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ABSTRACT 8 

Indoor light can be used as a new energy source to power µW low consumption wireless sensor 9 

networks (WSNs), but for wireless electronic devices consuming tens of mW, it is still challenging. 10 

The challenge comes from the low level of irradiance and from the several kinds of source 11 

combinations varying in time (multi-spectral direct, reflective, and scattered mix of artificial and 12 

natural light). This article describes a simple and reliable method that provides a model-based 13 

evaluation of the harvestable energy from any real indoor light environment. This method uses ‘real 14 

condition’ indoor light spectral measurements with a spectrometer as well as ‘controlled condition’ 15 

optoelectrical characteristics of the photovoltaic solar cells. The model-based evaluation of the 16 

harvestable energy has been compared with real microsource prototypes based on commercial 17 

photovoltaic cells powering commercial wireless e-ink display (more than 10 mW consumption 18 

averaged on a day). In this article, we show that it is possible to evaluate the harvestable energy, for 19 

several days of indoor light exposure, with an error lower than 6 %. Our method, with such an 20 

accuracy range, will be a helpful tool to assist engineers and researchers in designing light energy 21 

harvesting systems and more generally could find wide application in the growing IoT ecosystem.  22 

 23 

ARTICLE INFO 24 
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1. Introduction 26 

The number of low-power wireless devices is increasing significantly, and as a result, there is more 27 

and more research focusing on new ways to supply energy to these devices (Mathúna et al., 2008). 28 

Indeed, the growth in energy demand induced by this new field of application poses unprecedented 29 

challenges to provide the energy needed to operate these devices (Mathews et al., 2019). It also 30 

requires a review of how this energy is supplied and produced while minimizing its economic and 31 

environmental impact. One practical approach investigated for this purpose is harvesting light energy 32 

from the surroundings of the device. Past research has proven the viability of this approach in outdoor 33 

environments (Shaikh and Zeadally, 2016). In an indoor environment, where radiated levels are low, 34 
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light energy harvesting has been identified as an effective method to provide enough power to low-35 

power electronic systems such  36 

as wireless sensor networks (Matiko et al., 2014). Moreover, harvesting energy from light has  37 

demonstrated its capability as a means to achieve battery-free applications (Brunelli et al., 2009; Wang  38 

et al., 2016). 39 

 40 

However, when it comes to considering energy harvesting for indoor applications, the difficulty in 41 

characterizing the harvestable power becomes substantial. Even though Standard Test Conditions 42 

(STC) from IEC 60904-3 are not entirely representative of the behavior of photovoltaic (PV) 43 

converters in real-life conditions, it is still a practical way to compare them. As for indoor conditions, 44 

the situation is somewhat different. The existing standards ISO 8995:2002 and CIE S 008/E define the 45 

level of luminosity required depending on the task associated with a workplace. The unit of this 46 

appropriate luminosity level is given in a semi-empirical unit of measure called lux. The lux (or lumen 47 

per m²) value �� is given by the following equation: 48 
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 �� H +,! I �λ GλJ  Kλ , (1) 

where Gλ is a function related to the human eye’s cones sensitivity to light (shown in Fig. 1) also called 49 

the photopic luminosity function, �λ is the irradiance and +,! is a coefficient called maximum spectral 50 

efficiency, defined as 686 lux.W-1.m-2 in such a way that irradiance of 1000 W.m-2 in standard 51 

condition (AM 1.5G) corresponds to 100 klux.  52 

Nevertheless, when considering how much energy could be harvested from PV converters, the first 53 

issue arises: the luminosity in lux is not a reliable quantification of the incident harvestable power 54 

