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A hierarchy of modal logics
with relative accessibility relations

Philippe BALBIANI and Ewa ORLOWSKA

Laboratoire d’informatique de Paris-Nord*
Institute of Telecommunications, Warsaw'

Abstract

In this paper we introduce and investigate various classes of multi-
modal logics based on frames with relative accessibility relations. We
discuss their applicability to representation and analysis of incomplete
information. We provide axiom systems for these logics and we prove
their completeness.

1 Introduction

The original motivation for introducing and investigating modal logics
with relative accessibility relations comes from the theory of informa-
tion systems. However, as it is shown in this paper, a number of
standard multimodal logics can be uniformly presented and investi-
gated within the general framework of relative relations as well. In-
formation systems are the collections of information items that have
the form of descriptions of some objects in terms of their proper-
ties. More formally, by an information system we mean a structure

S = (OB, AT, {VAL, : a € ATY}) such that OB is a nonempty set
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of objects, AT is a finite nonempty set of attributes, each VAL, is a
nonempty set of values of attribute a. Each attribute is a function «a :
OB — P(VAL,) that assigns subsets of values to objects. Any set
a(x) can be viewed as a set of properties of an object x.

For example, if the attribute @ is “colour” and a(z) = {green}, then
x possesses the property of “being green” ; if a is “age” and z is
25 years old, then a(z) = {25} and this means that & possesses the
property of “being 25 years old” ; if a is “languages spoken” and if
a person z speaks, say, Polish (Pl), German (D) and French (F),
then a(xz) = {Pl, D, F'} and & possesses the properties of “speaking
Polish”, “speaking German” and “speaking French”. In this setting
any set a(z) is referred to as the set of a-properties of object z and
its complement VAL, \ a(z) is the set of negative a-properties of x.
Consider, for example, the file given below :

colour

01 [ green
09 | green

03 blue
04 blue
05 red

In that file, we have OB = {0y, 02,03,04,05} and AT = {colour}.
Moreover, VAL.ojour = {green,blue,red}. Suppose that we are in-
terested in defining a set X = {02,03,04} in terms of information
provided in the file. The set might be identified with a concept, say,
the concept “beautiful objects”. We easily observe that the following
statement is not true of the given objects : 0 € X iff o is either green
or blue. The reason being that the information that is available in the
file does not enable us to discern between o0; and 0;. We observe that
the attribute “colour” induces a relation in the set of objects (referred
to as an indiscernibility relation) that reflects their indistinguishability
in terms of colour :

e (0,0) € ind(colour) iff colour(o) = colour(o).
This suggests that, given an information system S = (OB, AT, {V AL, :
a € AT}), the properties of objects available in S induce relation-
ships among the objects. Typically, these relationships have the form

of binary relations. They are referred to as information relations.
There are two major groups of information relations : the relations



that reflect various forms of indistinguishability of objects in terms
of their properties and the relations that express distinguishability of
the objects. In the following we present few examples of information
relations. Let A be a subset of the set AT of attributes. The most
familiar family of information relations that can be derived from §' is
the family of indiscernibility relations :

e strong indiscernibility : (o0,0) € ind(A) iff a(o) = a(0’) for all
a€ A

These relations are strong indiscernibility relations, they hold between
two objects whenever the objects are “the same” with respect to their
a-properties for all @ € A. Clearly, it is also reasonable to consider
weak indiscernibility, that is indistinguishability of objects with re-
spect to some, not necessarily all the properties :

e weak indiscernibility : (o0, o) € wind(A) iff a(o) = a(0’) for some
ac A.

Another family of useful information relations is the family of similar-
ity relations :
e strong (weak) similarity : (z,y) € sim(A) (wsim(A)) iff a(z) N
a(y) # 0 for all (some) a € A.

Indiscernibility and similarity relations exhibit indistinguishability of
objects. We might also be interested in deriving information about
distinguishability. The following are examples of the families of infor-
mation relations that reflect differences between the objects :

e strong (weak) diversity : (z,y) € div(A4) (wdiv(A)) iff a(z) #
a(y) for all (some) a € A,

e strong (weak) orthogonality : (z,y) € ort(A) (wort(A)) iff a(z)N
a(y) = 0 for all (some) a € A,

e strong (weak) complementarity : (z,y) € com(A) (wcom(A)) iff
a(y) is the complement of a(z) with respect to the set VAL,,
for all (some) a € A.

An information system constitutes an explicit information available
in an application domain, while information relations are an implicit
information. These relations enable us to identify some aspects of in-
completeness of explicit information.

Relational systems consisting of a family of relations on a set are



referred to as frames. By a frame derived from an information sys-
tem S = (OB, AT,{VAL, : a € AT}) we mean a relational system
Kspr = (OB,{R(A) : AC AT}), where {R(A) : A C AT} is any of
the families of information relations. Observe that relations in these
frames depend on the subsets of the set AT. In a general setting these
subsets play the role of parameters which provide a means for repre-
senting an intensional part of information included in an information
system. From a technical point of view, we deal with families of rela-
tions indexed with subsets of a set.

Frames with relative accessibility relations have been suggested in
Ortowska [20] in the context of a rough set analysis of data, and
they were investigated, among others, in Konikowska [15] [16] and
Balbiani [2] [3]. Often we are also interested in studying relation-
ships between information relations that belong to different families.
Hence, it is also natural to consider frames with families of relations
of different types. A great variety of such frames is studied in the
literature, see for example Demri [5] [6], Demri and Orlowska [7],
Ortowska [18] [19] [21] [23] and Vakarelov [25] [26] [27].

The motivation for using modal logics for reasoning about informa-
tion relations comes from the methods of data analysis in informa-
tion systems. In these methods, the modal-like operators are used
in the languages for representation of incomplete information. Let
S = (OB,AT,{VAL, : a € AT}) be an information system. Given
a strong indiscernibility relation ind(A), for A being a subset of AT,
and a subset X of OB, the lower A-approximation of X and the upper
A-approximation of X are defined as follows :

o L(A)X ={2 € OB : forall y € OB, if (z,y) € ind(A) then

ye X}
o U(A)X = {2 € OB : there is y € OB such that (z,y) € ind(A)
and y € X}.

The following hierarchy of definability of sets is obtained in a natural
way in terms of the approximations. A subset X of OB is said to be :

o A-definable if L(A)X = X (or equivalently U(A)X = X).
Roughly A-definable if L(A)X # () and U(A)X # OB.
Internally A-indefinable if L(A)X = 0.

