
HAL Id: hal-03252526
https://hal.science/hal-03252526

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Perturbatively conserved higher nonlocal integral
invariants of free-surface deep-water gravity waves

André Neveu

To cite this version:
André Neveu. Perturbatively conserved higher nonlocal integral invariants of free-surface deep-water
gravity waves. Physics of Fluids, 2021, 33 (3), pp.032105. �10.1063/5.0039868�. �hal-03252526�

https://hal.science/hal-03252526
https://hal.archives-ouvertes.fr


Perturbatively 
onserved higher nonlo
al integral invariants

of free-surfa
e deep-water gravity waves
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Francea)

(Dated: November 2020)

We exhibit a set of six explicit higher nonlocal integral invariants of free-surface deep-water gravity waves conserved

in lowest nontrivial orders of perturbation in the amplitude of the surface displacement.

I. INTRODUCTION

Inviscid irrotational deep-water gravity waves in one di-

mension are a much studied subject in mathematical physics.

In 1968, in his pionneering work, Zakharov1 showed that

in a certain well-defined approximation the envelope of a

travelling wave satisfies the non-linear Schrödinger equation,

which is integrable. A vast literature has followed, which it

is impossible to review in this paper. Beyond its conceptual

simplicity, a large part of the appeal of the general problem

of inviscid irrotational deep-water gravity waves in one

dimension comes from the fact that in some sense it seems to

come close to integrability2–4.

Here, by choosing a convenient set of dynamical variables,

we give explicit expressions for six previously unknown

nonlocal integral invariants beyond energy and momentum,

conserved in lowest orders of perturbation in powers of

the vertical displacement of the surface. In the linearized

approximation two of them generalize momentum and energy

conservation with higher spatial derivatives.

In section II we show that the velocity potential at the rest

altitude z = 0, U (x,z = 0, t) ≡ U(x, t) together with the sur-

face position η(x, t) of the fluid are convenient variables to

study the Euler equations5 and their conservation laws in per-

turbation. With these fundamental variables we give perturba-

tive expansions of U (x,z, t) and its z derivative at the surface

where the stream function associated with U (x,z, t) is intro-

duced and will play an important rôle

V (x,z, t) =−
1

π

∫ +∞

−∞

x− x′

(x− x′)2 + z2
U(x′, t)dx′ .

In section III we give a few mathematical formulas involv-

ing several principal value integrals which are necessary to

derive the conservation of the nonlocal integral invariants.

In section IV we present these nonlocal integral invariants,

beginning with generalizations of energy and momentum, and

new ones using V (x,z = 0, t) ≡ V (x, t) already in the lowest

order, linear approximation, of the equations of motion.

In the discussion, section V, we comment on the connection

with the conjectured integrability of the Euler equations and

on the analogy with the ϕ4 model in two dimensions.

a)Electronic mail: andre.neveu@umontpellier.fr.

II. PERTURBATIVE EXPANSION OF THE EULER

EQUATIONS FOR GRAVITY WAVES

The velocity field with horizontal component u(x,z, t) and

vertical component v(x,z, t) of an incompressible inviscid

fluid of unit mass per unit volume in the gravity field g sat-

isfies the Euler equations of motion5

ut + uux + vuz =−px

vt + uvx + vvz =−g− pz (1)

with p the pressure field.

We consistently restrict ourselves to irrotational motions.

In such a motion, the velocity field u(x,z, t), v(x,z, t) derives

from a velocity potential U (x,z, t)

u = ∂xU , v = ∂zU .

and U is a harmonic function of x and z

∂x U = ∂z V , ∂z U =−∂x V .

In an infinitely deep fluid, at z → −∞ the boundary condi-

tion is U → 0 and at the surface

v(x,η(x, t), t)− u(x,η(x, t), t)ηx(x, t) = ηt(x, t) .

The equations of motion can be derived from the La-

grangian

L =
1

2

∫ +∞

−∞
dx

∫ η

−∞
(U 2

x +U
2

z )dz−
1

2
g

∫ ∞

−∞
η2dx

+

∫ ∞

−∞
dxλ

[

ηt −Uz

(

x,η(x)
)

+Ux

(

x,η(x)
)

ηx

]

(2)

together with the boundary condition U → 0 at x → ±∞.

