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Abstract—Drug prescriptions are essential information that
must be encoded in electronic medical records. However, much of
this information is hidden within free-text reports. This is why
the medication extraction task has emerged. To date, most of
the research effort has focused on small amount of data and has
only recently considered deep learning methods. In this paper, we
present an independent and comprehensive evaluation of state-of-
the-art neural architectures on the I2B2 medical prescription ex-
traction task both in the supervised and semi-supervised settings.
The study shows the very competitive performance of simple
DNN models on the task as well as the high interest of pre-trained
models. Adapting the latter models on the I2B2 dataset enables
to push medication extraction performances above the state-of-
the-art. Finally, the study also confirms that semi-supervised
techniques are promising to leverage large amounts of unlabeled
data in particular in low resource setting when labeled data is
too costly to acquire.

Index Terms—Medication information extraction, Natural
Language Processing, Natural Language Understanding

I. INTRODUCTION

In electronic health records (EHR) and other medical docu-
ments, drug information is often recorded in clinical notes,
making it difficult for computerized applications to access
this information as part of daily health care. Automatically
extracting structured information related to drug prescriptions
from medical free-texts is known as the medication extraction
task. This task has attracted attention from the NLP com-
munity since the emergence of the I2B2 2009 medication
extraction challenge [1]. In this challenge, the goal was to
automatically label chunks of medication information from a
whole clinical document. Figure 1 (left) shows an excerpt
of a discharge summary in I2B2 from which information
such as prescription duration and medication name should be
extracted. Such kind of medication extraction system could be
very useful to medical prescription writing software that are
used to reduce the number of errors during the prescription,
the transcription and the administration process of drugs.

Since the I2B2 2009 challenge, most work has used rule-
based systems with the exception of a few hybrid ones. Some
recent approaches using deep neural networks have shown

Fig. 1. Left: an I2B2 discharge summary excerpt and its medication
annotations. Right: same excerpt segmented by sentence and formatted for
sequence-to-sequence processing. (m = name; do = dose; mo = mode of administration; f = frequency;
du = duration; r= reason)

promising results [2]–[4]. However, the task lacks a com-
prehensive comparison of deep learning methods over more
traditional methods. Furthermore, the data provided within
the I2B2 challenge is still very small for the needs of deep
model training. Hence, methods able to leverage large amount
of unlabeled clinical data (e.g., MIMIC III [5]) should be
evaluated on this task. Among these methods, the recent pre-
trained models have not been systematically studied for the
task. Furthermore, recent semi-supervised techniques have also
been rarely applied [6], [7].

In this paper, we explore the benefit of pre-trained models
and semi-supervised learning to leverage non-annotated clin-
ical documents for deep learning models. Indeed, for such
a task, data annotation process requires medical experts and
often patient data that has to be anonymised. This makes the
process costly and limits the distribution of datasets. This is
why methods resistant to OOV words such as BPE (Byte Pair
Encoding) must be evaluated. Indeed, even in such a narrow
drug prescription domain, vocabulary size and rare words for
the input sequence are numerous [8]. This is why methods
resistant to OOV words such as BPE (Byte Pair Encoding)
must be evaluated.

Paper contributions. Our objective is to provide a com-
prehensive evaluation of the standard deep learning seq2seq
methods (including Transformers) on the I2B2 2009 medi-
cation extraction task. We include a focused evaluation of
pre-trained models and semi-supervised training to leverage
unannotated medical corpora. The results show performances



above the state-of-the-art for pre-trained models and compet-
itive performances of semi-supervised training.

Outline. The remaining of the paper presents a short review
of the state-of-the-art before describing the methodology to
pre-process the corpora and to perform supervised and semi-
supervised learning. The experiment section then shows that
the BlueBert pre-trained model can reach performance beyond
the current state of the art. We then finish the paper by a short
discussion and presentation of future work.

