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A hierarchy of modal logicswith relative accessibility relationsPhilippe Balbiani and Ewa Or lowskaLaboratoire d'informatique de Paris-Nord�Institute of Telecommunications, WarsawyAbstractIn this paper we introduce and investigate various classes of multi-modal logics based on frames with relative accessibility relations. Wediscuss their applicability to representation and analysis of incompleteinformation. We provide axiom systems for these logics and we provetheir completeness.1 IntroductionThe original motivation for introducing and investigating modal logicswith relative accessibility relations comes from the theory of informa-tion systems. However, as it is shown in this paper, a number ofstandard multimodal logics can be uniformly presented and investi-gated within the general framework of relative relations as well. In-formation systems are the collections of information items that havethe form of descriptions of some objects in terms of their proper-ties. More formally, by an information system we mean a structureS = (OB;AT; fVALa : a 2 ATg) such that OB is a nonempty set�Philippe Balbiani, balbiani@lipn.univ-paris13.fr, Laboratoire d'informatique de Paris-Nord, Avenue Jean-Baptiste Cl�ement, 93430 Villetaneuse.yEwa Or lowska, orlowska@itl.waw.pl, Institute of Telecommunications, ul. Szachowa1, 04-894 Warsaw. 1



of objects, AT is a �nite nonempty set of attributes, each VALa is anonempty set of values of attribute a. Each attribute is a function a :OB ! P(VALa) that assigns subsets of values to objects. Any seta(x) can be viewed as a set of properties of an object x.For example, if the attribute a is \colour" and a(x) = fgreeng, thenx possesses the property of \being green" ; if a is \age" and x is25 years old, then a(x) = f25g and this means that x possesses theproperty of \being 25 years old" ; if a is \languages spoken" and ifa person x speaks, say, Polish (Pl), German (D) and French (F ),then a(x) = fPl;D; Fg and x possesses the properties of \speakingPolish", \speaking German" and \speaking French". In this settingany set a(x) is referred to as the set of a-properties of object x andits complement V ALa n a(x) is the set of negative a-properties of x.Consider, for example, the �le given below :0BBBBB@ colouro1 greeno2 greeno3 blueo4 blueo5 red 1CCCCCAIn that �le, we have OB = fo1; o2; o3; o4; o5g and AT = fcolourg.Moreover, V ALcolour = fgreen; blue; redg. Suppose that we are in-terested in de�ning a set X = fo2; o3; o4g in terms of informationprovided in the �le. The set might be identi�ed with a concept, say,the concept \beautiful objects". We easily observe that the followingstatement is not true of the given objects : o 2 X i� o is either greenor blue. The reason being that the information that is available in the�le does not enable us to discern between o1 and o2. We observe thatthe attribute \colour" induces a relation in the set of objects (referredto as an indiscernibility relation) that re
ects their indistinguishabilityin terms of colour :� (o; o0) 2 ind(colour) i� colour(o) = colour(o0).This suggests that, given an information system S = (OB;AT; fVALa :a 2 ATg), the properties of objects available in S induce relation-ships among the objects. Typically, these relationships have the formof binary relations. They are referred to as information relations.There are two major groups of information relations : the relations2



that re
ect various forms of indistinguishability of objects in termsof their properties and the relations that express distinguishability ofthe objects. In the following we present few examples of informationrelations. Let A be a subset of the set AT of attributes. The mostfamiliar family of information relations that can be derived from S isthe family of indiscernibility relations :� strong indiscernibility : (o; o0) 2 ind(A) i� a(o) = a(o0) for alla 2 A.These relations are strong indiscernibility relations, they hold betweentwo objects whenever the objects are \the same" with respect to theira-properties for all a 2 A. Clearly, it is also reasonable to considerweak indiscernibility, that is indistinguishability of objects with re-spect to some, not necessarily all the properties :� weak indiscernibility : (o; o0) 2 wind(A) i� a(o) = a(o0) for somea 2 A.Another family of useful information relations is the family of similar-ity relations :� strong (weak) similarity : (x; y) 2 sim(A) (wsim(A)) i� a(x) \a(y) 6= ; for all (some) a 2 A.Indiscernibility and similarity relations exhibit indistinguishability ofobjects. We might also be interested in deriving information aboutdistinguishability. The following are examples of the families of infor-mation relations that re
ect di�erences between the objects :� strong (weak) diversity : (x; y) 2 div(A) (wdiv(A)) i� a(x) 6=a(y) for all (some) a 2 A,� strong (weak) orthogonality : (x; y) 2 ort(A) (wort(A)) i� a(x)\a(y) = ; for all (some) a 2 A,� strong (weak) complementarity : (x; y) 2 com(A) (wcom(A)) i�a(y) is the complement of a(x) with respect to the set VALa,for all (some) a 2 A.An information system constitutes an explicit information availablein an application domain, while information relations are an implicitinformation. These relations enable us to identify some aspects of in-completeness of explicit information.Relational systems consisting of a family of relations on a set are3



referred to as frames. By a frame derived from an information sys-tem S = (OB;AT; fVALa : a 2 ATg) we mean a relational systemKS;R = (OB; fR(A) : A � ATg), where fR(A) : A � ATg is any ofthe families of information relations. Observe that relations in theseframes depend on the subsets of the set AT . In a general setting thesesubsets play the role of parameters which provide a means for repre-senting an intensional part of information included in an informationsystem. From a technical point of view, we deal with families of rela-tions indexed with subsets of a set.Frames with relative accessibility relations have been suggested inOr lowska [20] in the context of a rough set analysis of data, andthey were investigated, among others, in Konikowska [15] [16] andBalbiani [2] [3]. Often we are also interested in studying relation-ships between information relations that belong to di�erent families.Hence, it is also natural to consider frames with families of relationsof di�erent types. A great variety of such frames is studied in theliterature, see for example Demri [5] [6], Demri and Or lowska [7],Or lowska [18] [19] [21] [23] and Vakarelov [25] [26] [27].The motivation for using modal logics for reasoning about informa-tion relations comes from the methods of data analysis in informa-tion systems. In these methods, the modal-like operators are usedin the languages for representation of incomplete information. LetS = (OB;AT; fVALa : a 2 ATg) be an information system. Givena strong indiscernibility relation ind(A), for A being a subset of AT ,and a subset X of OB, the lower A-approximation of X and the upperA-approximation of X are de�ned as follows :� L(A)X = fx 2 OB : for all y 2 OB, if (x; y) 2 ind(A) theny 2 Xg.� U(A)X = fx 2 OB : there is y 2 OB such that (x; y) 2 ind(A)and y 2 Xg.The following hierarchy of de�nability of sets is obtained in a naturalway in terms of the approximations. A subset X of OB is said to be :� A-de�nable if L(A)X = X (or equivalently U(A)X = X).� Roughly A-de�nable if L(A)X 6= ; and U(A)X 6= OB.� Internally A-inde�nable if L(A)X = ;.� Externally A-inde�nable if U(A)X = OB.4