(Wang et al., 2010). Indeed, as an example, Fig. 1 presents the emission spectra from 3 different light 55 

sources: i) the natural light through a window, ii) a compact fluorescent light (CFL), and iii) a light-56 

emitting diode (LED). The three spectra have been measured with a commercial calibrated 57 

spectroradiometer, the StellarRAD from StellarNet Inc., equipped with a CR2 cosine receptor with a 58 

wavelength range from 350 nm to 1100 nm, adapted to indoor environments. Spectra are set to obtain 59 

a 1000 lux illuminance level, giving three different levels of irradiance for each light source: 7 W.m-2 60 

for natural light through the window, 3 W.m-2 for the CFL source, and 4 W.m-2 for the LED source. 61 

 62 

Fig. 1. Typical 1000 lux single source indoor environment light spectra: a 3000K LED bulb (in blue), a 2700K 63 

CFL bulb (in yellow), and natural light through a window (in red). In green, the luminosity function Gλ used to 64 

establish the illuminance level (lux). 65 

In addition, there is a second problem. In the case of real indoor lighting, the incident radiation is a 66 

time-varying mixture of multiple natural and artificial direct, reflective, and scattered sources: it has to 67 

be taken into account to have a reliable estimation of the photovoltaic cell performance based on real 68 

indoor light illumination (Li et al., 2015; Ma et al., 2017; Minnaert and Veelaert, 2014a; Sacco et al., 69 

2013). Finally, the third issue is technological. Indeed, the PV converters are non-ideal devices 70 

connected to a non-ideal electrical storage device via a non-ideal power management integrated circuit 71 

(PMIC) devices. It means that the electrical energy received by the final consumer device is 72 

technology dependent and should be far from the standard theoretical Shockley-Queisser (SQ) limit 73 
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model predictions (Shockley and Queisser, 1961), whatever the relaxing assumption of the SQ model 74 

taken into account (Guillemoles et al., 2019). In the last few years, many researchers have been 75 

focused on overcoming these challenges to reach a reliable valuation of the harvestable surrounding 76 

low light energy, for example by optimizing the one diode photovoltaic model parameter or new 77 

experimental methods for indoor applications (Bader et al., 2019; Fajardo Jaimes and Rangel de 78 

Sousa, 2017; Ma et al., 2020; Masoudinejad et al., 2016). But in each of these studies, only the case of 79 

controlled mono artificial sources is considered.  80 

In this article, we present a methodology that allows estimating the harvestable energy from any 81 

real indoor varying light environment. The first part will present a standard model based on SQ and 82 

compare it to some usual real-life PV converters. The second part will present a calculation model 83 

based on experimental data focusing mainly on a commercial flexible thin-film Gallium-Arsenide 84 

(GaAs) PV solar cell from Alta Devices Inc. (Kayes et al., 2011) under several controlled single 85 

sources of light. Finally, the third part will present an energy harvesting system prototype based on the 86 

GaAs solar cell, working for several days in real varying indoor environments. It is to be noted that 87 

this prototype is the micro source of a classic wireless e-ink wifi connected device, with an average 88 

power consumption of around 10 mW. 89 

2. The Shockley-Queisser limit theoretical model adapted to indoor light energy harvesting 90 

During the last decade, several studies have been conducted to compare the performance of different 91 

PV technologies under controlled artificial indoor light single sources (Apostolou et al., 2016; 92 

Carvalho and Paulino, 2014; De Rossi et al., 2015; Kasemann et al., 2014; Li et al., 2015; Minnaert 93 

and Veelaert, 2014b; Müller et al., 2009). Trying to face the complex task of choosing the best 94 

technology to use when dealing with indoor light-harvesting, there is an attractive approach that 95 

consists in applying the SQ limit model. This model gives the theoretical maximum conversion 96 

efficiency ηCD for an ideal semiconductor single-junction solar cell at any theoretical bandgap: 97 

 
��M��N H OPQRSTRQRSUURS
VWX  , (2) 

with 789 the incident power depending on the spectrum composition, %Y��� the ideal SQ open-circuit 98 

voltage of the PV converter, ����� the ideal SQ short circuit current and ���� the ideal SQ fill-factor. In 99 

the case of an ideal semiconductor, the short-circuit current equals the photocurrent �'(��, which is 100 

related to the number of incident photons carrying more energy than the bandgap ��: 101 