Externally A-indefinable if U(A)X = OB.



e Totally A-indefinable if internally A-indefinable and externally
A-indefinable.

A-definability of a set X means that X is the union of some of the
equivalence classes of ind(A). In our example L(colour)X = {os,04}
and U(colour)X = {o01,02,03,04} and we conclude that X is not de-
finable in terms of colour. Clearly, X cannot be covered with the
equivalence classes {o01,02}, {03,04}, {05} of ind(colour). From the
perspective of concept analysis any subset of objects in an informa-
tion system might be identified with an extension of a concept and
any subset of attributes with an intension of a concept.

Following the rough set semantics of vague concepts developed in
Ortowska [17] and Read [24], we define the sets of A-positive, A-
borderline and A-negative instances of a set X of objects as follows :

o POS(A)X = L(A)X.
o BOR(A)X = U(A)X \ L(A)X.
o NEG(A)X = OB\ U(A)X.

Elements of POS(A)X definitely, relative to properties corresponding
to A, belong to X. Elements of NEG(A)X definitely, up to these
properties, do not belong to X. BOR(A)X is a doubtful region, its
elements possibly belong to X, but we cannot decide it for certain
considering only properties corresponding to A. In other words, as
far as indiscernibility ind(A) is concerned, nothing can be said about
membership to X of elements from BOR(A)X.

The above analysis suggests that it might be useful to define the op-
erators analogous to the lower and upper approximation also with the
other information relations. These operators enable us to disclose an
interaction between the information relations and subsets of objects.
Let S = (OB, AT, {VAL, : a € AT}) be an information system and
let {R(A): A € AT} be afamily of information relations derived from
S. There are two major groups of operators :

o [RIA)JX ={z € OB : forall y € OB, if (z,y) € R(A) then
ye X}

e (R(A)X = {2 € OB : there is y € OB such that (z,y) € R(A)
and y € X}.

Clearly, from the logic point of view they are necessity and possibility
operators, respectively, and information relations play the role of the



accessibility relations that determine these modal operators. Hence,
modal logics appear to be a natural formal tool for the analysis of
data. However, to represent adequately all the ingredients of informa-
tion provided in an information system, we need to make the accessi-
bility relations relative. Since the information relations derived from
information systems always provide a twofold information, namely,
the information which objects are related and the information with
respect to which attributes these objects are related, in an abstract
setting of modal logics we need the relations that are relative to subsets
of a set. In this context, several modal logics have been introduced.
Their linguistic basis is the propositional calculus enriched, for every
expression ' in some language of parameters, with the modality [I'].
The language of parameters differs from one logic to another.

In the context of the modal logics for information systems introduced
by Orlowska [20], one has to consider parameter expressions I' defined
by the atomic parameters and the operation N. These expressions
enable us to represent strong information relations. In the relational
semantics of these logics, the accessibility relation R is parametrized
in such a way that for every parameter I', A, R(I'NA) = R([')NR(A).
In the context of DAL, the modal logic for data analysis introduced
by Farinas del Cerro and Orlowska [9], the parameter expressions I'
are built up from atomic expressions with the operations N and U*
corresponding to the interpretation of the compound accessibility re-
lations defined with intersection and transitive closure of union. In
the relational semantics of these logics, the accessibility relation R is
parametrized in such a way that for every parameter 'y A, R(I'NA) =
R(I') N R(A) and R(I' U A) = R(I') U* R(A).

In the context of BM L, the Boolean modal logic introduced by Gar-
gov, Passy and Tinchev [11] [12], the parameter expressions I" are built
up from atomic expressions with the operations N, U and — corre-
sponding to the interpretation of the compound accessibility relations
defined with intersection, union and complement. In the relational
semantics of these logics, the accessibility relation R is parametrized
in such a way that for every parameter I', A, R(I'NA) = R([')NR(A),
R(I'UuA) = R(I"U R(A) and R(—I') = R(I").

Several modal logics for information systems have been considered, de-
pending on the special properties of the relative accessibility relation.
If for every parameter I', R(I') is a relation of equivalence then the ac-
cessibility relation is a relation of strong indiscernibility. Such frames




(W, {R(I')}r) correspond to the frames of indiscernibility associated
to attribute systems. If for every I', R(I') is reflexive and symmet-
ric then the accessibility relation is a relation of strong similarity and
the frames (W, {R(I') }1) are the frames of similarity associated to at-
tribute systems.

In the section 2 of this paper, we consider several properties of the
relative accessibility relations R(I') where the parameters are defined
by the operation N in such a way that, in the relational semantics of
these logics, R(I'N A) = R(I') N R(A) and we prove the axiomatiz-
ability of the formulas valid in the corresponding class of frames. In
the section 3, we consider an extended language where the param-
eters are defined by the operations N and U in such a way that, in
the relational semantics of these logics, R(I'NA) = R(I') N R(A) and
R(I'UA) = R(I') U R(A). Therefore, this extended language is a
sublanguage of the Boolean modal logic [11] [12], only the parame-
ters of the form —I' are missing. We examine the axiomatizability
of the set of formulas valid in several classes of frames and we prove
the completeness of these axiomatizations. Our proof is based on the
techniques of the copying introduced by Vakarelov [26].

2 Modal logics L2

In this section we present a class L2 of relative modal logics where the

parameters are defined by the operation M in such a way that, in the
relational semantics of these logics, R(I' N A) = R(I') N R(A).

2.1 Language

The linguistic basis of any modal logic from class L2 is the language
of the classical propositional calculus enriched with modal operators.
Each modal operator is denoted by an expression that represents a set
of parameters. Let APAR be a nonempty set of atomic parameters.
The set CPAR of the complex parameters is defined by induction in
the following way :

e Every atomic parameter is a complex parameter,
o Forevery '’ A e CPAR, I'NA € CPAR.

Let set be the mapping of CPAR into Q?PAR — the set of the finite
subsets of APAR — defined by induction in the following way :



e lLor every atomic parameter «, set(a) = {a},
o For every 'y A € CPAR, set(I'NA) = set(I') U set(A).

In what follows, X C; Y means that X is a finite subset of Y. Observe
that :

Theorem 1 For every P Cy APAR, there is I' € CPAR such that

set(I')y = P.

Let C be the binary relation on C'PAR defined in the following way :
o For every I''A € CPAR, I' C A iff set(I') C set(A).