� Totally A-inde�nable if internally A-inde�nable and externallyA-inde�nable.A-de�nability of a set X means that X is the union of some of theequivalence classes of ind(A). In our example L(colour)X = fo3; o4gand U(colour)X = fo1; o2; o3; o4g and we conclude that X is not de-�nable in terms of colour. Clearly, X cannot be covered with theequivalence classes fo1; o2g, fo3; o4g, fo5g of ind(colour). From theperspective of concept analysis any subset of objects in an informa-tion system might be identi�ed with an extension of a concept andany subset of attributes with an intension of a concept.Following the rough set semantics of vague concepts developed inOr lowska [17] and Read [24], we de�ne the sets of A-positive, A-borderline and A-negative instances of a set X of objects as follows :� POS(A)X = L(A)X .� BOR(A)X = U(A)X n L(A)X .� NEG(A)X = OB nU(A)X .Elements of POS(A)X de�nitely, relative to properties correspondingto A, belong to X . Elements of NEG(A)X de�nitely, up to theseproperties, do not belong to X . BOR(A)X is a doubtful region, itselements possibly belong to X , but we cannot decide it for certainconsidering only properties corresponding to A. In other words, asfar as indiscernibility ind(A) is concerned, nothing can be said aboutmembership to X of elements from BOR(A)X .The above analysis suggests that it might be useful to de�ne the op-erators analogous to the lower and upper approximation also with theother information relations. These operators enable us to disclose aninteraction between the information relations and subsets of objects.Let S = (OB;AT; fVALa : a 2 ATg) be an information system andlet fR(A) : A 2 ATg be a family of information relations derived fromS. There are two major groups of operators :� [R(A)]X = fx 2 OB : for all y 2 OB, if (x; y) 2 R(A) theny 2 Xg.� hR(A)iX = fx 2 OB : there is y 2 OB such that (x; y) 2 R(A)and y 2 Xg.Clearly, from the logic point of view they are necessity and possibilityoperators, respectively, and information relations play the role of the5



accessibility relations that determine these modal operators. Hence,modal logics appear to be a natural formal tool for the analysis ofdata. However, to represent adequately all the ingredients of informa-tion provided in an information system, we need to make the accessi-bility relations relative. Since the information relations derived frominformation systems always provide a twofold information, namely,the information which objects are related and the information withrespect to which attributes these objects are related, in an abstractsetting of modal logics we need the relations that are relative to subsetsof a set. In this context, several modal logics have been introduced.Their linguistic basis is the propositional calculus enriched, for everyexpression � in some language of parameters, with the modality [�].The language of parameters di�ers from one logic to another.In the context of the modal logics for information systems introducedby Or lowska [20], one has to consider parameter expressions � de�nedby the atomic parameters and the operation \. These expressionsenable us to represent strong information relations. In the relationalsemantics of these logics, the accessibility relation R is parametrizedin such a way that for every parameter �;�, R(�\�) = R(�)\R(�).In the context of DAL, the modal logic for data analysis introducedby Fari~nas del Cerro and Or lowska [9], the parameter expressions �are built up from atomic expressions with the operations \ and [?corresponding to the interpretation of the compound accessibility re-lations de�ned with intersection and transitive closure of union. Inthe relational semantics of these logics, the accessibility relation R isparametrized in such a way that for every parameter �;�, R(�\�) =R(�) \R(�) and R(� [? �) = R(�) [? R(�).In the context of BML, the Boolean modal logic introduced by Gar-gov, Passy and Tinchev [11] [12], the parameter expressions � are builtup from atomic expressions with the operations \, [ and : corre-sponding to the interpretation of the compound accessibility relationsde�ned with intersection, union and complement. In the relationalsemantics of these logics, the accessibility relation R is parametrizedin such a way that for every parameter �;�, R(�\�) = R(�)\R(�),R(� [�) = R(�)[ R(�) and R(:�) = R(�).Several modal logics for information systems have been considered, de-pending on the special properties of the relative accessibility relation.If for every parameter �, R(�) is a relation of equivalence then the ac-cessibility relation is a relation of strong indiscernibility. Such frames6



(W; fR(�)g�) correspond to the frames of indiscernibility associatedto attribute systems. If for every �, R(�) is re
exive and symmet-ric then the accessibility relation is a relation of strong similarity andthe frames (W; fR(�)g�) are the frames of similarity associated to at-tribute systems.In the section 2 of this paper, we consider several properties of therelative accessibility relations R(�) where the parameters are de�nedby the operation \ in such a way that, in the relational semantics ofthese logics, R(� \ �) = R(�) \ R(�) and we prove the axiomatiz-ability of the formulas valid in the corresponding class of frames. Inthe section 3, we consider an extended language where the param-eters are de�ned by the operations \ and [ in such a way that, inthe relational semantics of these logics, R(�\�) = R(�)\R(�) andR(� [ �) = R(�) [ R(�). Therefore, this extended language is asublanguage of the Boolean modal logic [11] [12], only the parame-ters of the form :� are missing. We examine the axiomatizabilityof the set of formulas valid in several classes of frames and we provethe completeness of these axiomatizations. Our proof is based on thetechniques of the copying introduced by Vakarelov [26].2 Modal logics L2In this section we present a class L2 of relative modal logics where theparameters are de�ned by the operation \ in such a way that, in therelational semantics of these logics, R(� \ �) = R(�) \R(�).2.1 LanguageThe linguistic basis of any modal logic from class L2 is the languageof the classical propositional calculus enriched with modal operators.Each modal operator is denoted by an expression that represents a setof parameters. Let APAR be a nonempty set of atomic parameters.The set CPAR of the complex parameters is de�ned by induction inthe following way :� Every atomic parameter is a complex parameter,� For every �;� 2 CPAR, � \ � 2 CPAR.Let set be the mapping of CPAR into 2APARf | the set of the �nitesubsets of APAR | de�ned by induction in the following way :7



� For every atomic parameter �, set(�) = f�g,� For every �;� 2 CPAR, set(� \�) = set(�) [ set(�).In what follows, X �f Y means thatX is a �nite subset of Y . Observethat :Theorem 1 For every P �f APAR, there is � 2 CPAR such thatset(�) = P .Let v be the binary relation on CPAR de�ned in the following way :� For every �;� 2 CPAR, � v � i� set(�) � set(�).If the expressions � and � are considered as Boolean formulas of theclassical propositional calculus, then one can easily prove that :� � v � i� � ! � is classically valid.Let AFOR be a nonempty set of atomic formulas. The set CFOR ofthe complex formulas is de�ned by induction in the following way :� Every atomic formula is a complex formula,� For every A 2 CFOR, :A 2 CFOR,� For every A;B 2 CFOR, A ^B 2 CFOR,� For every � 2 CPAR and for every A 2 CFOR, [�]A 2 CFOR.For every � 2 CPAR and for every A 2 CFOR, let h�iA = :[�]:A.2.2 Semantical studyA frame for L2 is a relational structure of the form F = (PAR;OB;R)where :� PAR is a nonempty set of parameters,� OB is a nonempty set of objects,� R is a mapping of 2PARf | the set of the �nite subsets of PAR| into the set of the binary relations on OB such that, for everyP;Q �f PAR, R(P [ Q) � R(P ) \R(Q).Throughout section 2, by \frame" we always mean a frame for L2. Fis standard when, for every P;Q �f PAR, R(P [Q) = R(P )\R(Q).Let m;n; j; k � 0. F is mnjk -normal when, for every P �f PAR and forevery x; y; z 2 OB, if x R(P )m y and x R(P )j z then there is t 2 OBsuch that y R(P )n t and z R(P )k t where :8