 ����� H �'(�� H Z I Φ',λ Kλλ[  , (3) 

Where Φ',λ is the incident photon flow at each optical wavelength λ, Z the elementary electric 102 

charge, and λ� the wavelength corresponding to the considered bandgap ��. 103 
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The ideal SQ fill factor ���� can be found following the semi-empirical model from Green’s 104 

approximation (Green and Hall, 1982): 105 

 ��\� H ]Z%^_\�
*` − b4 cZ%^_\�

*` + 0.72ij
cZ%^_\�

*` + 1i
 (4) 

with * being the Boltzmann’s constant and ` the device’s temperature. The PV cell open-circuit 106 

voltage %Y� can be defined by the following equation, in the case of an ideality factor 4 equal to 1: 107 

 %Y��� H #l
m × b4 oTpqRS

TrRS + 1s. (5) 

Finally, the ideal theoretical dark current density saturation � �� in a single junction is given by 108 

(Shockley and Queisser, 1961) and (Müller et al., 2013): 109 

 � �� H Zt 2u*`�vwx $�� + *`&xyz�[#l  (6) 

with t the active surface area of the PV converter, � the Planck’s constant, and w the speed of light in 110 

vacuum. 111 

This SQ model is mostly known for having predicted the famous limit efficiency of 33 % for an 112 

ideal bandgap around 1.14 eV under the standard (AM 1.5G) sun radiation (Shockley and Queisser, 113 

1961). However, it can also be applied to any kind of spectra like one of the indoor light 114 

environments (Müller et al., 2013). For example, Fig. 2(a) shows the result of the SQ model when 115 

applied to typical indoor environments, identical to those in Fig. 1, each with an illuminance of 1000 116 

lux. As expected, theoretical efficiencies depend on the spectrum composition and on the fact that the 117 

ideal bandgap changes from one single source to another. As a result of this application of the SQ 118 

model, for any indoor light, the model gives theoretical efficiency much higher than the solar STC 119 

AM1.5G spectrum. In the case of a CFL source, with a theoretical semiconductor with a bandgap 120 

around �� H 1.95 eV, an efficiency as high as 
��M��N = 54 % is predicted. 121 

To compare the SQ limit theory to experimental measurement, a commercial source-meter unit 122 

(SMU), 2450 from Keithley, has been used to measure �����$%&: the current density-voltage 123 

characteristics of different PV converters made of different technologies: hydrogenated amorphous 124 

silicon (a-Si:H) solar cell (panel) from Xiamen Mars Rock Science Technology Co., a gallium-arsenide 125 

(GaAs) mono-junction flexible PV solar cell from Alta Devices Inc. (Kayes et al., 2011), and a 126 

polycrystalline silicon (pc-Si) solar cell from SEEEDSTUDIO, in controlled indoor single source 127 

environments, with different levels of irradiance. The results of the measured fill-factor ������ 128 

extracted from the �����$%& curves, as well as the ���� are plotted in Fig. 2(b). 129 
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 130 

Fig. 2. (a) Theoretical maximum conversion efficiency 
��M��N of a single ideal p-n junction based on the SQ 131 

model for different single sources: CFL, LED, and natural light through a window. Dots are the measured 132 

efficiency of different PV converters technology under CFL and LED at around 500 lux. (b) Experimentally 133 

measured Fill-factor ������  of commercial solar cells (GaAs, a-S:H and pc-Si) and their evolution versus 134 

LED light intensity. As a comparison, an ideal solar cell ���� based on the SQ model is shown in plain black.   135 

The efficiency conversion of the different commercial PV converters technologies is, as expected, 136 

different in real conditions from what has been theoretically predicted by the SQ model. It is mostly 137 

attributed to several losses, such as shadowing, series and shunt resistance, ideality factor, optical 138 

absorption, semiconductor quality, low mobility, small minority carrier lifetime, and the PV 139 

converters’ fill-factors and thus efficiencies decreasing at low light intensity (Randall and Jacot, 2003). 140 

