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ARTICLE

Herbaceous perennial plants with short generation
time have stronger responses to climate anomalies
than those with longer generation time
Aldo Compagnoni 1,2✉, Sam Levin1,2, Dylan Z. Childs 3, Stan Harpole 1,2,4, Maria Paniw5, Gesa Römer6,7,

Jean H. Burns 8, Judy Che-Castaldo9, Nadja Rüger2,10,11, Georges Kunstler 12, Joanne M. Bennett 1,2,13,

C. Ruth Archer14,15, Owen R. Jones 6,7, Roberto Salguero-Gómez16,18 & Tiffany M. Knight 1,2,17,18

There is an urgent need to synthesize the state of our knowledge on plant responses to

climate. The availability of open-access data provide opportunities to examine quantitative

generalizations regarding which biomes and species are most responsive to climate drivers.

Here, we synthesize time series of structured population models from 162 populations of 62

plants, mostly herbaceous species from temperate biomes, to link plant population growth

rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demo-

graphic responses to precipitation than temperature, especially in arid biomes; and (2) a

higher climate sensitivity in short-lived rather than long-lived species. We find that pre-

cipitation anomalies have a nearly three-fold larger effect on λ than temperature. Species with

shorter generation time have much stronger absolute responses to climate anomalies. We

conclude that key species-level traits can predict plant population responses to climate, and

discuss the relevance of this generalization for conservation planning.
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C limate change is altering the mean as well as the variance
in temperature and precipitation worldwide1. These
changes in climate are widely recognized as a prime global

threat to biodiversity2 because temperature and precipitation
ultimately drive the demographic processes that determine the
size and long-term viability of natural populations3. Hence, it is
critical to evaluate which species are most responsive to climatic
drivers, and in which biomes4. The urgency to understand the
response of species to climate is particularly high for species that
cannot buffer against the effects of climate change by migrating,
such as sessile species. Among sessile species, numerous plants
have short-distance dispersal, and cannot, therefore, shift their
ranges fast enough to keep up with the current pace of climate
change5,6.

Assuming plant productivity is a proxy of population perfor-
mance, we expect that precipitation, or its interaction with tem-
perature, predicts plant population growth better than
temperature alone. Most plant physiological processes, such as
seed germination, tissue growth, floral induction, and seed set, are
affected by water availability7. Accordingly, precipitation is a key
driver of vegetation productivity worldwide8. Temperature can
also influence these processes, but typically by modulating water
availability9, as plant growth occurs across a wide range of tem-
peratures (namely between 5 and 40 °C7,10). The effect of tem-
poral fluctuations on the growth rate of a population should be
proportional to precipitation or temperature anomalies, where
anomalies are deviations from mean values.

Precipitation and temperature anomalies are expected to have
more pronounced effects in arid and cold biomes than in wet and
temperate ones. While species should be adapted to their
respective environment, extreme environments impose hard
physiological limitations. In arid environments, plants experience
water limitation more frequently11. Similarly, in cold biomes
plants should more frequently experience temperatures that are
too low to allow tissue growth10,12. Accordingly, as water avail-
ability decreases, precipitation becomes the main factor limiting
plant physiological processes13,14. On the other hand, in cold
biomes temperature anomalies can be disproportionately
important. For example, the temperature has a positive effect on
tree growth that increases in explanatory power with altitude15,16.
Similarly, in the tundra temperature anomalies can dramatically
change the length of the growing season17. However, because
plant functional composition is filtered by biome18, it is impor-
tant to consider whether differences in the responses of plants
across biomes might be due to the different composition of plant
functional types (graminoids, herbs, ferns, woody species, and
succulents) that occur in those biomes.