� R(P )0 = IdOB,� R(P )s+1 = R(P )s;R(P ), where ; is the composition of relations.For example :� F is 0100-normal when each R(P ) is re
exive.� F is 1100-normal when each R(P ) is symmetric.� F is 0120-normal when each R(P ) is transitive.A mapping m of APAR into 2PARf and of AFOR into 2OB is calledassignment on F . The pair M = (F ; m) is called model on F . j=M A| the truth in M of a formula A | is de�ned in the following way :� For every A 2 CFOR, j=M A i� em(A) = OB.where em is the mapping of CPAR into 2PARf and of CFOR into 2OBde�ned by induction in the following way :� For every atomic parameter �, em(�) = m(�),� For every �;� 2 CPAR, em(� \�) = em(�) [ em(�),� For every atomic formula A, em(A) = m(A),� For every A 2 CFOR, em(:A) = OB n em(A),� For every A;B 2 CFOR, em(A ^B) = em(A) \ em(B),� For every � 2 CPAR and for every A 2 CFOR, em([�]A) =fx 2 OB : for every y 2 OB, if x R( em(�)) y then y 2 em(A)g.Direct calculations would lead to the conclusion that :Theorem 2 Let F = (PAR;OB;R) be a frame. Let m be an assign-ment on F . For every �;� 2 CPAR, R( em(� \ �)) � R( em(�)) \R( em(�)). If F is standard then, for every �;� 2 CPAR, R( em(� \�)) = R( em(�)) \R( em(�)).Moreover :Theorem 3 Let F = (PAR;OB;R) be a frame. Let m be an as-signment on F . For every �;� 2 CPAR, if set(�) � set(�) thenem(�) � em(�) and R( em(�)) � R( em(�)).j=F A | the truth in F of a formula A | is de�ned in the followingway : 9



� For every A 2 CFOR, j=F A i�, for every model M on F ,j=M A.Let 
 be a nonempty set of frames. j=
 A | the validity in 
 of aformula A | is de�ned in the following way :� For every A 2 CFOR, j=
 A i�, for every F 2 
, j=F A.Let� KL2 be the set of all frames,� KSL2 be the set of all standard frames,� KL2(m;n; j; k) be the set of all mnjk -normal frames,� KSL2(m;n; j; k) be the set of all standard mnjk -normal frames,� S5L2 be the set of all frames with equivalence relations (eachR(P ) is an equivalence relation),� S5SL2 be the set of all standard frames with equivalence relations.2.3 Axiomatic presentationLet 
 be a class of frames. By the logic of 
 we mean the set offormulas of CFOR that are valid in 
. For the sake of brevity wedenote this logic by 
 as well. Together with the classical tautologies,all the instances of the following schemata are axioms of KL2 :� [�](A! B) ! ([�]A! [�]B), for every � 2 CPAR,� [�]A! [�]A, for every �;� 2 CPAR such that � v �.Together with the modus ponens, all the instances of the followingschema are rules of KL2 :� From A infer [�]A, for every � 2 CPAR.In a standard way we de�ne the notions of proof and derivability inthe logic 
.2.4 CompletenessIt is easy to see that the following soundness theorem holds for logicKL2 :Theorem 4 For every A 2 CFOR, if `KL2 A then j=KL2 A.10



Let OB be the set of the maximal consistent sets of formulas. Let Rbe the mapping of 2APARf into the set of the binary relations on OBde�ned in the following way :� For every P �f APAR and for every x; y 2 OB, x R(P ) y i�,for every � 2 CPAR and for every A 2 CFOR, if set(�) � Pand [�]A 2 x then A 2 y.Let it be proved that the structure of the form F = (APAR;OB;R)is a frame :F is a frame Let P;Q �f APAR, let x; y 2 OB be such that xR(P [ Q) y. Therefore, for every � 2 CPAR and for everyA 2 CFOR, if set(�) � P [ Q and [�]A 2 x then A 2 y.Since P � P [ Q and Q � P [ Q, then, for every � 2 CPARand for every A 2 CFOR, if set(�) � P and [�]A 2 x thenset(�) � P [Q and A 2 y and if set(�) � Q and [�]A 2 x then,similarly, set(�) � P [ Q and A 2 y. Consequently, x R(P ) yand x R(Q) y. Therefore, R(P [Q) � R(P ) \R(Q).Let m be an assignment on F de�ned in the following way :� For every atomic parameter �, m(�) = f�g,� For every atomic formula A, m(A) = fx 2 OB : A 2 xg.Let M = (F ; m). The proof is done by induction on � that, for every� 2 CPAR, em(�) = set(�) :Basis For every atomic parameter �, em(�) = m(�) = f�g = set(�).Hypothesis There is �;� 2 CPAR such that em(�) = set(�) andem(�) = set(�).Step em(� \ �) = em(�) [ em(�) =, by the hypothesis, set(�) [set(�) = set(� \�).The proof is done by induction on A that, for every A 2 CFOR,em(A) = fx 2 OB : A 2 xg.Basis For every atomic formula A, em(A) = m(A) = fx 2 OB :A 2 xg.Hypothesis There is A 2 CFOR such that em(A) = fx 2 OB :A 2 xg.Step For every � 2 CPAR, let x 2 OB be such that [�]A 2 x.Consequently, for every y 2 OB, if x R( em(�)) y then A 2 y11



and, by the hypothesis, y 2 em(A). Therefore, x 2 em([�]A).For every � 2 CPAR, let x 2 OB be such that [�]A 62 x. Lety be a maximal consistent set of formulas containing f:Ag [fB 2 CFOR : [�]B 2 xg. Direct calculations would lead to theconclusion that x R( em(�)) y. Therefore, x 62 em([�]A).Therefore :Theorem 5 For every A 2 CFOR, if j=KL2 A then `KL2 A.In order to obtain the completeness result for KL2 with respect toits standard frames, we apply the method of copying originated inVakarelov [26] in the context of the modal logics for knowledge repre-sentation systems.2.5 CopyingLet F = (PAR;OB;R) and F 0 = (PAR;OB0; R0) be frames. Let Ibe a set of mappings of OB into OB0. I is a copying of F into F 0whenever the following conditions are satis�ed :� For every x0 2 OB0, there is f 2 I and there is x 2 OB suchthat f(x) = x0,� For every f; g 2 I and for every x; y 2 OB, if f(x) = g(y) thenx = y,� For every P �f PAR, for every f 2 I and for every x; y 2 OB,x R(P ) y i� there is g 2 I such that f(x) R0(P ) g(y).It is easy to show that :Theorem 6 Let F = (PAR;OB;R) and F 0 = (PAR;OB0; R0) beframes. Let I be a copying of F into F 0. Let m be an assignment onF . Let m0 be the assignment on F 0 de�ned in the following way :� For every atomic parameter �, m0(�) = m(�),� For every atomic formula A, m0(A) = ff(x) : f 2 I and x 2m(A)g.Then for every � 2 CPAR, m0(�) = m(�) and for every A 2 CFOR,fm0(A) = ff(x) : f 2 I and x 2 em(A)g.12