Indeed, �'(�� varies linearly with the light intensity (3), %Y���
 depends on �'(�� (5) and ��\�depends on 141 

%Y���
 (4). As an example, the theoretical fill-factor based on the SQ model is shown in Fig .2(b) for a 142 

theoretical bandgap corresponding to the standard technologies for indoor application (a-Si:H, pc-Si, 143 

and GaAs) and illuminance (from 100 to 1000 lux) with a LED single source. When comparing the 144 

experimental results of three commercial PV converters while varying the light intensity of a LED 145 

bulb, it can be seen that the fill-factor decreases with lower light intensity, as it is forecast by the 146 

theoretical FF equation, but with a more dramatic decrease. Indeed, the experimental ������ of the 147 

pc-Si cell strongly decreases when reducing the light intensity, mainly due to their too low shunt 148 

resistance (Reich et al., 2009). Thus, as reported previously and exposed in Fig. 2(b), the c-Si 149 

technology is not the most suitable technology for indoor applications, and therefore not a good 150 

candidate for developing a model based on a one-diode photovoltaic model where the �� needs to 151 

vary as little as possible. The a-Si:H and GaAs technologies have a more stable �� from 100 to 1000 152 

lux, which seems ideal for the simple model presented. Nevertheless, the �� of the a-Si:H PV 153 

converter is lower than the GaAs cell, and thus its power conversion efficiency (PCE) 
{y|} tends to 154 

indicate less promising model performance. For indoor applications, especially when dealing with 155 
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consumer devices with an average consumption of 10 mW, a technology that does not suffer from a 156 

low level of light, but also that has a �� and a PCE close their ideal value is needed. As seen in Fig. 157 

2(b), only the GaAs cells have demonstrated such good performances, with a measured �� closer to 158 

the �� of the Shockley-Queisser model of an ideal solar cell than other considered cells: this is not 159 

surprising since III-V solar cells are known to be among the most efficient cells, even under low 160 

indoor light conditions (Mathews et al., 2016). This difference in performance is mainly due to the 161 

known fact that the carrier mobility is high and the lifetime long in GaAs devices (Kayes et al., 2011), 162 

that the series resistance is low enough, and the shunt resistance high enough to avoid deviation of the 163 

FF, even in a low light environment. In conclusion, the fact that the experimental ��{y|} is almost 164 

constant under an illuminance ranging from 100 to 1000 lux considerably simplifies the theoretical 165 

calculation of the output power of a GaAs PV cell from any spectrum, by safely applying the 166 

superposition model, even at a low light intensity.  167 

The next paragraph will describe a methodology based on the superposition model to predict the 168 

extractable energy from the GaAs thin-film solar cell, whatever the real indoor light source 169 

environment.  170 

3. A calculation model of indoor light energy harvesting based on a one-diode photovoltaic model 171 

The method is based on the combination of the results from three measurements: i) the light 172 

environment spectrum (which is fluctuating in time), ii) the external quantum efficiency (���) of the 173 

PV cell (unchanging intrinsic values) and iii) the measurement of the current density-voltage �!�"#����$%& 174 

characteristic in the dark (unchanging intrinsic values). This simple methodology allows us to consider 175 

the primary deviations from the SQ model: a real ��� instead of an ideal one over the whole range of 176 

the spectra, and a real J��������$V& curve, which takes into account the real “shape”(��& of the current 177 

density -voltage �$%& characteristic, including the parasitic series =� and shunt =�( resistances as well 178 

as the ideality factor 4, which can vary from 1 to 2. The spectral response was measured with a 179 

custom-built setup composed of a Xenon lamp, a monochromator equipped with two diffraction 180 

gratings, a filter wheel to remove the higher diffraction orders of radiation, and a lock-in amplifier. The 181 

measurements were calibrated with Si and Ge photodiodes (Thorlabs FDS100-CAL and FDG03-CAL, 182 