The life-history theory also provides expectations for how
natural plant populations may respond to climate drivers. The
key life-history trait defining plant life-history strategy is gen-
eration time, which describes how fast individuals in a population
are substituted and is correlated with life expectancy19. The
population growth of long-lived species should respond weakly to
climatic anomalies compared to short-lived species. We expect
this because the long-run population growth rate of long-lived
species responds less strongly to increases in the temporal var-
iation of survival, growth, and reproduction20. Here, we capitalize
on the recent availability of large volumes of demographic data to
quantitatively test how to plant population growth rate, λ,
responds to temperature and precipitation anomalies. We expect
(H1) λ to be more strongly associated with precipitation than
temperature anomalies, because we expect water availability to
having stronger physiological effects than temperature; (H2) λ of
plants in water-limited biomes to be more responsive to pre-
cipitation anomalies; (H3) λ of plants in cold biomes to be more
responsive to temperature anomalies; (H4) species with greater

generation time to respond more weakly to temperature and
precipitation anomalies. We show that the effect of precipitation
is three times larger than that of temperature (H1). Moreover,
larger generation times are associated with weaker responses to
climate (H4). Both of these findings will inform ecological fore-
casts, and the result on generation time emphasizes the impor-
tance of this life-history trait to conservation assessments.

Results
Our model selection provided little evidence for nonlinear
responses to climate, and little evidence of interactions between
climatic and non-climatic factors. A nonlinear model was selected
in eight of the 38 populations for which we tested nonlinear
relationships (Supplementary Figs. 3–5). We, therefore, con-
sidered a linear relationship for the remaining 154 populations;
we present these linear relationships in the online repository that
also contains the data and code related to this study21. Only two
populations showed a substantial effect of the interaction between
climate anomalies and covariates: our only population of Astra-
galus cremnophylax var. cremnophylax, and one of Dicerandra
frutescens (Supplementary Data 1). These interactions increased
the estimates of the climatic effect by 40 times (from 0.001 to
0.052) and decreased it by 16% (from −0.189 to −0.158),
respectively.

The overall effect of climate on plant population growth rate.
As predicted (H1), the overall effect of precipitation anomalies on
a log(λ) was strong (β= 0.031, 95% CI: 0.007–0.054) relative to
that of temperature (η=−0.013, 95% CI: −0.036 to 0.009) and
their interaction (θ=−0.008, 95% CI: −0.029 to 0.011), which
were centered around zero. On average, a year with precipitation
one standard deviation above the mean changed λ by +3.3%.

The effect of biome on the response of plants to climate. The
meta-regressions testing the response of plant populations to
precipitation (H2) and temperature (H3) anomalies were both
nonsignificant (Fig. 1). When testing the correlation between
WAI and the response of plant populations to precipitation
anomalies, only 90.5% of our bootstrap samples had slopes below
zero (βmeta=−3.83 × 10−5, 95% CI: −9.47 × 10−5, 1.99 × 10−5).
Similarly, we did not find evidence that the mean annual tem-
perature (H3) of the site predicted the response of plant popu-
lations to temperature anomalies (Fig. 1b; βmeta=−1.42 × 10−3,
95% CI: −6.62 × 10−3, 1.00 × 10−2).

The effect of generation time on the response of plants to
climate. We found strong support for the effect of generation
time (H4) on the absolute response of plant populations to cli-
mate. As expected, the response of species to climate correlated
negatively with generation time (Fig. 2). In these meta-regres-
sions, 100% of simulated βmeta values referring to the effect of
precipitation (βmeta=−0.54, 95% CI: −0.63 to −0.44]), and
temperature (βmeta=−0.40, 95% CI: −0.50 to −0.30]) were
below zero.

The effect of plant types on estimates of climate effects. The
effect of precipitation (P < 0.01), but not temperature (P= 0.97),
changed based on organism type according to the ANOVA tests.
Tukey’s honestly significant difference test showed a significant
difference in the effect of precipitation between herbaceous and
graminoid species (Supplementary Tables 2 and 3, Supplementary
Fig. 6). We, therefore, re-run separate tests of H2, and H4

excluding the precipitation effect sizes of graminoid species. We
excluded graminoid species only because herbaceous species
comprised 127 of our 162 populations so that excluding them
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would not provide meaningful inferences. In these additional tests
discarding graminoid data, H2 was not supported, and H4 was
upheld. In H2, the percentage of simulated βmeta values lower than
zero was 72%, well below the 90.4% of the full dataset (Supple-
mentary Methods, Supplementary Fig. 7). On the other hand, H4

was upheld, with 100% of βmeta below zero (Supplementary
Methods, Supplementary Fig. 8).

