
HAL Id: hal-03252315
https://hal.science/hal-03252315

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The finiteness of logic programming derivations
Philippe Balbiani

To cite this version:
Philippe Balbiani. The finiteness of logic programming derivations. 3rd International Confer-
ence on Algebraic and Logic Programming (ALP 1992), Sep 1992, Volterra, Italy. pp.403-419,
�10.1007/BFb0013840�. �hal-03252315�

https://hal.science/hal-03252315
https://hal.archives-ouvertes.fr

HAL Id: hal-03252315
https://hal.archives-ouvertes.fr/hal-03252315

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The finiteness of logic programming derivations
Philippe Balbiani

To cite this version:
Philippe Balbiani. The finiteness of logic programming derivations. Third International Conference
on Algebraic and Logic Programming, Sep 1992, Volterra, Italy. �hal-03252315�

https://hal.archives-ouvertes.fr/hal-03252315
https://hal.archives-ouvertes.fr

The finiteness of logic programming derivations

Phil ippe Balbiani(1)

Institut de Recherche cn Informatique de Toulouse

Abstract. The question of the termination of logic programming computations is
studied from a semantical point of view. To every program are associated two f'n'st
order formulas. Their valid consequences are respectively the finiteness and the
infiniteness SLDNF sets of the logic programs considered. The non-existence of a

recursive safe computation rule leading into an infinite SLDNF computation is proved.

1 I n t r o d u c t i o n

When does it stop? This question is common to many fields in computer science. To

ask it in a logic programming setting does not make it easier:, the restriction of first order

predicate calculus to definite Horn clauses has the full power of recursion theory. Thus,

because of the indecidability of the halting problem, there is no procedure to decide
whether a computation will end or not. Non-termination is one of the most inefficient

behaviour of programs. To force termination, programmers sometimes decide to insert

control informations in their programs. This leads to imperative programs: from the

point of view of logic programming, this is not an ideal option. Another way to limit the
number of non-terminating execution is to allow the interpreter to cut some derivations

[3] or to forbide multiple use of some clauses. Other methods consist in the analysis of

the stream of informations between clauses and in the resolution of a linear system of

equations [16]. For some classes of programs, these methods provide decision

procedures for termination [1, 3, 7, 16, 18].

We do not propose here another method to decide teanination in logic programming.

We rather propose a semantical characterization of finite and infinite SLDNF
computations.

To every program is firstly associated a fwst order classical formnla- the completion of

finiteness. As Clark's formula [10] offered a characterization of SLDNF finite fgflure,

the ground valid consequences of this completion formula of finiteness will be the
fmiteness set of the logic program considered, that is to say: the set of ground atoms

from which there cannot be any infinite SLDNF computation.

Secondly, a completion formula of infiniteness is def'med. This formula will belong to

the languagc of first ordcr modal logic of provability. Its ground valid consequences are
the set of ground atoms from which it is possible to have an infinite SLDNF

computation. Since the modal logic of provability [9] is not axiomatizable, this
characterization does not lead 10 a decision procedure for infinite SLDNF computation.
Consequently, we ask the question of the existence of an algorithm lead.ing, every lime
it is possible, to an infinite computation. It is proved that such an algorithm cannot exist:
for some logic programs, a safe computation rule leading 10 an infinite derivation every
time it is possible cannot be recursive.

2 Normal Logic Programs

The first order language in which normal logic programms will be written, �, is made

of variables, constants, function symbols, predicate symbols<2 J. classical connectors .., ,
A, v and f-, the quantifiers 3 and V and the usual ponctuation symbols. Pre
interpretation, interpretation, variable assignment (with respect to some pre
interpretation), term assignment (with respect 10 some pre-interpretation and variable
assignment) are defined as usual (see Lloyd [14] for precise definitions). Let /be a pre
interpretation of �, V a variable assignment with respect to J and A an a10m. We
suppose thatA is of the form p(tJ,···•'nJ and that d1 , ... , dn• elements of the domain of
J, are the term assignments of t1, ... , 'n· We callA1,v= p(d1, ... ,dn) theJ-instance of A
with respect to V. Let [AJ 1 = { A J, v= Vis a variable assignment with respect to J). Let/
be an interpretation of domain D of � and V a variable assignmenL To every formula

of � is given a truth value, true or /aise, (with respect to / and V) following the
classical rules of first order predicate calculus. A ground term (atom) is a term (atom)
without variable. The Herbrand universe U � is the set of ground terms of �. The

Herbrand base B � is the set of ground alOms of �. The Herbrand pre-interpretation is

the pre-interpretation such that: (a) its domain is U';f_, , (b) constants are assigned to

themselves, (c) the mapping from (U�f to U� defined with (t1, .. ,tn) ➔ /(tJ,···tnJ is

assigned to any fonction symbol f of arity n. An Herbrand interpretation is an
interpretation based on the Herbrand pre-interpretalion.

