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1 Introduction
We prove that all extensions of K45 have projective unification and K5 and some of its extensions are
of unification type 1. The breakdown of the paper is as follows. Firstly, we prove in Proposition 9 that
if L contains K45 then every formula has extension property in L. Secondly, generalizing some results
obtained in [6], we prove in Proposition 13 that if L contains K5 then every L-unifiable formula is L-
filtering. Thirdly, imitating arguments used in [18, 19], we prove in Proposition 20 that if L contains K5
then every formula having extension property in L is L-projective. Fourthly, we prove in Proposition 21
that if L contains K5 and L is global1 then for all substitutions σ, every formula L-unified by σ is
implied by an L-projective formula based on the variables of the given formula and having σ as one of
its L-unifiers.

2 Syntax and semantics
Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). The set
FOR of all formulas (with typical members denoted ϕ, ψ, etc) is inductively defined by

• ϕ := x | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | �ϕ.

We adopt the standard rules for omission of parentheses. The Boolean connectives >, ∧,→ and↔ and
the modal connective ♦ are defined as usual. For all ϕ∈FOR, let var(ϕ) be the set of all variables
occurring in ϕ. For all finite X⊆VAR, let FORX be the set of all ϕ∈FOR such that var(ϕ)⊆X .

A substitution is a triple (X,Y, σ) where X,Y⊆VAR are finite and σ : FORX −→ FORY is
a homomorphism. The sets X and Y are respectively its domain and its codomain. Let SUB be the
set of all substitutions. We say that (X,Y, σ)∈SUB is variable-free if Y=∅. It is possible to compose
two substitutions if the codomain of the first is equal to the domain of the second. The composition
of (X,Y, σ), (Y,Z, τ)∈SUB (in symbols (X,Y, σ) ◦ (Y,Z, τ)) is the substitution (X,Z, υ) such that
for all x∈X , υ(x)=τ(σ(x)). When its domain and its codomain can be guessed from the context, the
substitution (X,Y, σ) will be simply written σ2. For all finite X,Y⊆VAR, let SUBX,Y be the set of
all σ∈SUB such that the domain of σ is X and the codomain of σ is Y .

We say that L⊆FOR is a modal logic if the following conditions hold3: L contains all tautologies,
L contains the formula�(x→ y)→ (�x→ �y), L is closed for modus ponens (for all ϕ,ψ∈FOR, if
ϕ→ ψ∈L and ϕ∈L then ψ∈L), L is closed for generalization (for all ϕ∈FOR, if ϕ∈L then �ϕ∈L),

1Globality is defined in Section 2.
2However, when we write that two substitutions are equal, this will imply in any case that their domains are equal and their

codomains are equal.
3The modal logics considered in this paper are exactly the normal modal logics considered in standard textbooks such

as [12, 13, 27].
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L is closed for uniform substitution (for all ϕ∈FOR, if ϕ∈L then for all substitutions (X,Y, σ), if
var(ϕ)⊆X then σ(ϕ)∈L). For all modal logics L and for all ϕ∈FOR, we write L ⊕ ϕ for the least
modal logic containing L and ϕ. The following modal logics — and their extensions — are considered
in this paper: K ⊕ ♦x → �♦x (denoted K5), K5 ⊕ �x → ��x (denoted K45), K5 ⊕ �x → x
(denoted S5), K denoting the least modal logic4. We say that a modal logic L is consistent if L6=FOR.
From now on in this paper, let L be a consistent modal logic. Let ≡L be the equivalence relation on
FOR defined for all ϕ,ψ∈FOR, by ϕ≡Lψ if and only if ϕ ↔ ψ∈L. We shall say that L is locally
tabular if for all finite X⊆VAR, ≡L possesses finitely many equivalence classes on FORX .

Proposition 1. If L contains K5 then L is locally tabular.

We say that ϕ∈FOR is L-derivable from Γ⊆FOR (in symbols Γ `L ϕ) if there exists n≥1 and
there exists ϕ1, . . . , ϕn∈FOR such that ϕn=ϕ and for all k∈{1, . . . , n}, at least one of the following
4 conditions holds: (i)ϕk∈L, (ii)ϕk∈Γ, (iii) there exists i, j∈{1, . . . , n} such that i, j<k andϕi=ϕj →
ϕk, (iv) there exists i∈{1, . . . , n} such that i<k and ϕk=�ϕi. Substitutions being completely de-
fined by the restrictions to their domains, it is possible to compare two substitutions by means of these
restrictions if their domains are equal. Let 'L be the equivalence relation on SUB defined for all
(X,Y, σ), (X,Z, τ)∈SUB, by (X,Y, σ)'L(X,Z, τ) if and only if for all x∈X , σ(x)↔ τ(x)∈L5. Let
4L be the quasi-order on SUB defined for all (X,Y, σ), (X,Z, τ)∈SUB, by (X,Y, σ)4L(X,Z, τ) if
and only if there exists (Z, T, υ)∈SUB such that for all x∈X , σ(x)↔ υ(τ(x))∈L6.

Proposition 2. If L is locally tabular then for all finiteX,Y⊆VAR,'L possesses finitely many equiv-
alence classes on SUBX,Y .

