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The limited durability is one of the key barriers of Proton Exchange Membrane Fuel Cell (PEMFC) to large-scale commercial applications. The data-driven prognostic method aims to estimate the Remaining Useful Life (RUL) without the need for complete knowledge about the system's physical phenomena. As an improved structure of the recurrent neural network, the Echo State Network (ESN) has demonstrated better performances, especially in reducing the computational complexity and accelerating the convergence rate. The traditional prognostic methods utilize only the previous state, e.g. stack voltage, for prediction. Nevertheless, the current operating conditions, such as stack current, stack temperature and the pressures of the reactants (i.e. oxygen and hydrogen) can also contain important degradation information in practice. Especially, the stack current is a crucial operating parameter, since it is normally taken as the scheduling variable and it could reflect the operating conditions. Compared with the singleinput and single-output (SISO-ESN) structure, the ESN with multiple inputs and multiple outputs (MIMO-ESN) is proposed in this paper to improve the RUL prediction accuracy. Stack voltage, stack current, stack temperature and the pressures of the reactants are combinedly used to predict the RUL. After the mathematical modeling and the parameter designing, the prediction performance of SISO-ESN and MIMO-ESN are verified and compared on a 1 kW electrical power test bench developed in the laboratory. Results show that the MIMO-ESN method has a better performance than the SISO-ESN method under both static and quasi-dynamic operating conditions.

INTRODUCTION

In recent years, increasingly exhausted conventional fossil fuels and deteriorating environmental are two urgent problems to be solved [START_REF] Luo | Overview of current development in electrical energy storage technologies and the application potential in power system operation[END_REF]. With the advantages of high efficiency, non-pollution, and quiet operation, Fuel Cell (FC) is attracting more and more attention and becoming a promising technology to deal with energy and environmental issues [START_REF] Simons | A life-cycle perspective on automotive fuel cells[END_REF]. Among all kinds of FC, Proton Exchange Membrane Fuel Cell (PEMFC) system is the most popular one because of its characteristics such as the rapid startup, high power density (3.8~6.5 kW/m 3 ) and low working temperature (50 °C~80 °C) [START_REF] Wang | A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[END_REF]. They are more welcomed in vehicle transportations, portable devices, backup power, and distributed generations [START_REF] Yan | Optimal energy management and control in multimode equivalent energy consumption of fuel cell/supercapacitor of hybrid electric tram[END_REF]. But for many years, durability is one of the key barriers to their large-scale commercialization [START_REF] Liu | Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method[END_REF]. The U.S. Department of Energy (DOE) target of durability lifespan is 5,000 h with less than 10 % performance decay in light-duty vehicle transportation applications. Finally, the lifespan target can achieve 8,000 h on a lower average-speed drive cycle by 2020. Nevertheless, the evaluation lifespan in 2015 was 3,900 h before 10 % degradation for the automotive fuel cell systems [6].

Prognostic and Health Management (PHM) has the ability to estimate the future condition based on the past working profiles and the current operations, and then to extend the lifespan based on the Condition-based Maintenance (CBM) [START_REF]Condition monitoring and diagnostics of machines -prognostics -part1: general guidelines[END_REF]. The main objective of prognostic is to predict the Remaining Useful Life (RUL), which is commonly regarded as the time before a certain amount of power loss being reached [START_REF] Gouriveau | IEEE phm 2014 data challenge: oultine, experiments, scoring of results, winners[END_REF]. Over the last few years, various prognostic methods have been proposed [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: guidelines and metrics[END_REF]. According to whether an analytical PEMFC model exists, these strategies can be categorized broadly into the model-based, data-driven, and hybrid method [START_REF] Lee | Prognostics and health management design for rotary machinery systems-reviews, methodology and applications[END_REF][START_REF] Hua | Challenges of the remaining useful life prediction for proton exchange membrane fuel cells[END_REF]. Static or dynamical mathematical models are necessary for the model-based method [START_REF] Lechartier | Proton exchange membrane fuel cell behavioral model suitable for prognostics[END_REF]. The accuracy of prognostic relies on the precision of the degradation models [START_REF] Robin | Multi-scale coupling between two dynamical models for PEMFC aging prediction[END_REF]. However, to the best of the authors' knowledge, a general modeling approach to describe all the degradation mechanisms does not exist yet. It is well to be reminded that the PEMFC is the nonlinear, multi-physics (hydromechanics, electrochemistry, thermodynamics, etc.), and multi-scale (time and space) system [START_REF] Pei | Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review[END_REF]. Building up a mathematical model to express the aging phenomenon is difficult, and the degradation mechanisms of FC are not all fully understood. Nonetheless, the model-based method is the simplest method to implement prognostic. In order to retain the prediction accuracy without losing simplicity, some scholars introduced the filtering methods and combined them with the degradation models. This combination is called the hybrid method. In the general hybrid method, the mathematical models are built first, and then different filtering techniques (Unscented Kalman Filter [START_REF] Pisu | An unscented kalman filter based approach for the health-monitoring and prognostics of a electrolyte membrane fuel cell polymer[END_REF], Extend Kalman Filter [START_REF] Bressel | Extended kalman filter for prognostic of proton exchange membrane fuel cell[END_REF], Particle Filter [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF][START_REF] Kimotho | PEM fuel cell prognostics using particle filter with model parameter adaptation[END_REF], etc.) are used to realize the RUL prediction. Essentially, the hybrid method also relays on the models of PEMFC.