If the expressions I' and A are considered as Boolean formulas of the
classical propositional calculus, then one can easily prove that :

o 'C Aiff A — T is classically valid.

Let AFOR be a nonempty set of atomic formulas. The set CFOR of
the complex formulas is defined by induction in the following way :

e Every atomic formula is a complex formula,

o For every A € CFOR, -A € CFOR,

o Forevery A, Be CFOR, ANB € CFOR,

e Forevery I' € CPAR and for every A € CFOR, [I'|A € CFOR.
For every I' € CPAR and for every A € CFOR, let (I''A = —[I']-A.

2.2 Semantical study

A frame for L2 is a relational structure of the form 7 = (PAR, OB, R)
where :

e PAR is a nonempty set of parameters,
e OB is a nonempty set of objects,

e R is a mapping of Q?AR — the set of the finite subsets of PAR
— into the set of the binary relations on OB such that, for every

P,Q) C; PAR, R(PUQ) C R(P)NR(Q).
Throughout section 2, by “frame” we always mean a frame for L2. F
is standard when, for every P,QQ C; PAR, R(PUQ) = R(P)NR(Q).
Let m,n, j, k> 0. F is [} -normal when, for every P Cy PAR and for

every z,y,2 € OB, if &+ R(P)™ y and  R(P)? z then thereist € OB
such that y R(P)" t and z R(P)* t where :



o R(P)° = Idos,

o R(P)*T! = R(P)*; R(P), where ; is the composition of relations.
For example :

e F is Qi-normal when each R(P) is reflexive.

e F is (}-normal when each R(P) is symmetric.

e 7 is Y\-normal when each R(P) is transitive.

A mapping m of APAR into Q?AR and of AFOR into 297 is called
assignment on F. The pair M = (F,m) is called model on F. E=p A
— the truth in M of a formula A — is defined in the following way :

e Lorevery A € CFOR, Epm A iff m(A) = OB.

where m is the mapping of C'PAR into QfAR and of CFOR into 208
defined by induction in the following way :

e lLor every atomic parameter «, m(a) = m(a),

o For every I''A € CPAR, m(I'nA) = m(I') Um(A),
e Lor every atomic formula A, m(A4) = m(A),

o Lor every A € CFOR, m(—A) = OB\ m(A),

o For every A, B € CFOR, m(AA B) =m(A) Nm(B),

e Lor every I' € CPAR and for every A € CFOR, m([[']A)
{z € OB : for every y € OB, if # R(m(I')) y then y € m(A)}.

Direct calculations would lead to the conclusion that :

Theorem 2 Let F = (PAR,OB, R) be a frame. Let m be an assign-
ment on F. For every I''A € CPAR, R(m(I' N A)) C R(m(I') N
R(m(A)). If F is standard then, for every ') A € CPAR, R(m(T' N
A)) = R(m()) 0 R (A)).

Moreover :

Theorem 3 Let F = (PAR,OB, R) be a frame. Let m be an as-
signment on F. For every I'' A € CPAR, if set(I') C set(A) then
m(l') € m(A) and R(m(A)) C R(m(I)).

Er A — the truth in F of a formula A — is defined in the following
way :



e For every A € CFOR, =x A iff, for every model M on F,
Fam A

Let Q be a nonempty set of frames. |=q A — the validity in Q of a
formula A — is defined in the following way :

e For every A € CFOR, [=q A iff, for every F € Q, Er A.
Let

e K9 be the set of all frames,

° Kfz be the set of all standard frames,

o Kra(m,n,j,k) be the set of all 7;"-normal frames,

e K7,(m,n,j,k) be the set of all standard 7"-normal frames,

e 55712 be the set of all frames with equivalence relations (each
R(P) is an equivalence relation),

° 5552 be the set of all standard frames with equivalence relations.

2.3 Axiomatic presentation

Let © be a class of frames. By the logic of €2 we mean the set of
formulas of CFOR that are valid in €2. For the sake of brevity we
denote this logic by € as well. Together with the classical tautologies,
all the instances of the following schemata are axioms of Ky :

o [I'[(A— B) = ([I'|[A — [I']| B), for every I' € CPAR,
e [['JA — [A]A, for every I';A € CPAR such that I' C A.

Together with the modus ponens, all the instances of the following
schema are rules of Ky, :

e I'rom A infer [['|A, for every I' € CPAR.

In a standard way we define the notions of proof and derivability in

the logic €.

2.4 Completeness

It is easy to see that the following soundness theorem holds for logic
I(LQ .

Theorem 4 For every A € CFOR, ifbg,, A then Ex,, A.

10



Let OB be the set of the maximal consistent sets of formulas. Let R
be the mapping of Q?PAR into the set of the binary relations on OB
defined in the following way :

e For every P Cy APAR and for every z,y € OB, = R(P) y iff,
for every I' € CPAR and for every A € CFOR, if set(I') C P
and [I')A € z then A € y.

Let it be proved that the structure of the form F = (APAR,OB, R)
is a frame :

F is a frame Let P,() Cy APAR, let 2,y € OB be such that z
R(P UQ) y. Therefore, for every I' € CPAR and for every
A € CFOR, if set(I') € PUQ and [I']JA € x then A € y.
Since P C PUQ and @ C PU(Q, then, for every I' € CPAR
and for every A € CFOR, if set(I') C P and [I']A € 2 then
set(I') CPUQ and A € y and if set(I') C @ and [['JA € z then,
similarly, set(I') C PUQ and A € y. Consequently, z R(P) y
and z R(Q) y. Therefore, R(IPUQ) C R(P)N R(Q).

Let m be an assignment on F defined in the following way :
e lLor every atomic parameter o, m(a) = {a},
e lLor every atomic formula A, m(A) ={z € OB : A € z}.

Let M = (F,m). The proof is done by induction on I' that, for every
I'e CPAR, m(I') = set(I) :

Basis For every atomic parameter a, m(a) = m(a) = {a} = set(a).

HypotTHEsIS There is I A € CPAR such that m(l') = set(I') and
m(A) = set(A).

Step m(I' N A) = m(I') Um(A) =, by the hypothesis, set(I') U
set(A) = set(I'NA).

The proof is done by induction on A that, for every A € CFOR,
m(A) ={z € OB : Acuz}.

