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Introduction

Within the framework of the research carried out into the subject of arrow logic, arrows may be considered as abstract objects equipped with the ternary relation of composition C, the binary relation of converse R and the unary relation of identity I. Intuitively speaking C(x, y, z) means that arrow x is a composition of arrows y and z, R(x, y) means that arrow x is a converse of arrow y and I(x) means that arrow x is an identity arrow. In this approach arrows have no explicitly stated internal structure, seeing that one uses arrow frames of the form (W, C, R, I) where W is a nonempty set of arrows, C is a ternary relation on W , R is a binary relation on W and I is a unary relation on W . These frames constitute the semantical basis of a propositional modal logic with the binary modality •, the unary modality ⊗ and the nullary modality id corresponding to the relations of composition, converse and identity between arrows. Venema [START_REF] Venema | A crash course in arrow logic[END_REF] gives an extensive introduction to this approach.

Another approach is possible and consists in considering arrows as concrete objects with a beginning and an end. In this approach arrows have an explicitly stated internal structure, for the simple reason that one uses arrow frames of the form (Ar, P o, f ) where Ar is a nonempty set of arrows, P o is a nonempty set of points and f is a function from Ar × {1, . . . , n} to P o. Intuitively speaking f (x, 1) defines the beginning point of arrow x, f (x, 2), . . ., f (x, n -1) define the intermediate points of arrow x and f (x, n) defines the end point of arrow x. Using the function f one can define the following binary relations between arrows: for all i, j ∈ {1, . . . , n}, let xR(i, j)y iff f (x, i) = f (y, j). These binary relations explore the different possibilities for two arrows to share points and are used as the semantical basis of a propositional modal logic with the unary modalities [π i,j ] corresponding to the binary relations R(i, j) between arrows. The first propositional modal logic of this type is introduced by Vakarelov [START_REF] Vakarelov | A modal theory of arrows: arrow logics I[END_REF][START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF] who shows that the interest to consider the binary relations R(i, j) between arrows stems from the fact that the first-order conditions which characterize them are modally definable. In other respects it appears that, in the particular case where n = 2, the relations of composition, converse and identity have simple definitions in terms of the relations R(i, j): C(x, y, z) iff xR(1, 1)y, xR(2, 2)z and yR(2, 1)z, R(x, y) iff xR(1, 2)y and xR(2, 1)y, I(x) iff xR(1, 2)x. Moreover, in the general case where n ≥ 3, one may consider the extension of arrow logic with the modalities [π i ] corresponding to the intersection of the binary relations R(j, j) for all j ∈ {1, . . . , n} such that i = j. However neither the modalities •, ⊗ and id, in the particular case where n = 2, nor the modalities [π i ], in the general case where n ≥ 3, are definable in terms of the modalities [π i,j ]. Nevertheless these modalities are definable in a dynamic extension of arrow logic. Our dynamic extension of arrow logic is an iteration-free propositional dynamic logic with intersection, the atomic programs of which correspond to the binary relations R(i, j) between arrows. This paper is devoted to its complete axiomatization. Our deductive systems contain an unorthodox inference rule: the inference rule of intersection. The proof of the completeness of our deductive systems uses the technique of the canonical model. The plan of the paper is as follows. Arrow structures and arrow frames are introduced in section 2. Section 3 presents the basic arrow logic as well as some of its extensions. The iteration-free propositional dynamic logic with intersection is presented in section 4. Our dynamic extension of arrow logic uses the concepts defined in section 3 and section 4. It is introduced and developed in section 5.

Arrow structures and arrow frames

Adapted from Vakarelov [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF], an arrow structure will be any structure of the form S = (Ar, P o, f ) where: Proposition 2 (Characterization theorem for arrow frames) Let F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame. There is an arrow structure S = (Ar, P o, f ) such that the arrow frame F S = (W S , {R S (i, j): i, j ∈ {1, . . . , n}}) derived from S is isomorphic to F . Moreover, if F is normal then S is normal.

Proposition 2 suggests defining propositional modal logics with standard interpretation in arrow frames.