Discussion
While quantifying population responses to climate drivers has a
long history in plant ecology22, there is an urgent need to syn-
thesize our knowledge due to on-going climate change4,23. The
availability of open-access data24, a solid understanding of phy-
siological ecology25, and a mature evolutionary theory of life
histories26 provide opportunities to produce quantitative gen-
eralizations regarding plant population responses to climate. In
our global synthesis, we found that (H1) precipitation has a
stronger effect on population growth rates than temperature and
that (H4) plant species with shorter generation time respond

more strongly to climate. These generalizations, especially the one
on generation time, are relevant to conservation planning and
evolutionary theory. However, because the available data is biased
towards herbaceous perennials of temperate regions, our results
might not be universal.

The large, positive effect of precipitation on a log(λ) and the
negative, smaller effects of temperature and its interaction
with precipitation are consistent with the importance of water
availability on plant population performance25 and productivity8.
The importance of precipitation as a driver of plant popula-
tion growth implies highly uncertain ecological forecasts. Climate
change projections involving precipitation are much more
uncertain than those involving temperature23. Moreover, pre-
diction uncertainty in climate projections is not expected to
improve much in the coming decades27. As a result, accounting
for this uncertainty will be a fundamental step when crafting
ecological forecasts of plant populations (e.g., model
uncertainty28).

To our knowledge, our results are the first to show that gen-
eration time is linked to population responses to climatic drivers
across a large number of species. To our knowledge, the only
other study to test for this hypothesis found a similar pattern for

Fig. 1 The effect of precipitation and temperature anomalies as a function
of site mean aridity and temperature. Effect of precipitation (A) and
temperature (B) anomalies on the logged asymptotic population growth
rate (λ) as a function of water availability index (A) and mean annual
temperature (B). The y-axis represents the effect sizes of yearly anomalies
in precipitation and temperature. The uncertainty of these effect sizes is
shown by the size of circles, which are inversely proportional to the
standard error (SE) of effect sizes (1/SE). The thick black lines show the
mean prediction of the meta-regressions; these lines are dashed because
these relationships are nonsignificant. The shaded areas represent the 95%
confidence interval of 1000 bootstrapped linear regressions. The color of
individual data points shows five separate plant types.

Fig. 2 The absolute effect of precipitation and temperature anomalies as
a function of logged generation time (T). We show the effect sizes of
precipitation and temperature anomalies as a function of log(T) (panels A
and B, respectively). The uncertainty of these effect sizes is shown by the
size of circles, which are inversely proportional to the standard error (SE) of
effect sizes (1/SE). The thick black lines show the mean prediction of the
meta-regressions. The shaded areas represent the 95% confidence interval
of 1000 bootstrapped gamma regressions. The color of individual data
points shows five separate plant types.
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three amphibian species29. We formulated our hypothesis linking
generation time to population responses to climate because in a
sample of long-lived plants and animals, Morris et al20. found
that the long-run population growth rate responds little to
increases in the variation of survival and reproduction. Our
results are complementary to this seminal study, in that the low
sensitivity to climate drivers we found in long-lived species
should minimize the variation in yearly population growth rates.
Such minimized variation in yearly population growth rates is
linked to higher long-run population growth rates30–32. Hence,
we demonstrated that it is possible to use plant traits to predict
which species will be most sensitive to climate change4. Inter-
estingly, generation time is a fundamental quantity in identifying
extinction probability33,34. It is, therefore, a good news that this
trait can also predict the climatic sensitivity of herbaceous plants.

The fact that responses to climate do not change based on
biome suggests that plant populations are demographically
adapted to cope with climate variation regardless of the average
climate. In extreme environments, the stronger effect of climate
on the variation of ecosystem processes such as productivity14,35

or biomass accumulation15,16 is not reflected in demographic
patterns. It is, therefore, plausible that adaptations such as
investment in survival36 or dormancy37 are sufficient to de-
couple physiological processes from demographic patterns. Such
de-coupling is crucial because if climate drove larger variance in
population growth rates, this would decrease the chances of
population persistence. However, because plants appear adapted
to local climatic variation, these results do not mean that all
biomes will be equally vulnerable to climatic change. Rather,
vulnerability to climate change will likely depend on how changes
in climate compare to pre-existing climatic variability38.