II. RELATED WORK

The only known benchmarking efforts in medication extrac-
tion are the I2B2 2009 challenge [1] along with n2c2 shared
task [9]. It is only recently that deep neural networks have
superseded rule-based or hybrids models. Most significant
progress has been made both thanks to deep models and also
to the ability to leverage larger amount of data either through
pre-trained embedding or through semi-supervised training.
Regarding the pre-trained models, word embeddings trained
on the MIMIC-III database have been used to improve slightly
the state-of-the-art on the I2B2 medication extraction task [10].
The use of more performing pre-trained models, such as ELMo
or BERT [11], [12] for word embeddings, have become preva-
lent in the biomedical NLP domain exceeding benchmarks
on certain tasks [3], [13], [14]. For instance, Yang et al.
[15], have compared 4 transformers models BERT, ALBERT,
RoBERTa, and ELECTRA on a relation extraction task and
showed the definite superiority of those. In a similar vein, Peng
et al. [16] have proposed a benchmark setting (called BLUE)
to evaluate pre-trained model in a clinical setting, showing that
BERT model pre-trained on PubMed abstracts and MIMIC-
III was superior (we refer to it as BlueBert in the rest of
the paper). Recently, biomedical contextual embeddings have
also been applied to improve the performance of adverse drug
identification and the medication extraction task [9], [17].

From a semi-supervised point of view, Tao et al. [6] have
proposed a semi-supervised system that achieved the current
best overall performance on the I2B2 2009 medication extrac-
tion task by leveraging the non-annotated part of corpus (and
also by using human annotations). More recently, Guzman
et al. [18] proposed a system based on a LSTM model
and transfer learning claiming state-of-the-art performance
on extracting specific entities of the I2B2 dataset. However,
their system is only partially sketched and thus difficult to
reproduce. On other tasks, such as biomedical relation extrac-
tion, variational autoencoders [19] or event feature coupling
generalization (EFCG) [20] have been proposed to benefit
from unannotated datasets. In particular, [21] show that for the
biomedical relation extraction task, a distantly supervised ap-
proach enables to produce large amounts of labeled but noisy
data can be leveraged efficiently for data-driven approach.
Despite, these recent progress, semi-supervised learning for
medication extraction has only been applied by Tao et al. [6],
which is to-date the state-of-the-art.

From this brief related work section, it is clear that deep
neural network methods have shown significant progress in

several bioNLP tasks. However, the ability to leverage larger
amount of data has not been fully explored on the I2B2-2009
medication extraction task using recent methods. This paper is
an attempt to not only propose a model taking advantage of the
most recent NLP advances but also to provide comprehensive
evaluation of state-of-the-art models on this task.

III. METHOD

The medication extraction problem is often addressed as
a sequence labeling task requiring aligned BIO format. This
is extremely costly to annotate and it prevents models from
abstracting since they must stick to the surface form of the
textual input. In this work, we approach the problem of med-
ication extraction through encoder-decoder seq2seq models
where input text is first abstracted by the encoder and then the
labels and values are generated by the decoder. Figure 1 shows
on the left side an excerpt of an I2B2 discharge summary.
In that case the annotations consist of slot values indexed
by position within the document (line:character index). The
right side of Figure 1 shows the result of the I2B2 sentences
adaptation. The document was sentence segmented and for
each sentence the annotation was unaligned. This format is
more realistic with respect what can be found in real clinical
data were free-text segments might be only loosely related to
electronic records.

A. Corpora and data pre-processing

The medication extraction models were trained on two pub-
licly available datasets: the I2B2 2009 medication extraction
dataset and the MIMIC-III dataset.

1) I2B2 dataset: The I2B2 dataset is composed of 1243
clinical documents. The annotation guidelines established for
the I2B2 challenge focused on identifying the name of medi-
cation, their dosage, their mode of administration, frequency,
duration and reason for administration in discharge sum-
maries [1]. In the official distribution, 10 documents were
annotated by medical experts and 251 by the research com-
munity. These latter 251 documents became the official test
corpus for the evaluation [1]. The remaining 982 documents
were un-annotated.

2) MIMIC-III unannotated dataset: MIMIC-III [5] is a
large clinical dataset that does not have annotation data fit for
supervised machine learning. But it does contain medication
information both in the textual part of the dataset and in the
database part (medication records). For the need of the semi-
supervised learning, this corpus required some pre-processing
to extract the relevant pieces of information related to drug
prescriptions both from the textual point of view and the
database point of view. To do so, we set up a simple algorithm:
For each prescription in the database, the lines of the discharge
summary of the same a patient’s id were scored using regular
expressions. Take the example Figure 2. The right side shows
an extract of the prescription table while the left side shows
some sentences of the patient’s discharge summary that were
scored. The line with 5pts had matched the most features of the
Tacrolimus line. Thus, both the sentence and the prescription



Fig. 2. Example matching of medication records database and sentences from MIMIC-III clinical texts

line are added to the annotated dataset. Prescriptions not
matching any line of the discharge summary are not added
to the unannotated dataset.