A frame is a couple (W,R) where W is a non-empty set and R is a binary relation on W 7. In
a frame (W,R), for all s∈W , let R(s)={t∈W : sRt} and for all U⊆W , let R(U)={t∈W : there
exists s∈U such that sRt}. We say that a frame (W,R) is generated from s∈W if for all t∈W , there
exists n≥0 and there exists u0, . . . , un∈W such that u0=s, un=t and for all i∈{1, . . . , n}, ui−1Rui.
A valuation on a frame (W,R) is a function assigning to each variable a subset of W . Given a frame
(W,R) and a valuation V on (W,R), the satisfiability of ϕ∈FOR at s∈W (in symbols (W,R), V, s|=ϕ)
is inductively defined as follows:

• (W,R), V, s|=x if and only if s∈V (x),

• (W,R), V, s6|=⊥,

• (W,R), V, s|=¬ϕ if and only if (W,R), V, s6|=ϕ,

• (W,R), V, s|=ϕ ∨ ψ if and only if either (W,R), V, s|=ϕ, or (W,R), V, s|=ψ,

• (W,R), V, s|=�ϕ if and only if for all t∈W , if sRt then (W,R), V, t|=ϕ.

We say that a formula ϕ is valid in a frame (W,R) (in symbols (W,R)|=ϕ) if for all valuations V
on (W,R) and for all s∈W , (W,R), V, s|=ϕ. We say that L is valid in a frame (W,R) (in symbols
(W,R)|=L) if for all ϕ∈L, (W,R)|=ϕ. For all frames (W,R), for all substitutions (X,Y, σ) and for
all valuations V on (W,R), let V σ be the valuation on (W,R) such that for all x∈VAR, if x∈X then
V σ(x)={s∈W : (W,R), V, s|=σ(x)} else V σ(x)=V (x)8.

4Obviously, K45 contains K5. Moreover, as is well-known [22, Chapter 3], S5 contains K45.
5Obviously, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)'L(X,Z, τ) then for all ϕ∈FORX , σ(ϕ)↔ τ(ϕ)∈L.
6Obviously, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)4L(X,Z, τ) then there exists (Z, T, υ)∈SUB such that

for all ϕ∈FORX , σ(ϕ) ↔ υ(τ(ϕ))∈L. Moreover, for all (X,Y, σ), (X,Z, τ)∈SUB, if (X,Y, σ)'L(X,Z, τ) then
(X,Y, σ)4L(X,Z, τ).

7We assume the reader is at home with the relational semantics of modal logics. For more on this, see [12, 13, 27].
8Such definition is standard [3, 15, 18, 19].
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Proposition 3. Let (W,R) be a frame, (X,Y, σ) be a substitution and V be a valuation on (W,R). For
all ϕ∈FORX and for all s∈W , (W,R), V σ, s|=ϕ if and only if (W,R), V, s|=σ(ϕ).

Proposition 4. Let (W,R) be a frame such that (W,R)|=L. If L contains K5 then for all s∈W ,
if (W,R) is generated from s then exactly one of the following 3 conditions holds: (i) W={s} and
R=∅, (ii) R=W × W , (iii) there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪ B and
R=({s} × A) ∪ (B × B). If L contains K45 then for all s∈W , if (W,R) is generated from s then
exactly one of the following 3 conditions holds: (iv) W={s} and R=∅, (v) R=W ×W , (vi) there
exists A⊆W such that A 6=∅, s6∈A, W={s} ∪A and R=({s} ×A) ∪ (A×A).

Let S be a frame (W,R) such that Card(W )=1 and R=∅. For all m≥1, let Tm be a frame (W,R)
such that Card(W )=m andR=W×W . For allm≥1 and for all n≥0, let U(m,n) be a frame (W,R) such
that there exists s∈W and there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪B, R=({s} ×
A) ∪ (B ×B), Card(A)=m and Card(B)=m+ n.

Proposition 5. If L contains K5 then exactly one of the following conditions holds: (i) for all m≥1,
Tm|=L and S|=L, (ii) for all m≥1, Tm|=L and S6|=L, (iii) there exists m≥1 such that Tm|=L, there
exists n≥1 such that Tn 6|=L and S|=L, (iv) there exists m≥1 such that Tm|=L, there exists n≥1 such
that Tn 6|=L and S6|=L, (v) for all m≥1, Tm 6|=L.

We say that L is global if for all m,m′≥1 and for all n′≥0, if m=m′ + n′ and Tm|=L then
U(m′,n′)|=L. For all positive integers l, let ϕl=

∧
{♦♦xk : 0≤k≤l} →

∨
{♦♦(xi ∧ xj) : 0≤i<j≤l}.

Proposition 6. If either L=K5, or L=K5 ⊕ ♦>, or L=K5 ⊕ ϕl for some positive integer l, or
L=K5⊕ ϕl ⊕ ♦> for some positive integer l, or L=K5⊕�⊥ then L is global.

Proposition 7. If L contains K5 and L is global then either L=K5, or L=K5⊕ ♦>, or L=K5⊕ ϕl
for some positive integer l, or L=K5⊕ ϕl ⊕ ♦> for some positive integer l, or L=K5⊕�⊥.

Proposition 8. If L contains K5 then for all ϕ∈FOR, if ϕ 6∈L then there exists a finite frame (W,R),
there exists a valuation V on (W,R) and there exists s∈W such that (W,R)|=L, (W,R) is generated
from s and (W,R), V, s6|=ϕ.

For all finite frames (W,R), for all valuations V on (W,R), for all s∈W and for all finiteX⊆VAR,
we say that a valuation V ′ on (W,R) is a variant of V with respect to s and X if for all x∈X , V ′(x) \
{s}=V (x)\{s}. We say that ϕ∈FOR has extension property in L if for all finite frames (W,R), for all
valuations V on (W,R) and for all s∈W , if (W,R)|=L and (W,R) is generated from s then there exists
a variant V ′ of V with respect to s and var(ϕ) such that (W,R), V ′, s|=♦�ϕ → ϕ. The following
result is essential for the proof of Proposition 23.