The geographic and taxonomic bias of our dataset might
amplify the relevance of precipitation anomalies, and it therefore
may affect the generality of our findings. First, geographic bias
potentially underemphasizes the role of temperature, because of
our dataset under-samples extremely cold and hot biomes. For
example, in cold biomes such as montane or boreal forests, the
influence of temperature on growth is larger as the mean annual
temperature decreases15,16. On the other hand, the interaction
between precipitation and temperature may be larger in hot than
in colder biomes9. Therefore, we might expect a strong interac-
tion between precipitation and temperature anomalies where
mean precipitation is low and mean temperature high. These
conditions should occur, for example, in the subtropical desert or
tropical savannas, but only a handful of our studies occur in these
biomes (Supplementary Fig. 1). Similarly, the taxonomic bias in
our data could also amplify the importance of precipitation
anomalies. For example, our dataset contained only two trees and
five shrubs. However, woody species have surprisingly effective
adaptations to cope with water shortages39, and they could
therefore be susceptible only to extreme precipitation anomalies.
Nevertheless, we note that inferences dominated by herbaceous
perennials have high significance globally. At least 40% of ter-
restrial habitats are dominated by grasslands40, herbaceous spe-
cies comprise most of the biodiversity in temperate forests41, and
they have a critical role in the carbon cycle42.

Our data on graminoids exemplify that the covariation between
taxonomies and biomes complicates the interpretation of global
comparative studies. In our results, the response of graminoids to
precipitation anomalies is larger than other plant types, and this
response drives the positive correlation between WAI and the
effect of precipitation (Fig. 1a). Moderately arid climates favor
grasses43, which might have an inherent advantage in exploiting
precipitation or at least precipitation pulses that increase the
moisture of shallow soil horizons11. As a result, we cannot
establish whether sensitivity to precipitation anomalies is

characteristic of graminoids, or, as we originally expected (H2), of
arid biomes. In future studies, disentangling the role of biomes
and taxonomic bias on plant climate sensitivity will require study
designs that stratify plant types across biomes.

The predictive ability of our results, which use as predictors of
annual climatic anomalies calculated from gridded climatic data,
could be improved in the future by mechanistic models that use
increasingly more available microclimatic information44. Gridded
climatic data are adequate to estimating climatic means registered
by weather stations over long time periods, such as years45.
However, the temperature experienced by plant tissues can
sometimes be substantially different from the air temperature
registered by weather stations46,47. We note, however, that this
fact does not invalidate the use of gridded climatic data, because
annual anomalies observed at the microclimatic and weather
station level should be similar. For example, a previous study
shows a tight linear relationship between air temperature and the
microclimate at the leaf surface in alpine vegetation47. Never-
theless, microclimatic data will be required to test mechanistic
models of climatic effects, such as those linked to thresholds.
Examples of these thresholds are growing degree days48

(Mcmaster 1997) or frost damage49. Similarly, microclimatic
anomalies could help understand why different populations of the
same species respond differently to comparable climatic
anomalies50.

Our findings on the link between short generation times and
climatic sensitivity do not automatically translate into climate
vulnerability. The observational nature of our data imposes to
interpret our findings in light of two caveats. First, our data did
not address several of the concurrent factors that contribute to
the effects of climate on populations. These include factors such
as density-dependence3, trophic interactions51, and anthro-
pogenic drivers52. Second, our results are more relevant to
changes in climatic variability than changes in climatic means.
When predicting the effects of large changes in climatic means,
our nonlinear results (Supplementary Figs. 3–5) show that
extrapolation might not be warranted. Besides these two caveats,
the conservation literature links short generation times to lower,
rather than higher climate vulnerability as indicated by our
results53,54. These studies reflect conservation assessments which
posit that short generation time should be linked to lower
extinction probability33. Short-generation time should also
increase the probability of evolutionary rescue55. However, the
advantages provided by short generation time might be over-
ridden by the rapid rates of climate change expected. Thus,
weighing the positive and negative effects of generation time will
leverage our findings to improve the quality of climate change
vulnerability assessments.