The data-driven method does not rely on the model of PEMFC. Instead, the historical data of different health indicators are used to realize the RUL prediction. With the development of computer science and the availability of large amounts of operating data, the data-driven method gains popularity over the last several years. As an advanced kernel-based mathematical approach, Relevance Vector Machine (RVM) was use in [START_REF] Wu | Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[END_REF]. Later, the modified RVM was introduced in [START_REF] Wu | A modified relevance vectormachine for PEM fuel-cell stack aging prediction[END_REF] to improve the accuracy and robustness. Adaptive Neuro Fuzzy Inference Systems (ANFIS) can be regarded as a combination of feed-forward neural network and fuzzy logic system, and this method was used in [START_REF] Silva | Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[END_REF]. The Summation Wavelet-Extreme Learning Machine (SW-ELM) is the combination of single-hidden layer feed-forward neural network and wavelet theory, and it was implemented in [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF]. The Long Short-Term Memory (LSTM) recurrent neural network was used in [START_REF] Ma | Data-driven prognostics for pem fuel cell degradation by long short-term memory network[END_REF] and [START_REF] Liu | Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[END_REF]. Later, the improved structure of grid-LSTM was proposed in [START_REF] Ma | Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[END_REF]. The Recurrent Neural Network (RNN) provides a promising solution to deal with the nonlinearity and temporal problems as it has the inherent ability to memorize the previous state [START_REF] Liu | An adaptive recurrent neural network for remaining useful life prediction of lithiumion batteries[END_REF]. It has been proved to be a powerful technique to estimate the RUL [START_REF] Heimes | Recurrent neural networks for remaining useful life estimation[END_REF]. Nevertheless, the problems of bifurcations, high computational complexity, and slow convergence rate have limited its practical applications. As a new design and training architecture, the Echo State Network (ESN) which was proposed by Prof. Jaeger et al., has overcome the shortcomings of the traditional RNN [START_REF] Jaeger | The 'echo state' approach to analysing and training recurrent neural networks-with an erratum note[END_REF]. During the implementation of ESN, only the output weight matrix needs to be trained once [START_REF] Jaeger | Tutorial on training recurrent neural networks, covering BPTT, RURL, EKF and the 'Echo State Network' approach[END_REF]. As a result, the computational burden is much decreased at the same time while its prediction accuracy is ensured. Together with the Liquid State Machine (LSM) [START_REF] Maass | Real-time computing without stable states: a new framework for neural computation based on perturbations[END_REF] and the Back-Propagation De-Correlation (BPDC) [START_REF] Steil | Backpropagation-Decorrelation: online recurrentlearning with O(N) complexity[END_REF], they are three paradigms of Reservoir Computing (RC) [START_REF] Zheng | Fault diagnosis of PEMFC systems in the model space using reservoir computing[END_REF]. Recently, RC is introduced to realize the diagnostic and prognostic of PEMFC [START_REF] Zheng | Brain-inspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack[END_REF]. The RC was used in [START_REF] Morando | Fuel cells fault diagnosis under dynamic load profile using reservoir computing[END_REF] to realize the fault diagnosis under dynamic load profile and it was also used in [START_REF] Morando | Reservoir computing optimisation for PEM fuel cell fault diagnostic[END_REF] to decrease the diagnostic error rate. The ESN was first implemented in [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF] to predict the RUL of PEMFC. Both direct and parallel structures with a multi-step prediction were implemented to estimate the RUL. Hereafter, Morando et al. improved their work. Direct structure and iterative structure with one-step ahead prediction are used in [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF] and the error rate was 10 % maximum for the RUL estimation of a PEMFC. The Hurst exponent of the signal filtered by wavelet was evaluated in [START_REF] Morando | Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[END_REF]. Compared to [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF], better performance with a mean average percentage error of less than 5 % was obtained in [START_REF] Morando | Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[END_REF]. The Multi-reservoir ESN (MR-ESN) was proposed in [START_REF] Mezzi | Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction[END_REF] to increase the prediction accuracy. MR-ESN associated many reservoirs with different spectral radius in parallel. Nevertheless, only the mean cell voltage was used in the papers above, and the load current stayed constant. Lately, Li et al. also did a lot of work on RUL prediction under the various operating conditions and system dynamics [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF]. Unlike the traditional health indicators, a virtual steady-state stack voltage was formulated by a series of Linear Parameter Varying (LPV) models identified in the sliding data segments. An ensemble ESN in time-varying model space was implemented in [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble Echo State Networks in time varying model space[END_REF] to enhance the adaptability of prognostic and the long-term tests on a low power-scale PEMFC stack in different operating conditions were carried out.

Furthermore, the ESN with single input and single output (SISO-ESN) was used in many papers to predict the RUL of PEMFC. In the SISO-ESN structure, with the previous voltage as the single input and the predicted voltage as the single output. In practice, the ESN has the intrinsic property of dealing with multi-input and multi-output problems. During the implementation of ESN, increasing the inputs improves the dimension of the output weight matrix and the ability to deal with non-linearity issues. The output weight matrix with a high dimension contains more system characteristics and can mimic more accurately the degradation phenomena in the PEMFC system. During the operation of PEMFC, different parameters such as stack current, the temperatures of hydrogen and air, the pressures of hydrogen and air can be easily obtained by the sensors. These parameters can also contain the degradation information of the PEMFC to some extent. Among all the operation parameters, the stack current is the most interesting one because it is normally taken as the scheduling variable. In order to improve the RUL prediction of PEMFC, different operating parameters are investigated together with the stack voltage as the inputs of ESN. As the chosen health indicator of PEMFC, the stack voltage is regarded as the main output of ESN. Other operating parameters can also be predicted at the same time. To the best of the authors' knowledge, the use of ESN with multiple inputs and multiple outputs (MIMO-ESN) for the RUL prediction is originally explored and studied in this work. This paper is organized as follows. In Section II, mathematical models and design principles of ESN are introduced. Section III presents the experimental platform of the PEMFC system, the analysis of the degradation characteristic, and then the MIMO-ESN implementation process is described. The experiment results are given and further analyzed in Section IV and the conclusions are presented in Section V.