respectively) to cover the whole wavelength range of interest. This characterization does not consider 183 

the impact of the solid angle of the radiation. It studies the characteristics of the PV converter with a 184 

photon flow that is normal to its surface. For each wavelength band produced by the source, the current 185 

generated by the characterized PV cell is measured. A known cell is used as a current-generation 186 

reference to establish the EQE of the characterized PV cell by comparison. 187 

In the developed model, the measured ��� is added in (3) to consider the deviation from the SQ 188 

model due to the real external quantum efficiency of the PV cell. The resulting short-circuit current 189 
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density �����   is thus an estimation based on two measurements: the ��� which is fixed for each PV 190 

converter and the spectra Φ',λ fluctuating in time: 191 

 ����� H Z � Φ',λ × ��� Kλλ[
   

. 

(7) 

Now that the spectral response ��� is not ideal anymore but is measured from a real solar cell, the 192 

equation (7) gives an estimated value of the short circuit density current ����� lower than in the ideal 193 

case based on the SQ model (�����). This value depends on the real measured spectra at any given time. 194 

Then, the measured dark current density-voltage curves �!�"#����$%& of the PV converters can be 195 

collected by the SMU 2450 from Keithley, and using the superposition principle (Lindholm et al., 196 

1979; Tarr and Pulfrey, 1980) or more commonly known as the one-diode photovoltaic model, it is 197 

possible to deduce the estimated current density-voltage ��)!$%& model at any given time of the 198 

fluctuating spectra: 199 

 ��)!$%& H �!�"#����$%& + �����   
 

(8) 

As an example, Fig. 3(a) shows the LED spectra of a 300 lux LED 3000K bulb as well as the 200 

measured ��� curve of a GaAs solar cell and the current generation of this cell resulting from its 201 

absorption of the photon flux. In Fig. 3(b), based on the previous ��� curve and the LED spectra and 202 

the �!�"#����$%& curve, the estimated ��)!$%& is shown as well as the measured �����$%&. In this first 203 

example, the current density curve ��)!$%& , estimated from the developed model, is in good 204 

agreement with the experimentally measured �����$%&. In this example, the extracted maximal power 205 

values 7��;�)! and 7��;���� from the model ��)!$%& and measured �����$%&, are 30 µW/cm2 and 206 

31 µW/cm2, respectively, with a difference of about 3 %. 207 

208 

Fig.3. (a) spectra of a 300 lux LED 3000K bulb and the same spectra modulated by the measured external 209 

quantum efficiency of a GaAs solar cell. (b) the �!�"#����$%& curve of the GaAs solar cell in blue dash used to 210 

calculate the expected ��)!$%& based on (8) in orange dash, compared to the experimentally measured �����$%&. 211 
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We have used this method with the same GaAs solar cell under single controlled sources light 212 

environments, for different sources (CFL and LED) at many different levels of indoor irradiance (from 213 

200 lux up to 1000 lux), to verify the reliability of the one-diode photovoltaic model. The 214 

characteristics resulting from the model, ��)!$%& and the 7�)!$%&, are shown in Fig. 4 and compared 215 

to their experimental equivalents, �����$%& and the 7����$%&. The deviation between model results 216 

and the experimental measurements is noticeable but minor. With an average error of less than 3 % 217 

and never exceeding 5 %, considering the numerous experimental bias possible, these results seem 218 

sufficiently accurate to be useful for the calculation of a harvestable power approximation in various 219 

low irradiance indoor environments. 220 

221 

Fig. 4 Comparison between the calculated ��)!-V and the 7�)!-V (plain blue lines) from the one-diode 222 

photovoltaic model and the corresponding experimental characteristics �����-V and the 7����-V (dotted orange 223 

lines) of a GaAs solar cell for different illuminance under (a) a CFL light source and (b) a LED light source. 224 