λ (x, t) is the Lagrange multiplier which imposes the bound-

ary condition at the surface.

One finds that λ (x, t) = U
(

x,η(x), t
)

satisfies these equa-

tions, which then write:

∂ 2
x U + ∂ 2

z U = 0 ,

∂tλ +Ux

(

x,η(x)
)

∂xλ −
1

2

[

Ux

(

x,η(x)
)2

+Uz

(

x,η(x)
)2
]

+ gη = 0. (3)

The harmonic function U (x,z, t) can be recovered for

all z < 0 from its value at z = 0 which we call U(x, t) by the

formula

U (x,z, t) =−
z

π

∫ +∞

−∞

U(x′, t)

(x− x′)2 + z2
dx′ (4)
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and its z-derivative is then

−
∂ U (x,z)

∂ z
=

1

π

∫ +∞

−∞
U(x′)

(x− x′)2 − z2

(

(x− x′)2 + z2
)2

dx′

.

We shall also use the harmonic stream function V (x,z, t)
by

V (x,z, t) =−
1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + z2
U(x′)dx′

for z < 0 so that U + iV is a function of x+ iz and V (x,0, t) is

given by a principal value integral which we call V (x, t). One

has then

∂ U (x,z)

∂x
=

∂ V (x,z)

∂ z

∂ U (x,z)

∂ z
=−

∂ V (x,z)

∂x

and as z → 0−, ∂z U (x,z) is given by the principal value inte-

gral

lim
ε→0

1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + ε2
Ux′(x

′)dx′ =−
∂ V (x)

∂x

.

Equation (4), valid for z < 0, does not mean that U (x,z) is

odd in z, but around z = 0 it can be expanded in powers of z as

U (x,z) =U(x)− zVx(x)−
1

2
z2Uxx(x)+

1

6
z3Vxxx(x)+O(z4).

(5)

From this, one obtains the perturbative expansion of λ by

setting z = η(x) in this equation.

The usual Hamiltonian, kinetic plus potential energies, is

H =
1

2

∫ +∞

−∞
dx

∫ η(x)

−∞
(U 2

x +U
2

z )dz+
1

2
g

∫ ∞

−∞
η2dx

.

Using the equations of motion and the boundary conditions,

one finds that this can be reduced to an integral over x only,

to give the following expression for the total energy of the

motion in terms of the dynamical variables at the surface:

E1 =

∫ +∞

−∞

[1

2
U

(

x,η(x)
)

Uz

(

x,η(x)
)

−
1

2
U

(

x,η(x)
)

Ux

(

x,η(x)
)

ηx(x)+
1

2
gη(x)2

]

dx (6)

and for the canonical total momentum we have

P1 =
∫ +∞

−∞
λ (x)ηx(x)dx =

∫ +∞

−∞
dx

∫ η(x)

−∞
Uxdz. (7)

In the linearized approximation, the equations of motion

reduce to

λt(x, t) =Ut(x, t) =−gη(x, t), (8)

ηt(x, t) = lim
ε→0

1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + ε2
Ux′(x

′)dx′ (9)

so that for a plane wave exp(i(kx − ωt)) one recovers the

usual dispersion law ω2 = g|k|.

III. MATHEMATICAL FORMULAS

When expanding in perturbation the equation of motion (3)

for λ and the boundary condition at the surface

ηt(x, t)−Uz

(

x,η(x), t
)

+Ux

(

x,η(x), t
)

ηx(x, t) = 0, (10)

one encounters products of several principal value integrals

the evaluation of some of which can be found in textbooks on

the Hilbert transform, for example

lim
ε1→0,ε2→0

∫ +∞

−∞

x− x′

(x− x′)2 + ε2
1

x− x′′

(x− x′′)2 + ε2
2

dx. (11)

This is straighforward by contour integration at infinity in

the complex plane, and in the limit of the epsilons going to

zero gives π2δ (x′− x′′).
Here are other useful identities which can be obtained eas-

ily by the same method. For clarity we have not mentioned

explicitly that in these identities all the epsilons are indepen-

dent from one another, and that they are just there to remind

us that we are actually dealing in the end with principal value

integrals.