Basis For every atomic formula A, m(A) = m(A) = {¢ € OB :
A€},

HypotTHESIS There is A € CFOR such that m(A) = {# € OB :
A€},

STEP For every I' € CPAR, let « € OB be such that [['|4 € .
Consequently, for every y € OB, if ¢ R(m(')) y then A € y

11



and, by the hypothesis, y € m(A). Therefore, z € m([[']A).
For every I' € CPAR, let z € OB be such that [I']A ¢ z. Let
y be a maximal consistent set of formulas containing {-=A} U
{B € CFOR : [I'|B € z}. Direct calculations would lead to the
conclusion that @ R(m(l')) y. Therefore, x ¢ m([I']A).

Therefore :
Theorem 5 For every A € CFOR, if Fk,, A thentg,, A.

In order to obtain the completeness result for Ko with respect to
its standard frames, we apply the method of copying originated in
Vakarelov [26] in the context of the modal logics for knowledge repre-
sentation systems.

2.5 Copying

Let 7 = (PAR,OB,R) and F' = (PAR,OB’, R') be frames. Let [
be a set of mappings of OB into OB’. I is a copying of F into F’
whenever the following conditions are satisfied :

e For every 2’/ € OB’, there is f € I and there is € OB such
that f(z)=a’,

e Lor every f,g € I and for every z,y € OB, if f(z) = ¢g(y) then
=1,

e Lor every P Cy PAR, for every f € I and for every z,y € OB,
@ R(P) y iff there is g € I such that f(x) R'(P) g(y).

It is easy to show that :
Theorem 6 Let F = (PAR,OB,R) and F' = (PAR,OB’, R') be

frames. Let I be a copying of F into F'. Let m be an assignment on
F. Let m’ be the assignment on F' defined in the following way :

e For every atomic parameter o, m' (o) = m(a),

e For every atomic formula A, m'(A) = {f(z) : f €T and z €
m(A)}.

Then for every o € CPAR, m'(a) = m(«) and for every A € CFOR,
m/(A) ={f(z) : f el andz e m(A)}.

12



2.6 Standard completeness

Let F = (PAR,OB, R) be aframe. Forevery P C; PAR, let o(P) be
the mapping of OB x OB into 207 defined in the following way : for
every x,y € OB, o(P)(z,y) = 0 if 2 R(P) y, otherwise o(P)(z,y) =
OB. Observe that the set B = 298 can be treated as a Boolean ring
where :

o U= ®7

e 13 =0B,

e A+ B=(A\B)U(B\ A), consequently : A4+5 A =10,

e AxpB=ANB.
Therefore, for every A, B € 298, there exists exactly one X € 208
such that A4+5 X = B, namely : X = (A\ B)U(B\ A). Let I be the
set of the mappings of QfAR X PAR into 298, Let OB’ = OB x I. For

every P Cy PAR, let R'(P) be the binary relation on OB’ defined in
the following way :

e Lor every f,g € I and for every z,y € OB, (z, f) R'(P) (y,9)
iff :

— For every O Cy PAR and for every a € PAR, if o € O and
a € P then g(0,a) = f(O,«a) and
— For every O Cy PAR, ¥,c0f(O,0) +¢(0,a) = a(0)(z,y).

Lemma 1 Let P Cy PAR, let f € I and let x,y € OB be such that
there is g € I such that (z, f) R'(P) (y,g). Then x R(P) y.

Proof : Let P C; PAR, let f € I and let z,y € OB be such
that there is ¢ € I such that (z, f) R'(P) (y,¢). Consequently, for
every O Cy PAR and for every « € PAR, if « € O and a € P
then ¢(O,a) = f(O,a) and, for every O C; PAR, Y,c0f(0,a) +
9(0,a) = 0(O)(z,y). Therefore, for every « € PAR, if o € P then
g(P,a) = f(P,«). Consequently, o(P)(z,y) = (). Therefore,  R(P)
Y.

_|

Lemma 2 Let P Cy PAR, let f € I and let x,y € OB be such that
& R(P) y. Then there is g € I such that (z, f) R'(P) (y,9).

13



Proof : Let P C; PAR, let f € I and let 2,y € OB be such that
z R(P) y. Let & be a mapping of Q?AR into PAR such that, for
every O Cy PAR, if O € P then ®(O) € O\ P. We have to find a
mapping ¢ € I such that (z, f) R'(P) (y,g). Let g be the mapping of
Q?AR x PAR into 298 such that for every O Cy PAR and for every
o € PAR, the following conditions are satisfied :

e I[f a € O and o € P then ¢(O,a) = f(O, a),

o If o € Oand a ¢ P then either o = ®(O) in which case (0, o) =
Yaeo\Pf(O, )40 (0)(z,y) or a # ®(O) in which case g(O, a) =
e If a ¢ O then g(O,a) = 0.

It is easy to verify that (z, f) R'(P) (y,9)-

_|

Observe that, for every f € I, f can be identified with the mapping
of OB into OB’ defined by : for every @ € OB, f(x) = (2, f).

Lemma 3 The structure F' = (PAR,OB', R') is a standard frame
and I — considered as a set of mappings of OB into OB' — is a
copying of F into F'.

Proof : The proof is done that F’ is a standard frame and I is a
copying of F into F’.

F'is a standard frame o Let P,QQ C; PAR, let f,g € I and
let 2,y € OB be such that (z, f) R'(PUQ) (y,g). Conse-
quently, for every O Cy PAR and for every o € PAR, if
a €O and o € PUQ then ¢(O, o) = f(O, a) and, for every
O Cy PAR, Y,c0f(0,a) + ¢(O,a) = 0(O)(z,y). Since
PCPUQ@ and Q C PUQ, then, for every O Cy PAR and
for every @« € PAR, if « € O and o« € P then o« € PUQ
and ¢(0,a) = f(O,a) and if @« € O and a € @ then,
similarly, o € PUQ and ¢(O,a) = f(O,a). Therefore,
(z, f) B'(P) (y,9) and (z, ) R'(Q) (y,9). Consequently,
R(PUQ) C R(P)UR(Q).

o Let P,QQ Cy PAR, let f,g € I and let z,y € OB be such
that (z, f) R'(P) (y,9) and (2, f) R'(Q) (y,g). Therefore,
for every O Cy PAR and for every a« € PAR, if « € O
and a € P then g(O,a) = f(O,a) and if o € O and
a € @ then ¢(0,a) = f(O,a) and, for every O C; PAR,
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Yaco f(O,a)+ ¢(O,a) = a(O)(z,y). Consequently, for ev-
ery O Cy PAR and for every o € PAR, if a € O and
a € PUQ then o € P and ¢(0,a) = f(O,a) or a € Q
and ¢(O, o) = f(O,a). Therefore, (z, f) R'(PUQ) (y,9)-
Consequently, R'(PUQ) = R'(P)U R'(Q).