Methods
Demographic data. To address our hypotheses, we used matrix population models
(MPMs) or integral projection models (IPMs) from the COMPADRE Plant Matrix
Database (v. 5.0.156) and the PADRINO IPM Database57, which we amended with
a systematic literature search. First, we selected density-independent models from
COMPADRE and PADRINO which described the transition of a population from
1 year to the next. Among these, we selected studies with at least six annual
transition matrices, to balance the needs of adequate yearly temporal replicates and
sufficient sample size for a quantitative synthesis. This yielded data from 48 species
and 144 populations.

We then performed a systematic literature search for studies linking climate
drivers to structured population models in the form of either MPMs or IPMs. We
performed this search on ISI Web of Science for studies published between 1997
and 2017. We used a Boolean expression containing keywords related to plant
form, structured demographic models, and environmental drivers (Supplementary
Methods). We only considered studies linking macro-climatic drivers to natural
populations (e.g., transplant experiments and studies focused on local climatic
factors such as soil moisture, light due to treefall gaps, etc. were excluded). Finally,
we used the same criteria used to filter studies in COMPARE and PARDINO, by
selecting studies with at least six, density-independent, annual projection models.
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This search brought two additional species, belonging to three additional
populations, which we entered in the COMPADRE database.

One of the studies we excluded from the literature search because it contained
density-dependent IPMs, also provided raw data with high temporal replication
(14–32 years of sampling) for 12 species from 15 populations58. Therefore, we re-
analyzed these freely available data to produce density-independent MPMs that
were directly comparable to the other studies in our dataset (Supplementary
Methods).

The resulting dataset consisted of 46 studies, 62 species, 162 populations, and a
total of 3761 MPMs and 52 IPMs (Supplementary Data 1). The analyzed plant
populations were tracked for a mean of 16 (median of 12) annual transitions. To
our knowledge, this is the largest open-access dataset of long-term structured
population projection models. However, this dataset is taxonomically and
geographically biased. Specifically, among our 62 species, this dataset contains 54
herbaceous perennials (11 of which graminoids), and eight woody species: five
shrubs, two trees, and one woody succulent (Opuntia imbricata). Moreover, almost
all of these studies were conducted in North America and Europe (Supplementary
Fig. 1), in temperate biomes that are cold, dry, or both cold and dry
(Supplementary Fig. 1, inset). Our geographic and taxonomic bias reflects the rarity
of long-term plant demographic data in general. This dearth of long-term
demographic data is particularly evident in the tropics. The ForestGEO network59

is an exception to this rule, but to date, no matrix population models or integral
projection models using these data have been published.

We used the MPMs and IPMs in this dataset to calculate the response variable
of our analyses: the yearly asymptotic population growth rate (λ). This measure is
one of the most widely used summary statistics in population ecology60, as it
integrates the response of multiple interacting vital rates. Specifically, λ reflects the
population growth rate that a population would attain if its vital rates remained
constant through time61. This metric therefore distills the effect of underlying vital
rates on population dynamics, free of other confounding factors (e.g., transient
dynamics arising from population structure62). We calculated λ of each MPM or
IPM with standard methods61,63. Because our MPMs and IPMs described the
demography of a population transitioning from one year to the next, our λ values
were comparable in time units. Finally, we identified and categorized any non-
climatic driver associated with these MPMs and IPMs. Data associated with 21 of
our 62 species explicitly quantified a non-climatic driver (e.g., grazing, neighbor
competition), for a total of 60 of our 162 populations. Of the datasets associated
with these species, 19 included discrete drivers, and only three included a
continuous driver.

