lifespan prediction and the results are meaningful for the control policy to extend the lifespan of fuel 

cell. In order to improve the prediction performance, a multi-input and multi-output ESN (MIMO-ESN) method is 

proposed in this work. Besides the commonly used stack voltage, the operating parameters, such as stack current, 

stack temperature and the pressures of the reactants are also utilized as the inputs of ESN. The single-input, 2-input, 

and 3-input ESN are designed and tested on the datasets which were acquired from the test bench for more than 

1000 hours’ duration. The feasibility and effectiveness of the proposed MIMO-ESN are verified under both static 

and quasi-dynamic operation conditions. Experimental results show that MIMO-ESN has the capability to improve 

the prediction accuracy, especially the 2-input ESN with an improvement of 59.20 % (static condition) and 34.15 % 

(quasi-dynamic condition) in terms of RMSE5 respectively compared with the traditionally used SISO-ESN. In the 

next-step study, novel health indicators and multi-step prediction approaches under different operating profiles will 

be further explored. Meanwhile, the implementation and verification of the MIMO-ESN algorithm in the actual 

vehicle applications will be further investigated. 
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