Normal clause, normal program, normal goal, derived goal, safe computation rule,
SLDNF derivation, SLDNF refutation and SLDNF tree are defined as in [14]. A safe
computation rule always selects, if possible, a positive or a ground negative literai in a

given goal. An SWNF computation flounders if this selection is not possible. Let P be
a normal program and G be a normal goal. The finiteness set of P is the set of ail

AeB� such that there is no infinite SWNF computation of Pu{t-A}. The substitution

a is a computed answer of finiteness of rank: n of Pu{G} if there is no SWNF

computation of Pu[Ga} involving n or more than n goals. The substitution a is a

computed answer of finiteness of Pu{G} if there is no infinite SWNF computation of
Pu{G8J. The infzniteness set of P is the set of all AeB� such that there is an infinitc

SLDNF computation of Pu{t-A}. The substitution e is a computed answer of

infiniteness of rank n of Pu{G} if there is an SLDNF computation of Pu{Ga}

involving n or more than n goals. The substitution 8 is a computed answer of

infiniteness of Pu{G} if there is an infinite SWN F computation of Pu{Ga}.

3 A Completion Formula

We define in this section a completion formula of finiteness for all normal programs. As
Clark's formula (10], it will be obtained putting on the same side of an implication
symbol the bodies of the clauses defining some predicate. Letp(tJ, .. ,,tnµ--L J , ... ,Lm be
a clause of a program P. We wi1l necd a new predicate symbol: the equality predicatc,
=. The first step is to transform this clause into the formula

p(x1, . . ,,xn)(--(L1 A .. . AlmHx1=t1)A . .A(Xn=tn)) where the variables x1, ... , xn do not
appear in P. If y 1, ... , y d are the variables of the original clause then this formula is

transformed into p(xl, ... ,xn)(--'r/yl... 'v'yd (L1
* A ... ALm

* Hx1 =t1)A. .. A(Xn=tn)), where:

if Li is an atom thenLi =Li* elseLi is anegative literai and Li = -,Lj*. Let us suppose
this transformation has been done for every clause appearing in the definition of p. Theo
we have k formulas of the forrnp(xJ,-.. ,xnµ--EJ, ... , p(xJ, .. ,,xn}'.--Ek, where each Ei is
of the form \/y J, .. \/yd(L1 *A . . . ALm*t-(x1 =t1)A. . .A(X,,=tn)J. The completed definition

of finiteness of p is then the formula Vx1 ... 'v'xn (p(xl , ... ,xn)(--E 1 A .. .A.Ek).
It might be the case that some predicate symbols are not the head of any clauses in P.

For such a predicate symbol q, we explicitly add the formula Vx1, .. Vx,i q(x1 , ... ,xn). This
fonnula is also called the completed definition of finiteness of q. Let P be a nonnal
program. The completion of finiteness of P, compFf P), is the collection of all the
completed definition of finiteness of the predicate symbols of � together with CET,

Clark's equational theory that defines the predicate symbol of equality [10]. Our
completion of finiteness possesses some properties possessed by P itself. Next result,
for example, states that the set of Herbrand models of compJ,(P) is a complete lattice.

proposition 3.1 Let P be a nonnal logic program and {MiJiel a non-empty set of
Herbrand models of comp fi{P). Then niEIM i is a Herbrand mode/ of compfi{P).

Thus, since B� is a Herbrand model of compJ,(P), the intersection Mp of ail

Herbrand models of compJ,(P) is still a model of compJ,(P). It is the least Herbrand
model of compJ,(P). Unfortunately, it is not true that: Mp = {AeB�: A is a valid

consequence of compJ,(P)}. As a mauer offact, if P = {A�B(x),B(f(x)"µ-B(x)} then the
least Herbrand model of compfi{P) is M p = {A}u{B(a), B(f(a)), ... } but Ais not a valid
consequence ofCETu{A � VxB(x). Vy(B(y) � Vx(B(x'µ-y=f(x)))}.

To the procedural notion of a computed answer of finiteness is associated the
semantical notion of a correct answer. Let P be a normal program, G the normal goal
�L 1, ... ,Ln and 8 a substitution of the variables of G. We say that 8 is a co"ect answer

for compF(P)u{G} if Y((LJ *A ••• Al../)8) is a valid consequence of compf{P).
Theorem 3.5 will give a füst relation between computed answers of finiteness and
correct answers.

Now we define a mapping T p1 on the lattice of interpretations (based on some pre
interpretation J of the language) to itself. If J is a pre-int.erpretation of � and / is an

intei:pretation based on J then T p1(l)={B: for every variable as.�ignment V with respect

to J and for every clause A�LJ ,.,.,Ln in P. if A1,v=B then L 1 * A ... Al..n * is true with
respect to / and V}. Whcn J is the Herbrand pre-interpretation of �, we will write T p

instead of T p1. The mapping T p1 possesses the usual properties.

proposition 3.2 For every pre-intei:pretation J of � and for every normal program

P, the mapping T p
1 is monotonie.