II. ECHO STATE NETWORK

To overcome the weakness of RNN, the structure of the ESN is proposed. The hidden layer of RNN is replaced by a large dynamic "reservoir" which can be excited by suitable inputs. Unlike RNN, the input weight matrix and recurrent weight matrix are not changed once the structure is fixed, and just the output weight matrix is to be optimized by linear regression methods. Therefore, the computation efficiency of ESN is much improved.

A. Mathematical Models

There are three distinct parts of the ESN structure: an input layer, a reservoir, and an output layer. The stack voltage is regarded as a health indicator in this task, and the input layer receives the historical data of stack voltage, temperature, pressure, etc. In general, the more neurons are used in the reservoir, the less difficulty exists in the liner separation. Finally, the expected output is optimized via a multi-linear regression. The general structure of the ESN is illustrated in Fig. 1. 
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The linear readout layer of ESN is defined as
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Where m is the number of data points in the training data set. Ridge regression is the most universal and stable way to calculate the output weight matrix.
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Where X represents the output of the reservoir, target Y is the target output signal, β is the regularization parameter, and I is the identity matrix.

B. Designing Principles

The parameters in ESN can be divided into three groups: assigned parameters, adjustable parameters, and calculated parameters. The assigned parameters include the input weight matrix in W , recurrent weight matrix W, input units K, and output units L. Gaussian distributions, symmetrical uniform, and normal distribution centered around zero are commonly used principles to generated the input and recurrent weight matrix. These two matrices are assumed to be fixed once they are generated randomly. The adjustable parameters include the spectral radius ρ, the leakage rate α , and the number of reservoir neurons N res . The spectral radium is the maximal absolute eigenvalue of the matrix W . It is an important parameter that controls the dynamic regime of the reservoir. To ensure the echo state property, the spectral radius is always less than 1 for zero inputs. Nevertheless, for nonzero inputs, the system usually has better performance when the spectral radius is bigger than 1 in practice [START_REF] Lukoševičius | A practical guide to applying echo state networks. neural networks: tricks of the trade[END_REF]. The leakage rate represents the update speed of the neurons in the reservoir. The dynamic of the reservoir increases with the value of leakage rate, and a large value of leakage rate means that the output value of the reservoir at time step (t-1) has little impact on the reservoir state at time step (t). Generally speaking, when the reservoir includes more neurons, the performance would be better. It is easier to find a linear combination of the inputs to target outputs when the dimension of the reservoir increases. However, the computation time would increase at the same time. The selection of reservoir neurons is to find a tradeoff between the prediction accuracy and the computation complex. The regularization parameter is set manually. The calculated parameter is the output weight matrix out W , and it can be calculated by the multi-linear regression.

According to the above designing rules, the ESN for predicting the RUL of PEMFC is developed. The parameters of ESN are determined after several repeated attempts to implement the RUL estimation. Implementation framework of the proposed ESN and some parameters are shown in Fig. 2 andTable Ⅰ. 

III. AGING EXPERIMENTAL IMPLEMENTATION

A. Experimental Platform

The experiment is applied to the data of PEMFC from the IEEE PHM 2014 Data Challenge [START_REF] Gouriveau | IEEE phm 2014 data challenge: oultine, experiments, scoring of results, winners[END_REF]. The PEMFC platform which is adapted for 1 kW electrical power was built for the experiment. This test bench has 5 cells, and each cell has an active area of 100 cm 2 . The nominal current density of the stack is 0.7 A/cm 2 , and the maximal current density is 1.0 A/cm 2 . Hydrogen loop and air loop are two reactant loops of the test bench. Two independent boilers (air and hydrogen boilers) are placed upstream of the stack to realize the reactant humidification. The air boiler is heated in order to get the desired relative humidity of the air, and the hydrogen boiler remains at room temperature. The supplication rate of reactants is adjusted by the pressure and flow valves in order to avoid the FC stack "starvation" [START_REF] Hua | Modeling and control of brushless dc motor for compressor driving[END_REF]. The temperature of the stack is controlled by a cooling water system. Moreover, the FC stack enables normal and accelerated aging tests under constant and dynamic operating conditions. The physical parameters in the test bench can be measured and controlled in order to manage the PEMFC operating conditions as accurately as possible. Health monitoring data like the voltage, current, pressure, temperature, etc. are monitored by different sensors. Some of the controllable and operating parameters are presented in Table Ⅱ, and the test bench is shown in Fig. 3. 