I is a copying of F into F’ This is a direct consequence of the lem-
mas 1 and 2.

_|
Consequently, it follows that the completeness theorem with respect
to the class of standard frames holds :

Theorem 7 For every A € CFOR, if ):Kfz) A then kg, . A

2.7 Extensions

This subsection presents two extensions — S5r2 and Kpa(m,n, j, k)
— of L2.

2.7.1  S5p,

Together with the axioms and the rules of Ky, all the instances of
the following schemata are axioms of Sbhy :

o [I'|A — A, for every I' € CPAR,
o (IN[I'A — [I']A, for every I' € CPAR.

It is easy to see the soundness of logic S5p :
Theorem 8 For every A € CFOR, ifbgs,, A then |=g5,, A.
Moreover, the structure of the form F = (APAR,OB, R) defined in

the subsection 2.4 is a frame with equivalence relations. Therefore we
have :

Theorem 9 For every A € CFOR, if =g5,, A then Fgs5,, A.

Let 7 = (PAR,OB, R) be a frame with equivalence relations. For
every P C; PAR, let o(P) be the mapping of OB x OB into 298
defined in the following way : for every z,y € OB, o(P)(z,y) =
R(P)(z)+ R(P)(y). Let I be the set of the mappings of Q?AR x PAR
into 298, Tt can easily be proved that the argument of the subsection
2.6 applies :
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Lemma 4 The structure of the form F' = (PAR,OB’, R') defined in
the subsection 2.6 is a standard frame with equivalence relations and
I is a copying of F into F'.

Consequently :

Theorem 10 For every A € CFOR, if )25552 A then t-g5,, A.

2.7.2 Kpy(m,n,j,k)

Let m,n,j, k> 0. Together with the axioms and the rules of K5, all
the instances of the following schema are axioms of Kpz(m,n,j, k) :

o (VI A — [I)(IV* A, for every I' € CPAR.

Theorem 11 Forevery A € CFOR, ifFg,,(mopn k) A then Bk, (mnik)
A.

The structure of the form F = (APAR,OB, R) defined in the sub-
section 2.4 is an 7}"-normal frame. Therefore we have the following

completeness theorem for logics Kpa(m,n,j, k) :

Theorem 12 Forevery A € CFOR, if Bic,, (k) A thenbp,
A.

(T)’L,?’L,j,k)

In what follows we present examples of logics of the form Kpz(m,n, j, k)
for which the completeness theorem with respect to the standard
frames holds. Let ' = (PAR,OB, R) be an 7}"-normal frame. For
every P C; PAR, let o(P) be the mapping of OB x OB into 298
defined in the following way : for every @,y € OB, o(P)(z,y) = 0 if «
R(P) y, otherwise o(P)(z,y) = OB. Let I be the set of the mappings
of Q?AR x PAR into 2B, If m =0, n =1, j =0 and k = 0, then the
argument of the subsection 2.6 applies :

Lemma 5 Ifm=0,n=1, j =0 and k = 0 then the structure of the
form F'= (PAR,OB', R') defined in the subsection 2.6 is a standard
reflexive frame and I is a copying of F into F'.

Consequently :

Theorem 13 Forevery A € CFOR, if ):1(52(0717070) A then I—KL2(0717070)
A.
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Ifm=1,n=1,75=0and k =0 then the argument of the subsection
2.6 applies as well :

Lemma 6 Ifm=1,n=1, =0 and k = 0 then the structure of the
form F'= (PAR,OB', R') defined in the subsection 2.6 is a standard

symmetric frame and I is a copying of F into F'.

Consequently, we have the completeness theorem for logic K13(1,1,0,0)
with respect to its standard frames :

Theorem 14 For every A € CFOR, if ):1(52(1717070) Athentg, (11,00
A.

If m+j > 2 then the proof of the standard completeness of Kpz(m, 1, 7,0)

and the proof of the standard completeness of Kp3(m,0, j,0) are open.
If n+k > 2 then let OB’ = OB x (I9B*I x I). For every P C; PAR,
let R'(P) be the binary relation on OB’ defined in the following way :

e For every fi,q1 € I9BX! for every fs,92 € I and for every
z,y € OB, (z,(f1, f2)) R'(P) (y,(g1,92)) iff :
— For every O Cy PAR and for every a € PAR, if o € O and
a € P then g1(z, f2)(0,a) = f2(0,a),
— For every O Cy PAR, Y,c0/2(0,a) + ¢1(z, f2)(0,a) =
a(0)(z,y).
The proofs of the three following lemmas are similar to the proofs of
the lemmas 1, 2 and 3 :

Lemma 7 Let P Cy PAR, let fo € I and let x,y € OB be such that
there is G € I such that for every fi,g1 € 1°B*1 and for every g, € I,

if g1(z, f2) = G then (z,(f1, f2)) R'(P) (y,(91,92)). Then a R(P) y.

Lemma 8 Let P Cy PAR, let fo € I and let x,y € OB be such that
x R(P) y. There is G € I such that for every fi,g, € I1°B*! and for

every ga € I; ngl(wva) =G then ($7 (fhf?)) R/(P) (y7 (91792))'

Lemma 9 The structure of the form F' = (PAR,OB', R') is a stan-
dard 7" -normal frame and I9BXI [ — considered as a set of map-
pings of OB into OB’ — is a copying of F into F'.

Consequently :

T)’L,?’L,j,k)

Theorem 15 Ifn+k > 2, then for every A € CFOR, if ):Kfz(
A then l_I(LQ(m,n k) A.

7j7

17



2.8 Examples

Whereas several extensions of L2 have a remote relationship with in-
formation systems, several extensions, on the other hand, have already
been considered by many authors in the context of the modal logics
for information systems.

557, is the class of standard frames in which each R(m(T)) is a rela-
tion of equivalence. In the context of the modal logics for information
systems, it is the class of the frames of indiscernibility introduced by
Orlowska [18].

One can easily extend the proof of the standard completeness of K3(1,1,0,0)
— the class of the frames where each R(m(I')) is symmetric — to the
class of the frames where each R(m(I')) is both reflexive and symmet-
ric. This class is the class of the frames of strong similarity.