The mapping T p1 is not always continuous. Nevertheless its pre-fixpoints are models
of the completion of finiteness of the program considered.

proposition 3.3 Let P be a normal program, J a pre-interpretation of � and / an

interpretation based on J. Let us suppose that /, together with the identity relation

assigned to =, is a model of the equality theo.ry. We have:/, together with the identity

relation assigned to =, is a model of comp p(P) iff T p1(I)Q.

As a corollary, we have:

proposition 3.4 The Ieast Herbrand mode/ of comp p(P) is the least fixpoint of T P·

Note that, for every program P. gfp(T p)=B �. A first important result is the

soundness of our completion formula for SWNF resolution (see theorem 3.5 below).

Let P be a normal program and G be a normal goal. We say thatPu{G} is allowed

whenever no SWNF computation of Pu{G} flounders. We say that P is allowed
whenever, for every ground atomA, no SWNF computation of Pu{t-A} flounders.

theorem 3.5 Let P be a normal program and G be a normal goal. I f Pu{G} i s
allowed then every computed answer of finiteness of Pu{G} is a correct answer of
compp{P)u{G}.

proof Let e be a compute<! answer of finiteness of Pu{G}. Since there is no infinite

SLDNF computation of Pu{Ge}, there is an integer max greater than the number of

goals involved in any SWNF computation of Pu{Gej<3>. The induction on maxis
straightforward.

As a corollary, we have:

corollary 3.6 LetP be a normal program and Ga normal goal.// Pu{G} is allowed
and if there is no injinite SWNF computation of Pu{G} then the empty substitution is

a correct answer for comp p{P)u{G}.

Let P be a normal program. A consequence of corollary 3.6 is the inclusion of the set

of finiteness of Pin the least Herbrand model of compp(P). However, it is not always
equal to this least Herbrand model. Let us consider the program P = {At-B(x),
B(f(x))t-B(x)}. The least Herbrand model of compp(P) is M p = {A}u{B(a), B(f(a)), ... }
but there is an infinite SWNF computation of Pu{t-A}. For that program, Tptro =

{B(a), B(f(a)), ... } and Mp = Tptro+l. In other respects, if AeB�, if Pu{t-A} is

allowed and if there is no SWNF computation of Pu{ t-A} involving n or more than n

goals then AeTptro. If Ais an atom, we define [AJ={A'eB�: A'=Aa, for some

substitution a}. Then,[AJ is the set of ground instances of A.

theorem 3. 7 Let P be a normal program and G the normal goal t-L 1 •···.Lm· If

Pu{G} is allowed and if 8 is a computed answer of finiteness of rank n of Pu{G} then
*

uj=l .. mlLj 8J9'ptœ.

proor The proof is a straightforward induction on the rank of the computed answer.

As a corollary, we have:

corollary 3.8 The set of finiteness of Pis included in T p tœ.

The set of computed answer of finiteness of Pu{G} is not always finite Oust consider

the program containing one clause: A(f(x))t-A(x)). The possibility of its finiteness will
not be studied here. Now we give the fll'St completeness result of the finiteness of

SWNF resolution. Its proof is similar to the completeness proof of the negation as
failure rule given by Lassez, Maher and Wolfram [13].

theorem 3.9 Let P be a normal program and G a normal goal. Every correct answer

for comp p(P) u{G} is a computed answer of finiteness of Pv{G}.

proof Suppose there is an infinite SWNF computation of Pu{G}. We show the empty

substitution is not a correct answer for compp(P)u{G}. Let Go=G=t-l 1, ... ,lm, G1, ...

be the infiniteSWNF computation of Pu{G}. Let 81, 82, ..• be the mgu and C1, C2,

... the input clauses of this derivation. Let O be the relation defined on terms by s0
t if

and only if there is an integer n such that sa1 ..• 8n=ta1 .•• an. Of course, 0 is an

equivalence relation on the set of terms of the language. For every term t, we note [t J

its class modulo 0
• Let D be the set of equivalence classes modulo 0

• Let J be the pre

interpretation of :;f,, with domain D assigning to each constant c its class [c] and

assigning to each fonction symbol / of arity n the function from D" to D defined by:

([s1J, ... ,fsn]) ➔ [f(sJ,···•sn)]· Let/ be the interpretation based on J defined by: / =

{p([t1J, ... ,[tn]): for every element t' J, ••• , t' n in ft1J, ••• , ftnl• the set of proper

successors of p(t'1 , ... ,t'n) in the computation is fmite}. We show thatTp
1 (I)Q. If

p([t 1 J , ... ,[tn])e:.l then there are elements t' 1, • . • • t' n in l t 1 J, ••• , ltnl such that the set of
the proper successors of p(t' 1 , ... ,t' n) in the computation is infinite. Consequently, there
is an integer io such that the goal GiO contains p(t' l• ···•t' n> as a subgoal, there is an
integer i greater or equal to io, there is a clause C

i
+l = p(s1 , ... ,snJ+-L1 ,•··J.,m in P, a

substitution ai+l and an integer j in 1 , .•• , m such that a i+l =
mgu(p(t' 18iO+l···ai,···•'' naiO+l···ai),p(s1 ,••·,sn)) and the set of proper successors of
Ljai+l in the computation is infinite. Consequently, [t1J=fs1J, ••• , ftnl=fsnl and
there is a clause Af-L l •···Lm in P and a variable assignment V with respect to J such

that A1,v=P(ft1J, .. . ,[tn}) and L * J"'· · ·AL *mis false with respect to / and V.