B. Characteristic Analysis

Two long-term durability tests for more than 1,000 h were implemented: the first test was operated under a static current operating condition (FC1), and the second test was operated under a quasi-dynamic current operating condition (FC2) [START_REF] Hochstein | Switching vector autoregressive models with higher-order regime dynamics[END_REF]. The constant load current of 70 A is imposed to the aging test of FC1. In the aging test of FC2, a triangular ripple current of 7 A with 5 kHz is superimposed to the constant current of 70 A. The durability tests of different load currents are shown in Fig. 4. The Electrochemical Impedance Spectroscopy (EIS) test and polarization curve measurements were implemented in the test bench to analyze the quasi-dynamic and static properties of the PEMFC. Polarization curves of the single cells and stack were measured under a current ramp from 0 A/cm 2 to 1 A/cm 2 during 1000 s. The polarization curves of the two tests are shown in Fig. 5. They show that the stack voltage decreases with the increase of the stack current at each duration time. At the same duration time (e.g., 515 h), the degradation is more serious under the quasi-dynamic current operating conditions (from P to Q in Fig. 5). In general, the longer the duration time is, the more serious the stack degradation is. More properly, the single-cell and stack voltage decrease as time grows, which depicts the degradation phenomena of the test bench. In the PEMFC system, the stack voltage sensors are easy for installation and implementation, and the voltage is always supervised for control purposes. For convenience, the stack output voltage is also widely accepted as a health indicator of PEMFC systems. Nevertheless, the raw data contain lots of disturbance noise and large peaks, which would have an effect on the RUL prediction. Before using this data to predict the RUL, the Moving Average Filtering (MAF) method is applied here to remove the peaks and noise. Ps Pn [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: guidelines and metrics[END_REF] Where Ps is the power of the signal and Pn is the power of the noise. Among all the parameters, the stack current (Is) has the highest SNR both in FC1 and FC2. In this paper, MIMO-ESN is defined as Single-input ESN: the input is the stack voltage (Us). The calculation flow chart of the MIMO-ESN method is shown in Fig. 8, where H denotes the final prediction points, p is the number of past discrete values used for prediction and q is the prediction steps.

For single-input ESN, an iterative one-step prediction method is utilized for the multi-step prediction. The sampling points of the stack voltage (Us) can be expressed as [START_REF] Luo | Overview of current development in electrical energy storage technologies and the application potential in power system operation[END_REF] For multi-input ESN, besides the one-step iterative prediction method for stack voltage, a one-step ahead prediction method is applied to the operating parameters. Taking the double inputs stack voltage (Us) and stack current (Is) for example, the sampling data points can be expressed as [START_REF] Luo | Overview of current development in electrical energy storage technologies and the application potential in power system operation[END_REF] Based on the MIMO-ESN, the stack voltage is not only dependent on the historical profile but also related to the operating conditions. Finally, the prediction voltages and the actual voltages are compared to evaluate the prediction performance. In the practical application, the output weight matrix Wout is firstly calculated offline, then the stack voltage at time step (t) and the Wout are used to predict the new value at the time step (t+1). The computing time during the prediction process is about 20 seconds (Matlab 2018a, 8G RAM, Core i5-2450 CPU @ 2.50 GHz) in this paper and it is short enough for the several hundred hours' lifespan prediction. The block diagram of single-input and multi-input ESN is shown in Fig. 9 

IV. EXPERIMENTAL RESULTS

A. Criteria of Prediction Accuracy

In the experiments of FC1 and FC2, the RUL is regarded as the time before a certain amount of voltage loss is reached. More precisely, 3.0 %, 3.5 %, 4.0 %, 4.5 %, and 5.0% of initial voltage (Vinit = 3.35 V) are considered to be the failure thresholds (FT) of FC1. The stack voltage under the quasi-dynamic condition decreases more seriously than that under the static condition. Similar with the static operation, the 3.5 %, 4.0 %, 4.5 %, 5.0 % and 10 5.5 % of initial voltage (Vinit = 3.33 V) are considered to be the FT of FC2. The first intersection of the filtered voltage and FT is regarded as the failure point.

Three quantitative metrics are used to evaluate the prediction performance: 1) Root Mean Square Error (RMSE) which is commonly used to quantify the difference between the real signal ( target ( ) i n y

) and its forecasted value ( ( ) i n y

) during the RUL time ( m data points), 2) Mean Average Percentage Error (MAPE), which is also a quantification measurement between two signals, and 3) the percentage error (%ErFT) between the actual RUL ( act RUL t ) and the prediction one ( pre RUL t ) which is also defined to evaluate the accuracy of ESN. [START_REF] Lechartier | Proton exchange membrane fuel cell behavioral model suitable for prognostics[END_REF] Regarding the RUL estimation, there are two cases: 1) the estimation is smaller than the actual RUL, it is an early prediction, or 2) the estimation is greater, it is a late prediction. In practical, good performance of estimations relates to early predictions of RUL (i.e. cases where %ErFT > 0), with a deduction to early removal, and more severe deductions for RUL estimates that exceed actual RUL (i.e. cases where %ErFT < 0).

B. Prognostic under Static Operation

In the static operation task, the data that are used for the experiment come from a 1050 h duration test on the PEMFC stack. The data between 0 h and tpredict are used for training, and the rest of the data are used for the prediction. The RUL time (tRUL) can be considered as the time between the prediction time (tpredict) and the failure time (tfailure). For FC1, the actual values at different FT are 95.8 h (3.0 %), 127.1 h (3.5 %), 277.6 h (4.0 %), 284.1 h (4.5 %), and 354.5 h (5.0 %) respectively. In the static operation, the data from 0 h to 550 h are applied to training, and the data from 550 h to 1050 h are used for the prediction. The RUL prediction of FC1 based on single-input (Us) ESN is shown in Fig. 10. Ⅳ. The RMSE and MAPE of 2-input ESNs are lower than single-input ESN. Results represent that the prediction accuracy of 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", "Us+PoutH2") ESN is higher than single-input ESN. It also means that 2-input data are more sufficient to mimic the degradation characteristics, and the prediction accuracy is improved by increasing another input to the ESN. Furthermore, more parameters are regarded as the inputs of ESN to investigate its prediction performance. The RUL predictions of FC1 based on 3-input ESN is shown in Fig. 12. The prediction results of 3-input ESN at different failure thresholds are given in Table Ⅴ . Results represent that some of the 3-input ESN ("Us+TinH2+PinH2" and "Us+ToutH2+ToutAir") have a better prediction performance than 2-input ESN. Sometimes, they are worse than 2-input ESN ("Us+TinAir+ToutWat" and "Us+PoutH2+PinH2").