Climatic data. To test the effect of temporal climatic variation on demography, we
gathered global climatic data. We downloaded 1 km2 gridded monthly values for
maximum temperature, minimum temperature, and total precipitation between
1901 and 2016 from CHELSAcruts64, which combines the CRU TS 4.0165, and
CHELSA66 datasets. Gridded climatic data are especially suited to estimate annual
climatic means45. These datasets include values from 1901 to 2016, which are
necessary to cover the temporal extent of all 162 plant populations considered in
our analysis. For our temperature analyses, we calculated the mean monthly
temperature as the mean of the minimum and maximum monthly temperatures.
We used monthly values to calculate the time series of mean annual temperature
and total annual precipitation at each site. We then used this dataset to calculate
our annual anomalies for each census year, defined as the 12 months preceding a
population census. Our annual anomalies are standardized z-scores. For example, if
X is a vector of 40 yearly precipitation or temperature values, E() calculates the
mean, and σ() calculates the standard deviation, we compute annual anomalies as
A= [X− E(X)]/σ(X). Therefore, an anomaly of one refers to a year where pre-
cipitation or temperature was one standard deviation above the 40-year mean. In
other words, anomalies represent how infrequent annual climatic conditions are at
a site. Specifically, if we assume that A values are normally distributed, values
exceeding one and two should occur every 6 and 44 years, respectively. We used
40-year means because the minimum number of years suggested to calculate cli-
mate averages is 3067.

Z-scores are commonly used in global studies on vegetation responses to
climate8,68, and they reflect the null hypothesis that species are adapted to the
climatic variation at their respective sites. Across our populations, the standard
deviations of annual precipitation and temperature anomalies change by 300% and
60%, respectively (Supplementary Fig. 2). Thus, a z-score of one refers to a
precipitation anomaly of 50 or 160 mm and to a temperature anomaly of 0.5 or 0.8
°C. Our null hypothesis posits that species are adapted to these conditions,
regardless of the absolute magnitude of the standard deviation in annual climatic
anomalies. If this null hypothesis were true, each species would respond similarly to
z-scores. Z-scores are more easily interpreted when calculated on normally
distributed variables. We found our temperature and precipitation z-scores were
highly skewed (skewness above 1) only in, respectively, 2 (for temperature) and
three (for precipitation) of our 162 populations. We concluded that this degree of
skewness should not bias our z-scores substantially.

To test how the response of plant populations to climate changes based on
biome we used two proxies of water and temperature limitation. For each study
population, we computed a proxy for water limitation, water availability index
(WAI), and temperature limitation using mean annual temperature. To compute

these metrics, we downloaded data at 1 km2 resolution for mean annual potential
evapotranspiration, mean annual precipitation, and mean annual temperature
referred to the 1970–2000 period. We obtained potential evapotranspiration data
from the CGIAR-CSI consortium (http://www.cgiar-csi.org/). This dataset
calculates potential evapotranspiration using the Hargreaves method69. We
obtained mean annual precipitation and mean annual temperature from
Worldclim70. Here, we used WorldClim rather than CHELSA climatic data because
the CGIAR-CSI potential evapotranspiration data were computed from the former.
We calculated the WAI values at each of our sites by subtracting mean annual
potential evapotranspiration from the mean annual precipitation. Such proxy is a
coarse measure of plant water availability that ignores information such as soil
characteristics and plant rooting depth. However, WAI is useful to compare water
availability among disparate environments, so that it is often employed in global
analyses68,71. As our proxy of temperature limitation, we use mean annual
temperature. While growing degree days would be a more mechanistic measure of
temperature limitation48, this requires daily weather data. However, we could not
find a global, downscaled, daily gridded weather dataset to calculate this metric.

The overall effect of climate on plant population growth rate. To test H1, we
estimated the overall effect sizes of responses to anomalies in temperature, pre-
cipitation, and their interaction with a linear mixed-effect model.

log λð Þ ¼ αþ βP þ ηT þ θPxT þ ε ð1Þ
where log(λ) is the log of the asymptotic population growth rate of plant popu-
lation P is precipitation, T is temperature. We included random population effects
on the intercept and the slopes to account for the nonindependence of measure-
ments within populations. We then compared the mean absolute effect size of
precipitation, temperature, and their interaction. This final model did not include a
quadratic term of temperature and precipitation because these additional terms led
to convergence issues. This likely occurred because single data sets did not include
enough years of data.