Consequently,p([t1J, ... ,[ln])e:.Tp
1 (I). Then: Tp

1(l)Q and, according to proposition
3.3, / is a model of compp(P). In othcrs respects, it is not difficult to show that/ is not a

model of v'(l* l"'···"'l* m>· Thus the empty substitution is not a correct answer for

compp(P)u{G}

The following theorem states the point of view of the fixpoint operator about the
completeness of the finiteness of SWNF derivation.

theorem 3.10 Let P be a nonnal program and G the nonnal goal f-L J, ... J.,m· If

uj=l .. mlLj * 8} g p tn then 8 is a computed answer of fuuteness of rank n of Pu{G}.

proof By induction on the integer n.

As a corollary we have:

corollary 3.11// P isallowed then the set offiniteness of P isequal to Tp t@.

4 Infinite Derivations

Connectors used so far were truth{unctÜJnal: the truth value of every fonnula fonned
by them only depends on the truth values of its subfonnulas. Now, our language will
include a pair of intensional connectors (the modal connectors

D and ◊) which will be no more truth-fwictional. Our language conlains the following

rule: if F is a formula then so is □F. The connector ◊ is defined by: ◊F=deI'□,F. We

could give to D and ◊ a variety of interprelations. Historically, modal logic is the logic

of possibility and necessity: DF and ◊F are usualy read "F is necessary" and "F is

possible". For us, □ will be used to denote the temporal relationship between bodies

and heads of definite clauses. For example, we will formally represent through the

modal fonnula □ (Af---□B) the procedural role of the clauseAf---B.

A pre-inJerpretation of our fust order modal language is made of: a non-empty set D,

the domain; to each constant in X. the assignment of an element in D; to each fonction

symbol of arity n, the assignment of a fonction from vn to D; a non-empty set M. the

universe or set of possible worlds of the pre-interprelation; a binary relation R on M, the
accessibility relation between possible worlds. We will require that this accessibility
relation is transitive and reverse well-founded.

note This condition of well-foundedness is of fondamental importance for us. As a

matter of fact, we will have to prove the equivalence between "□A is a valid

consequence of compj(P)" and "there is an SWNF computation of Pu{f.--A) involving

an infinite number of goals", compj(P) being some modal completion of infiniteness of

P. On one hand, we will prove by induction on the longest SWNF derivation of

Pu{rA) that □Ais not a valid consequence of compj(P). On the other band, we will

prove by induction on lhe model of compfP).J[,QA) that there is no infinite SWNF

computation of Pu{f---A}. This last induction holds because the accessibility relation

between the possible worlds of a model of comp/ P)u{ ,□A) is well-founded.

An interpretation I of a first order modal language X. over a pre-interprelation J with

domain D and universe M is made of: for every predicate symbol of arity n, the

assignment of a fonction from MxDn to {true,false}. We thus say that/ is based on J.

Let J be a pre-interpretation with domain D and uni verse M. Let I be an interpretation

based on J and V a variable assignmenL To every possible world and fonnula can be

attributed a truth value, true or /aise, (with respect to I and V) as follows: if the fonnula

is of the fonn □F (◊F) then its truth value in w is true if and only if, in every (some)

possible world accessible from w using R, the truth value of Fis true. The Herbrand

pre-interpretation is a pre-interpretation whose do main is U x,. A H erbrand

interpretalion of � is an interpretation based on the Herbrand pre-interpretation.
A formula is satisjiable (valùl) if it is true in some (every) po�ible world of some

(every) interpretation. Il is a va/id consequence of some set of formulas if it is true in
every possible world (of every interpretation) satisfying every formula of this set. Let us
consider the set of valid formulas. It is not recursively enwnerable. As a matter of fact,
validity (in the transitive and reverse well-founded interpretations we are considering) is

highly indecidable: it is II/-complete in the analytical hierarchy [9]. If the language is
restticted toits propositional part then one gets Pr, the (decidable) propositiona! modal
logic of provability. Its axiom schemata and inference rules are those of the cJassical
propositional calculus plus:

(a) (DAf-□B)f-□(Af-B).
(b) □Af-□(Af-□A).
(c) if 1-prA then 1-pr□A.