C. Prognostic under Quasi-Dynamic Operation

In the quasi-dynamic operation task, the data set come from a 1020 h duration test on the PEMFC. For FC2, the actual values at different FT are 21.4 h (3.5 %), 194.2 h (4.0 %), 209.7 h (4.5 %), 384.3 h (5.0 %), and 386.7 h (5.5 %) respectively. The data from 0 h to 550 h are applied to training, and the data from 550 h to 1020 h are used for prediction. The RUL prediction of FC2 based on single input ESN is shown in Fig. 13. The RUL prediction of FC2 based on 2-input ESN is shown in Fig. 14 and the prediction results of 4 combinations at different failure thresholds are given in Table Ⅵ. The RMSE and MAPE of 2-input ESN are lower than the single-input one. Under the quasidynamic condition, the prediction results of 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", and "Us+PoutH2") ESN perform better than single-input ESN. They also represent that the prediction accuracy is improved by increasing the number of inputs. The prediction error of FC2 is bigger than FC1 when the training length (0~550 h) is the same. Because of the prediction processes of FC2 have more perturbations (two faults in Fig. 13) than FC1. The results also mean that the ESN structure has more difficulties to mimic the quasi-dynamic operation when compared with the static operation. The RUL predictions of FC2 based on 3-input ESN are shown in Fig. 15. The prediction results of 3-input ESN at different failure thresholds are given in Table Ⅶ. Results represent that some of the 3-input ESN ("Us+TinWat+PinH2" and "Us+PoutAir+TinAir") have a better prediction performance than 2input ESN. Sometimes, they are worse than 2-input ESN ("Us+TinH2+PinH2" and "Us+ToutH2+ToutAir"). Ⅸ, respectively. The RMSEi (i =1, 2, …, 5) are the RMSE between the prediction time and the different failure times. In FC1, the RMSE5 is the RMSE between 550.0 h to 904.5 h and the RMSE5 in FC2 is the RMSE between 550.0 h to 936.7 h. Therefore, the RMSE5 is used to quantify the prediction accuracy. The RMSE5 of single-input ESN in FC1 and FC2 are 0.02710 and 0.03789, respectively. Results show that the RMSE5 of randomly 2-input ESN is smaller than single-input ESN both in FC1 and FC2. The optimal combination in FC1 is the Us with TinWat (improved 59.20 %) and the optimal combination in FC2 is the Us with ToutAir (improved 34.15 %). All the other 3-input combinations are tested to verify the prediction accuracy. The results of FC1 and FC2 are shown in Table Ⅹ In the results of 3-input ESN, "better" (in green) means the RMSE5 is smaller than any 2-input combinations, "worse" (in purple) means the RMSE5 is bigger than any 2-input combinations, and "middle" (in blue) means the RMSE5 is in between of the 2 combinations of 2-input. For example, in table Ⅹ, the "Us+10+11" is "better", and the RMSE5 of "Us+10+11" (0.01216) is small than "Us+10" (0.01294) or "Us+11" (0.01380); the "Us+9+12" is "middle", and the RMSE5 of "Us+9+12" (0.01505) is bigger than "Us+12" (0.01260) and small than "Us+9" (0.01532); the "Us+18+19" is "worse", and the RMSE5 of "Us+18+19" (0.01027) is bigger than "Us+18" (0.01236) and "Us+19" (0.01168). There are 39 "better" combinations and 11 "middle" combinations in FC1 and the "Us+13+14" has the best performance. There are 21 "better" combinations and 24 "middle" combinations in FC2 and the "Us+12+17" has the best performance. Besides, when compared all the "better" combinations of 3input to the 2-input ESN, there are 12 combinations in FC1 have a smaller RMSE5 than the 2-input ESN of "Us+TinWat". Nevertheless, there are 3 combinations ("Us+9+12", "Us+12+17", and "Us+14+19") in FC2 could have a smaller RMSE5 than the 2-input ESN of "Us+ToutAir". The results show that 3-input ESN has the potential ability to improve the performance than 2-input ESN, especially under the static condition. But when considering the interaction of input variables, the selection of inputs is a rewarding area for further study. Considering the prediction accuracy and the computational complexity, the 2-input ESN has a top priority in both FC1 and FC2. V. CONCLUSION Echo state network (ESN) is an interesting and promising data-driven tool to implement the RUL prediction for the PEMFC systems. Unlike the model-based and hybrid RUL prediction methods, the mathematical model is unnecessary for the ESN method and the degradation tendency can be directly extracted from a large amount of historical data. As the improvement structure of recurrent neural network, the ESN has the advantages of low computational complexity and fast convergence rate. Therefore, the ESN based data-driven method has a rapid response on lifespan prediction and the results are meaningful for the control policy to extend the lifespan of fuel cell. In order to improve the prediction performance, a multi-input and multi-output ESN (MIMO-ESN) method is proposed in this work. Besides the commonly used stack voltage, the operating parameters, such as stack current, stack temperature and the pressures of the reactants are also utilized as the inputs of ESN. The single-input, 2-input, and 3-input ESN are designed and tested on the datasets which were acquired from the test bench for more than 1000 hours' duration. The feasibility and effectiveness of the proposed MIMO-ESN are verified under both static and quasi-dynamic operation conditions. Experimental results show that MIMO-ESN has the capability to improve the prediction accuracy, especially the 2-input ESN with an improvement of 59.20 % (static condition) and 34.15 % (quasi-dynamic condition) in terms of RMSE5 respectively compared with the traditionally used SISO-ESN. In the next-step study, novel health indicators and multi-step prediction approaches under different operating profiles will be further explored. Meanwhile, the implementation and verification of the MIMO-ESN algorithm in the actual vehicle applications will be further investigated.
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 1 Fig. 1. The structure of Echo State Network In discretized time, the typical model of ESN can be represented as ( ) ( ( ) ( 1))
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 2 Fig. 2. Implementation framework of the ESN methodTABLE Ⅰ. KEY PARAMETERS OF ESN Parameter Values reservoir neurons N res 400 leakage rate α [0.3, 0.5] spectral radius ρ [0.4, 1.0] regularization parameter β 8×10 -2 input weight matrix in W
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 3 Fig. 3. The 1 kW test bench of PEMFC system developed in the laboratory
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 45 Fig. 4. Durability tests of FC1 and FC2
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 67 Fig. 6. Operating parameters of FC1
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 8 Fig. 8. Calculation flow chart of the MIMO-ESN prediction process
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Fig. 9 .