2.6 Standard completenessLet F = (PAR;OB;R) be a frame. For every P �f PAR, let �(P ) bethe mapping of OB �OB into 2OB de�ned in the following way : forevery x; y 2 OB, �(P )(x; y) = ; if x R(P ) y, otherwise �(P )(x; y) =OB. Observe that the set B = 2OB can be treated as a Boolean ringwhere :� 0B = ;,� 1B = OB,� A+B B = (A nB) [ (B nA), consequently : A+B A = ;,� A�B B = A \ B.Therefore, for every A;B 2 2OB, there exists exactly one X 2 2OBsuch that A+B X = B, namely : X = (A nB)[ (B nA). Let I be theset of the mappings of 2PARf �PAR into 2OB. Let OB0 = OB�I . Forevery P �f PAR, let R0(P ) be the binary relation on OB0 de�ned inthe following way :� For every f; g 2 I and for every x; y 2 OB, (x; f) R0(P ) (y; g)i� :{ For every O �f PAR and for every � 2 PAR, if � 2 O and� 2 P then g(O; �) = f(O; �) and{ For every O �f PAR, ��2Of(O; �) + g(O; �) = �(O)(x; y).Lemma 1 Let P �f PAR, let f 2 I and let x; y 2 OB be such thatthere is g 2 I such that (x; f) R0(P ) (y; g). Then x R(P ) y.Proof : Let P �f PAR, let f 2 I and let x; y 2 OB be suchthat there is g 2 I such that (x; f) R0(P ) (y; g). Consequently, forevery O �f PAR and for every � 2 PAR, if � 2 O and � 2 Pthen g(O; �) = f(O; �) and, for every O �f PAR, ��2Of(O; �) +g(O; �) = �(O)(x; y). Therefore, for every � 2 PAR, if � 2 P theng(P; �) = f(P; �). Consequently, �(P )(x; y) = ;. Therefore, x R(P )y.aLemma 2 Let P �f PAR, let f 2 I and let x; y 2 OB be such thatx R(P ) y. Then there is g 2 I such that (x; f) R0(P ) (y; g).13



Proof : Let P �f PAR, let f 2 I and let x; y 2 OB be such thatx R(P ) y. Let � be a mapping of 2PARf into PAR such that, forevery O �f PAR, if O 6� P then �(O) 2 O n P . We have to �nd amapping g 2 I such that (x; f) R0(P ) (y; g). Let g be the mapping of2PARf � PAR into 2OB such that for every O �f PAR and for every� 2 PAR, the following conditions are satis�ed :� If � 2 O and � 2 P then g(O; �) = f(O; �),� If � 2 O and � 62 P then either � = �(O) in which case g(O; �) =��2OnPf(O; �)+�(O)(x; y) or � 6= �(O) in which case g(O; �) =;,� If � 62 O then g(O; �) = ;.It is easy to verify that (x; f) R0(P ) (y; g).aObserve that, for every f 2 I , f can be identi�ed with the mappingof OB into OB0 de�ned by : for every x 2 OB, f(x) = (x; f).Lemma 3 The structure F 0 = (PAR;OB0; R0) is a standard frameand I | considered as a set of mappings of OB into OB0 | is acopying of F into F 0.Proof : The proof is done that F 0 is a standard frame and I is acopying of F into F 0.F 0 is a standard frame � Let P;Q �f PAR, let f; g 2 I andlet x; y 2 OB be such that (x; f) R0(P [ Q) (y; g). Conse-quently, for every O �f PAR and for every � 2 PAR, if� 2 O and � 2 P [Q then g(O; �) = f(O; �) and, for everyO �f PAR, ��2Of(O; �) + g(O; �) = �(O)(x; y). SinceP � P [Q and Q � P [Q, then, for every O �f PAR andfor every � 2 PAR, if � 2 O and � 2 P then � 2 P [ Qand g(O; �) = f(O; �) and if � 2 O and � 2 Q then,similarly, � 2 P [ Q and g(O; �) = f(O; �). Therefore,(x; f) R0(P ) (y; g) and (x; f) R0(Q) (y; g). Consequently,R0(P [ Q) � R0(P ) [ R0(Q).� Let P;Q �f PAR, let f; g 2 I and let x; y 2 OB be suchthat (x; f) R0(P ) (y; g) and (x; f) R0(Q) (y; g). Therefore,for every O �f PAR and for every � 2 PAR, if � 2 Oand � 2 P then g(O; �) = f(O; �) and if � 2 O and� 2 Q then g(O; �) = f(O; �) and, for every O �f PAR,14



��2Of(O; �) + g(O; �) = �(O)(x; y). Consequently, for ev-ery O �f PAR and for every � 2 PAR, if � 2 O and� 2 P [ Q then � 2 P and g(O; �) = f(O; �) or � 2 Qand g(O; �) = f(O; �). Therefore, (x; f) R0(P [ Q) (y; g).Consequently, R0(P [Q) = R0(P ) [R0(Q).I is a copying of F into F 0 This is a direct consequence of the lem-mas 1 and 2.aConsequently, it follows that the completeness theorem with respectto the class of standard frames holds :Theorem 7 For every A 2 CFOR, if j=KSL2 A then `KL2S A.2.7 ExtensionsThis subsection presents two extensions | S5L2 and KL2(m;n; j; k)| of L2.2.7.1 S5L2Together with the axioms and the rules of KL2, all the instances ofthe following schemata are axioms of S5L2 :� [�]A! A, for every � 2 CPAR,� h�i[�]A! [�]A, for every � 2 CPAR.It is easy to see the soundness of logic S5L2 :Theorem 8 For every A 2 CFOR, if `S5L2 A then j=S5L2 A.Moreover, the structure of the form F = (APAR;OB;R) de�ned inthe subsection 2.4 is a frame with equivalence relations. Therefore wehave :Theorem 9 For every A 2 CFOR, if j=S5L2 A then `S5L2 A.Let F = (PAR;OB;R) be a frame with equivalence relations. Forevery P �f PAR, let �(P ) be the mapping of OB � OB into 2OBde�ned in the following way : for every x; y 2 OB, �(P )(x; y) =R(P )(x) +R(P )(y). Let I be the set of the mappings of 2PARf �PARinto 2OB. It can easily be proved that the argument of the subsection2.6 applies : 15