This modal logic is of importance because of its relationship with provability in
arithmetic. For further informations, we suggest the reader consull the book by Boolos
[8]. As far as we know, the following results together with the previous ones presented
in [4] and [5] are the first use of this modal logic for the semantical characterization of a
programming language.

In [4] was defined a modal completion formula compcwA(P) of any definite logic
program P. It was proved that there was no SW refutation of Pu{f-A} if and only if
DA is a valid consequence of compcw A(P) in transitive and reverse well-founded
interpretations. In [5] was defined a modal completion formula compD(P) of any
normal logic program P. It was proved that if the program is stratified then A belongs to
its natural interpretation as il bas been defined in [2] if and only if □A is a valid
consequence of compD(P) in transitive and reverse well-founded interpretations.

We would like to define a modal completion formula comp,IP) of any normal logic
program P such that there is an infinite SWNF computation of Pu{f-A} if and only if
□A is a valid consequence of compf P) in transitive and reverse well-founded
interpretations.

Let p(tJ ,···•'n)f-L1, ... ,Lm be a clause of a normal program P. The first step is to
transfonn it into the formula p(xl , ... ,xn)f-((DL 1 v ... vDL,n)A(XJ =t 1)A .. .A(xn=I n>J where
the variables x1, .•• , Xn do not appear in P. If y 1, ••• , y d are the variables of the original
clause then we transform this formula into the formula p{x1,···,xn)f-3y J··.3y d

((DLJ * v ... vDLm*)A(x1=t1)A . .. A(Xn =tn)). Now suppose this transfonnation bas becn

made for every clause in the definition of p. Tuen we have k transformed clauses of the
form p(xJ,·••.Xn�EJ , ..• , p(xJ,···.Xn�Ek where each Ei is of the fonn 3y1 .. 3yd

* *

((□Li v .. . v □Lm)A(x1=t1)A ... A(Xn =tn))· Then, the co mpleted def i n ition of

infiniteness of p is the formula 'tfx1 ... 'vx,, D(p(xl , ... ,xn)�E 1 v ... vEk).
Furthemore we add the following modal equational theory:

1. □(c=t=d),for every pair c. d of distinct constants.

2. □(f(x1,·••.Xnt#g(yJ ,···•YrrJ), for every pair/, g of distinctfuncti.on symbols.

3. □(f(x1 ,xnMc), for every constant c and every fonction symbolf.

4. □(t[x},t;.x), for every term t[x] containingxbut distinctfromx.

5. □((X[;éJ 1)v ... v(xn-:;éY nHf(x 1 ,xnMf(y J •···•Y nJ). for every fonction symbolf.

6. □(x=x).

7. □((x1=Y J)A ... l\(Xn =Y nHf(x1 ,xn)=f(y J , ... ,yn)) , for every fonction symbolf.

8. □((x1=Y1)A .. A(Xn =Yn)➔(p(x1, ... ,xn)➔p(yJ ,···•Yn))), for every predicate symbol p
(and for the predicate symbol of equality too).

Let P be a normal program. The completion of infiniteness of P, compfP), is the
collection of all the completed definitions of infiniteness of the predicate symbols of �

together with the modal equational theory. Let G be the nonnal goal �L 1, ... ,L n and a a

substitution of the variables of G. We will say that a is a corr ect answer for

compj(P)u{G} if 3((□L/v ... v□L/)a) is a valid consequence of compj(P). This

notion of correct answer is the semantical counterpart of the procedural notion of a
computed answer of infmiteness.

Now we define a mapping T p1 on the lattice of interpretations (based on some pre

interpretation J of the language) to itself. If J is a classical pre-interpretation of � and if

I is a classical interpretation based on J then T p1(I) = {B: for some variable assignment

V with respect to J, there is a clause A�L1 , . . . ,Ln in P such that A1,v=B and

L 1 * v .. . vL / is true with respect to / and V}. When J is the classical Herbrand pre-

interpretation, we will write T p instead of T pJ, The mapping T p1 possesses some
properties .

proposition 4.1 For every pre-intcrpretation J of ;f, and for every nonnal program

P, the mapping T p1 is continuous.

Note that, for every program P, lfp(T p1) = 0. In other respects, it is not always true

that gfp(T p) = T pJ.ID. If P = {A<.-B(x), B(f(x))<.-B(x)}, then gfp(T p) = 0 and T pJ.ID =

{A). A first important result is that the domain of interpretation of the terms of the
language is not essential.

theorem 4.2 LetP be a normal program and G the normal goal <.-L J •···J.,k· Let 8 be a
substitution of the variables in G. Thefollowing assertions are equivalent:

(a) 8 is a correct answer for compf P)u{G}, that is to say: 3(DL 1 * 8v ... v□Lk * 8) i s

true in every mode/ of compf P).

(b) 3(DL1 * 8v ... v□Lk * 8) istrue in everyHerbrandmodel of compf P).