x− x′

(x− x′)2 + ε2

x− x′′

(x− x′′)2 + ε2
=

x− x′

(x− x′)2 + ε2

x′− x′′

(x′− x′′)2 + ε2

+
x− x′′

(x− x′′)2 + ε2

x′′− x′

(x′′− x′)2 + ε2
+π2δ (x− x′)δ (x− x′′), (12)

x− x′

(x− x′)2 + ε2

x− x′′

(x− x′′)2 + ε2
=

1

2

x− x′

(x− x′)2 + ε2

x′− x′′

(x′− x′′)2 + ε2
+

π2

2
δ (x− x′)δ (x′− x′′) (13)

when this second equation is multiplied by an expression symmetric in x and x′′, and
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∫ +∞

−∞

x− x′

(x− x′)2 + ε2

x− x′′

(x− x′′)2 + ε2

x− x′′′

(x− x′′′)2 + ε2
dx = π2

( x′− x′′

(x′− x′′)2 + ε2
δ (x′− x′′′)

+
x′′− x′′′

(x′′− x′′′)2 + ε2
δ (x′′− x′)+

x′′′− x′

(x′′′− x′)2 + ε2
δ (x′′′− x′′)

)

. (14)

IV. NEW CONSERVED QUANTITIES

In many known integrable one-space-one-time dynamical

systems, the higher conserved quantities appear in the weak

field limit as bilinear expressions involving higher derivatives

of the dynamical variables which generalize energy and mo-

mentum densities. For deep-water waves it is first natural to

start with such generalizations. In lowest order the first gen-

eralization of momentum conservation would thus be

P2 =

∫ +∞

−∞
λx(x)ηxx(x)dx (15)

and the first generalization of energy conservation would be

E2 =

∫ +∞

−∞

[1

2
Ux

(

x,η(x)
)

Uxz

(

x,η(x)
)

+
1

2
gηx(x)

2
]

dx.

(16)

We shall come back later in this section to the extension of

these two quantities to higher orders, and first explore another

route towards new conserved quantities.

The canonical energy (6) involves Uz(x,0) which is given

by a principal value integral in terms of the variables λ and η .

So, it is natural to look for other quantities which would

be conserved already in lowest order and would similarly

involve nonlocal expressions in terms of λ and η .

In the weak field limit, from (8) and (9, one has

∂t V (x, t) =−
1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + z2

(

−gη(x′, t)
)

dx′ (17)

so that
∫ +∞

−∞
∂t V (x, t)η(x, t)dx =

−
1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + ε2
η(x, t)

(

−gη(x′, t)
)

dxdx′ (18)

vanishes by antisymmetry in x and x′, and

∫ +∞

−∞
V (x, t)∂t η(x, t)dx =−

∫ +∞

−∞
V (x, t)∂x V (x, t)dx = 0

(19)

Hence, rather trivially, in the weak field limit

∫ +∞

−∞
V (x)η(x)dx (20)

is time independent. In next order, considering the equation

of motion (3) for λ and the expansion in powers of z (5),

it is more convenient to replace U(x) by λ in the definition

of V (x). In the remainder of this section, we adopt this new

starting point:

V (x) =− lim
ε→0

1

π

∫ +∞

−∞

x− x′

(x− x′)2 + ε2
λ (x′)dx′. (21)

One must use the identities of the previous section to reduce

the cubic terms of the time derivative of (20) with this new

definition of V , and one finds that they can be cancelled by a

rather simple cubic addition:

d

dt

∫ +∞

−∞

[

V (x)η(x)+
1

2
η(x)2λx(x)

]

dx (22)

vanishes at third order in the surface variables.

We have pushed the calculation to next order, where it be-

comes much more involved, and found that

d

dt

∫ +∞

−∞

[

V (x)η(x)+
1

2
η(x)2λx(x)−

1

2π

∫ +∞

−∞

(x− x′)2 − ε2

(

(x− x′)2 + ε2
)2

η(x′)2η(x)Ux(x)dx′ (23)

−
1

2π
η(x)2

∫ +∞

−∞
dx′

x− x′

(x− x′)2 + ε2

(

ηx′(x
′)Ux(x)−ηx(x)Ux′(x

′)
)

]

dx (24)

vanishes at fourth order. In this expression, the limit ε → 0 is

of course understood.