Basic arrow logic

The most natural way to define propositional modal logics with standard interpretation in arrow frames is to extend the language of propositional classical logic with the modalities [π i,j ] corresponding to the binary relations R(i, j). The first propositional modal logics of this type were given by Vakarelov [START_REF] Vakarelov | A modal theory of arrows: arrow logics I[END_REF] in the particular case where n = 2 and Vakarelov [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF] in the general case where n ≥ 3.

Syntax

The set of all formulas is defined as follows:

-φ ::= p | ⊥ | (φ → ψ) | [π i,j ]φ;
where p ranges over a countably infinite set of propositional variables and i, j range over the set {1, . . . , n}. We will use φ, ψ, χ, etc, for formulas. It is well worth noting that each formula is a finite string of symbols, these symbols coming from a countable alphabet. It follows that there are countably many formulas. Other connectives are introduced by the usual abbreviations. We shall agree to use the most readable notation for formulas. This permits us to adopt the standard rules for omission of the parentheses.

Semantics

The standard semantics for this language is a Kripke-style semantics over arrow frames. Let F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame. A function V with domain the set of all propositional variables and range the set of all subsets of W will be defined to be a valuation on F . The pair M = (F, V ) is called the model over F defined from V . We define the relation "formula φ is true at arrow x in model M ", denoted M, x |= φ, as follows:

-M, x |= p iff x ∈ V (p); -M, x |= ⊥; -M, x |= φ → ψ iff if M, x |= φ then M, x |= ψ; -M, x |= [π i,j ]φ iff for all y ∈ W , if xR(i, j)y then M, y |= φ.
Formula φ is true in model M , denoted M |= φ, if for all x ∈ W , M, x |= φ. Formula φ is true in arrow frame F , denoted F |= φ, if φ is true in all models over F . Formula φ is true in a set Σ of arrow frames, denoted Σ |= φ, if φ is true in all arrow frames of Σ. The set of all formulas true in a set Σ of arrow frames is denoted L(Σ). Let us introduce the following sets of arrow frames:

-ARROW n is the set of all arrow frames; -ARROW n N OR is the set of all normal arrow frames; -ARROW n F IN is the set of all finite arrow frames; -ARROW n F IN N OR is the set of all finite normal arrow frames.

Axiomatization

Let BAL n be the smallest normal logic that contains the axioms given below:

T(i) φ → π i,i φ; B(i,j) φ → [π i,j ] π j,i φ; 4(i,j,k) π i,j π j,k φ → π i,k φ.
A formula φ is called provable in BAL n , denoted BAL n φ, if φ belongs to BAL n .

Completeness

The proof of the following completeness theorem for BAL n uses general techniques that can be found in most elementary texts.

Theorem 3 (Completeness theorem for BAL n ) Let φ be a formula. The following conditions are equivalent:

-BAL n φ; -φ ∈ L(ARROW n ); -φ ∈ L(ARROW n N OR); -φ ∈ L(ARROW n F IN ); -φ ∈ L(ARROW n F IN N OR).
Completeness theorem for BAL n was first shown by Vakarelov [START_REF] Vakarelov | A modal theory of arrows: arrow logics I[END_REF] in the particular case where n = 2 and Vakarelov [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF] in the general case where n ≥ 3.

Extensions of basic arrow logic

The language of our propositional modal logics can be extended in different ways. In the particular case where n = 2, we can think of a set of arrows as a device which produces an output for any input. Then, for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}), the following operations on sets of arrows are defined for all subsets σ, τ of W :

Composition: σ•τ = {x: x ∈ W and there are y, z ∈ W such that xR(1, 1)y, xR(2, 2)z, yR(2, 1)z, y ∈ σ and z ∈ τ }; Converse: ⊗σ = {x: x ∈ W and there is y ∈ W such that xR(1, 2)y,
xR(2, 1)y and y ∈ σ};

Identity: id = {x: x ∈ W and xR(1, 2)x}.
Within this context, it is natural to consider the extension of BAL 2 with the modalities •, ⊗ and id corresponding to the operations of composition, converse and identity on sets of arrows in arrow frames. To be more precise, the set of all formulas of the extended language is defined as follows:

-

φ ::= p | ⊥ | (φ → ψ) | [π i,j ]φ | (φ • ψ) | ⊗φ | id;
where the semantics of the new modalities is defined as follows:

-M, x |= φ • ψ iff there is y, z ∈ W such that xR(1, 1)y, xR(2, 2)z, yR(2, 1)z, M, y |= φ and M, z |= ψ; -M, x |= ⊗φ iff there is y ∈ W such that xR(1, 2)y, xR(2, 1)y and M, y |= φ; -M, x |= id iff xR(1, 2)x.
The extension of BAL 2 with the modalities •, ⊗ and id has been considered by Arsov [START_REF] Arsov | Completeness theorems for some extensions of arrow logic[END_REF], Arsov and Marx [START_REF] Arsov | Basic arrow logic with relation algebraic operators[END_REF] and Marx [START_REF] Marx | Algebraic relativization and arrow logic[END_REF]. In the general case where n ≥ 3, Vakarelov [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF] has considered the extension of BAL n with the modalities [π i ] corresponding for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}) to the intersection of the binary relations R(j, j) on W for all j ∈ {1, . . . , n} such that i = j. Formally, the set of all formulas of the extended language is defined as follows:

-φ ::= p | ⊥ | (φ → ψ) | [π i,j ]φ | [π i ]φ;
where the semantics of the new modalities is defined as follows:

-M, x |= [π i ]φ iff for all y ∈ W , if xR(j, j)y for all j ∈ {1, . . . , n} such that i = j, then M, y |= φ.

Let us be clear that neither the modalities •, ⊗ and id, in the particular case where n = 2, nor the modalities [π i ], in the general case where n ≥ 3, are modally definable in the basic language of arrow logic. However, these modalities will become definable in our dynamic extension of arrow logic, an iteration-free P DL with intersection the atomic programs of which correspond for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}) to the binary relations R(i, j).

Iteration-free P DL with intersection

Propositional dynamic logic, P DL, is a polymodal logic with the following operations in the set of modalities:

-Composition α; β: sequential execution of programs α and β corresponding to the composition of the accessibility relations R(α) and R(β); -Disjunction α ∨ β: nondeterministic choice of programs α and β corresponding to the union of R(α) and R(β); -Iteration α : nondeterministic iteration of program α corresponding to the transitive closure of R(α); -Test φ?: an operation transforming the formula φ into a program φ? corresponding to the partial identity relation in the states of the P DL-models where the formula φ is true.

Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF] were the first to propose a complete axiomatization of iteration-free P DL with intersection, an extension of the iteration-free fragment of P DL with the following operation in the set of modalities:

-Intersection α ∧ β: conjunction of programs α and β corresponding to the intersection of R(α) and R(β).

The question of the complete axiomatization of iteration-free P DL with intersection lies outside the scope of this paper. However we present the line of reasoning suggested by Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF], because we will follow the same line of reasoning with respect to the complete axiomatization of our dynamic extension of arrow logic.

Syntax

We now give a formal definition of the syntax of iteration-free P DL with intersection, P DL ∩ 0 . The set of all formulas and the set of all programs of the language of P DL ∩ 0 are defined as follows:

-

φ ::= p | ⊥ | (φ → ψ) | [α]φ; -α ::= π | (α; β) | (α ∨ β) | (α ∧ β) | φ?;
where p ranges over a countably infinite set of propositional variables and π ranges over a countable set of atomic programs. We will use α, β, γ, etc, for programs. The method developed by Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF] uses a special inference rule, the inference rule of intersection. For its definition, the concept of admissible form will be of use to us. Each admissible form has a positive integer as a rank and the definition of admissible forms is by induction on the rank. Let the syntax be extended with a new propositional variable . If α( ?) is a program with a unique occurrence of the test ? as a part of it then for all formulas φ, α(φ?) will denote the program obtained as the result of the replacement of the propositional variable in its place in α( ?) with the formula φ. The admissible forms are defined as follows:

-For all programs α( ?) with a unique occurrence of the test ? as a subprogram, α( ?) is an admissible form of rank 0; -For all positive integers a, for all programs α( ?) with a unique occurrence of the test ? as a subprogram, for all admissible forms β( ?) of rank a and for all formulas φ with no occurrence of the propositional variable as a part of it, α(¬[β( ?)]φ?) is an admissible form of rank a + 1.

Note that each admissible form α( ?) contains a unique occurrence of the test ? as a part of it. What is more, test ? occurs as a subprogram of admissible form α( ?) only if α( ?) is of rank 0.