The proof of theorem 4.2 is not essential for our purpose. It could be done by

induction on the model of compfPJu{-.3(DL1
* ev ... v□Lk *a)}. See [6] for the exact

details. The result of theorem 4.2 will gready simplified the presentation of future
proofs. Especially the soundness proof of the infiniteness of SWNF resolution we
present now.

theorem 4.3 Let P be a normal program and G the normal goal <.-L J , ... ,Lk. Every

computed answer of inftniteness of Pu{G} is a correct answer for comp f P)u{G}.

proor Let 8 be a substitution of the variables of G which is not a correct answer for
comp1(P)u{G). Theorem 4.2 says there is a Herbrand model of

compf P)u{-.3(□L 1 * 8v ... v□Lk * 8)}. Let/ be a Herbrand interpretation with universe

M and accessibility relation R which is a model of

comp[(P)u{-.3(□L 1 *ev ... v□Lk *e)}. Let w be a possible world of M where

compf P)u{-.3(□L1 *ev ... v□Lk *e)} is true and such that, for every possible world w'

accessible from w using R, for every normal goal<.-/ 1 , ... ,lq
and for every substitution a

of the variables of that goal, if compfPµ{-.3(□11 *av ... v□lq
*o)} is true in w' then a

is not a computed answer of infiniteness of Pu{<.-11, ... ,lql. Now for every j=l, ... , k

and for every variable assignment V with respect to the Herbrand pre-interpretation,
there is a possible world wj, V accessible from w and where

compj(P)v[-.L
j

*a} ufrlx1···VX,, (p/x1 ,---.Xn>t-E1 v ... vEk)} is true with respect to V, Pj

being the predicate symbol of the atom L
j
*. Let L

j
*a = Pit' 1, ... ,t' ,,). Thus, for every

clause p/tJ,···•t n>t-l l•···•'
q

in P, 3y 1 ··3Yd ((□l 1 v ... v □l
q

))A(t1=t' 1)A .. .A(t n
=t' n>) is

false in wj,V with respect to V. Let o be an mgu of P/'J•···•'n) andpjft'1 , ... ,t'n).

compj(P)v{-.3(□11 * ov ... v □l/ o)} is true in w
j ,V and, by induction hypothesis. o is

not a computed answer of infiniteness of Pu{t-11 ,lql-- Consequently, 8 is not a
computed answer of infiniteness of Pu{ t-L 1 , ... J.,k}.

corollary 4.4 If there is a n i nfinite SLDNF computatio n of Pv[G} the n

compfP)v{+-3(DL1 *v ... vDL/)J isinsatisfaisable.

corollary 4.5 The infinite ness set of P is contained in the set {AeB ;t: DA is a valid

conse q ue nce ofcompf(P)}.

Now we give the point of view of the fixpoint operator.

theorem 4.6 Let P be a nonnal program and G the nonnal goal t-L J , ... J.,m· If 8 is a

computed answer of infiniteness ofrank n of Pv{G} the n vj=J .. JL/ 8JnT p./,n � 0.

proof The following induction on n proves that if u j=J .. rr/.L j * 8 J s;; B ;e, \T pJ.n then 8

is a computed answer of finiteness of rank n of Pu{G}. Suppose it is ttue for a-J. Let

n=a.. If u
j

=J..mlL/aJ s;;;; B;e_, \T pJ.n then, for every L
j

8 in Ge and for every

substitution es such that L
j

ao is ground, L/eo rE T pJ.n , that is to say: for every

variable assignment V with respect to the Herbrand pre-interpretation and for every

clause Bt-11 , ... ,l
q

in P, if By = B
j

ao then l 1 * v ... vlq * is false with respect to T p+a-1

and V. Thus, for every clause Bt-l J ,···•l
q

in P and for every substitution o, if o =

mgu(B ,B
j

e) then u k=J .. ql l k * o J s;;;; B � \T p+a.-1 and, by induction hypothesis, a is a

computed answer of finiteness of rank a-J of Pu{t-l 1 , ... ,lql, Consequently, e is a
computed answer of finiteness of rank n of Pu{G}.

note Theorem 4.6 does not imply that if there is an infinite SLDNF computation of

Pu{t-L 1, ... ,L,nJ then uj=J..mfL/JriTpJ.ro et 0. As a matter of fact, if P =

{A(s(x))t-A(x)} andG = t-A(y) then uj=l .. rrlL/J = {A(s"(O)): n 0) and TpJ.ro = 0.

corollary 4.7 The set of infzniteness of a normal programP is contained in T pJ.OJ.