 9 Fig. 9. Block diagram of single-input and multi-input ESN for one example with 2 steps in each case (where yi represents Us at time ti, zi represents the Is at time ti, xi represents PoutH2 at time ti, 1 ˆs y + and 2 ˆs y + are next-step predicted stack voltage value, ( ) out s W

Fig. 10 .

 10 Fig. 10. The RUL prediction of FC1 based on single-input ESN With all the other parameters remaining unchanged, the number of inputs is increased to test the prediction performance. The RUL predictions of FC1 based on 2-input ESN are shown in Fig. 11 and the prediction results of 4 combinations at different failure thresholds are given in TableⅣ. The RMSE and MAPE of 2-input ESNs are lower than single-input ESN. Results represent that the prediction accuracy of 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", "Us+PoutH2") ESN is higher than single-input ESN. It also means that 2-input data are more sufficient to mimic the degradation characteristics, and the prediction accuracy is improved by increasing another input to the ESN.

Fig. 11 .

 11 Fig. 11. The RUL prediction of FC1 based on 2-input ESN: (a) stack voltage (Us) and outlet temperature of air (ToutAir). (b) stack voltage (Us) and stack current (Is). (c) stack voltage (Us) and inlet temperature of water (TinWat). (d) stack voltage (Us) and outlet pressure of H2 (PoutH2).

Fig. 12 .

 12 Fig. 12. The RUL prediction of FC1 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 (PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet temperature of air (TinAir) and outlet temperature of water (ToutWat). (d) stack voltage (Us), outlet pressure of H2 (PoutH2), and inlet pressure of H2 (PinH2).
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 1314 Fig. 13. The RUL prediction of FC2 based on single-input ESN

Fig. 15 .

 15 Fig. 15. The RUL prediction of FC2 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 (PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet temperature of air (TinAir) and outlet pressure of air (PoutAir). (d) stack voltage (Us), inlet temperature of water (TinWat), and inlet pressure of H2 (PinH2).

TABLE Ⅱ .

 Ⅱ PHYSICAL AND OPERATING PARAMETERS OF THE TEST BENCH

	Parameter	Control range
	Temperature	20 ℃~ 80 ℃
	Cooling flow	0~10 L/min
	Gas temperature	20 ℃~ 80 ℃
	Gas humidification	0~100 % RH
	Air flow	0~100 L/min
	H2 flow	0~30 L/min
	Gas pressure	0~2 Bar

  Two-input ESN: the inputs are the combination of Us and one of the parameters in TableⅢ. Three-input ESN: the combination of Us and two of the parameters in TableⅢ.

	So, there are 1 11 C = 11 combinations in 2-input ESN, and 2 11 C = 55 combinations in 3-input ESN.

TABLE Ⅲ .

 Ⅲ THE SIGNAL-TO-NOISE RATIO OF FC

	Parameter	characteristics	SNR of FC1(dB)	SNR of FC2(dB)
	Is	Regulated (A)	78.72	70.33
	TinH2	Measured (°C)	65.51	62.85
	ToutH2	Measured (°C)	45.58	43.06
	TinAir	Measured (°C)	55.25	52.32
	ToutAir	Measured (°C)	61.42	57.18
	TinWat	Regulated (°C)	55.39	52.65
	ToutWat	Regulated (°C)	59.42	56.12
	PinAir	Measured (mBar)	58.83	58.84
	PoutAir	Regulated (mBar)	59.39	58.79
	PinH2	Regulated (mBar)	50.93	51.57
	PoutH2	Regulated (mBar)	51.31	52.02

  … etc. It should be taken attention that the operating parameters such as stack current are usually scheduling variables and cannot be predicted in the same iterative way as the stack voltage. A major potential assumption herein is that the operating parameters can be schedulable or programmable such as in the homemade test benches and Combined Heat and Power (CHP) applications.

						1 {( , ), ..., ( , ),..., ( , )} i i M M t y t y t y	and
	1 1 {( , ), ..., ( , ),..., ( , )} i i M M t z t z t z	. Where i z represents the stack current at the time i t . Firstly, the sampling points
	1 {( , ), ..., ( , )} 1 s s t y t y and 1 1 {( , ), ..., ( , )} s s t z t z	are trained to calculate the output weight matrix	( ) out s W	. Then based on
	( ) out s W	, s y and s z , the voltage value of the next step is predicted as	1 ˆ+ s y and 1 ˆ+ s z . After that, 1 ˆ+ s y , 1 s z + and	( ) out s W	are
	used to predict the	2 y + and 2 ˆs ˆ+ s z . The same sequence is repeated for	3 y + , ˆs	ˆs y +	4

TABLE Ⅳ .