Semantics

The standard semantics for the language of P DL ∩ 0 uses the concept of P DLframe, i.e., structures of the form F = (W, R) where W is a nonempty set of states and R is a function with domain the set of all atomic programs and range the set of all binary relations on W . A function V with domain the set of all propositional variables and range the set of all subsets of W will be called valuation on F . We shall say that the pair M = (F, V ) is the P DL-model over F defined from V . The relation "formula φ is true at state x in P DL-model M ", denoted M, x |= φ, is inductively defined as follows:

-M, x |= p iff x ∈ V (p); -M, x |= ⊥; -M, x |= φ → ψ iff if M, x |= φ then M, x |= ψ; -M, x |= [α]φ iff for all y ∈ W , if xR(α)y then M, y |= φ;
where the binary relations R(α) on W corresponding to the modalities [α] reflect the intended meanings of programs α:

-R(π) = R(π); -R(α; β) = R(α) • R(β); -R(α ∨ β) = R(α) ∪ R(β); -R(α ∧ β) = R(α) ∩ R(β); -R(φ?) = {(x, x): M, x |= φ}.
Formula φ is true in P DL-model M , denoted M |= φ, if for all x ∈ W , M, x |= φ. Formula φ is true in P DL-frame F , denoted F |= φ, if φ is true in all P DL-models over F . Formula φ is true in a set Σ of P DL-frames, denoted Σ |= φ, if φ is true in all P DL-frames of Σ. The set of all formulas true in a set Σ of P DL-frames is denoted L(Σ). Let P DL be the set of all P DL-frames.

Axiomatization

The axiomatic system for P DL ∩ 0 developed by Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF] is the smallest normal logic in the language of P DL ∩ 0 that contains all the instances of the following axiom schemata:

-α; β φ ↔ α β φ; -α ∨ β φ ↔ α φ ∨ β φ; -α ∧ β φ → α φ ∧ β φ; -α ∧ (β ∨ γ) φ ↔ α ∧ β φ ∨ α ∧ γ φ; -φ? ψ ↔ φ ∧ ψ;
and is closed under the following inference rule:

-If for all propositional variables p,

P DL ∩ 0 [α(¬( β (φ ∧ p) ∨ γ (φ ∧ ¬p))?)]ψ then P DL ∩ 0 [α(¬ β ∧ γ φ?)]ψ;
where α( ?) is an admissible form. Following standard usage, P DL ∩ 0 φ means that φ is a theorem of P DL ∩ 0 . The inference rule of intersection is similar in some sense to the inference rules considered by Goranko [START_REF] Goranko | Axiomatizations with context rules of inference in modal logic[END_REF] and Venema [START_REF] Venema | Derivation rules as anti-axioms in modal logic[END_REF]. It is based on the following idea. Although intersection of programs is not definable in ordinary quantifier-free polymodal logics, intersection of programs becomes definable in polymodal logics with quantification over propositional variables. In the language of P DL ∩ 0 , the inference rule of intersection simulates this definition of the operation of intersection. We conclude this section by the soundness theorem of P DL ∩ 0 .

Theorem 4 (Soundness theorem of P DL ∩ 0 ) Let φ be a formula. If P DL ∩ 0 φ then φ ∈ L(P DL). [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF].

PROOF. See Balbiani and Vakarelov

Completeness

We now want to see that every formula true in the set of all P DL-frames is provable in P DL ∩ 0 . The general technique of the canonical model has to be modified in many details for our situation, for the simple reason that P DL ∩ 0 is closed for the inference rule of intersection, an infinitary rule of inference. In this respect, Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF] introduced the concept of theory. Following the line of reasoning suggested by Goldblatt [START_REF] Goldblatt | Axiomatising the Logic of Computer Programming[END_REF][START_REF] Goldblatt | Mathematics of Modality[END_REF] within his framework for infinitary modal logic, a set S of formulas is said to be a theory if it satisfies the following conditions:

-If P DL ∩ 0 φ then φ ∈ S; -If φ ∈ S and φ → ψ ∈ S then ψ ∈ S; -If for all propositional variables p, [α(¬( β (φ ∧ p) ∨ γ (φ ∧ ¬p))?)]ψ ∈ S then [α(¬ β ∧ γ φ?)]ψ ∈ S;
where α( ?) is an admissible form, i.e., a theory is any set of formulas that contains every formula provable in P DL ∩ 0 and is closed under the inference rule of modus ponens and the inference rule of intersection. We will use S, T , U , etc, for theories. A theory S is called consistent if ⊥ ∈ S. By a maximal theory we mean a consistent theory S such that for all formulas φ, φ ∈ S or ¬φ ∈ S. The method of the canonical model uses the following important lemma.