As stated previously in this paper, the lack of standards to rely on makes studying in the field of 225 

indoor PV more complex. Consequently, it is necessary to find a method to evaluate the produced 226 

energy based on the analysis of a fluctuating mix of natural and artificial light environments. The next 227 

paragraph will demonstrate the reliability of the simple one-diode photovoltaic model described 228 

beforehand to calculate the harvestable energy in real-life indoor conditions, even for several days. 229 

4.  The model applied in real conditions for several days 230 

The ultimate purpose of this study is to establish a model to calculate, as precisely as possible, the 231 

level of harvestable energy in a real indoor environment for an extended period. Therefore, it is 232 

necessary to test the model under real-life conditions, observing the light environment over time to 233 

know the variations in its composition and to compare the calculated results to experimental results. A 234 

complete energy harvesting prototype, shown in Fig. 5, has been developed to validate the developed 235 

model experimentally in real-life environments. This prototype is based on two GaAs thin-film solar 236 

cells providing electrical energy to the energy storage device (here a Lithium-Polymer battery) of a 237 
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consumer device like an e-ink connected device. To extract the maximum power from the solar cells, a 238 

very low consumption commercial power management integrated circuit (PMIC) from e-PEAS has 239 

been placed between the PV cells and the LiPo battery.  240 

 241 

Fig. 5. a) Schematic of the energy harvesting prototype (PV cells + PMIC + LiPo battery) that has been 242 

instrumented by three INA 219 electrical power sensors and two ESP32 microchips to collect the data and send 243 

them to a database. Let’s note there is a specific external power source that allows the acquisition and 244 

transmission of data without affecting the performance of the energy harvester.b) a picture of the described 245 

prototype integrating GaAs solar cells (1), a PMIC : an e-peas ‘EVK10941M’ Mini Evaluation Board based on 246 

the ‘AEM10941’ Solar Energy Harvesting IC (2); a LiPo electrical storage device (3), the e-ink communicating 247 

device to power (4), the INA219 power sensors (5), the ESP32 low cost low power microcontroller chips (6) and 248 

an OLED screen (7). 249 

The used PMIC is based on a max power point tracking (MPPT) algorithm called fractional open-250 

circuit voltage (FOCV). This method relies on getting a sample of the Voc and then applies and holds a 251 

fraction of its value to the PV cells or module (Motahhir et al., 2020). Besides not being the most 252 

performant in casual energy harvesting situations, such an MPPT algorithm has demonstrated its use of 253 

relevance in low light environments (Weddell et al., 2012). Even though this PMIC is adapted for low 254 
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energy harvesting applications, the losses are not negligible. To include these losses in our model, and 255 

to be able to measure the “real” power harvested by the prototype at any time into the LiPo battery, 256 

two voltage and current sensing chips INA219 from Texas Instrument have been inserted between the 257 

PV cells and the PMIC and between the PMIC and the LiPo. Regarding the classical Lithium Polymer 258 

(LiPo) battery whom internal resistance is usually less than 100mΩ, it has no impact in term of losses 259 

when considering the low current level in our application. In addition, a third INA219 has been 260 

inserted between the LiPo battery and the consumer device to monitor its consumption. A set of two 261 

microcontrollers associated with these power sensors allows the acquisition of the power 262 

generation/consumption data from the three INA 219, and their recording on a database in the cloud. 263 

An external power source is used to power the sensors and the microcontrollers.  264 

 265 

The e-peas PMIC Mini Evaluation Board EVK10941M chosen for the prototype uses the fractional 266 

open-circuit voltage (FOCV) algorithm. To extract the maximum power from the PV cells, this PMIC 267 

algorithm can be configured to apply 70%, 75%, 85%, or 90% of their %),. In our application, by 268 

choosing the fraction of 85%, the MPPT losses due to the optimal fraction of %), not being exactly 269 

equal to 85%, are evaluated to be lower than 1% over the whole range of illumination. Regarding the 270 

PMIC losses induced by the classical losses of a buck-boost converter, they can vary from 10% to 20% 271 

depending on the level of illumination. As can be seen in Fig.6, at low light (and low VSRC et low ISRC), 272 

the efficiency of the PMIC is only 80 % while at moderate to high illumination the efficiency is about 273 