Proposition 9. If L contains K45 then for all ϕ∈FOR, ϕ has extension property in L.

For all finite X⊆VAR, for all finite frames (W,R), for all valuations V on (W,R) and for all
s∈W , let forX((W,R), s, V ) = {χ∈FORX : (W,R), V, s|=χ}. Obviously, forX((W,R), s, V ) is
an infinite subset of FORX . Nevertheless, when L is locally tabular, we will treat forX((W,R), s, V )
as if it is a finite subset of FORX . In that case, forX((W,R), s, V ) will also denote the conjunction
of all formulas in this finite subset.

3 Unification
An L-unifier of ϕ∈FOR is a substitution (var(ϕ), X, σ) such that σ(ϕ)∈L. We write ΣL(ϕ) to mean
the set of all L-unifiers of ϕ∈FOR. We say that ϕ∈FOR is L-unifiable if ΣL(ϕ) 6=∅. Since L is closed
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for uniform substitution, for all L-unifiable ϕ∈FOR, ΣL(ϕ) contains variable-free substitutions. We
say that an L-unifier σ of ϕ∈FOR is a most general L-unifier of ϕ if for all L-unifiers τ of ϕ, τ4Lσ.
We say that a set Σ of L-unifiers of an L-unifiable ϕ∈FOR is complete if for all L-unifiers σ of ϕ, there
exists τ∈Σ such that σ4Lτ

9. We say that a complete set Σ of L-unifiers of an L-unifiable ϕ∈FOR is
a basis for ϕ if for all σ, τ∈Σ, if σ4Lτ then σ=τ 10.

Proposition 10. For all L-unifiable ϕ∈FOR and for all bases Σ,∆ for ϕ, Σ and ∆ have the same
cardinality.

As a consequence of Proposition 10, an important question is the following: when ϕ∈FOR is L-
unifiable, is there a basis for ϕ? When the answer is “yes”, how large is this basis? For all L-unifiable
ϕ∈FOR, we say that ϕ is of type 1 if there exists a basis for ϕ with cardinality 1, ϕ is of type ω if there
exists a basis for ϕ with finite cardinality ≥2, ϕ is of type∞ if there exists a basis for ϕ with infinite
cardinality, ϕ is of type 0 if there exists no basis for ϕ11. We say that L is of type 1 if every L-unifiable
formula is of type 1, L is of type ω if every L-unifiable formula is either of type 1, or of type ω and there
exists an L-unifiable formula of type ω, L is of type ∞ if every L-unifiable formula is either of type
1, or of type ω, or of type∞ and there exists an L-unifiable formula of type∞, L is of type 0 if there
exists an L-unifiable formula of type 012. For all L-unifiable ϕ∈FOR, we say that ϕ is L-filtering if
for all L-unifiers σ, τ of ϕ, there exists an L-unifier υ of ϕ such that σ4Lυ and τ4Lυ.

Proposition 11. Let ϕ∈FOR be L-unifiable. If ϕ is L-filtering then ϕ is either of type 1, or of type 0.

We say that L has filtering unification if for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

Proposition 12. If L has filtering unification then L is either of type 1, or of type 0.

The following result is essential for the proof of Proposition 25.

Proposition 13. If L contains K5 then for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

For all ϕ∈FOR, a substitution (var(ϕ), var(ϕ), σ) is L-projective for ϕ if for all x∈var(ϕ), ϕ `L
x↔ σ(x).

Proposition 14. Let ϕ∈FOR. Let (W,R) be a finite frame, V be a valuation on (W,R) and s∈W be
such that (W,R)|=L, (W,R) is generated from s and (W,R), V, s|=♦�ϕ. If L contains K5 then for
all L-projective substitutions υ for ϕ, V υ is a variant of V with respect to s and var(ϕ).

Proposition 15. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all ψ∈FORvar(ϕ),
ϕ `L ψ ↔ σ(ψ).

Proposition 16. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all L-projective substi-
tutions τ for ϕ, σ ◦ τ is L-projective for ϕ.

Proposition 17. Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all L-unifiers τ of ϕ,
τ4Lσ.

For all L-unifiable ϕ∈FOR, we say that ϕ is L-projective if there exists an L-projective L-unifier
of ϕ.

9Obviously, for all L-unifiable ϕ∈FOR, ΣL(ϕ) is a complete set of L-unifiers of ϕ.
10Obviously, for all complete sets Σ of L-unifiers of an L-unifiable ϕ∈FOR, Σ is a basis for ϕ if and only if Σ is a minimal

complete set of L-unifiers of ϕ, i.e. for all ∆⊆Σ, if ∆ is a complete set of L-unifiers of ϕ then ∆=Σ.
11Obviously, the types 1, ω,∞ and 0 constitute a set of jointly exhaustive and pairwise distinct situations for each L-unifiable

ϕ∈FOR.
12That is to say, the types 1, ω,∞ and 0 being ordered by 1<ω<∞<0, the unification type of L is the greatest one among

the types of its unifiable formulas.
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Proposition 18. Let ϕ∈FOR be L-unifiable. If ϕ is L-projective then ϕ is of type 1.

We say that L has projective unification if for all L-unifiable ϕ∈FOR, ϕ is L-projective.

Proposition 19. If L has projective unification then L is of type 1.

The following result is essential for the proof of Proposition 23.

Proposition 20. If L contains K5 then for all L-unifiable ϕ∈FOR, ϕ is L-projective if and only if ϕ
has extension property in L.