Lemma 4 The structure of the form F 0 = (PAR;OB0; R0) de�ned inthe subsection 2.6 is a standard frame with equivalence relations andI is a copying of F into F 0.Consequently :Theorem 10 For every A 2 CFOR, if j=S5SL2 A then `S5L2 A.2.7.2 KL2(m;n; j; k)Let m;n; j; k � 0. Together with the axioms and the rules of KL2, allthe instances of the following schema are axioms of KL2(m;n; j; k) :� h�im[�]nA! [�]jh�ikA, for every � 2 CPAR.Theorem 11 For every A 2 CFOR, if `KL2(m;n;j;k) A then j=KL2(m;n;j;k)A.The structure of the form F = (APAR;OB;R) de�ned in the sub-section 2.4 is an mnjk -normal frame. Therefore we have the followingcompleteness theorem for logics KL2(m;n; j; k) :Theorem 12 For every A 2 CFOR, if j=KL2(m;n;j;k) A then `KL2(m;n;j;k)A.In what follows we present examples of logics of the formKL2(m;n; j; k)for which the completeness theorem with respect to the standardframes holds. Let F = (PAR;OB;R) be an mnjk -normal frame. Forevery P �f PAR, let �(P ) be the mapping of OB � OB into 2OBde�ned in the following way : for every x; y 2 OB, �(P )(x; y) = ; if xR(P ) y, otherwise �(P )(x; y) = OB. Let I be the set of the mappingsof 2PARf � PAR into 2OB. If m = 0, n = 1, j = 0 and k = 0, then theargument of the subsection 2.6 applies :Lemma 5 If m = 0, n = 1, j = 0 and k = 0 then the structure of theform F 0 = (PAR;OB0; R0) de�ned in the subsection 2.6 is a standardre
exive frame and I is a copying of F into F 0.Consequently :Theorem 13 For every A 2 CFOR, if j=KSL2(0;1;0;0) A then `KL2(0;1;0;0)A. 16



If m = 1, n = 1, j = 0 and k = 0 then the argument of the subsection2.6 applies as well :Lemma 6 If m = 1, n = 1, j = 0 and k = 0 then the structure of theform F 0 = (PAR;OB0; R0) de�ned in the subsection 2.6 is a standardsymmetric frame and I is a copying of F into F 0.Consequently, we have the completeness theorem for logic KL2(1; 1; 0; 0)with respect to its standard frames :Theorem 14 For every A 2 CFOR, if j=KSL2(1;1;0;0) A then `KL2(1;1;0;0)A.Ifm+j � 2 then the proof of the standard completeness ofKL2(m; 1; j; 0)and the proof of the standard completeness of KL2(m; 0; j; 0) are open.If n+k � 2 then let OB0 = OB� (IOB�I� I). For every P �f PAR,let R0(P ) be the binary relation on OB0 de�ned in the following way :� For every f1; g1 2 IOB�I , for every f2; g2 2 I and for everyx; y 2 OB, (x; (f1; f2)) R0(P ) (y; (g1; g2)) i� :{ For every O �f PAR and for every � 2 PAR, if � 2 O and� 2 P then g1(x; f2)(O; �) = f2(O; �),{ For every O �f PAR, ��2Of2(O; �) + g1(x; f2)(O; �) =�(O)(x; y).The proofs of the three following lemmas are similar to the proofs ofthe lemmas 1, 2 and 3 :Lemma 7 Let P �f PAR, let f2 2 I and let x; y 2 OB be such thatthere is G 2 I such that for every f1; g1 2 IOB�I and for every g2 2 I,if g1(x; f2) = G then (x; (f1; f2)) R0(P ) (y; (g1; g2)). Then x R(P ) y.Lemma 8 Let P �f PAR, let f2 2 I and let x; y 2 OB be such thatx R(P ) y. There is G 2 I such that for every f1; g1 2 IOB�I and forevery g2 2 I, if g1(x; f2) = G then (x; (f1; f2)) R0(P ) (y; (g1; g2)).Lemma 9 The structure of the form F 0 = (PAR;OB0; R0) is a stan-dard mnjk -normal frame and IOB�I � I | considered as a set of map-pings of OB into OB0 | is a copying of F into F 0.Consequently :Theorem 15 If n+k � 2, then for every A 2 CFOR, if j=KSL2(m;n;j;k)A then `KL2(m;n;j;k) A. 17



2.8 ExamplesWhereas several extensions of L2 have a remote relationship with in-formation systems, several extensions, on the other hand, have alreadybeen considered by many authors in the context of the modal logicsfor information systems.S5SL2 is the class of standard frames in which each R(m(�)) is a rela-tion of equivalence. In the context of the modal logics for informationsystems, it is the class of the frames of indiscernibility introduced byOr lowska [18].One can easily extend the proof of the standard completeness ofKL2(1; 1; 0; 0)| the class of the frames where each R(m(�)) is symmetric | to theclass of the frames where each R(m(�)) is both re
exive and symmet-ric. This class is the class of the frames of strong similarity.3 Modal logics L3In this section we consider a class L3 of relative modal logics where theparameters are de�ned by the operations \ and [ in such a way that,in the relational semantics of these logics, R(� \ �) = R(�) \ R(�)and R(� [ �) = R(�) [ R(�). We present axiomatization of variousclasses of these logics and we discuss their completeness.3.1 LanguageThe language of any modal logic from class L3 is obtained fromthe language of class L2 by adjoining the operation of union to theset of operations acting on parameter expressions. Let APAR be anonempty set of atomic parameters. The set CPAR of the complexparameters is de�ned by induction in the following way :� Every atomic parameter is a complex parameter,� For every �;� 2 CPAR, � \ � 2 CPAR,� For every �;� 2 CPAR, � [ � 2 CPAR.Let set be the mapping of CPAR into 22APARff | the set of the �nitesets of �nite subsets of APAR | de�ned by induction in the followingway :� For every atomic parameter �, set(�) = ff�gg,18



� For every �;� 2 CPAR, set(� \�) = set(�) [ set(�),� For every �;� 2 CPAR, set(� [�) = fS [ T : S 2 set(�) andT 2 set(�)g.Direct calculations would lead to the conclusion that :Theorem 16 For every P �f 2APARf , there is � 2 CPAR such thatset(�) = P .Let v be the binary relation on CPAR de�ned in the following way :� For every �;� 2 CPAR, � v � i� for every S 2 set(�) there isT 2 set(�) such that T � S.As remarked in section 2.1, if the expressions � and � are consideredas Boolean formulas of the classical propositional calculus, then onecan easily prove that :� � v � i� � ! � is classically valid.Let AFOR be a nonempty set of atomic formulas. The set CFOR ofthe complex formulas is de�ned by induction in the following way :� Every atomic formula is a complex formula,� For every A 2 CFOR, :A 2 CFOR,� For every A;B 2 CFOR, A ^B 2 CFOR,� For every � 2 CPAR and for every A 2 CFOR, [�]A 2 CFOR.For every � 2 CPAR and for every A 2 CFOR, let h�iA = :[�]:A.3.2 Semantical studyA frame for L3 is a relational structure of the form F = (PAR;OB;R)where :� PAR is a nonempty set of parameters,� OB is a nonempty set of objects,� R is a mapping of 22PARff | the set of the �nite sets of �nitesubsets of PAR | into the set of the binary relations on OBsuch that, for every P;Q �f 2PARf , R(P [ Q) � R(P ) \ R(Q)and R(fS [ T : S 2 P and T 2 Qg) = R(P ) [R(Q).19