As for the completeness proof of the infiniteness of SLDNF resolution, it bas been
done using the fact that SLDNF trees are finitely branching: if Pu{G} is allowed and if
there is no infinite SLDNF computation of Pu{G} then every SLDNF tree of Pu{G} is
fmite. More precisely: some integer is greater than the depth of SLDNF trees of Pv{GJ.

theorem 4.8 Let P be a normal program and G the normal goal t-L l •···.L
m

· If

Pu{G} is allowed and if compi(P)v{+-3(DL / v ... vDLn *)} is insatisfaisable then

there is an injinite SLDNF computation of Pu{G}.

proof If there is no infmite derivation of Pu{G} then some integer maxis greater than
the length of any SLDNF derivation of Pu{G}. The proof is straightforward and can be
done by induction on max.

proposition 4.9 The set of infiniteness of an allowed normal program P is equal

toT pJ.OJ and is equal to the set {AeB :e,: DA is a valid consequence of compi(P)}.

proof If A fi!: T pJ.ro then, for some integer n, A fi!: T pJ.n. The proof is straightforward

and can be done by induction on n.

S Recursive Computation Rules

We have just characterized in provability modal logic a property of infmiteness of
SLDNF resolution: if Pis allowed then there is an infmite SLDNF computation of
Pu{t-A} if and only if DA is a valid consequence of compi(P) in the class of modal
interpretations whose accessibility relation is transitive and reverse well-founded. This
characterization does not give us a choice procedure of an atom in a goal such that if
there is an infmite SLDNF computation of Pu{G} then there is an infinite SLDNF

derivation which uses this procedure: validity in the class of transitive and reverse well

founded inteIJ)retations is TI /-complete [9]. Our characterization does not say however
that such a procedure cannot exist Now the question is to see whether there could be an
algorithrn of selection of atoms in goals always leading into an infinite derivation when
such a derivation exists. Such an algorithm is a recursive maximal computation rule for
the infiniteness of SLDNF resolution. Considering definite logic programs and SLD

resolution, we will show that such a rule cannot exist.
A computation rule is maximal for the rejutation of SLD resolution when, for every

definite program P and for every definite goal G, if there is an SLD refutation of Pu{G}

then there is an SLD refutation of Pu{G} using this rule. An essential result of the
theory of logic programming is the independence of the computation rule for the
refutation of SLD resolution, that is to say: every computation rule is maximal for the
refutation of SLD resolution [14]. A computation rule is maximal/or thefinitefailure of
SLD resolution when if there is a finitely failed SLD tree of Pu{G} then the SLD tree of
Pu[G} using this rule is finitely failed. An important result is the independence of the
computation rule, as far as it is fair, for the finite failure of SLD resolution [12].
Similarly, it is not difficult to prove that every fair computation rule is maximal for the
finiteness of SLD resolution.

Now we consider the maximality of a computation rule with respect to the infiniteness
of SLD resolution. A computation rule is maximal for the infiniteness of SLD resolution
when, for every program P and for every goal G, if there is an infinite SLD tree of
Pu{G} then the SLD tree of Pu[G} using this rule is infinite. Sorne rules can be
maximal for the infiniteness of SLD resolution. A computation rule is recursive if it is an
algorilhm for the selection of an atom in a goal. Such rules cannot be maximal for the
infiniteness of SLD resolution.

theorem 5.1 There is no recursive computation rule maxi.mal for the infiniteness of

SLD resolution.

proof As a matter of fact. we prove that. for some definite program P, there can be no
recursive computation rule maximal for the infiniteness of SLD resolution in P. The
proof is based on an idea developed by Shepherdson [17] who proved that no recursive
rule can be maximal for the refutation of SLDNF resolution. Let A and B be two
recursively enumerable recursively inseparable disjoint sets [15]. Let/ and g be two
unary fonctions enumerating A and B. Let F and G be the partial recursive fonctions
defined as follows: F(x) = µy(f(y)=x); G(x) = µy(g(y)=x). F(x), respectively: G(x), is,

when it exists, the least integer y such thatf(y) = x, respectively: g(y) = x. Now, F(x) is
defined if and only if xeA and G(x) is defined if and only if xeB. Let Pp be the
imperative program using the variables X F and Y F• and instructions like:

(a) fi] Xp:=Xp
+l

(b) [j] IPX
p 0 TREN Xp

:=Xp -1 AND GOTO [j']

for X p and similar instructions for Y p, and such that, for every input (Xp,Yp)=(x,0), the
program stops if and only if F(x) is defined. Let P F* be the logic program obtained
from Pp as follows:

(1) Replace every instruction of type (a) by the clause Pp,IX,Y�PP,i+f s(X),Y).
(2) Replace every instruction of type (b) by the clauses Pp js(X),Y)'<-Pp j'(X,Y) and
Pp j0,Y)'<-Pp j+/0,Y).

Let Pp** and P
G

** be the programs obtained from Pp* and PG* respectively by the

addition of the clauses Pp,dP
*
(X),X)'<-pp,fX,0) and P G,o(G

*
(X):X}'<-pG,J(X,0). Let

P be the program PF**uP
G**· Let Gn be the goal '<-Pp,dX,n),PG,O(X,n). If we want

to find an infinite SW derivation, we have the choice of the selection of an atom at the
frrst step of the computation only. If we choose the frrst atom then there is an infinite
SLD derivation if and only if n�A. Otherwise, there is an infinite SLD derivation if and
only if n�B. Let R be a recursive computation rule. It corresponds to a recursive set C
such thatR selects the frrst atom of Gn if and only if ne C. Thus, if Ris maximal for the
infiniteness of SLD derivation then A�CN\C and B�C, which is impossible since A and

B are recursively inseparable.