3 Modal logics L3

In this section we consider a class L3 of relative modal logics where the
parameters are defined by the operations N and U in such a way that,
in the relational semantics of these logics, R(I'N A) = R(I') N R(A)
and R(I'UA) = R(I') U R(A). We present axiomatization of various
classes of these logics and we discuss their completeness.

3.1 Language

The language of any modal logic from class L3 is obtained from
the language of class L2 by adjoining the operation of union to the
set of operations acting on parameter expressions. Let APAR be a
nonempty set of atomic parameters. The set CPAR of the complex
parameters is defined by induction in the following way :

e Every atomic parameter is a complex parameter,
o Forevery I'’A e CPAR, I'NA € CPAR,
o Forevery I'’A e CPAR, TUA € CPAR.

APAR

Let set be the mapping of CPAR into ij — the set of the finite
sets of finite subsets of APAR — defined by induction in the following
way :

e Lor every atomic parameter «, set(a) = {{a}},
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o For every 'y A € CPAR, set(I'NA) = set(I') U set(A),

o For every I''A € CPAR, set(lUA) ={SUT : S € set(l') and
T € set(A)}.

Direct calculations would lead to the conclusion that :

Theorem 16 For every P C; Q?PAR, there is I' € CPAR such that
set(I')y = P.
Let C be the binary relation on C'PAR defined in the following way :

e Lorevery I'yA € CPAR, I' C A iff for every S € set(I') there is
T € set(A) such that T'C S.

As remarked in section 2.1, if the expressions I' and A are considered
as Boolean formulas of the classical propositional calculus, then one
can easily prove that :

o 'C Aiff A — T is classically valid.

Let AFOR be a nonempty set of atomic formulas. The set CFOR of
the complex formulas is defined by induction in the following way :

e Every atomic formula is a complex formula,

o For every A € CFOR, -A € CFOR,

o Forevery A, Be CFOR, ANB € CFOR,

e Forevery I' € CPAR and for every A € CFOR, [I'|A € CFOR.
For every I' € CPAR and for every A € CFOR, let (I''A = —[I']-A.

3.2 Semantical study

A frame for L3 is a relational structure of the form 7 = (PAR, OB, R)
where :

e PAR is a nonempty set of parameters,

e OB is a nonempty set of objects,
PAR

e R is a mapping of ij — the set of the finite sets of finite
subsets of PAR — into the set of the binary relations on OB
such that, for every P,Q C; Q?AR, R(PUQ) C R(P)N R(Q)
and R({SUT : SecPand T € Q}) = R(P)UR(Q).
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Throughout section 3, by “frame” we always mean a frame for L3. F
is standard when, for every P,Q) C¢ Q?AR, R(PUQ)=R(P)NR(Q).

PAR

A mapping m of APAR into ij and of AFOR into 298 is called
assignment on F. The pair M = (F,m) is called model on F. E=p A
— the truth in M of a formula A — is defined in the following way :

e Lorevery A € CFOR, Epm A iff m(A) = OB.
PAR

where m is the mapping of C PAR into ij and of CFOR into 208
defined by induction in the following way :

e lLor every atomic parameter «, m(a) = m(a),

o For every I''A € CPAR, m(I'nA) = m(I') Um(A),

e For every I''A € CPAR, m(I'UA) ={SUT : S € m(I') and

T € m(A)},

e Lor every atomic formula A, m(A4) = m(A),

o Lor every A € CFOR, m(—A) = OB\ m(A),

o For every A, B € CFOR, m(AA B) =m(A) Nm(B),

e Lor every I' € CPAR and for every A € CFOR, m([[']A)

{z € OB : for every y € OB, if 2 R(m(I')) y then y € m(A)}.
It could easily be observed that :

o For every I''A € CPAR,if ' C A then R(m(A)) C R(m(l)).
Moreover, direct calculations would lead to the conclusion that :
Theorem 17 Let F = (PAR,OB, R) be a frame. Let m be an as-
signment on F. For every 'y A € CPAR, R(m(I'NnA)) C R(m(I'))N
R(m(A)) and R(m(I'UA)) = R(m(I) U R(M(A)). If F is standard
then, for every 'y A € CPAR, R(m(I'NA)) = R(m(I')) N R(m(A)).

Moreover :

Theorem 18 Let F = (PAR,OB, R) be a frame. Let m be an assign-
ment on F. For every ', A, A € CPAR, if, for every S € set(I'UA),
there is T € set(A) such that T C S then, for every S € m(I'U A),
there is T € m(A) such that T C S and R(m(A)) C R(m(l')) U
R(m(A)).

The notions of truth of a formula in a frame, validity of a formula in
a class of frames and logic of a class of frames are defined in a usual
way. We distinguish the following classes of frames :
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K3 is the set of all frames,

Kf3 is the set of all standard frames,

Krs(m,n,j, k) is the set of all 7}"-normal frames,

K?2,(m,n,j, k) is the set of all standard 7-normal frames,

° 5553 is the set of all standard frames with equivalence relations.

Observe that :

Theorem 19 Let F = (PAR,OB, R) be a frame with equivalence re-
lations. If F is standard then all the instances of the following schema
are true in F :

o [I'JA — [A]JAV [A]A, for every ')A, A € CPAR such that I' C
ANA.

Proof Suppose that F is standard and let m be an assignment on F.
Let 'y A;A € CPAR be such that : ' CE ANA and let A € CFOR.
Let z € OB. If @ ¢ m([A]JAV [A]JA) then there exists y € OB such
that  R(m(A)) y and y ¢ m(A) and there exists z € OB such that
R(m(A)) zand z ¢ m(A). Then, 2 R(m(AUA)) y and 2 R(m(AUA))
z. Since R(m(AUA)) is a relation of equivalence, then y R(m(AUA))
z and either y R(m(A)) z or y R(m(A)) z. If y R(m(A)) 2z then 2
R(m(A)) zand 2 R(m(A)) z. Since F is standard, then 2 R(m(ANA))
z. Since I' C ANA, then 2 R(m(l')) z and = ¢ m([I'|4). Similarly, if y
R(m(A)) z then ¢ R(m(A)) y and 2 R(m(A)) y. Since F is standard,
then ¢ R(m(ANA))y. Since ' T ANA, then 2 R(m(l')) y and

z ¢ m([IA).
_|

3.3 Axiomatic presentation

Together with the classical tautologies, all the instances of the follow-
ing schemata are axioms of K3 :

o [I'(A— B) = (I'JA — [I'|B), for every I' € CPAR,

o [['JAA[A]A — [A]A, forevery ', A, A € CPAR such that TUA C
A.