The following result is essential for the proof of Proposition 25.

Proposition 21. If L contains K5 and L is global then for all L-unifiable ϕ∈FOR and for all L-
unifiers σ of ϕ, there exists ψ∈FORvar(ϕ) such that σ(ψ)∈L, ψ → ϕ∈K, ψ is L-projective.

4 Extensions of K5

Firstly, let us consider the extensions of K45.

Proposition 22. If L contains K45 then for all L-unifiable ϕ∈FOR, ϕ is L-projective.

Proposition 23. If L contains K45 then L has projective unification.

Secondly, let us consider the extensions of K5.

Proposition 24. If L contains K5 and L is global then for all L-unifiable ϕ∈FOR, ϕ is of type 1.

Proposition 25. If L contains K5 and L is global then L is of type 1.

Notice that the line of reasoning leading to Propositions 23 and 25 rules out neither the possibility
that all extensions of K5 have projective unification, nor the possibility that some nonglobal extension
of K5 is either of type ω, or of type∞, or of type 013.

5 Conclusion
A property similar to the extension property has been used by Ghilardi who has proved both in In-
tuitionistic Logic [18] and in transitive modal logics like K4 and S4 [19] that it is equivalent to the
projectivity of formulas. This property has also been considered in [11] where formulas verifying it are
called extendible formulas. As a matter of fact, Bezhanishvili and de Jongh have provided a complete
characterization in Intuitionistic Logic of the set of all extendible formulas with at most 2 variables.
However, the question remains unsettled whether a complete characterization in Intuitionistic Logic of
the set of all extendible formulas with at least 3 variables can be given. Within the context of extensions
of K5, we believe that it is probably easier to give a complete characterization of the set of all formulas
verifying the extension property.
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Appendix
Proof of Proposition 1: See [29, Corollary 5].

Proof of Proposition 2: Suppose L is locally tabular. Let X,Y⊆VAR be finite. For all x∈X , let
'xL be the equivalence relation on SUBX,Y defined by

• σ'xLτ if and only if σ(x)↔ τ(x)∈L.

Since L is locally tabular and Y is finite, for all x∈X , 'xL possesses finitely many equivalence classes
on SUBX,Y . Since X is finite and the restriction of 'L to SUBX,Y is equal to

⋂
{'xL: x∈X}, 'L

possesses finitely many equivalence classes on SUBX,Y .

Proof of Proposition 3: By induction on ϕ∈FORX .

Proof of Proposition 4: See [28, Sections 2 and 3].

Proof of Proposition 5: See [28, Sections 2 and 3].

Proof of Proposition 6: Left to the reader.

Proof of Proposition 7: Suppose L contains K5 and L is global. For the sake of the contradiction, sup-
pose neither L=K5, nor L=K5⊕♦>, nor L=K5⊕ϕl for some positive integer l, nor L=K5⊕ϕl⊕♦>
for some positive integer l, nor L=K5 ⊕ �⊥. By Proposition 5, we have to consider the following
5 cases.

Case “for all m≥1, Tm|=L and S|=L”: Since L contains K5 and L is global, L=K5: a contra-
diction.

Case “for all m≥1, Tm|=L and S6|=L”: Since L contains K5 and L is global, L=K5 ⊕ ♦>: a
contradiction.

Case “there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and S|=L”: Thus,
let l be the greatest positive integer such that Tl|=L. Since L contains K5, L is global and S|=L,
L=K5⊕ ϕl: a contradiction.
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Case “there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and S6|=L”: Con-
sequently, let l be the greatest positive integer such that Tl|=L. Since L contains K5, L is global and
S6|=L, L=K5⊕ ϕl ⊕ ♦>: a contradiction.

Case “for all m≥1, Tm 6|=L”: Hence, L=K5⊕�⊥: a contradiction.

Proof of Proposition 8: Suppose L contains K5. Let ϕ∈FOR be such that ϕ 6∈L. Since L con-
tains K5, by [29, Theorem 3], let (W,R) be a finite frame, V be a valuation on (W,R) and s∈W be
such that (W,R)|=L and (W,R), V, s6|=ϕ. Without loss of generality, by [12, Proposition 2.6 and The-
orem 3.14], we can suppose (W,R) is generated from s.

Proof of Proposition 9: Suppose L contains K45. Let ϕ∈FOR. Let (W,R) be a finite frame, V
be a valuation on (W,R) and s∈W be such that (W,R)|=L and (W,R) is generated from s. Since L
contains K45, by Proposition 4, we have to consider the following 3 cases.

Case “W={s} and R=∅”: Obviously, V is a variant of V with respect to s and var(ϕ). More-
over, (W,R), V, s|=♦�ϕ→ ϕ.

Case “R=W × W”: Obviously, V is a variant of V with respect to s and var(ϕ). Moreover,
(W,R), V, s|=♦�ϕ→ ϕ.

Case “there exists A⊆W such that A 6=∅, s6∈A, W={s}∪A and R=({s}×A)∪ (A×A)”: Let t∈A.
Obviously, (W,R), V, t|=♦�ϕ → ϕ. Let V ′ be a valuation on (W,R) such that for all x∈var(ϕ), if
t∈V (x) then V ′(x)=V (x) ∪ {s} else V ′(x)=V (x) \ {s}. Obviously, V ′ is a variant of V with respect
to s and var(ϕ). Moreover, by induction on ψ∈FORvar(ϕ), the reader may easily verify that

• for all u∈A, (W,R), V, u|=ψ if and only if (W,R), V ′, u|=ψ.