Population-level effect of climate on plant population growth rates. To test our
remaining three hypotheses, we carried out meta-regressions where the response
variable was the slope (henceforth “effect size”) of climatic anomalies on the
population growth rate for each of our populations. Before carrying out our meta-
regression, we first estimated the effect size of our two climatic anomalies on the
population growth rate of each population separately. We initially fit population-
level and meta-regression simultaneously, in a hierarchical Bayesian framework.
However, these Bayesian models shrunk the uncertainty of the noisiest
population–level relationships, resulting in unrealistically strong meta-regressions.
We, therefore, chose to fit population models separately, resulting in more con-
servative results.

For each population, we fit multiple regressions with an autoregressive error
term, and we evaluated the potential for nonlinear effects in the datasets longer
than 14 years. We fit multiple regressions because temperature and precipitation
anomalies were negatively correlated, so that fitting separate models for
temperature and precipitation would yield biased results72. We fit an autoregressive
error term because density dependence and autocorrelated climate anomalies can
produce autocorrelated plant population growth rates. The form of our baseline
model was

logðλÞy ¼ αþ βpPy þ βtTy þ εy ð2Þ

εy ¼ ρεy�1 þ ηy ð3Þ
The model in Eq. 2 is a linear regression relating each log(λ) data point observed in
year y, to the corresponding precipitation (P) and temperature (T) anomalies
observed in year y, via the intercept α, the effect sizes, β, and an error term, εy,
which depends on white noise, ηy, and on the correlation with the error term of the
previous year, ρ. When multiple spatial replicates per each population were
available each year, we estimated the ρ autocorrelation value separately for each
replicate. This happened in the few cases when a study contained contiguous
populations, with no ecologically meaningful (e.g., habitat) differences.

We compared the baseline model in Eqs. 2 and 3 to models including a
quadratic climatic effect and non-climatic covariates. We estimated quadratic
climatic effects only for time series longer than 14 years. We choose this threshold
because when using a model selection approach to select a quadratic or linear
regression model, the recommended minimum sample size is between 8 and 25
data points73. We fit models including a quadratic effect of temperature,
precipitation, or both (Supplementary Table 1).

Finally, we also tested whether non-climatic covariates could bias the effects of
climate on log(λ) estimated in our analysis. Such bias, either upwards or
downwards, could result in the case non-climatic co-variates interacted with
climate. For example, harvest can have multiplicative, rather than additive effects
on the climate responses of forest understory herbs74. We tested for an interaction
between a covariate and climate anomaly in 17 of the 21 studies that included a
non-climatic covariate. In the remaining three studies, discrete covariates
corresponded with the single populations. Because Eqs. 2 and 3 is fit on separate
populations, it implicitly accounted for these covariates. For the 17 studies above,
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we fit a linear effect of the non-climatic covariate and its interaction with one of the
two linear climatic anomalies. Thus, including the linear model in Eqs. 2 and 3, the
nonlinear models, and the covariate interaction models, we tested up to six
alternative models for each one of our populations (Supplementary Table 1). We
selected the best model according to the Akaike Information Criterion corrected
for small sample sizes (AICc75). We carried out these and subsequent analyses in R
version 3.6.176.

In the populations for which AICc selected one of the model alternatives to the
baseline in Eqs. 2 and 3, we calculated the effect size of climate by adding the effect
of the new terms to the linear climatic terms. For example, when a quadratic
precipitation model was selected, we calculated the effect size of precipitation as
β= βp+ βp2. For models including an interaction between temperature and a non-
climatic covariate, we evaluated the effect of the interaction at the mean value of
the covariate. Therefore, we calculated the effect size as β= βt+ βxE(Ci) for
continuous covariates. For categorical variables, we calculated the effect size as
βp+ βx0.5: that is, we calculated the mean effect size between the two categories.
We quantified the standard error of the resulting effect sizes by adding the standard
errors of the two terms.