6 Conclusion

We have given a semantical characterization of finite and infinite SLDNP derivations.
The completion formulas we have defined were both sound and complete for the
finiteness and infineteness of SWNF resolution: if P is allowed then there is no (an)
infinite SLDNP computation of Pu{'<-A} if and only if A (CA) is a valid consequence
of compp(P) (compf P)) in classical first order predicate calculas (in transitive and
reverse well-founded modal interpretations). The characterization of infinite SLDNP
computations that was presented in theorems 4.3 and 4.8 constitutes a first step towards

a better understanding of the modal semantics of perpetual processes.

However, the result stated in theorem 5.1 is not very encouraging from the point of

view of using PROLOG for concurrent applications. As a matter of fact, what is asked

to a perpetual processes is to carry a computation which never ends. lbis computation

has to be defined with the help of a recursive rule. As we have proved, such a rule

cannot exist Consequently, we have to circumscribe classes of definite logic programs

for which recursive rules maximal for the infiniteness of SLD resolution exist The

notion of a perpetual processes makes sense for these classes of programs only. Now

the question is the nature of these classes of programs.

Notes

(1) 58 avenue de la république, 93110 Rosny-sous-bois, France

(2) Including the binary predicate symbol of equality.

(3) This is a direct consequence of Kônig' s lemma

References

1. K. R. Apt, G. Bezem: Acyclic programs. In: P. Szeredi, D. H. D. Warren
(eds.): Proceedings of the Seventh International Conference on Logic
Programming. Massachussets lnstitute of Technology Press 1990, pp. 617-
633

2. K. R. Apt, H. A. Blair, A. Walker: Towards a theory of declarative
knowledge. ln: J. Minker (ed.): Foundations ofDeductive Databases and
Logic Programming. Los Altos: Morgan Kaufmann 1988, pp. 89-148

3. K. R. Apt, R. N. Bol, J. W. Klop: On the power of subsomption and
context checks. In: A. Miola (ed.): Design and lmplementation of Symbolic
Computation Systems. Lecture Notes in Computer Science 429. Berlin:
Springer 1990, pp. 131-140

4. P. Balbiani: A modal semantics for the negation as failure and the closed
world asswnption rules. ln: C. Choffrut, M. Jantzen (eds.): Eighth
Symposium on Theoretical Aspects of Computer Science. Lecture Notes in
Computer Science 480. Berlin: Springer 1990, pp. 523-534

5. P. Balbiani: A modal semantics of negation in logic programming.
Fundamenta lnfonnaticre (to appear)

6. P. Balbiani: Sur la finitude des dérivations de la programmation en logique.
rapport IRIT/92-3-R

7. M. Bezem: Characterizing tennination of logic programs with level

mapping. In: E. L. Lusk, R. Overbeek (eds.): Proceedings of the North
American Conference on Logic Programming. Massachussets Institute of
Technology Press 1989, pp. 69-80

8. G. Boolos: The unprovability of inconsistency. Cambridge: Cambridge
University Press 1979

9. G. Boolos, G. Sambin: Provability: the emergence of a mathematical
modality. Studia Logica, 1-23 (1991)

10. K. L. Clark: Negation as failure. In: H. Gallaire etJ. Minker (eds.): Logic
and Data Bases. New York: Plenum Press 1978, pp. 293-322

11. F. Denis: Contribution à l'étude des sémantiques axiomatiques de Prolog.
thèse del 'université des sciences et techniques de Lille Flandres Artois,
1990

12. J.-L. Lassez, M J. Maher: Closures and faimess in the semantics of
programming logic. Theoretical Computer Science 29, 167-184 (1984)

13. J.-L. Lassez, M. J. Maher, D. A. Wolfram: A unified treatment of resolution
strategies for logic programs. In: S.-A. Tarnlund (ed.): Second International
Conference on Logic Programming. Uppsala: Uppsala University Press
1984, pp. 263-276

14. J. W. Lloyd: Foundations of logic programming. Berlin: Springer 1987

15. P. Odifreddi: Classical recursion theory. Amsterdam: North-Holland 1989

16. L. Plümer: Termination proofs for logic programs. Lecture Notes in
Artificial Intelligence 446. Berlin: Springer 1990

17. J. C. Shepherdson: Unsolvable problems for SLDNF resolution. Journal of
Logic Programming 10, 19-22 (1991)

18. J. D. Ullman, A. van Gelder: Efficient tests for top-down termination of
logical rules. Journal of the Association for Computing Machinery 35, 345-
373 (1988)