In other respect, by induction on ψ∈FORvar(ϕ), the reader may easily verify that

• (W,R), V, t|=ψ if and only if (W,R), V ′, s|=ψ.

Since (W,R), V, t|=♦�ϕ→ ϕ, (W,R), V ′, s|=♦�ϕ→ ϕ.

Proof of Proposition 10: This is a standard result, although we have not been able to find a publi-
shed proof of it. Let ϕ∈FOR be L-unifiable and Σ,∆ be bases for ϕ. Hence, Σ and ∆ are minimal
complete sets of L-unifiers of ϕ. By the completeness of Σ and ∆, one can readily define functions
f : Σ −→ ∆ and g : ∆ −→ Σ such that σ4Lf(σ) for each σ∈Σ and δ4Lg(δ) for each δ∈∆. By
the minimality of Σ and ∆, it easily follows that f and g are injective. Thus, Σ and ∆ have the same
cardinality.

Proof of Proposition 11: This is a standard result, although we have not been able to find a publi-
shed proof of it. Suppose ϕ is L-filtering. For the sake of the contradiction, suppose ϕ is neither of type
1, nor of type 0. Hence, ϕ is either of type ω, or of type ∞. Thus, let Σ be a basis for ϕ either with
finite cardinality ≥2, or with infinite cardinality. Consequently, let σ, τ∈Σ be such that σ 6=τ . Since ϕ
is L-filtering, there exists an L-unifier υ of ϕ such that σ4Lυ and τ4Lυ. Since Σ is a basis for ϕ, let
υ′∈Σ be such that υ4Lυ

′. Since σ4Lυ and τ4Lυ, σ4Lυ
′ and τ4Lυ

′. Since Σ is a basis for ϕ, σ=υ′

and τ=υ′. Hence, σ=τ : a contradiction.
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Proof of Proposition 12: By Proposition 11.

Proof of Proposition 13: This result generalizes some results obtained in [6]. Suppose L contains
K5. Let ϕ∈FOR be L-unifiable. Let (var(ϕ), X, σ), (var(ϕ), Y, τ) be L-unifiers of ϕ. Hence,
σ(ϕ)∈L and τ(ϕ)∈L. Let (var(ϕ), X ∪ Y ∪ {z}, υ) be the substitution defined for all x∈var(ϕ), by
υ(x)=((��z∧(z∨♦>))∧σ(x))∨((♦♦¬z∨(¬z∧�⊥))∧τ(x)) where z is a new variable, i.e. neither
z∈var(ϕ), nor z∈X ∪Y . Obviously, σ4Lυ and τ4Lυ. Moreover, by induction on ψ∈FORvar(ϕ), the
reader may easily verify that

• (��z ∧ (z ∨ ♦>))→ (υ(ψ)↔ σ(ψ))∈L,

• (♦♦¬z ∨ (¬z ∧�⊥))→ (υ(ψ)↔ τ(ψ))∈L.

Since σ(ϕ)∈L and τ(ϕ)∈L, υ(ϕ)∈L. Thus, υ is an L-unifier of ϕ. Consequently, ϕ is L-filtering.

Proof of Proposition 14: Suppose L contains K5. Let υ be an L-projective substitution for ϕ. Hence,
for all x∈var(ϕ), ϕ `L x ↔ υ(x). Let x∈var(ϕ). Thus, ϕ `L x ↔ υ(x). Let t∈W . Sup-
pose t∈V υ(x) \ {s}. Consequently, t 6=s and by Proposition 3, (W,R), V, t|=υ(x). Since (W,R)|=L,
(W,R) is generated from s, (W,R), V, s|=♦�ϕ, L contains K5 and ϕ `L x↔ υ(x), (W,R), V, t|=x.
Since t6=s, t∈V (x)\{s}. Reciprocally, suppose t∈V (x)\{s}. Consequently, t 6=s and (W,R), V, t|=x.
Since (W,R)|=L, (W,R) is generated from s, (W,R), V, s|=♦�ϕ, L contains K5 and ϕ `L x↔ υ(x),
(W,R), V, t|=υ(x). Since t 6=s, by Proposition 3, t∈V υ(x) \ {s}. Hence, V υ is a variant of V with res-
pect to s and var(ϕ).

Proof of Proposition 15: See [1] and [15].

Proof of Proposition 16: See [1] and [15].

Proof of Proposition 17: See [1] and [15].

Proof of Proposition 18: By Proposition 17.

Proof of Proposition 19: By Proposition 18.

Proof of Proposition 20: Suppose L contains K5. Let ϕ∈FOR be L-unifiable.

Suppose ϕ is L-projective. For the sake of the contradiction, suppose ϕ has not extension property
in L. Since ϕ is L-projective, let υ be an L-projective L-unifier of ϕ. Since ϕ has not extension
property in L, let (W,R) be a finite frame, V be a valuation on (W,R) and s∈W be such that

• (W,R)|=L,

• (W,R) is generated from s,

• for all variants V ′ of V with respect to s and var(ϕ), (W,R), V ′, s6|=♦�ϕ→ ϕ.