90%. From the plot of Fig.6, a regressive equation has been added to our model to include the PMIC 274 

efficiency 
V���. 275 

  276 

Fig. 6. Experimental PMIC efficiency 
V��� depending on ligh intensity. These curve depends on the 277 

experimental set-up , in our case two GaAs solar cell in series , an epeas based PMIC and a single cell LiPo.  278 

Finally, the purpose of the experiment is to compare the harvestable energy calculated by the model 279 

and the real harvested energy measured by the power sensor, the power measurements must be carried 280 

out simultaneously with the spectrometer analysis of the light environment to which the prototype is 281 

exposed. This experiment has been carried out over 21 days. The results of 2 typical days (sunny and 282 
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cloudy days) are shown in Fig.7. While the orange dashed line is the experimental harvested power 283 

stored into the Lithium Polymer battery measured directly by an INA219, the blue line represents the 284 

model calculation results based on one-minute spectra measurement intervals. A qualitative agreement 285 

between the model calculation of power and energy harvesting and the real usable power generated 286 

and energy transferred to the prototype battery can be observed. The mean absolute percentage error 287 

(MAPE) between the model curve and the experimental power curve of each of the 21 days is lower 288 

than 6%. These very good results are comforting the fact that our model and methods are reliable 289 

enough to be an interesting tool for researchers and engineers conceiving indoor micro source elements 290 

for IoT applications or consumer devices. 291 

  292 

 293 

Fig. 7. model’s power density and energy calculations (plain blue) and experimentally measured power-density 294 

and energy (dash orange) generated from the GaAs solar cell in a real-life indoor environment harvested into the 295 

Lithium Polymer storage device for a) a cloudy day and b) a sunny day.  296 

The 6% of error are potentially due to several factors: i) the MPPT losses ii) the LiPo battery losses, 297 

iii) the reliability of the low-cost INA219, iv) the reliability of our model which has been taken as 298 

simple as possible without taking into account potential variation of =�(  and =�  with light intensity, 299 

v) the small effect of temperature in indoor Environnement, vi) and of course the experimental setup. 300 

 301 

These results obtained after 21 days of observation of the office’s real lighting environment show 302 

that the model makes it possible to determine the level of harvestable energy per surface unit quite 303 

accurately, even if there is still room for improvement. It is then possible to determine, based on these 304 

21 days of observation, the harvesting surface area or the number of PV cells required in this 305 

environment to compensate for the energy needs of an electronic device fully. For example, a classical 306 
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wireless e-ink dashboard, as the one used in this study, depending on its size and the significance of its 307 

sleeping mode, consumes about 10 mW on average. In such a case, a preliminary extrapolation shows 308 

that 14x14 cm² of similar solar cells would be sufficient to supply it enough power to make it 309 

energetically autonomous. 310 

5. Conclusion 311 

In summary, the simple model presented applying the superposition principle, based on the 312 

combination of the measured optical EQE and electrical �!�"#����-V of GaAs PV cell in the dark, 313 

combined with the spectral measurements of real-life indoor environments, has demonstrated the 314 

ability to calculate the potentially harvestable energy in the environment that is being studied. Using 315 

an energy-harvesting prototype installed in the environment studied by the spectrometer feeding the 316 

developed model allowed to confront results from the model to actual power and energy harvest. The 317 

confrontation result corroborates the ability of the proposed model to calculate the harvestable energy 318 

with an error lower than 6 % for the 21 days of the test. In a more practical sense, this paper shows 319 

that in real-life indoor environments, a module based on PV cells similar to Alta Devices Inc. GaAs 320 

PV solar cells and smaller than a third of a sheet of paper (A4 format) is enough to make devices 321 

consuming about 10 mW. 322 

We believe that the method presented in this article will be helpful to engineers and researchers 323 

attempting to overcome the various challenges toward the accurate design of energy harvesting 324 

devices in the future. 325 
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