Lemma 5 (Lindenbaum's lemma for P DL ∩ 0 ) Let S be a consistent theory. There is a maximal theory T such that S ⊆ T . [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF].

PROOF. See Balbiani and Vakarelov

The canonical frame for P DL ∩ 0 is the P DL-frame F c = (W c , R c ) where W c is the set of all maximal theories and R c is the function with domain the set of all atomic programs and range the set of all binary relations on W c such that for all atomic programs π and for all maximal theories S, T , SR c (π)T iff [π]S = {φ: [π]φ ∈ S} ⊆ T . The canonical model for P DL ∩ 0 is the P DL-model over F c defined from the valuation V c on F c such that for all propositional variables p, V c (p) = {S: p ∈ S}. The next lemma is the fundamental lemma for canonical models.

Lemma 6 (Truth lemma for P DL ∩ 0 ) Let φ be a formula. For all maximal theories S, the following conditions are equivalent:

-M c , S |= φ; -φ ∈ S.
PROOF. For normal modal logics such as K, T , S4, etc, the proof of the truth lemma can be done by induction on the complexity of φ. To prove the truth lemma for P DL ∩ 0 , we have to use in parallel an additional induction. This additional induction involves the new concept of maximal program. Like maximal theories, which are special sets of formulas, maximal programs are special sets of programs, with a precise definition that lies outside the scope of this paper. The interested reader is invited to consult the paper of Balbiani and Vakarelov [START_REF] Balbiani | Iteration-free P DL with intersection: a complete axiomatization[END_REF] for details.

We are now ready for the completeness theorem of P DL ∩ 0 .

Theorem 7 (Completeness theorem of P DL ∩ 0 ) Let φ be a formula. If φ ∈ L(P DL) then P DL ∩ 0 φ.

PROOF. By lemmas 5 and 6.

We have no idea whether the resort to the inference rule of intersection is necessary. In other words, we do not know whether the set of all formulas true in the set of all P DL-frames is finitely axiomatizable by an orthodox derivation system or not. Orthodox completeness results for a syntactically restricted version of P DL ∩ 0 in which programs are built up from atomic programs by means of the operations of composition and intersection are given in [START_REF] Balbiani | A new proof of completeness for a relative modal logic with composition and intersection[END_REF][START_REF] Balbiani | Complete axiomatization of a relative modal logic with composition and intersection[END_REF]. The completeness proof treated in Balbiani [START_REF] Balbiani | A new proof of completeness for a relative modal logic with composition and intersection[END_REF] draws from the subordination method of Hughes and Cresswell [START_REF] Hughes | A Companion to Modal Logic[END_REF] whereas Balbiani and Fariñas del Cerro [START_REF] Balbiani | Complete axiomatization of a relative modal logic with composition and intersection[END_REF] base their line of reasoning on a suitable modification of the mosaic method of Marx and Venema [START_REF] Marx | Multi-Dimensional Modal Logic[END_REF]. Both arguments consist in a step-by-step method for constructing irreflexive models. This brings us to the question of whether the proofs in [START_REF] Balbiani | A new proof of completeness for a relative modal logic with composition and intersection[END_REF][START_REF] Balbiani | Complete axiomatization of a relative modal logic with composition and intersection[END_REF] can be extended in the presence of tests, a question that remains unsolved, although [START_REF] Balbiani | Orthodox axiomatization of iteration-free P DL with intersection[END_REF] brings new ideas that may lead to a positive answer. Additional topics related to P DL ∩ 0 , which space does not permit us to discuss in depth, include the decidability/complexity issue of the satisfiability problem. Decidability of the satisfiability problem for P DL with intersection -P DL ∩ -is proved in Danecki [START_REF] Danecki | Non-deterministic propositional dynamic logic is decidable[END_REF], but it is not known at present whether the upper bound of deterministic exponential-time obtained for P DL in [START_REF] Pratt | A near-optimal method for reasoning about actions[END_REF] carries over to P DL ∩ . Hence, the satisfiability problem for P DL ∩ 0 is decidable. However, there is no known results concerning its inherent complexity. The intersection operator is also investigated in Harel [START_REF] Harel | Recurring dominoes: making the highly undecidable highly understandable[END_REF] which gives the proof that the satisfiability problem for P DL ∩ is undecidable if the semantics is modified so as to refer only to deterministic programs variables.