As the order increases, the number of derivatives increases,

and of course also the number of ways to distribute them

among the various perturbative quantities, beyond what
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seems tractable by hand.

Considering the relative simplicity of this new conserved

quantity (20), we try starting points with higher derivatives

in it, analogous to the generalizations of energy (16) and mo-

mentum (15):

∫ +∞

−∞
Vx(x)ηx(x)dx. (25)

For this quantity we have found that at third order in the

dynamical variables

d

dt

∫ +∞

−∞
dx
[

Vx(x)ηx(x)−
1

2
η(x)2λxxx(x)−

1

π

∫ +∞

−∞

(x− x′)

(x− x′)2 + ε2
η(x)ηx′x′(x

′)Vx(x)dx′

−
2

π

∫ +∞

−∞
dx′ηx(x)Vx(x)

x− x′

(x− x′)2 + ε2
ηx′(x

′)
]

(26)

vanishes.

We have even managed to treat a case with two more derivatives:

∫ +∞

−∞
Vxx(x)ηxx(x)dx. (27)

In the time derivative of this expression, we found that at third order four different terms are involved, which we list:

η(x)Vx(x)U5x(x), ηx(x)Vx(x)U4x(x),ηxx(x)Vx(x)Uxxx(x), ηxxx(x)Vx(x)Uxx(x). (28)

An expression whose time derivative could cancel these terms is found to be of the form

Aη(x)2U5x(x)+Bηx(x)
2Uxxx(x)+C ηxx(x)

2Ux(x)+DUxxx(x)Uxx(x)Vx(x)+EU4x(x)Ux(x)Vx(x)

+F η(x)Vx(x)
(x− x′)

(x− x′)2 + ε2
η4x′(x

′)+Gηx(x)Vx(x)
(x− x′)

(x− x′)2 + ε2
ηx′x′x′(x

′)

+H ηxx(x)Vx(x)
(x− x′)

(x− x′)2 + ε2
ηx′x′(x

′)+ J ηxxx(x)Vx(x)
(x− x′)

(x− x′)2 + ε2
ηx′(x

′). (29)

The time derivative of this involves five more terms:

η4x(x)Vx(x)Ux(x), ηxx(x)
2ηx(x), η4x′(x

′)
(x− x′)

(x− x′)2 + ε2
Ux(x)

2
,

ηx′x′(x
′)

(x− x′)

(x− x′)2 + ε2
Uxx(x)

2
, ηx(x)ηx′′x′′(x

′′)ηx′x′(x
′)

(x− x′)

(x− x′)2 + ε2

(x− x′′)

(x− x′′)2 + ε ′2
. (30)

So, to have conservation at third order, we arrive at a system of nine equations in nine unknowns, which has a unique solution:

A =
1

2
, B = 1, C = 1, D =−

6

g
, E =

3

g
, F =−

1

π
, G =−

5

π
, H =−

15

π
, J =−

9

π

.

There is still another relatively simple candidate for a new

conservation law: The starting point (20) which is bilinear

in U and η looks like the momentum (7) also bilinear in U

and η . It is natural then to investigate the conservation of a

quantity which would resemble energy (6). Indeed, one finds

immediately that to leading, bilinear, order

∫ +∞

−∞
dx
[1

2
λx(x)

2 +
g

2π

∫ +∞

−∞
dx′η(x)

(x− x′)

(x− x′)2 + ε2
ηx′(x

′)
]

(31)

is conserved.

In next, trilinear order, the time derivative of this expression

gives the relatively simple cubic terms

∫ +∞

−∞
dx

[

−
1

2
Vx(x)

2λxx(x)− gη(x)ηxx(x)Vx(x)

+
g

π

∫ +∞

−∞
dx′η(x)Ux(x)

(x− x′)

(x− x′)2 + ε2
ηx′x′(x

′)
]

. (32)

To cancel this, one finds rapidly that one may have to add

to (31) no less than five terms
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∫ +∞

−∞
dx

[

Aηx(x)
2η(x)+Bηx(x)Ux(x)Vx(x)+C η(x)Uxx(x)Vx(x)

+D

∫ +∞

−∞
ηx(x)

(x− x′)

(x− x′)2 + ε2
ηx′(x

′)
(x′− x′′)

(x′− x′′)2 + ε2
η(x′′)dx′dx′′+E

∫ +∞

−∞
ηx(x)

(x− x′)

(x− x′)2 + ε2
ηx′(x

′)Ux′(x
′)2dx′

]

. (33)

One obtains five equations in five unknowns, whose unique

solution is

A = 0, B =−1, C = 0, D =−
g

π2
, E =−

1

2π
.