Data Split
I2B2-2019 MIMIC-III

supervised semi-supervised semi-supervised
community
annotations

expert
annotations

unannotated
set

held out
unannotated set clinical notes

train - - 22,907 sents 4,655 sents 257,811 sents
validation 148 sents 2,158 sents - 2,605 sents

test 4411 sents - -

TABLE I
FINAL DISTRIBUTION OF THE CORPORA FOR SUPERVISED AND

UNSUPERVISED LEARNING.

At the end of the process, 962,252 lines of sentences related
to the database records were extracted. It was then further
filtered to remove similar examples as well as too long ones to
obtain a final corpus of 260,416 loosely coupled sentences and
database rows. It must be noted that the semantic information
in the MIMIC III database is different from the I2B2 one. For
instance, there is no reason or frequency in the MIMIC III
records. However, such kind of information is often present in
the textual part of MIMIC III. Thus, it can be concluded that
this corpus is relevant for the I2B2 extraction task.

3) Preprocessing and Final Datasets Distribution: Since
the seq2seq approach works at the sentence level, we ex-
tracted every medication sentence from the raw text of the
MIMIC-III and i2b2 datasets using the ClarityNLP toolkit.
The tokenization was based on the Spacy library. The language
model was initialized with BERT pre-trained embeddings and
then, we applied the sentence segmentation specialized for
clinical documents to obtain a sentence-level segmentation and
extracted the annotations in a seq2seq format as exemplified
Figure 1.

To deal with out-of-vocabulary words (OOV), BPE (Byte
Pair Encoding) codes [22] were learned from the MIMIC-III
and I2B2 (test set excluded) text corpora.

The final distribution of the corpus is presented Table I.
In our study, we used the official test set of 251 documents
(4411 sentences extracted) annotated by the community to
evaluate all the models. The train set was composed of 90% of
the I2B2 unannotated documents. In the supervised learning
approach, we used the freely-available MedExtractor system
[23] which gave the second-best overall f-measure in the I2B2
challenge [1] to automatically annotate them. In the semi-
supervised approach, we used a subset of the unannotated
documents. The development set was composed of the 10
documents annotated by experts plus the remaining 10% of
the unannotated documents that were automatically annotated.
Regarding MIMIC, it was only used in a semi-supervised
setting. Overall, the vocabulary size of MIMIC was 43k words
while I2B2 was 18k words.

B. Supervised Methods

Following the recent deep learning methods applied on
the I2B2 medication extraction task, we trained the initial
encoder-decoder models using simple bi-directional LSTM
models with attention [24]. This model is able to learn short
and long dependencies in the input and can be trained on a
reasonable amount of data. It is also surprisingly effective.
We also included CNN models, since there are able to capture
hierarchical relations between words and are quite efficient to
train. We implemented the convolutional seq2seq model (conv-
s2s) of Gehring et al. [25]. Finally, we included a transformer
model [26] which are the current groundbreaking models.

For the pre-trained word embeddings models, we explored
a BERT based model [12]. Furthermore, recently Zhu et al.
[27] proposed a new algorithm for neural machine translation
in which they exploit the BERT embeddings by extracting
representations for an input sequence, and then fusing with
each layer of the encoder and decoder through the attention
mechanism. We called this model bert-fused transformer.
Finally, since in many bioNLP tasks transformer-based em-
beddings models pretrained on clinical data have established
new baselines [13], we included Biobert [13], clinical-bert [28]
and BlueBert [16].

C. Semi-Supervised Approach

For the semi-supervised learning we used the approach of
Qader et al. [7]. The approach considers two encoder-decoder
models : one to extract semantics from text – called the Natural
Language Understanding (NLU) model – and one to generate
text from a semantic input – called the natural Language
Generation (NLG) model. The approach considers three sets:
a paired set of texts with their annotation, a unpaired set
of texts (alone) and a unpaired set of semantics annotation
(alone). The paired dataset is used to learn in a supervised
manner both the NLU and NLG models. The unpaired sets are
used by the two modules together. The text (resp. semantic)
input is fed to the NLU (resp. NLG) models which outputs a
semantic representation (res. a text) which is in turn send to
the NLG (resp. NLU) which outputs a text (resp. a semantic
representation). The difference between the input and output
texts (resp. semantic) is used as a loss to optimize the two
modules jointly. In this way, data that is not paired with
annotation can be used for learning using this ‘reconstruction’
objective.