Dynamic extensions of arrow logic

In this section, we shall suppose that the set of atomic programs is equal to the set {π i,j : i, j ∈ {1, . . . , n}}, these atomic programs corresponding for all arrow frames F = (W, {R(i, j): i, j ∈ {1, 2}}), to the binary relations R(i, j). A number of constructs can be defined from them such as the constructs •, ⊗ and id considered in [START_REF] Arsov | Completeness theorems for some extensions of arrow logic[END_REF][START_REF] Arsov | Basic arrow logic with relation algebraic operators[END_REF][START_REF] Marx | Algebraic relativization and arrow logic[END_REF] or the constructs π i considered in [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF].

Syntax

The language of BAL n P DL ∩ 0 is obtained from the language of P DL ∩ 0 by supposing that the set of atomic programs is equal to the set {π i,j : i, j ∈ {1, . . . , n}}. Hence, the set of all formulas and the set of all programs of the language of BAL n P DL ∩ 0 are defined as follows:

-

φ ::= p | ⊥ | (φ → ψ) | [α]φ; -α ::= π i,j | (α; β) | (α ∨ β) | (α ∧ β) | φ?;
where p ranges over a countably infinite set of propositional variables and i, j range over the set {1, . . . , n}. What gives our language its interest is the possibility of defining modalities that are not definable in the language of basic arrow logic. To illustrate the truth of this, one can consider formulas like (π 1,1 ; φ?; π 2,1 ) ∧ π 2,2 ψ, π 1,2 ∧ π 2,1 φ and π 1,2 ∧ ? , in the particular case where n = 2, or formulas like [π 1,1 ∧ . . . π i-1,i-1 ∧ π i+1,i+1 ∧ . . . ∧ π n,n ]φ, in the general case where n ≥ 3. The former formulas correspond to the formulas φ • ψ, ⊗φ and id considered by Arsov [START_REF] Arsov | Completeness theorems for some extensions of arrow logic[END_REF], Arsov and Marx [START_REF] Arsov | Basic arrow logic with relation algebraic operators[END_REF] and Marx [START_REF] Marx | Algebraic relativization and arrow logic[END_REF] whereas the latter formulas correspond to the formulas [π i ]φ considered by Vakarelov [START_REF] Vakarelov | Many-dimensional arrow structures: arrow logics II[END_REF].

Semantics

The standard semantics for this language is a Kripke-style semantics over arrow frames. Let F = (W, {R(i, j): i, j ∈ {1, . . . , n}}) be an arrow frame, V be a valuation on F and M = (F, V ) be the model over F defined from V . We define the relation "formula φ is true at arrow x in model M ", denoted M, x |= φ, as follows:

-

M, x |= p iff x ∈ V (p); -M, x |= ⊥; -M, x |= φ → ψ iff if M, x |= φ then M, x |= ψ; -M, x |= [α]φ iff for all y ∈ W , if xR(α)y then M, y |= φ;
where the binary relations R(α) on W corresponding to the modalities [α] reflect the intended meanings of programs α:

-R(π i,j ) = R(i, j); -R(α; β) = R(α) • R(β); -R(α ∨ β) = R(α) ∪ R(β); -R(α ∧ β) = R(α) ∩ R(β); -R(φ?) = {(x, x): M, x |= φ}.
The notions of truth in a model, truth in an arrow frame and truth in a set of arrow frames are those defined in the section devoted to basic arrow logic. As a result, L(ARROW n ) and L(ARROW n N OR) will respectively denote the set of all formulas true in the set of all arrow frames and the set of all formulas true in the set of all normal arrow frames.