Obviously, V is a variant of V with respect to s and var(ϕ). Hence, (W,R), V, s6|=♦�ϕ → ϕ.
Thus, (W,R), V, s|=♦�ϕ. Since υ is an L-projective L-unifier of ϕ, υ(ϕ)∈L. Moreover, since L
contains K5, (W,R)|=L, (W,R) is generated from s and (W,R), V, s|=♦�ϕ, by Proposition 14, V υ

is a variant of V with respect to s and var(ϕ). Consequently, (W,R), V υ, s6|=♦�ϕ → ϕ. Hence,
(W,R), V υ, s6|=ϕ. Thus, by Proposition 3, (W,R), V, s6|=υ(ϕ). Since (W,R)|=L, υ(ϕ)6∈L: a contra-
diction.
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Suppose ϕ has extension property in L. For the sake of the contradiction, suppose ϕ is not L-projective.
Since ϕ∈FOR is L-unifiable, let σ be a variable-free L-unifier of ϕ. Consequently, σ(ϕ)∈L. Let
(var(ϕ), ∅, τ) be a variable-free substitution. Let (var(ϕ), var(ϕ), ετ ) be the substitution such that

• for all x∈var(ϕ), ετ (x)=((ϕ ∧��ϕ) ∧ x) ∨ ((¬ϕ ∨ ♦♦¬ϕ) ∧ τ(x)).

The following fact can be easily proved: for all x∈var(ϕ), ϕ `L x↔ ετ (x). Hence, ετ is L-projective
for ϕ. By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετ (ψ),

• ¬ϕ ∨ ♦♦¬ϕ`Lτ(ψ)↔ ετ (ψ).

Thus, ϕ ∧ ��ϕ`Lϕ ↔ ετ (ϕ) and ¬ϕ ∨ ♦♦¬ϕ`Lτ(ϕ) ↔ ετ (ϕ). Since L contains K5, if
τ(ϕ)∈L then ��ϕ → (ϕ → ετ (ϕ))∈L and ♦♦¬ϕ → ετ (ϕ)∈L. In that case, ϕ → ετ (ϕ)∈L
and ��ϕ ∨ ετ (ϕ)∈L — which implies that ��ετ (ϕ)∈L. Consequently, for all variable-free substi-
tutions (var(ϕ), ∅, τ), if τ(ϕ)∈L then ��ετ (ϕ)∈L. Since σ(ϕ)∈L, ��εσ(ϕ)∈L. Let l≥1 and
((var(ϕ), ∅, τ1), . . . , (var(ϕ), ∅, τl)) be an enumeration of the set of all variable-free substitutions
(var(ϕ), ∅, τ) such that for all x∈var(ϕ), either τ(x)=>, or τ(x)=⊥14. Let ε=εσ ◦ ετl ◦ . . . ◦ ετ1 ◦ εσ .
Since ��εσ(ϕ)∈L, ��ε(ϕ)∈L. Moreover, since εσ, ετ1 , . . . , ετl are L-projective for ϕ, by Proposi-
tion 16, ε is L-projective for ϕ. Since ϕ is not L-projective, ε(ϕ)6∈L. Since L contains K5, by [29,
Theorem 3], let (W,R) be a finite frame, V be a valuation on (W,R) and s∈W be such that (W,R)|=L
and (W,R), V, s6|=ε(ϕ). Without loss of generality, by [12, Proposition 2.6 and Theorem 3.14], we can
suppose (W,R) is generated from s. Since ��ε(ϕ)∈L and (W,R)|=L, (W,R), V, s|=��ε(ϕ). Since
(W,R), V, s6|=ε(ϕ), R 6=W ×W . Since L contains K5, (W,R)|=L and (W,R) is generated from s, by
Proposition 4, we have to consider the following 2 cases.

Case “W={s} and R=∅”: By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ε(ψ).

Hence, ϕ∧��ϕ`Lϕ↔ ε(ϕ). Since (W,R)|=L and (W,R), V, s6|=ε(ϕ), (W,R), V, s6|=ϕ. By induction
on ψ∈FORvar(ϕ), the reader may easily verify that

• ¬ϕ ∨ ♦♦¬ϕ`Lσ(ψ)↔ εσ(ψ).

Thus, ¬ϕ ∨ ♦♦¬ϕ`Lσ(ϕ) ↔ εσ(ϕ). Since σ(ϕ)∈L, (W,R)|=L and (W,R), V, s6|=ϕ, (W,R), V, s|=
εσ(ϕ). Hence, by Proposition 3, (W,R), V εσ , s|=ϕ. By induction on ψ∈FORvar(ϕ), the reader may
easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετ1(. . . ετl(εσ(ψ)) . . .).

Consequently, ϕ ∧ ��ϕ`Lϕ ↔ ετ1(. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R), V εσ , s|=ϕ,
(W,R), V εσ , s|=ετ1(. . . ετl(εσ(ϕ)) . . .). Hence, by Proposition 3, (W,R), V, s|=ε(ϕ): a contradiction.

Case “there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪ B and R=({s} × A) ∪
(B × B)”: For all i≤l, let εi=ετi ◦ . . . ◦ ετ1 ◦ εσ . Thus, for all i≤l, if i=0 then εi=εσ else
εi=ετi ◦ εi−1. Since ��εσ(ϕ)∈L and (W,R)|=L, (W,R), V, s|=��εσ(ϕ). Consequently, by Pro-
position 3, (W,R), V εσ , s|=��ϕ. Hence, (W,R), V εσ , s|=♦�ϕ. Since ϕ has extension property in L,
(W,R)|=L and (W,R) is generated from s, let V ′ be a variant of V εσ with respect to s and var(ϕ) such
that (W,R), V ′, s|=♦�ϕ→ ϕ. Since (W,R), V εσ , s|=♦�ϕ, let t∈A be such that (W,R), V εσ , t|=�ϕ.
By induction on ψ∈FORvar(ϕ), the reader may easily verify that

14Obviously, l=2Card(var(ϕ)).
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• for all u∈A, (W,R), V εσ , u|=ψ if and only if (W,R), V ′, u|=ψ.