Throughout section 3, by \frame" we always mean a frame for L3. Fis standard when, for every P;Q �f 2PARf , R(P [Q) = R(P )\R(Q).A mapping m of APAR into 22PARff and of AFOR into 2OB is calledassignment on F . The pair M = (F ; m) is called model on F . j=M A| the truth in M of a formula A | is de�ned in the following way :� For every A 2 CFOR, j=M A i� em(A) = OB.where em is the mapping of CPAR into 22PARff and of CFOR into 2OBde�ned by induction in the following way :� For every atomic parameter �, em(�) = m(�),� For every �;� 2 CPAR, em(� \�) = em(�) [ em(�),� For every �;� 2 CPAR, em(� [ �) = fS [ T : S 2 em(�) andT 2 em(�)g,� For every atomic formula A, em(A) = m(A),� For every A 2 CFOR, em(:A) = OB n em(A),� For every A;B 2 CFOR, em(A ^B) = em(A) \ em(B),� For every � 2 CPAR and for every A 2 CFOR, em([�]A) =fx 2 OB : for every y 2 OB, if x R( em(�)) y then y 2 em(A)g.It could easily be observed that :� For every �;� 2 CPAR, if � v � then R( em(�)) � R( em(�)).Moreover, direct calculations would lead to the conclusion that :Theorem 17 Let F = (PAR;OB;R) be a frame. Let m be an as-signment on F . For every �;� 2 CPAR, R( em(�\�)) � R( em(�))\R( em(�)) and R( em(� [�)) = R( em(�)) [ R( em(�)). If F is standardthen, for every �;� 2 CPAR, R( em(� \�)) = R( em(�)) \R( em(�)).Moreover :Theorem 18 Let F = (PAR;OB;R) be a frame. Letm be an assign-ment on F . For every �;�;� 2 CPAR, if, for every S 2 set(� [�),there is T 2 set(�) such that T � S then, for every S 2 em(� [ �),there is T 2 em(�) such that T � S and R( em(�)) � R( em(�)) [R( em(�)).The notions of truth of a formula in a frame, validity of a formula ina class of frames and logic of a class of frames are de�ned in a usualway. We distinguish the following classes of frames :20



� KL3 is the set of all frames,� KSL3 is the set of all standard frames,� KL3(m;n; j; k) is the set of all mnjk -normal frames,� KSL3(m;n; j; k) is the set of all standard mnjk -normal frames,� S5SL3 is the set of all standard frames with equivalence relations.Observe that :Theorem 19 Let F = (PAR;OB;R) be a frame with equivalence re-lations. If F is standard then all the instances of the following schemaare true in F :� [�]A ! [�]A _ [�]A, for every �;�;� 2 CPAR such that � v� \ �.Proof Suppose that F is standard and let m be an assignment on F .Let �;�;� 2 CPAR be such that : � v � \ � and let A 2 CFOR.Let x 2 OB. If x 62 em([�]A _ [�]A) then there exists y 2 OB suchthat x R( em(�)) y and y 62 em(A) and there exists z 2 OB such that xR( em(�)) z and z 62 em(A). Then, x R( em(�[�)) y and x R( em(�[�))z. Since R( em(�[�)) is a relation of equivalence, then y R( em(�[�))z and either y R( em(�)) z or y R( em(�)) z. If y R( em(�)) z then xR( em(�)) z and x R( em(�)) z. Since F is standard, then x R( em(�\�))z. Since � v �\�, then x R( em(�)) z and x 62 em([�]A). Similarly, if yR( em(�)) z then x R( em(�)) y and x R( em(�)) y. Since F is standard,then x R( em(� \ �)) y. Since � v � \ �, then x R( em(�)) y andx 62 em([�]A).a3.3 Axiomatic presentationTogether with the classical tautologies, all the instances of the follow-ing schemata are axioms of KL3 :� [�](A! B) ! ([�]A! [�]B), for every � 2 CPAR,� [�]A^[�]A! [�]A, for every �;�;� 2 CPAR such that �[� v�.Together with the modus ponens, all the instances of the followingschema are rules of KL3 : 21



� From A infer [�]A, for every � 2 CPAR.It can be easily observed that, for every �;� 2 CPAR, all the in-stances of the following schemata are theorems of KL3 : [�]A^[�]A$[�[�]A and [�]A_ [�]A! [�\�]A. Moreover, if � v � then all theinstances of the following schema are theorems of KL3 : [�]A! [�]A.3.4 CompletenessIt is easy to see that the following soundness theorem holds for logicKL3 :Theorem 20 For every A 2 CFOR, if `KL3 A then j=KL3 A.Let OB be the set of the maximal consistent sets of formulas. Let Rbe the mapping of 22APARff into the set of the binary relations on OBde�ned in the following way :� For every P �f 2APARf and for every x; y 2 OB, x R(P ) y i�for every � 2 CPAR and for every A 2 CFOR, if for everyS 2 set(�) there is T 2 P such that T � S, then if [�]A 2 xthen A 2 y.Let it be proved that the structure of the form F = (APAR;OB;R)is a frame :F is a frame Let P;Q �f 2APARf , let x; y 2 OB be such that xR(P [ Q) y and let it be proved that x R(P ) y and x R(Q) y.Therefore, for every � 2 CPAR and for every A 2 CFOR, if,for every S 2 set(�), there is T 2 P [ Q such that T � S and[�]A 2 x then A 2 y. Since P � P [ Q and Q � P [ Q, then,for every � 2 CPAR and for every A 2 CFOR, if, for everyS 2 set(�), there is T 2 P such that T � S and [�]A 2 x then,for every S 2 set(�), there is T 2 P [ Q such that T � S andA 2 y and if, for every S 2 set(�), there is T 2 Q such thatT � S and [�]A 2 x then, similarly, for every S 2 set(�), thereis T 2 P [Q such that T � S and A 2 y. Consequently, x R(P )y and x R(Q) y. Let P;Q �f 2APARf , let x; y 2 OB be such thatx R(fS [ T : S 2 P and T 2 Qg) y and let it be proved thatx R(P ) y or x R(Q) y. Assume that x R(P ) y and x R(Q) y.Then there exists � 2 CPAR and there exists A 2 CFOR suchthat : 22



� for every U 2 set(�) there is S 2 P such that S � U ,� [�]A 2 x and� A 62 y,and there exists � 2 CPAR and there exists B 2 CFOR suchthat :� for every V 2 set(�) there is T 2 Q such that T � V ,� [�]B 2 x and� B 62 yTherefore, [�](A_B) 2 x, [�](A_B) 2 x and [�[�](A_B) 2 x.Moreover, for every W 2 set(� [ �), there is U 2 set(�) andthere is V 2 set(�) such that W = U [ V and, furthermore,there is S 2 P and there is T 2 Q such that S [ T � U [ V .Since x R(fS[T : S 2 P and T 2 Qg) y and [�[�](A_B) 2 x,then A _ B 2 y, a contradiction. Therefore, either x R(P ) y orx R(Q) y. Reciprocally, let P;Q �f 2APARf , let x; y 2 OB besuch that either x R(P ) y or x R(Q) y and let it be proved thatx R(fS [ T : S 2 P and T 2 Qg) y. Suppose that x R(P )y. Then for every � 2 CPAR and for every A 2 CFOR, iffor every S 2 set(�) there is T 2 P such that T � S, then if[�]A 2 x then A 2 y. Now, let � 2 CPAR be such that, forevery S 2 set(�) there is T [ U 2 fT [ U : T 2 P and U 2 Qgsuch that T [ U � S. Therefore, for every S 2 set(�) there isT 2 P such that T � S. Now, for every A 2 CFOR, if [�]A 2 xthen A 2 y. Then x R(fS [ T : S 2 P and T 2 Qg) y.Let m be the assignment on F de�ned in the following way :� For every atomic parameter �, m(�) = ff�gg,� For every atomic formula A, m(A) = fx 2 OB : A 2 xg.Let M = (F ; m). The proof is done by induction on � that, for every� 2 CPAR, em(�) = set(�).Basis For every atomic parameter �, em(�) = m(�) = ff�gg =set(�).Hypothesis There is �;� 2 CPAR such that em(�) = set(�) andem(�) = set(�).Step em(� \ �) = em(�) [ em(�) =, by the hypothesis, set(�) [set(�) = set(� \ �). em(� [ �) = fS [ T : S 2 em(�) and23