Together with the modus ponens, all the instances of the following
schema are rules of K3 :
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e I'rom A infer [['|A, for every I' € CPAR.

It can be easily observed that, for every I'y/ A € C'PAR, all the in-
stances of the following schemata are theorems of K3 : [['JAA[A]JA <
[TUA]A and [I'JAVI]A]JA — ['NA]A. Moreover, if I' T A then all the
instances of the following schema are theorems of K3 : [I'A — [A]A.

3.4 Completeness

It is easy to see that the following soundness theorem holds for logic
I(Lg .

Theorem 20 For every A € CFOR, iftg,, A then Ek,. A.

Let OB be the set of};lmeaximal consistent sets of formulas. Let R

2
be the mapping of fo into the set of the binary relations on OB
defined in the following way :

e For every P Cy Q?PAR and for every z,y € OB, z R(P) y iff
for every I' € CPAR and for every A € CFOR, if for every
S € set(l') there is T € P such that 7" C S, then if [I'|A € 2
then A € y.

Let it be proved that the structure of the form F = (APAR,OB, R)
is a frame :

F is a frame Let P, C; Q?PAR, let 2,y € OB be such that z
R(PUQ) y and let it be proved that 2 R(P) y and = R(Q) y.
Therefore, for every I' € C'PAR and for every A € CFOR, if,
for every S € set(l'), there is T € P UQ such that 7' C S and
[I']A € z then A € y. Since P C PUQ and Q C PUQ, then,
for every I' € CPAR and for every A € CFOR, if, for every
S € set(l'), there is T € P such that 7 C S and [[']A € = then,
for every S € set(l'), there is T € P UQ such that 7' C S and
A € y and if, for every S € set(l'), there is T" € @ such that
T C S and [I'|A € z then, similarly, for every S € set(I'), there
is T'€ PUQ such that T'C S and A € y. Consequently, z R(P)
yand 2 R(Q) y. Let P,Q C¢ Q?PAR, let z,y € OB be such that
x R{SUT : S € Pand T € Q}) y and let it be proved that
x R(P) y or z R(Q) y. Assume that z R(P) y and = R(Q) v.
Then there exists I' € CPAR and there exists A € CFOR such
that :
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e for every U € set(l') there is S € P such that S C U,
e [I']A € 2 and
e Ady,

and there exists A € CPAR and there exists B € CFOR such
that :

e for every V € set(A) thereis T' € @ such that T C V,
e [A]B € 2 and
e By

Therefore, [I'|(AVB) € z, [A](AVB) € z and [T'UA](AVB) € z.
Moreover, for every W € set(I' U A), there is U € set(I') and
there is V € set(A) such that W = U UV and, furthermore,
there is S € P and there is T € @ such that SUT C U UV.
Since ¢ R({SUT : S € Pand T € Q}) y and [[UA](AVB) € z,
then AV B € y, a contradiction. Therefore, either z R(P) y or
r R(Q) y. Reciprocally, let P,Q C; Q?PAR, let 2,4 € OB be
such that either « R(P) y or 2 R(Q) y and let it be proved that
r R{SUT : S € Pand T € Q}) y. Suppose that @ R(P)
y. Then for every I' € CPAR and for every A € C'FOR, if
for every S € set(I') there is T € P such that 7" C S, then if
')A € o then A € y. Now, let ' € CPAR be such that, for
every S € set(I') thereis TUU e {TUU : T € Pand U € Q}
such that T U U C S. Therefore, for every S € set(I') there is
T € P such that T C S. Now, for every A € CFOR, if [I'|A € «
then A € y. Then ¢ R{SUT : Se Pand T € Q}) y.

Let m be the assignment on F defined in the following way :
e lor every atomic parameter o, m(a) = {{a}},
e For every atomic formula A, m(A) ={z € OB : A € z}.

Let M = (F,m). The proof is done by induction on I' that, for every
I'e CPAR, m(I') = set(I).

Basis For every atomic parameter «, m(a) = m(a) = {{a}} =
set(I).

HypotTHEsIS There is I A € CPAR such that m(l') = set(I') and
m(A) = set(A).

Step m(I' N A) = m(I') Um(A) =, by the hypothesis, set(I') U
set(A) = set(I'NA). m(IT'UA) = {SUT : S € m(l') and
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T € m(A)} =, by the hypothesis, {SUT : S € set(l') and
T € set(A)} = set(I' UA).

The proof is done by induction on A that, for every A € CFOR,

m(A) ={z € OB : Acuz}.

Basis For every atomic formula A, m(A) = m(A) = {¢ € OB :
A€},

HypotTHESIS There is A € CFOR such that m(A) = {# € OB :
A€},

STEP For every I' € CPAR, let « € OB be such that [['JA € =.
Consequently, for every y € OB, if ¢ R(m(')) y then A € y
and, by the hypothesis, y € m(A). Therefore, z € m([[']A).
For every I' € CPAR, let z € OB be such that [I']A ¢ z. Let
y be a maximal consistent set of formulas containing {-=A} U
{B € CFOR : [I'|B € z}. Direct calculations would lead to the
conclusion that @ R(m(l')) y. Therefore, x ¢ m([I']A).

Therefore :

Theorem 21 For every A € CFOR, if Ek,, A then bk, A.

3.5 Copying

Let 7 = (PAR,OB,R) and F' = (PAR,OB’, R') be frames. Let I
be a set of mappings of OB into OB’. I is a copying of F into F’
whenever the following conditions are satisfied :

e For every 2/ € OB’, there is f € I and there is * € OB such

that f(z) = 2/,
e Lor every f,g € I and for every z,y € OB, if f(z) = ¢g(y) then
=1,

o For every P C; Q?AR, for every f € I and for every z,y € OB,
@ R(P) y iff there is g € I such that f(x) R'(P) g(y).

Direct calculations would lead to the conclusion that :

Theorem 22 Let F = (PAR,OB,R) and F' = (PAR,OB', R') be
frames. Let I be a copying of F into F'. Let m be an assignment on
F. Let m’ be the assignment on F' defined in the following way :

e For every atomic parameter a, m'(a) = m(a),
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e For every atomic formula A, m'(A) = {f(z) : f €l and z €
m(A)}.