Since t∈A and (W,R), V εσ , t|=�ϕ, (W,R), V ′, t|=�ϕ. Since t∈A, (W,R), V ′, s|=♦�ϕ. Since
(W,R), V ′, s|=♦�ϕ→ ϕ, (W,R), V ′, s|=ϕ. Let j∈{1, . . . , l} be such that for all x∈var(ϕ),

• if (W,R), V ′, s|=x then τj(x)=>,

• if (W,R), V ′, s6|=x then τj(x)=⊥.

Since (W,R), V, s6|=ε(ϕ), (W,R), V, s6|=εj−1(ετj (. . . ετl(εσ(ϕ)) . . .)). Thus, by Proposition 3, (W,R),
V εj−1 , s6|=ετj (. . . ετl(εσ(ϕ)) . . .). By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετj (. . . ετl(εσ(ψ)) . . .).

Consequently, ϕ ∧ ��ϕ`Lϕ ↔ ετj (. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R), V εj−1 , s6|=
ετj (. . . ετl(εσ(ϕ)) . . .), (W,R), V εj−1 , s6|=ϕ ∧��ϕ. By induction on i≤l, the reader may easily verify
that

• for all ψ∈FORvar(ϕ) and for all u∈B, (W,R), V εi , u|=ψ if and only if (W,R), V εσ , u|=ψ.

By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• (W,R), V εj , s|=ψ if and only if (W,R), V ′, s|=ψ.

Since (W,R), V ′, s|=♦�ϕ and (W,R), V ′, s|=ϕ, (W,R), V εj , s|=♦�ϕ and (W,R), V εj , s|=ϕ. Since
L contains K5 and (W,R)|=L, (W,R), V εj , s|=ϕ ∧��ϕ. By induction on ψ∈FORvar(ϕ), the reader
may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετj+1
(. . . ετl(εσ(ψ)) . . .).

Hence, ϕ ∧ ��ϕ`Lϕ ↔ ετj+1
(. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R), V εj , s|=ϕ ∧ ��ϕ,

(W,R), V εj , s|=ετj+1(. . . ετl(εσ(ϕ)) . . .). Thus, by Proposition 3, (W,R), V, s|=ε(ϕ): a contradiction.

Proof of Proposition 21: Suppose L contains K5 and L is global. Let ϕ∈FOR be L-unifiable and
(var(ϕ), X, σ) be an L-unifier of ϕ. Hence, σ(ϕ)∈L. Let Γvar(ϕ)(σ) be the set of all formulas of the
form forvar(ϕ)((W,R), s, V σ) where (W,R) is a finite frame, V is a valuation on (W,R) and s∈W
are such that (W,R)|=L and (W,R) is generated from s. Obviously, Γvar(ϕ)(σ) is a finite set of infinite
subsets of FORvar(ϕ). Nevertheless, since L contains K5, by Proposition 1, L is locally tabular and
we will treat Γvar(ϕ)(σ) as if it is a finite set of finite subsets of FORvar(ϕ). Indeed, knowing that for
all finite frames (W,R), for all valuations V on (W,R) and for all s∈W , if (W,R)|=L and (W,R)
is generated from s then forvar(ϕ)((W,R), s, V σ) also denotes the conjunction of the formulas that
forvar(ϕ)((W,R), s, V σ) contains, we will treat Γvar(ϕ)(σ) as if it is a finite subset of FORvar(ϕ). Let
ψ be the disjunction of all formulas in this finite subset. Obviously,

(∗) for all finite frames (W,R), for all valuations V on (W,R) and for all s∈W , if (W,R)|=L and
(W,R) is generated from s then (W,R), V σ, s|=ψ.

Suppose σ(ψ) 6∈L. Since L contains K5, by Proposition 8, let (W,R) be a finite frame, V be a valu-
ation on (W,R) and s∈W be such that (W,R)|=L, (W,R) is generated from s and (W,R), V, s6|=σ(ψ).
Thus, by (∗), (W,R), V σ, s|=ψ. Consequently, by Proposition 3, (W,R), V, s|=σ(ψ): a contradiction.

Suppose ψ → ϕ6∈K. Hence, let (W ′, R′) be a frame, V ′ be a valuation on (W ′, R′) and
s′∈W ′ be such that (W ′, R′), V ′, s′|=ψ and (W ′, R′), V ′, s′ 6|=ϕ. Thus, there exists a finite frame
(W,R), there exists a valuation V on (W,R) and there exists s∈W such that (W,R)|=L and
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(W ′, R′), V ′, s′|=forvar(ϕ)((W,R), s, V σ). Since (W ′, R′), V ′, s′ 6|=ϕ, (W,R), V σ, s6|=ϕ. Conse-
quently, by Proposition 3, (W,R), V, s6|=σ(ϕ). Since (W,R)|=L, σ(ϕ)6∈L: a contradiction.

Suppose ψ is not L-projective. Since L contains K5, by Proposition 20, ψ has not extension pro-
perty in L. Hence, let (W ′, R′) be a finite frame, V ′ be a valuation on (W ′, R′) and s′∈W ′ be such
that

• (W ′, R′)|=L,

• (W ′, R′) is generated from s′,

• for all variants V ′′ of V ′ with respect to s′ and var(ϕ), (W ′, R′), V ′′, s′ 6|=♦�ψ → ψ.