As NLU and NLG models are jointly learned, the losses
of the NLG and NLU models for both paired and unpaired
models could be denoted respectively as Lnlg

paired , Lnlu
paired

, Lnlg
unpaired and Lnlu

unpaired. These four losses are mixed
together to perform the joint learning L = α Lnlg

paired +



Model F1 m do mo f du r
LSTM∗ 0.78 0.94 0.92 0.93 0.89 0.49 0.50

LSTM(bpe)∗ 0.75 0.88 0.90 0.91 0.88 0.46 0.46
conv-s2s
(bpe)† 0.68 0.87 0.83 0.84 0.76 0.38 0.41

transformer
(bpe)† 0.75 0.92 0.88 0.89 0.84 0.47 0.50

Pre-trained
Model F1 m do mo f du r

bert-base† 0.63 0.85 0.85 0.82 0.83 0.28 0.17
bert-fused

-transformer† 0.74 0.90 0.87 0.89 0.83 0.47 0.50

clinical-bert††
base 0.75 0.82 0.76 0.75 0.76 0.33 0.45

biobert-base†† 0.75 0.82 0.76 0.75 0.76 0.30 0.44
bluebert-

base
†† 0.88 0.92 0.88 0.95 0.91 0.46 0.61

TABLE II
F-MEASURE OF DIFFERENT MODELS ON THE I2B2 MEDICATION

EXTRACTION TEST DATA. (∗ :SEQ2SEQ-PY LIBRARY , † :FAIRSEQ LIBRARY ,
†† : HTTPS://GITHUB.COM/THILINARAJAPAKSE/SIMPLETRANSFORMERS)

β Lnlu
paired + γ Lnlg

unpaired + δ Lnlu
unpaired where α , β ,

γ and δ ∈ [0, 1] are fine tuned empirically.

IV. EXPERIMENTS AND RESULTS

All the experiments were performed with two open-source
seq2seq libraries for the experiments seq2seq-py from [29] and
fairseq library from [30]. The vocabulary size of the training
corpus was around 18k tokens without BPE and 10k with
BPE. Seq2Seq-py configurations used negative log-likelihood
(NLL) loss, with Adam optimizer. Learning rate was set to
0.001 with 2 bi-directional encoder-decoder layers, hidden size
of 128 and 500 as embedding dimension. The dropout was set
to 0.2 and gradients clipping was set to 2.0. For the fairseq
experiments, LSTM architecture used cross entropy loss and
nesterov accelerated gradient (NAG) as optimizer. Learning
rate was fixed to 0.25 with 4 bi-directional encoder-decoder
layers. Other hyper-parameters were kept the same according
to the registered model configurations of fairseq library. We
kept the name of the registered architectures of fairseq for
reproducibility. The training continued up to 70 epochs for
each model and the best model was chosen according to the
validation loss.

Table II provides the overall macro average F-measure as
well as those of slot labels for all models on the I2B2 test set
(see Figure 1 for the meaning of each slot label). The upper
part of the table contains the results of the standard supervised
models: LSTM, CNN and Transformer. To deal with OOV and
vocabulary size, most of these models has been tried with BPE
leading to four models (more have been evaluated but were
not reported due to lack of space).

It is clear that the simple LSTM with attention is difficult to
beat since it got the highest F-measure for all slots. This might
be due to the narrow domain and the lack of training data. For
the same reason, using BPE does not bring any improvement.
CNN and Transformer in NLP has been applied to domains
with large training datasets. In this particular low-resource
task, they failed to be efficient.