Then for every A € CFOR, m'(A) = {f(z) : f €I and x € m(A)}.

3.6 Standard completeness

Let 7 = (PAR,OB, R) be a frame. For every P C; 2"AF et o(P)
be the mapping of OB x OB into 298 such that, for every z,y € OB,
o(P)(z,y) = 0 if  R(P) y, otherwise o(P)(z,y) = OB. Let I be

PAR
the set of the mappings of 2?0 x 2PAR — 9PAR ig the set of the

singletons of PAR and 2§§AR is the set of the finite sets of singletons
of PAR — into 29P. Let OB’ = OB x I. For every P C; 2PAR et
R'(P) be the binary relation on OB’ defined in the following way :

e Lor every f,g € I and for every z,y € OB, (z, f) R'(P) (y,9)
iff :

— For every O Cy 2PAR and for every o € 2P48 if o € O and
a € P then ¢(0,a) = f(O,«), and
— Forevery O C; 2PAR S 6 f(O, ) +¢(0,a) = a(O)(z, y).
For every P C; Q?AR, let R'(P) be the binary relation on OB’ defined

in the following way :

e Lorevery f,g € I and for every z,y € OB, (z, f) R'(P) (y,¢) iff
there is a mapping ¢ of P into 2847 such that :
— For every S € P, ¢(5) C S,
= (2, f) B'({¢(9) : S € P}) (y,9).

The proofs of the three following lemmas are similar to the proofs of
the lemmas 1, 2 and 3 :

Lemma 10 Let P C¢ Q?AR, let f,g € I and let z,y € OB be such
that (z, f) R'(P) (y,g). Then  R(P) y.

Lemma 11 Let P Cy Q?AR, let f €l andlet x,y € OB be such that
x R(P) y. There is g € I such that (z, f) R'(P) (y,9).

Lemma 12 The structure of the form F' = (PAR,OB’, R') is a stan-
dard frame and I — considered as a set of mappings of OB into OB’
— is a copying of F into F'.
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It follows that we have the following completeness theorem with re-
spect to the standard frames :

Theorem 23 For every A € CFOR, if ):Kfs A then bk, A.

3.7 Extensions

This subsection presents two extensions — S5r3 and Kpz(m,n, j, k) —
of the modal logic with strong and pseudo-weak accessibility relations.

3.7.1 S5p3
Together with the axioms and the rules of K3, all the instances of
the following schemata are axioms of Shys :
o [I'JA — A, forevery I' € CPAR,
o (INA— [I'()A, for every I' € CPAR,
o [I'A — [A]JAV[A]A, for every I') A, A € CPAR such that I' C
ANA.
Theorem 24 For every A € CFOR, if -s5,, A then ):5553 A.

Moreover :

Lemma 13 The structure of the form F = (APAR,OB, R) defined

in the subsection 3.4 is a standard frame with equivalence relations.
Proof : Suppose that F is not standard. Then there exists P, ) C;
Q?PAR and there exists 2,y € OB such that 2 R(P) y, 2 R(Q) y and

r R(PUQ)y. Let A, A € CPAR be such that set(A) = P and set(A)
= (. Since # R(PUQ) vy, then there exists I' € CPAR and there
exists A € CFOR such that :

e Lor every S € set(I'), there exists T € P U@ such that 7" C 5.
o [I'A € x.
o Ady.

Since PUQ = set(ANA), then I' T AN A and either [A]A € z or
[A]A € z. Consequently, A € y : a contradiction.

_|
Therefore :

Theorem 25 For every A € CFOR, if )25553 A then t-g5,, A.
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3.7.2 Kps(m,n,j,k)

Let m,n,j, k> 0. Together with the axioms and the rules of K3, all

the instances of the following schema are axioms of Kp3(m,n,j, k) :
o (VI A — [I)(IV* A, for every I' € CPAR.

We have the following soundness theorem :

Theorem 26 Forevery A € CFOR, ifFg,, (mpn k) A then Bk (mnik)
A.

Observe that the structure of the form 7 = (APAR, OB, R) defined

in the subsection 3.4 is an %”—normal frame. Therefore :

Theorem 27 Forevery A € CFOR, if ):I(Lg(m,n,j,k) A then "I(Lg(m,n,j,k)
A.

The results analogous to theorems 13, 14, 15 can be obtained for the
logics of the class L3. The proofs of the three following theorems are
similar to the proofs of the theorems 13, 14 and 15 :

Theorem 28 Forevery A € CFOR, if ):1(53(0717070) Athentg, (01,00
A.

Theorem 29 Fforevery A ¢ CFOR, if ):1(53(1717070) Athentr, (1,100
A.

Theorem 30 Ifn+k > 2 then, for every A € CFOR, if ):Kfs(
A then "]{Ls(m7n7]‘7k) A.

T)’L,?’L,j,k)

3.8 Examples

The language of the relative modal logics of the class L3 is defined
by the operations N and U. Therefore, it is a sublanguage of the
language of the Boolean modal logic introduced by Gargov, Passy,
Tinchev [11] [12] and K73 is nothing but a fragment of BML. As
well, the extensions Kps(m,n,j, k) are axiomatizable extensions of
this fragment. In other respects, the relative modal logic S573 is ex-
actly the data analysis logic with local agreement DALL A introduced
by Gargov [10] and further developed by Demri [5].
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4 Conclusion

In this paper, we developed a general framework for presenting and
studying modal logics based on frames with relative accessibility rela-
tions. We defined two major hierarchies of the classes of these logics :
logics of class L2 and logics of class L3. For each class of logics we
defined semantic structures of the two kinds : general structures and
standard structures. We presented an axiomatization of several classes
of logics from the given hierarchies and we studied their completeness
with respect to both general and standard semantic structures. We
showed that several modal logics for information systems are members
of the classes L2 and L3.

For the modal logics of class L2, the accessibility relations R of the
models (PAR,OB, R, m) are parametrized by the elements of Q?AR,
the set of the finite subsets of PAR. For the modal logics of class

L3, the accessibility relations R are parametrized by the elements of
PAR

ij , the set of the finite subsets of the set of the finite subsets of
PAR. What would be the modal logic the models of which are rela-
tional structures of the form (PAR,OB, R, m) where the accessibility
relations R are parametrized by the elements of the set of the finite
subsets of the set of the finite subsets of the set of the finite subsets
of PART
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