Axiomatization

What we have in mind is to propose complete axiomatic systems for L(ARROW n ) and L(ARROW n N OR). Concerning the axiomatization of L(ARROW n ), let BAL n P DL ∩ 0 be the smallest normal logic in our extended language that contains all the instances of the following axiom schemata:

-φ → π i,i φ; -φ → [π i,j ] π j,i φ; -π i,j π j,k φ → π i,k φ; -α; β φ ↔ α β φ; -α ∨ β φ ↔ α φ ∨ β φ; -α ∧ β φ → α φ ∧ β φ; -α ∧ (β ∨ γ) φ ↔ α ∧ β φ ∨ α ∧ γ φ; -φ? ψ ↔ φ ∧ ψ;
and is closed under the following inference rule:

-If for all propositional variables p,

BAL n P DL ∩ 0 [α(¬( β (φ ∧ p) ∨ γ (φ ∧ ¬p))?)]ψ then BAL n P DL ∩ 0 [α(¬ β ∧ γ φ?)]ψ;
where α( ?) is an admissible form. Concerning the axiomatization of L(ARROW n N OR), let BAL n P DL ∩ 0 N OR be the smallest normal logic in our extended language that contains BAL n P DL ∩ 0 together with all the instances of the following axiom schema:

-φ → [π 1,1 ∧ . . . ∧ π n,n ]φ.
Seeing that the axiomatic system BAL n P DL ∩ 0 is obtained by adding the ax-iomatization of P DL ∩ 0 to the axiomatization of BAL n , soundness of BAL n P DL ∩ 0 is easy to check. Seeing that the schema φ → [π 1,1 ∧ . . . ∧ π n,n ]φ modally defines ARROW n N OR within ARROW n , soundness of BAL n P DL ∩ 0 N OR follows immediately.

Theorem 8 (Soundness theorem of BAL n P DL ∩ 0 ) Let φ be a formula. If

BAL n P DL ∩ 0 φ then φ ∈ L(ARROW n ).
Theorem 9 (Soundness theorem of BAL n P DL ∩ 0 N OR) Let φ be a formula. If BAL n P DL ∩ 0 N OR φ then φ ∈ L(ARROW n N OR).

Completeness

Following the line of reasoning suggested in the proof of the completeness theorem of P DL ∩ 0 , the method of the canonical model can be used to demonstrate that every formula true in the set of all arrow frames is provable in BAL n P DL ∩ 0 and every formula true in the set of all normal arrow frames is provable in BAL n P DL ∩ 0 N OR. Let L be either BAL n P DL ∩ 0 or BAL n P DL ∩ 0 N OR. The proof of the Lindenbaum's lemma for L is similar to the proof of the Lindenbaum's lemma for P DL ∩ 0 .

Lemma 10 (Lindenbaum's lemma for L) Let S be a consistent theory. There is a maximal theory T such that S ⊆ T .

The canonical frame for L is the structure of the form F c = (W c , {R c (i, j): i, j ∈ {1, . . . , n}}) where W c is the set of all maximal theories and for all i, j ∈ {1, . . . , n}, R c (i, j) is the binary relation on W c such that for all maximal theories S, T , SR c (i, j)T iff [π i,j ]S = {φ: [π i,j ]φ ∈ S} ⊆ T . The canonical model for L is the model over F c defined from the valuation V c on F c such that for all propositional variables p, V c (p) = {S: p ∈ S}. The proof of the truth lemma for L is similar to the proof of the truth lemma for P DL ∩ 0 .

Lemma 11 (Truth lemma for L) Let φ be a formula. For all maximal theories S, the following conditions are equivalent:

-M c , S |= φ; -φ ∈ S.
Using the schemata φ → π i,i φ, φ → [π i,j ] π j,i φ and π i,j π j,k φ → π i,k φ, the reader may easily verify that for all maximal theories S, T, U :