The effect of biome on the response of plants to climate. We used a simulation
procedure to run two meta-regressions to test for the correlation between the effect
size of climate drivers on λ, and our measures of water or temperature limitation.
These meta-regressions accounted for the uncertainty, measured as the standard
error, in the effect sizes of climate drivers. We represented the effect of biome using
a proxy of water (WAI) and temperature (mean annual temperature) limitation.
For each of our 162 populations, the response data of this analysis were the effect
sizes (βp or βt values) estimated by Eqs. 2 and 3 or their modifications in case a
quadratic or non-climatic covariate model were selected. In these meta-regressions,
the weight of each effect size was inversely proportional to its standard error. To
test H2 and H3 on how water and temperature limitation should affect the response
of populations to climate, we used linear meta-regressions. These two hypotheses
tested both the sign and magnitude of the effect of climate. Therefore, we used the
effect sizes as a response variable which could take negative or positive values. As
predictors, we used population-specific WAI (H2, only for effect sizes quantifying
the effect of precipitation), and mean annual temperature (H3, only for effect sizes
quantifying the effect of temperature). The null hypothesis of these meta-regres-
sions is that plant species are adapted to the climatic variation at their respective
sites. Such an adaptation implies that a precipitation z-score of one should produce
effects on log(λ) of similar magnitude and sign across different climates. This
should happen across average climatic values that are connected to substantially
different absolute climatic anomalies (Supplementary Fig. 2). On the other hand,
our hypotheses posit that at low WAI and MAT values, species are more responsive
to z-scores than expected under the null hypothesis.

We performed these two meta-regressions by exploiting the standard error of
each effect size. We simulated 1000 separate datasets where each effect size was
independently drawn from a normal distribution whose mean was the estimated β
value, and the standard deviation was the standard error of this β. These simulated
datasets accounted for the uncertainty in the β values. We fit 1000 linear models,
extracting for each its slope, βmeta. Each one of these slopes had in turn an
uncertainty, quantified by its standard error, σmeta. For each βmeta, we then drew
1000 values from a normal distribution with mean βmeta and standard deviation
σmeta. We used the resulting 1 × 106 values to estimate the confidence intervals of
βmeta. This procedure assumes that the distribution of βmeta values is normally
distributed. We performed one-tailed hypothesis tests, considering meta-regression
slopes significant when over 95% of simulated values were below zero.

The effect of generation time on the response of plants to climate. To test H4

on how the generation time of a species should mediate its responses to climate, we
used a gamma meta-regression. We fitted gamma meta-regressions because our
response variables were the absolute effect sizes of precipitation and temperature
anomalies, |β|, which are bounded between 0 and infinity. To test H4, we therefore
fit gamma meta-regressions with a log link, using |β| values as response variable
and generation time (T) as predictor. We calculated T directly from the MPMs and
IPMs (Supplementary Methods). We log-transformed T to improve model fit. We
carried out these meta-regressions using the same simulation procedure described
for testing H2 and H3. We also carried out one-tailed hypothesis tests, by verifying
whether 95% of βmeta values were below zero.

The effect of plant types on estimates of climate effects. We verified whether
certain plant types could bias our results by subdividing our species as graminoids,
herbaceous perennials, ferns, woody species (shrubs and trees), and succulents. We
ran ANOVA tests to verify whether the effect sizes of precipitation and tempera-
ture anomalies differed between plant types. We then tested for significant dif-
ferences in pairwise contrasts between plants types by running Tukey’s honestly
significant difference tests. We carried out these tests on the average effects of
climate, without accounting for differences in parameter uncertainty. If Tukey’s test
identified significant differences among plant types, we ran additional tests of
H2–H4 excluding the plant type, or plant types, whose response to climate differed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Most of the demographic data used in this paper are open-access and available in the
COMPADRE Plant Matrix Database (v. 5.0.1; https://compadre-db.org/Data/
Compadre). Additional data come from the PADRINO Database (beta version; https://
github.com/levisc8/rpadrino). A list of the studies and species used here is available in
Supplementary Data 1. The CHELSAcruts dataset is available at 10.16904/envidat.159.
The formatted dataset, and associated metadata, to reproduce the analyses of this study
are archived on Github at https://doi.org/10.5281/zenodo.4516446.

Code availability
The code to reproduce the results of this study is stored on Github at https://doi.org/
10.5281/zenodo.4516446.
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