 Ⅳ PREDICTION RESULTS OF FC1 BASED ON 2-INPUT ESN

	inputs	Prediction values (h)	%ErFT	RMSE	MAPE
		54.2	43.4	0.01188	0.00343
		136.8	-7.6	0.01077	0.00300
	Us	208.5	24.9	0.02039	0.00560
		272.3	4.2	0.02018	0.00551
		329.5	7.1	0.02710	0.00709
		45.5	52.51	0.01281	0.00341
	Us+	91.5	28.01	0.01146	0.00289
	ToutAir	320.0	-15.27	0.01190	0.00330
		441.2	-55.30	0.01211	0.00336
		500.0	-41.04	0.01339	0.00375
		48.7	49.16	0.01143	0.00312
		175.5	-38.08	0.01048	0.00275
	Us+Is	281.8	-1.51	0.01295	0.00365
		366.5	-29.00	0.01297	0.00367
		456.0	-28.63	0.01532	0.00429
		59.6	37.79	0.00902	0.00242
	Us+	209.3	-64.67	0.00808	0.00205
	TinWat	344.6	-24.14	0.00931	0.00249
		500.0	-75.99	0.00972	0.00258
		500.0	-41.04	0.01106	0.00295
		77.0	19.62	0.00910	0.00245
	Us+	194.7	-53.19	0.00815	0.00207
	PoutH2	310.0	-11.67	0.01017	0.00281
		431.6	-51.92	0.01045	0.00288
		500.0	-41.04	0.01236	0.00339

TABLE Ⅴ .

 Ⅴ PREDICTION RESULTS OF FC1 BASED ON 3-INPUT ESN

	inputs	Prediction values (h)	%ErFT	RMSE	MAPE
		71.6	25.26	0.00937	0.00239
	Us	98.2	22.74	0.00930	0.00239
	+TinH2	358.5	-29.14	0.00850	0.00226
	+PinH2	500.0	-75.99	0.00930	0.00239
		500.0	-41.04	0.01051	0.00271
		41.5	56.68	0.01047	0.00284
	Us	186.8	-46.97	0.00956	0.00252
	+ToutH2	347.5	-25.18	0.00959	0.00258
	+ToutAir	500.0	-75.99	0.01001	0.00267
		500.0	-41.04	0.01075	0.00287
		73.2	23.59	0.00904	0.00236
	Us	188.4	-48.23	0.00817	0.00207
	+ToutWat	307.4	-10.73	0.01061	0.00293
	+TinAir	436.8	-53.75	0.01080	0.00298
		500.0	-41.04	0.01266	0.00349
		81.2	15.24	0.00789	0.00199
	Us	226.1	-77.89	0.00722	0.00177
	+PoutH2	370.3	-33.39	0.00819	0.00219
	+PinH2	500.0	-75.99	0.00898	0.00232
		500.0	-41.04	0.01027	0.00265

TABLE Ⅵ .

 Ⅵ PREDICTION RESULTS OF FC2 BASED ON 2-INPUT ESN

	PoutH2	94.5	54.94	0.03268	0.00986
		202.5	47.31	0.03828	0.01116
		344.5	10.91	0.03783	0.01099
	inputs	Prediction values (h)	%ErFT	RMSE	MAPE
		12.5	41.6	0.01839	0.00520
		36.0	81.5	0.02915	0.00868
	Us	122.5	41.6	0.02900	0.00866
		222.8	42.0	0.03811	0.01082
		314.2	18.7	0.03789	0.01078
		34.8	-62.62	0.00652	0.00154
	Us+	100.2	48.40	0.01864	0.00484
	ToutAir	189.1	9.82	0.01878	0.00495
		322.2	16.16	0.02532	0.00640
		428.5	-10.81	0.02495	0.00627
		35.2	-64.49	0.00820	0.00205
		63.0	67.56	0.02692	0.00749
	Us+Is	117.7	43.87	0.02677	0.00751
		238.2	38.02	0.03271	0.00906
		383.6	0.80	0.03231	0.00892
		104.3	-387.38	0.00516	0.00126
	Us +	134.8	30.59	0.01639	0.00401
	TinWat	173.1	17.45	0.01640	0.00408
		262.2	31.77	0.02959	0.00710
		335.8	13.16	0.02921	0.00700
	Us +	10.4	51.40	0.02166	0.00623
		27.9	85.63	0.03287	0.00989

TABLE Ⅶ .

 Ⅶ PREDICTION RESULTS OF FC2 BASED ON 3-INPUT ESN In order to test all possible combinations, the prediction results based on all the 2-input ESN of FC1 and FC2 are shown in table Ⅷ and table

	+PinH2	309.2	19.54	0.02466 0.00554
		500.0	-29.30	0.02435 0.00548
	D. Multi-Input Analysis				
	inputs	Prediction values (h)	%ErFT	RMSE	MAPE
		5.9	72.43	0.02594 0.00787
	Us	18.2	90.63	0.03147 0.00959
	+TinH2	119.5	43.01	0.03122 0.00953
	+PinH2	220.1	42.73	0.03608 0.01052
		376.5	2.64	0.03564 0.01036
		9.5	55.61	0.01677 0.00493
	Us	66.0	66.01	0.02405 0.00705
	+ToutH2	147.2	29.80	0.02404 0.00708
	+ToutAir	232.1	39.60	0.03522 0.00974
		308.1	20.33	0.03487 0.00964
		6.0	71.96	0.02631 0.00799
	Us	15.5	92.02	0.02048 0.00587
	+TinAir	234.6	-11.87	0.01985 0.00561
	+PoutAir	500.0	-30.11	0.02042 0.00520
		500.0	-29.30	0.02024 0.00516
	Us	114.7	-435.98	0.00593 0.00141
	+TinWat	148.1	23.74	0.01175 0.00300
		246.5	-17.55	0.01140 0.00288

  and Table Ⅺ, respectively. The numbers (from 9 to 19) in Table Ⅹ and Table Ⅺ represent the inputs (from Is to PinH2) in Table Ⅷ and Table Ⅸ. Compared the results of 2-input ESN and 3-input ESN in both FC1 and FC2, some of the 3-input ESN have a better performance than 2-input ESN, but some combinations have worse performance instead. Even some 3-input ESN combinations are worse than single-input ESN.