Use of pre-trained embeddings leads to diverse perfor-
mances. bert-base-uncased did not succeed in special-
izing enough while bert-fused only reached compara-
ble performances with standard supervised methods. Again,
the lack of data might explain these low performance of
the general purpose pre-trained models. However, Blue Bert
(bluebert-base-uncased) which has been specifically
pre-trained on medical documents (PubMed and MIMIC)
reached the best F-measure (88%) and was particularly per-
forming for the labels frequency (f) and reason (r) which are
known to be particularly difficult.

corpus α β γ δ F1 m do mo f du r
mimic-bpe 1 0.1 1 0.1 0.55 0.83 0.77 0.79 0.75 0.37 0.39

mimic-no-bpe 1 0.1 1 0.1 0.64 0.92 0.88 0.90 0.85 0.47 0.46

i2b2-bpe 1 0.1 1 0.1 0.73 0.90 0.88 0.89 0.87 0.46 0.42
i2b2-no-bpe 1 0.1 1 0.1 0.74 0.91 0.89 0.91 0.87 0.43 0.44

TABLE III
F-MEASURE OF THE SEMI-SUPERVISED MODELS ON THE I2B2 TEST SET

USING THE SIMPLE LSTM MODEL ARCHITECTURE.

Regarding the semi-supervised experiments, they have been
based on the best simple LSTM from the supervised models.
The results are presented table III. The values α, β, γ and
δ have been fine tuned empirically. When MIMIC is used as
unpaired data, the overall results are disappointing. This is due
to the fact that MIMIC and I2B2 are still too divergent. When
the unannotated I2B2 dataset is used as unpaired data instead
of MIMIC, the performance increased. This is due to a good
match between the training data and the test data. However, the
performance does not reach the supervised one. Thus, it seems
that for the task, using a pre-annotator like MedExtractor is
more efficient than the semi-supervised strategy. However, for
languages were such an extractor does not exist, the semi-
supervised represents a good alternative.

Table IV summarizes the best results and compare them
with the current state-of-the-art. We can see that a simple bi-
LSTM model gives competitive results. Our BlueBert based
pre-trained model beats the Tao et al. [6] model by a short
margin. However, it is important to note that Tao et al. [6]
used a larger set of human annotated training data whereas
our approach only used automatically annotated ones. Further-
more, the BlueBert model shows great capability to extract the
reason slot which has been reported as the most difficult to
treat in the I2B2 challenge.

V. DISCUSSION AND FUTURE WORK

This paper presents a comprehensive evaluation of the
state-of-the-art seq2seq models with and without pre-trained
embeddings in a supervised and semi-supervised setting. The

System F1 m do mo f du r
Guzman et al. [18] 0.76 0.78 0.81 0.78 0.82 0.19 -

Tao et al. [6] 0.87 0.93 0.94 0.95 0.94 0.68 0.48
LSTM 0.78 0.94 0.92 0.93 0.89 0.49 0.50

bluebert-base 0.88 0.92 0.88 0.95 0.91 0.46 0.61
TABLE IV

F-MEASURE OF OUR TWO BEST MODELS AND THE TWO THE
STATE-OF-THE-ART MODELS ON THE I2B2 TEST SET.



experiments show that even with limited training data, super-
vised seq2seq models seems to get high slot-label prediction
performance for the medical extraction task. The impact of
a pre-trained model on medical documents (here BlueBert)
has proven to be particularly effective in handling the lexical
rich slots such as the reason and frequency concepts which are
among the hardest to extract in the I2B2 2009 dataset [1]. The
interest of such pre-trained models are in-line with other recent
research in BioNLP. For the supervised learning experiments
our BlueBert model reach a f-measure of 88% in line with
the current state-of-the-art method [6] (f-measure=87%) which
used more annotated data and a complex semi-supervised
pipeline. For the semi-supervised experiments, the results did
not reach the state-of-the-art but the findings suggest that the
unsupervised data were either too different from the test set
or too small. Nevertheless, in case of low-resources settings,
the approach could provide reasonable performances.

Future work includes how to better select and filter the
unpaired datasets so that it is less noisy, closer to the target
dataset and contains the most difficult cases (e.g., reason).
Furthermore, we plan to extend this work to non-English data
which are by far less resourced [31] and thus would benefit
more from an unsupervised setting. Finally, an ongoing future
work is using this approach to develop medical prescription
recognition from spoken utterances [32]. This would have
many applications, from harvesting large amount of spoken
clinical data, to building medical assistants on smartphones.
These applications would increase traceability in health care
centers and could reduce the number of medication errors.
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