-[π i,i ]S ⊆ S; -If [π i,j ]S ⊆ T then [π j,i ]T ⊆ S; -If [π i,j ]S ⊆ T and [π j,k ]T ⊆ U then [π i,k ]S ⊆ U .
Hence, the canonical frame for L is an arrow frame. To see that the canonical frame for BAL n P DL ∩ 0 N OR is normal, we first need a useful lemma concerning the inference rule of intersection. Theorem 13 (Completeness theorem of BAL n P DL ∩ 0 ) Let φ be a formula. If φ ∈ L(ARROW n ) then BAL n P DL ∩ 0 φ. Theorem 14 (Completeness theorem of BAL n P DL ∩ 0 N OR) Let φ be a formula. If φ ∈ L(ARROW n N OR) then BAL n P DL ∩ 0 N OR φ. Again, it is not known whether there exists a sound and complete orthodox proof system capable of dealing with either BAL n P DL ∩ 0 or BAL n P DL ∩ 0 N OR. Similarly, the decidability of the satisfiability problem for either BAL n P DL ∩ 0 or BAL n P DL ∩ 0 N OR is still open.

Conclusion

In this paper we have presented deductive systems for BAL n P DL ∩ 0 and BAL n P DL ∩ 0 N OR which explore the following idea: although intersection of binary relations is not definable in the ordinary language of modal logic it becomes definable in a modal language strengthened by the introduction of propositional quantifiers. The one drawback is that our deductive systems use an unorthodox inference rule: the inference rule of intersection. The interesting question of course is to know whether the use of this unorthodox inference rule is essential or not. In other words it is of the utmost importance to determine whether the unorthodox inference rule of intersection can be replaced with a recursively enumerable set of axioms, a question that remains unsolved.

Lemma 12

 12 Let α, β be programs. For all maximal theories S, T , the following conditions are equivalent:-[α ∧ β]S ⊆ T ; -[α]S ⊆ T and [β]S ⊆ T . PROOF. Suppose [α ∧ β]S ⊆ T , we demonstrate [α]S ⊆ T and [β]S ⊆ T . If [α]S ⊆ T then there is a formula φ such that φ ∈ [α]S and φ ∈ T . Consequently, [α]φ ∈ S. Hence, [α ∧ β]φ ∈ S. It follows that φ ∈ [α ∧ β]S. Since [α ∧ β]S ⊆ T , then φ ∈ T , a contradiction. As a conclusion, [α]S ⊆ T . The proof that [β]S ⊆ T is similar. Suppose [α]S ⊆ T and [β]S ⊆ T , we demonstrate [α∧β]S ⊆ T . If [α∧β]S ⊆ T then there is a formula φ such that φ ∈ [α ∧ β]Sand φ ∈ T . It follows that ¬φ ∈ T . In order to show that [¬ α ∧ β ¬φ?]⊥ ∈ S, we take an arbitrary propositional variable p. Obviously, ¬φ∧p ∈ T or ¬φ∧¬p ∈ T . Since [α]S ⊆ T and [β]S ⊆ T , then α (¬φ ∧ p) ∈ S or β (¬φ ∧ ¬p) ∈ S. Thus, α (¬φ ∧ p) ∨ β (¬φ ∧ ¬p) ∈ S and [¬( α (¬φ ∧ p) ∨ β (¬φ ∧ ¬p))?]⊥ ∈ S. Seeing that S is closed under the inference rule of intersection, therefore [¬ α ∧ β ¬φ?]⊥ ∈ S and ¬[α∧β]φ ∈ S. Consequently, [α∧β]φ ∈ S and φ ∈ [α∧β]S, a contradiction. As a conclusion, [α ∧ β]S ⊆ T . To infer that the canonical frame for BAL n P DL ∩ 0 N OR is normal, let S, T be maximal theories such that [π 1,1 ]S ⊆ T , . . ., [π n,n ]S ⊆ T , we demonstrate S = T . Since [π 1,1 ]S ⊆ T , . . ., [π n,n ]S ⊆ T , then, by the lemma above, [π 1,1 ∧ . . . ∧ π n,n ]S ⊆ T . Seeing that the schema φ↔ [π 1,1 ∧ . . . ∧ π n,n ]φ is provable in BAL n P DL ∩ 0 N OR, therefore [π 1,1 ∧ . . . ∧ π n,n ]S = S. Since [π 1,1 ∧ . . . ∧ π n,n ]S ⊆ T , then S = T . From all this, the completeness theorem of BAL n P DL ∩ 0 and the completeness theorem of BAL n P DL ∩ 0 N OR easily follow.
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