TABLE Ⅷ .

 Ⅷ THE IMPROVEMENT RESULTS OF FC1 BASED ON 2-INPUT ESN

	Inputs	RMSE5	improvement (%)
	Us	0.02710	--
	Us+TinWat(14)	0.01106	59.20
	Us+PinH2(19)	0.01168	56.90
	Us+PoutH2(18)	0.01236	54.37
	Us+TinAir(12)	0.01260	53.51
	Us+PinAir(16)	0.01265	53.31
	Us+TinH2(10)	0.01294	52.24
	Us+PoutAir(17)	0.01336	50.71
	Us+ToutAir(13)	0.01339	50.59
	Us+ToutH2(11)	0.01380	49.08
	Us+ToutWat(15) 0.01440	46.84
	Us+Is(9)	0.01532	43.47

TABLE Ⅸ .

 Ⅸ THE IMPROVEMENT RESULTS OF FC2 BASED ON 2-INPUT ESN

	Us	0.03789	--
	Us+ToutAir(13)	0.02495	34.15
	Us+TinWat(14)	0.02921	22.90
	Us+TinAir(12)	0.03023	20.21
	Us+ToutH2(11)	0.03039	19.79
	Us+Is(9)	0.03231	14.74
	Us+TinH2(10)	0.03242	14.43
	Us+PoutAir(17)	0.03292	13.13
	Us+ToutWat(15) 0.03587	5.34
	Us+PinH2(19)	0.03589	5.30
	Us+PinAIR(16)	0.03715	1.96
	Us+PoutH2(18)	0.03783	0.16
	Inputs	RMSE5	improvement (%)

TABLE Ⅹ .

 Ⅹ THE PREDICTION RESULTS BASED ON ALL 3-INPUT COMBINATIONS OF FC1

	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5
	Us+9+10	0.01179 Us+10+12 0.01053 Us+11+15 0.01231 Us+12+19 0.01070 Us+14+19 0.01020
	Us+9+11	0.01369 Us+10+13 0.01158 Us+11+16 0.01161 Us+13+14 0.00981 Us+15+16 0.01459
	Us+9+12	0.01505 Us+10+14 0.01052 Us+11+17 0.01227 Us+13+15 0.01227 Us+15+17 0.01461
	Us+9+13	0.01401 Us+10+15 0.01155 Us+11+18 0.01205 Us+13+16 0.01221 Us+15+18 0.01463
	Us+9+14	0.01119 Us+10+16 0.01090 Us+11+19 0.01120 Us+13+17 0.01252 Us+15+19 0.01374
	Us+9+15	0.01168 Us+10+17 0.01149 Us+12+13 0.01163 Us+13+18 0.01242 Us+16+17 0.01387
	Us+9+16	0.01187 Us+10+18 0.01134 Us+12+14 0.01120 Us+13+19 0.01141 Us+16+18 0.01166
	Us+9+17	0.01230 Us+10+19 0.01051 Us+12+15 0.01266 Us+14+15 0.01142 Us+16+19 0.01109
	Us+9+18	0.01193 Us+11+12 0.01175 Us+12+16 0.01100 Us+14+16 0.01035 Us+17+18 0.01210
	Us+9+19	0.01215 Us+11+13 0.01075 Us+12+17 0.01179 Us+14+17 0.01068 Us+17+19 0.01180
	Us+10+11 0.01216 Us+11+14 0.01135 Us+12+18 0.01125 Us+14+18 0.01087 Us+18+19 0.01027

TABLE Ⅺ .

 Ⅺ THE PREDICTION RESULTS BASED ON ALL 3-INPUT COMBINATIONS OF FC2

	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5
	Us+9+10	0.03104 Us+10+12 0.02763 Us+11+15 0.03620 Us+12+19 0.03097 Us+14+19 0.02435
	Us+9+11	0.03055 Us+10+13 0.03467 Us+11+16 0.03334 Us+13+14 0.02912 Us+15+16 0.03511
	Us+9+12	0.02371 Us+10+14 0.03659 Us+11+17 0.03037 Us+13+15 0.03288 Us+15+17 0.03261
	Us+9+13	0.02727 Us+10+15 0.03661 Us+11+18 0.03497 Us+13+16 0.02782 Us+15+18 0.03782
	Us+9+14	0.03248 Us+10+16 0.03377 Us+11+19 0.03457 Us+13+17 0.02709 Us+15+19 0.03675
	Us+9+15	0.03865 Us+10+17 0.03055 Us+12+13 0.02817 Us+13+18 0.02911 Us+16+17 0.03146
	Us+9+16	0.03555 Us+10+18 0.03560 Us+12+14 0.03250 Us+13+19 0.02765 Us+16+18 0.03498
	Us+9+17	0.02954 Us+10+19 0.03564 Us+12+15 0.03202 Us+14+15 0.03558 Us+16+19 0.03295
	Us+9+18	0.03272 Us+11+12 0.02523 Us+12+16 0.02778 Us+14+16 0.02946 Us+17+18 0.02985
	Us+9+19	0.02982 Us+11+13 0.03487 Us+12+17 0.02024 Us+14+17 0.02904 Us+17+19 0.02831
	Us+10+11 0.02674 Us+11+14 0.03625 Us+12+18 0.03119 Us+14+18 0.02825 Us+18+19 0.03775
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