T 2 em(�)g =, by the hypothesis, fS [ T : S 2 set(�) andT 2 set(�)g = set(� [ �).The proof is done by induction on A that, for every A 2 CFOR,em(A) = fx 2 OB : A 2 xg.Basis For every atomic formula A, em(A) = m(A) = fx 2 OB :A 2 xg.Hypothesis There is A 2 CFOR such that em(A) = fx 2 OB :A 2 xg.Step For every � 2 CPAR, let x 2 OB be such that [�]A 2 x.Consequently, for every y 2 OB, if x R( em(�)) y then A 2 yand, by the hypothesis, y 2 em(A). Therefore, x 2 em([�]A).For every � 2 CPAR, let x 2 OB be such that [�]A 62 x. Lety be a maximal consistent set of formulas containing f:Ag [fB 2 CFOR : [�]B 2 xg. Direct calculations would lead to theconclusion that x R( em(�)) y. Therefore, x 62 em([�]A).Therefore :Theorem 21 For every A 2 CFOR, if j=KL3 A then `KL3 A.3.5 CopyingLet F = (PAR;OB;R) and F 0 = (PAR;OB0; R0) be frames. Let Ibe a set of mappings of OB into OB0. I is a copying of F into F 0whenever the following conditions are satis�ed :� For every x0 2 OB0, there is f 2 I and there is x 2 OB suchthat f(x) = x0,� For every f; g 2 I and for every x; y 2 OB, if f(x) = g(y) thenx = y,� For every P �f 2PARf , for every f 2 I and for every x; y 2 OB,x R(P ) y i� there is g 2 I such that f(x) R0(P ) g(y).Direct calculations would lead to the conclusion that :Theorem 22 Let F = (PAR;OB;R) and F 0 = (PAR;OB0; R0) beframes. Let I be a copying of F into F 0. Let m be an assignment onF . Let m0 be the assignment on F 0 de�ned in the following way :� For every atomic parameter �, m0(�) = m(�),24



� For every atomic formula A, m0(A) = ff(x) : f 2 I and x 2m(A)g.Then for every A 2 CFOR, fm0(A) = ff(x) : f 2 I and x 2 em(A)g.3.6 Standard completenessLet F = (PAR;OB;R) be a frame. For every P �f 2PARo , let �(P )be the mapping of OB�OB into 2OB such that, for every x; y 2 OB,�(P )(x; y) = ; if x R(P ) y, otherwise �(P )(x; y) = OB. Let I bethe set of the mappings of 22PARof � 2PARo | 2PARo is the set of thesingletons of PAR and 22PARof is the set of the �nite sets of singletonsof PAR | into 2OB. Let OB0 = OB � I . For every P �f 2PARo , letR0(P ) be the binary relation on OB0 de�ned in the following way :� For every f; g 2 I and for every x; y 2 OB, (x; f) R0(P ) (y; g)i� :{ For every O �f 2PARo and for every � 2 2PARo , if � 2 O and� 2 P then g(O; �) = f(O; �), and{ For every O �f 2PARo , ��2Of(O; �) + g(O;�) = �(O)(x; y).For every P �f 2PARf , let R0(P ) be the binary relation on OB0 de�nedin the following way :� For every f; g 2 I and for every x; y 2 OB, (x; f) R0(P ) (y; g) i�there is a mapping � of P into 2PARo such that :{ For every S 2 P , �(S) � S,{ (x; f) R0(f�(S) : S 2 Pg) (y; g).The proofs of the three following lemmas are similar to the proofs ofthe lemmas 1, 2 and 3 :Lemma 10 Let P �f 2PARf , let f; g 2 I and let x; y 2 OB be suchthat (x; f) R0(P ) (y; g). Then x R(P ) y.Lemma 11 Let P �f 2PARf , let f 2 I and let x; y 2 OB be such thatx R(P ) y. There is g 2 I such that (x; f) R0(P ) (y; g).Lemma 12 The structure of the form F 0 = (PAR;OB0; R0) is a stan-dard frame and I | considered as a set of mappings of OB into OB0| is a copying of F into F 0. 25



It follows that we have the following completeness theorem with re-spect to the standard frames :Theorem 23 For every A 2 CFOR, if j=KSL3 A then `KL3 A.3.7 ExtensionsThis subsection presents two extensions | S5L3 and KL3(m;n; j; k) |of the modal logic with strong and pseudo-weak accessibility relations.3.7.1 S5L3Together with the axioms and the rules of KL3, all the instances ofthe following schemata are axioms of S5L3 :� [�]A! A, for every � 2 CPAR,� h�iA! [�]h�iA, for every � 2 CPAR,� [�]A ! [�]A _ [�]A, for every �;�;� 2 CPAR such that � v� \ �.Theorem 24 For every A 2 CFOR, if `S5L3 A then j=S5SL3 A.Moreover :Lemma 13 The structure of the form F = (APAR;OB;R) de�nedin the subsection 3.4 is a standard frame with equivalence relations.Proof : Suppose that F is not standard. Then there exists P;Q �f2APARf and there exists x; y 2 OB such that x R(P ) y, x R(Q) y andx R(P [Q) y. Let �;� 2 CPAR be such that set(�) = P and set(�)= Q. Since x R(P [Q) y, then there exists � 2 CPAR and thereexists A 2 CFOR such that :� For every S 2 set(�), there exists T 2 P [ Q such that T � S.� [�]A 2 x.� A 62 y.Since P [ Q = set(� \ �), then � v � \ � and either [�]A 2 x or[�]A 2 x. Consequently, A 2 y : a contradiction.aTherefore :Theorem 25 For every A 2 CFOR, if j=S5SL3 A then `S5L3 A.26



3.7.2 KL3(m;n; j; k)Let m;n; j; k � 0. Together with the axioms and the rules of KL3, allthe instances of the following schema are axioms of KL3(m;n; j; k) :� h�im[�]nA! [�]jh�ikA, for every � 2 CPAR.We have the following soundness theorem :Theorem 26 For every A 2 CFOR, if `KL3(m;n;j;k) A then j=KL3(m;n;j;k)A.Observe that the structure of the form F = (APAR;OB;R) de�nedin the subsection 3.4 is an mnjk -normal frame. Therefore :Theorem 27 For every A 2 CFOR, if j=KL3(m;n;j;k) A then `KL3(m;n;j;k)A.The results analogous to theorems 13, 14, 15 can be obtained for thelogics of the class L3. The proofs of the three following theorems aresimilar to the proofs of the theorems 13, 14 and 15 :Theorem 28 For every A 2 CFOR, if j=KSL3(0;1;0;0) A then `KL3(0;1;0;0)A.Theorem 29 For every A 2 CFOR, if j=KSL3(1;1;0;0) A then `KL3(1;1;0;0)A.Theorem 30 If n+k � 2 then, for every A 2 CFOR, if j=KSL3(m;n;j;k)A then `KL3(m;n;j;k) A.3.8 ExamplesThe language of the relative modal logics of the class L3 is de�nedby the operations \ and [. Therefore, it is a sublanguage of thelanguage of the Boolean modal logic introduced by Gargov, Passy,Tinchev [11] [12] and KL3 is nothing but a fragment of BML. Aswell, the extensions KL3(m;n; j; k) are axiomatizable extensions ofthis fragment. In other respects, the relative modal logic S5L3 is ex-actly the data analysis logic with local agreement DALLA introducedby Gargov [10] and further developed by Demri [5].27