Let us now come to the generalizations to higher derivatives

of energy E2 (16) and momentum P2 (15).

The time derivative of E2 involves seven terms at trilinear

order:

VxxUxUxx, VxU
2
xx, η2

x Uxx, η2U4x,

Vx(x)η(x)
(x− x′)

(x− x′)2 + ε2
ηx′x′x′(x

′),

Vx(x)ηx(x)
(x− x′)

(x− x′)2 + ε2
ηx′x′(x

′),

Vx(x)ηxx(x)
(x− x′)

(x− x′)2 + ε2
ηx′(x

′). (34)

There are precisely seven terms whose time derivatives can

cancel these:

AηxxU
2
x +BηU2

xx +C ηxxV
2
x +DηV 2

xx +E η(x)2 (x− x′)

(x− x′)2 + ε2
ηx′x′x′(x

′)

+F ηx(x)
2 (x− x′)

(x− x′)2 + ε2
ηx′(x

′) +GVx(x)Uxx(x)
(x− x′)

(x− x′)2 + ε2
ηx′(x

′), (35)

and the cancellation occurs for the following values:

A =−
1

8
, B =

5

8
, C =−

3

8
, D =

1

8
, E =−

g

8π
, F =−

19g

8π
, G =

3

2π
.

The conservation of P2 (15) at third order is relatively sim-

ple. One finds:

∂t(λxηxx) =−
3

2
ηxV

2
xx +

3

2
ηxU

2
xx

(up to total derivatives, of course) and we have found that this

can be cancelled by adding just two trilinear terms:

∂t

[

λxηxx −
3

π
ηx(x)Uxx(x)

(x− x′)

(x− x′)2 + ε2
ηx′(x

′)−
3

2
η2

x Vxx

]

vanishes at third order up to total derivatives.

In next order, for E2 as well as for P2 there are up to

seven derivatives to be shared between η , V , U raised to var-

ious powers, not to mention one or two principal values, and

it seems that some formal manipulation software would be

needed to arrive at a reliable conclusion.

V. DISCUSSION

Craig and Worfolk3, and Dyachenko, Lvov and Zakharov4

had given rather convincing evidence that at fifth order in

the surface displacement the Euler equations (1) are not

integrable. However, a more recent publication6 has revived

the conjecture of integrability by studying the analytic

structure, poles and cuts, of the complex velocity potential

in the upper half-plane above the free surface, using a new

non-canonical Hamiltonian structure of the Euler equations7.

In this publication, new conserved quantities are found. How

they could relate to those presented here goes beyond the

scope of this paper. An argument for or against integrability

could come out of a fifth-order calculation of our six new

quantities which could show whether they can or cannot be

made time-independent.

An analogy can be made with the relativistic ϕ4 theory in

1+1 dimensions
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ϕtt −ϕxx +ϕ −
1

6
ϕ3 = 0 (36)

as a low-amplitude, not integrable8, approximation of the in-

tegrable sine-Gordon equation

ϕtt −ϕxx + sinϕ = 0. (37)

In both systems the total momentum is conserved of course:

d

dt

∫ +∞

−∞
ϕxϕt dx = 0,

and when trying a generalization with more derivatives as in

our equation (15), one finds that

d

dt

∫ +∞

−∞

[

ϕxxϕxt +
1

8

(

ϕ3ϕxt −ϕ3
t ϕx −ϕ3

x ϕt

)

]

dx

vanishes in this quartic approximation in ϕ , but not beyond,

where the higher-order terms of the expansion of the sine are

necessary to achieve conservation. These approximate con-

servation laws could explain the long persistence of coherent

structures in deep-water waves in our case and why approxi-

mate breathers, weak solutions of (36), can be relevant in con-

densed matter physics9.
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