Obviously, V ′ is a variant of V ′ with respect to s′ and var(ϕ). Thus, (W ′, R′), V ′, s′ 6|=♦�ψ → ψ.
Consequently, (W ′, R′), V ′, s′|=♦�ψ and (W ′, R′), V ′, s′ 6|=ψ. Hence, neither R′=∅, nor R′ = W ′ ×
W ′. Since L contains K5, (W ′, R′)|=L and (W ′, R′) is generated from s′, by Proposition 4, there
exists A′, B′⊆W ′ such that A′ 6=∅, A′⊆B′, s′ 6∈B′, W ′={s′} ∪ B′ and R′=({s′} × A′) ∪ (B′ × B′).
Since (W ′, R′), V ′, s′|=♦�ψ, let t′∈A′ be such that (W ′, R′), V ′, t′|=�ψ. Thus, (W ′, R′), V ′, t′|=ψ.
Consequently, there exists a finite frame (W,R), there exists a valuation V on (W,R) and there exists
t∈W such that

• (W,R)|=L,

• (W,R) is generated from t,

• (W ′, R′), V ′, t′|=forvar(ϕ)((W,R), t, V σ).

Obviously, (B′, B′ × B′) is the subframe of (W ′, R′) generated from t′. Let V ′B′ be the re-
striction of V ′B′ to B′. Since (W ′, R′), V ′, t′|=forvar(ϕ)((W,R), t, V σ), by [12, Proposition 2.6],
(B′, B′ × B′), V ′B′ , t′|=forvar(ϕ)((W,R), t, V σ). Since (B′, B′ × B′) and (W,R) are finite, by [12,
Theorem 2.24], let Z⊆B′ ×W be a bisimulation between (B′, B′ ×B′) and (W,R) such that

• t′Zt,

• for all u′∈B′ and for all u∈W , if u′Zu then for all x∈var(ϕ), u′∈V ′B′(x) if and only if u∈V σ(x).

Hence, R 6=∅. Since L contains K5, (W,R)|=L and (W,R) is generated from t, by Proposition 4, we
have to consider the following 2 cases.

Case “R=W × W”: Let A={u∈W : there exists u′∈A′ such that u′Zu} and B=W . Obviously,
A 6=∅ and A⊆B. Moreover, since (W,R)|=L, (B,B ×B)|=L. Let (W1, R1) be a finite frame, V1 be a
valuation on (W1, R1) and s1∈W1 be such that s1 6∈B, W1={s1} ∪B, R1=({s1}×A)∪ (B×B) and
for all x∈var(ϕ), V1(x)=V (x). Since L is global and (B,B × B)|=L, (W1, R1)|=L. Thus, by (∗),
(W1, R1), V σ1 , s1|=ψ. Let V ′′ be a valuation on (W ′, R′) such that for all x∈var(ϕ), if s1∈V σ1 (x) then
V ′′(x)=V ′(x) ∪ {s′} else V ′′(x)=V ′(x) \ {s′}. Obviously, V ′′ is a variant of V ′ with respect to s′

and var(ϕ). Consequently, (W ′, R′), V ′′, s′ 6|=♦�ψ → ψ. Hence, (W ′, R′), V ′′, s′ 6|=ψ By induction
on χ∈FORvar(ϕ), the reader may easily verify that

• (W ′, R′), V ′′, s′|=χ if and only if (W1, R1), V σ1 , s1|=χ.

Since (W ′, R′), V ′′, s′ 6|=ψ, (W1, R1), V σ1 , s1 6|=ψ: a contradiction.

Case “there existsA,B⊆W such thatA 6=∅, A⊆B, t 6∈B, W={t}∪B andR=({t}×A)∪ (B×B)”:
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Hence, let t0∈A be such that t′Zt0. Let Z0 be the restriction of Z to W ′ × B and V0 be the restriction
of V to B. Since (W,R)|=L, by [12, Theorem 3.14], (B,B ×B)|=L. Since Z⊆W ′ ×W is a bisimu-
lation between (W ′, R′) and (W,R) such that t′Zt0 and for all u′∈W ′ and for all u∈W , if u′Zu then
for all x∈var(ϕ), u′∈V ′(x) if and only if u∈V σ(x), Z0⊆W ′ × B is a bisimulation between (W ′, R′)
and (B,B × B) such that t′Z0t0 and for all u′∈W ′ and for all u∈B, if u′Z0u then for all x∈var(ϕ),
u′∈V ′0(x) if and only if u∈V σ0 (x). Then, proceed as in the case “R=W ×W ”.

Proof of Proposition 22: By Propositions 9 and 20.

Proof of Proposition 23: By Proposition 22.

Proof of Proposition 24: Suppose L contains K5 and L is global. Let ϕ∈FOR be L-unifiable. Let
σ be an L-unifier of ϕ. Since L contains K5 and L is global, by Proposition 21, let ψσ∈FORvar(ϕ)

be such that σ(ψσ)∈L, ψσ → ϕ∈K and ψσ is L-projective. Hence, let εσ be an L-projective L-unifier
of ψσ . Let Σ = {εσ : σ is an L-unifier of ϕ}. By Propositions 17 and 21, Σ is a complete set of
L-unifiers of ϕ. Let Σ′ be the set of substitutions obtained from Σ by keeping only one representative
of each equivalence class modulo 'L. Since Σ is a complete set of L-unifiers of ϕ, Σ′ is a complete set
of L-unifiers of ϕ. Moreover, since L is locally tabular, by Proposition 2, Σ′ is finite. Thus, ϕ is either
of type 1, or of type ω. Since L contains K5, by Propositions 11 and 13, ϕ is of type 1.

Proof of Proposition 25: By Proposition 24.
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