4 ConclusionIn this paper, we developed a general framework for presenting andstudying modal logics based on frames with relative accessibility rela-tions. We de�ned two major hierarchies of the classes of these logics :logics of class L2 and logics of class L3. For each class of logics wede�ned semantic structures of the two kinds : general structures andstandard structures. We presented an axiomatization of several classesof logics from the given hierarchies and we studied their completenesswith respect to both general and standard semantic structures. Weshowed that several modal logics for information systems are membersof the classes L2 and L3.For the modal logics of class L2, the accessibility relations R of themodels (PAR;OB;R;m) are parametrized by the elements of 2PARf ,the set of the �nite subsets of PAR. For the modal logics of classL3, the accessibility relations R are parametrized by the elements of22PARff , the set of the �nite subsets of the set of the �nite subsets ofPAR. What would be the modal logic the models of which are rela-tional structures of the form (PAR;OB;R;m) where the accessibilityrelations R are parametrized by the elements of the set of the �nitesubsets of the set of the �nite subsets of the set of the �nite subsetsof PAR ?AcknowledgementSpecial acknowledgement is heartly granted to St�ephane Demri whomade several helpful comments for improving the readability of thepaper.References[1] D. Arhangelsky and M. Taitslin. A logic for data description.A. Meyer and M. Taitslin (editors), Logic at Botik'89. LectureNotes in Computer Science 363, 2{11, Springer-Verlag, 1989.[2] P. Balbiani. A modal logic for data analysis. W. Penczek, A.Sza las (editors), Mathematical Foundations of Computer Science28



1996. Lecture Notes in Computer Science 1113, Springer-Verlag,167{179, 1996.[3] P. Balbiani. Axiomatization of logics based on Kripke modelswith relative accessibility relations. E. Or lowska (editor), Incom-plete Information : Rough Set Analysis. Studies in Fuzziness andSoft Computing 13, 553{578, Physica Verlag, 1998.[4] R. Danecki. Nondeterministic propositional dynamic logic withintersection is decidable. A. Skowron (editor), Computation The-ory. Lecture Notes in Computer Science 208, 34{53, Springer-Verlag, 1985.[5] S. Demri. The validity problem for DALLA is decidable. Bul-letin of the Polish Academy of Sciences, Mathematics, Volume 4,79{86, 1996.[6] S. Demri. A completeness proof for a logic with an alternativenecessity operator. Studia Logica, Volume 58, 99{112, 1997.[7] S. Demri and E. Or lowska. Logical analysis of indiscernibil-ity. E. Or lowska (editor), Incomplete Information : Rough SetAnalysis. Studies in Fuzziness and Soft Computing 13, 347{380,Physica Verlag, 1998.[8] R. Fagin, J. Halpern and M. Vardi. What can machinesknow ? On the properties of knowledge in distributed systems.Journal of the ACM, Volume 39, 328{376, 1992.[9] L. Fari~nas del Cerro and E. Or lowska. DAL | a logic fordata analysis. Theoretical Computer Science, Volume 36, 251{264, 1985.[10] G. Gargov. Two completeness theorems in the logic for dataanalysis. Tech. Report 581, Institute of Computer Science, PolishAcademy of Sciences, Warsaw, 1986.[11] G. Gargov and S. Passy. A note on Boolean modal logic. P.Petkov (editor), Mathematical Logic. 299{309, Plenum Press,1990.[12] G. Gargov, S. Passy and T. Tinchev. Modal environment forBoolean speculations. D. Skordev (editor), Mathematical Logicand its Applications. 253{263, Plenum Press, 1987.29



[13] D. Harel. Dynamic logic. D. Gabbay and F. Guenthner (edi-tors), Handbook of Philosophical Logic, Volume 2, Extensions ofClassical Logic. 497{604, Reidel, 1984.[14] W. van der Hoek and J.-J. Meyer.Making some issues of im-plicit knowledge explicit. Foundations of Computer Science, Vol-ume 3, 193{223, 1992.[15] B. Konikowska. A formal language for reasoning about indis-cernibility. Bulletin of the Polish Academy of Sciences, Mathe-matics, Volume 35, 239{249, 1987.[16] B. Konikowska. A logic for reasoning about relative similarity.Studia Logica, Volume 58, 185{226, 1997.[17] E. Or lowska. Semantics of vague concepts. G. Dorn, P. Wein-gartner (editors), Foundations of Logic and Linguistics. Prob-lems and Solutions. Selected Contributions to the 7th Interna-tional Congress of Logic, Methodology and Philosophy of Science,Salzburg 1983. 465{482, Plenum Press, 1983.[18] E. Or lowska. Logic of indiscernibility relations. A. Skowron (ed-itor), Computation Theory. Lecture Notes in Computer Science208, 177{186, Springer-Verlag, 1985.[19] E. Or lowska. Logic of nondeterministic information. StudiaLogica, Volume 44, 93{102, 1985.[20] E. Or lowska. Kripke models with relative accessibility andtheir application to inferences from incomplete information. G.Mirkowska, H. Rasiowa (editors), Mathematical Problems inComputation Theory. Banach Center Publications 21, 329{339,1988.[21] E. Or lowska. Logic for reasoning about knowledge. Zeitschriftf�ur Mathematische Logik und Grundlagen der Mathematik, Vol-ume 35, 559{572, 1989.[22] E. Or lowska. Studying incompleteness of information : aclass of information logics. K. Kijania-Placek, J. Wolenski (ed-itors),The Lvov Warsaw School and the Contemporary Philoso-phy. Kluwer, Dordrecht, 1997, 303-320.[23] E. Or lowska (editor). Incomplete Information : Rough SetAnalysis. Studies in Fuzziness and Soft Computing 13, Physica-Verlag, 1998. 30



[24] S. Read. Thinking about Logic. Oxford University Press, 1994.[25] D. Vakarelov. Abstract characterization of some knowledge rep-resentation systems and the logic NIL of nondeterministic in-formation. P. Jorrand, V. Sgurev (editors), Arti�cial IntelligenceII, Methodology, Systems, Applications. North-Holland, 255{260,1987.[26] D. Vakarelov. Modal logics for knowledge representation sys-tems. Theoretical Computer Science, Volume 90, 433{456, 1991.[27] D. Vakarelov. A modal logic for similarity relations in Pawlakknowledge representation systems.Fundamenta Informatic�, Vol-ume 15, 61{79, 1991.

31


