Philippe Balbiani

The finiteness of logic programming derivations

The question of the termination of logic programming computations is studied from a semantical point of view. To every program are associated two f'n'st order formulas. Their valid consequences are respectively the finiteness and the infiniteness SLDNF sets of the logic programs considered. The non-existence of a recursive safe computation rule leading into an infinite SLDNF computation is proved.

the languagc of first ordcr modal logic of provability. Its ground valid consequences are the set of ground atoms from which it is possible to have an infinite SLDNF computation. Since the modal logic of provability [9] is not axiomatizable, this characterization does not lead 10 a decision procedure for infinite SLDNF computation. Consequently, we ask the question of the existence of an algorithm lead.ing, every lime it is possible, to an infinite computation. It is proved that such an algorithm cannot exist: for some logic programs, a safe computation rule leading 10 an infinite derivation every time it is possible cannot be recursive.

Normal Logic Programs

The first order language in which normal logic programms will be written, �, is made of variables, constants, function symbols, predicate symbols< 2 J . classical connectors .., , A, v and f-, the quantifiers 3 and V and the usual ponctuation symbols. Pre interpretation, interpretation, variable assignment (with respect to some pre interpretation), term assignment (with respect 10 some pre-interpretation and variable assignment) are defined as usual (see Lloyd [14] for precise definitions). Let /be a pre interpretation of �, V a variable assignment with respect to J and A an a10m. We suppose thatA is of the form p(tJ,••••' n J and that d 1 , ... , d n • elements of the domain of J, are the term assignments of t 1 , ... , ' n • We callA 1 ,v= p(d 1 , ... ,d n) theJ-instance of A with respect to V. Let [AJ 1 = { A J, v= Vis a variable assignment with respect to J). Let/ be an interpretation of domain D of � and V a variable assignmenL To every formula of � is given a truth value, true or /aise, (with respect to / and V) following the classical rules of first order predicate calculus. A ground term (atom) is a term (atom) without variable. The Herbrand universe U � is the set of ground terms of �. The Herbrand base B � is the set of ground alOms of �. The Herbrand pre-interpretation is the pre-interpretation such that: (a) its domain is U ';f_, , (b) constants are assigned to themselves, (c) the mapping from (U � f to U � defined with (t 1 , .. ,t n) ➔ /(tJ,•••t n J is assigned to any fonction symbol f of arity n. An Herbrand interpretation is an interpretation based on the Herbrand pre-interpretalion. Normal clause, normal program, normal goal, derived goal, safe computation rule, SLDNF derivation, SLDNF refutation and SLDNF tree are defined as in [14]. A safe computation rule always selects, if possible, a positive or a ground negative literai in a given goal. An SWNF computation flounders if this selection is not possible. Let P be a normal program and G be a normal goal. The finiteness set of P is the set of ail AeB� such that there is no infinite SWNF computation of Pu{t-A}. The substitution a is a computed answer of finiteness of rank: n of Pu{G} if there is no SWNF computation of Pu[Ga} involving n or more than n goals. The substitution a is a computed answer of finiteness of Pu{G} if there is no infinite SWNF computation of Pu{G8J. The infzniteness set of Pi s the set of all AeB� such that there is an infinitc SLDNF computation of Pu{t-A}. The substitution e is a computed answer of infiniteness of rank n of Pu{G} if there is an SLDNF computation of Pu{Ga} involving n or more than n goals. The substitution 8 is a computed answer of infiniteness of Pu{G} if there is an infinite SWN F computation of Pu{Ga}.

A Completion Formula

We define in this section a completion formula of finiteness for all normal programs. As Clark's formula (10], it will be obtained putting on the same side of an implication symbol the bodies of the clauses defining some predicate. Letp(t J , .. ,,t n µ--L J , ... ,L m be a clause of a program P. We wi1l necd a new predicate symbol: the equality predicatc, =. The first step is to transform this clause into the formula p(x 1 , .. ,,x n) (--(L 1 A ... Al m Hx 1 =t 1) A . .A(X n =t n)) where the variables x 1 , ... , x n do not appear in P. If y 1 , ... , y d are the variables of the original clause then this formula is transformed into p(xl, ... ,xn)(--'r/yl... 'v'yd (L 1 * A ... AL m * Hx 1 =t 1)A. .. A(X n =t n)), where: if L i is an atom thenL i =L i * elseL i is anegative literai and L i = -,L j *. Let us suppose this transformation has been done for every clause appearing in the definition of p. Theo we have k formulas of the forrnp(xJ,-.. ,x n µ--E J , ... , p(xJ, .. ,,x n }'.--E k , where each E i is of the form \/y J, .. \/y d (L 1 *A ... AL m *t-(x 1 =t 1)A. . .A(X,,=t n)J. The completed definition of finiteness of p is then the formula Vx 1 ... 'v'x n (p(xl , ... ,x n)(--E 1 A .. .A.E k).

It might be the case that some predicate symbols are not the head of any clauses in P.

For such a predicate symbol q, we explicitly add the formula Vx 1 , .. V x,i q(x 1 , ... ,x n). This fonnula is also called the completed definition of finiteness of q. Let P be a nonnal program. The completion of finiteness of P, comp F f P), is the collection of all the completed definition of finiteness of the predicate symbols of � together with CET, Clark's equational theory that defines the predicate symbol of equality [10]. Our completion of finiteness possesses some properties possessed by P itself. Next result, for example, states that the set of Herbrand models of compJ,(P) is a complete lattice. proposition 3.1 Let P be a nonnal logic program and {MiJ ie l a non-empty set of Herbrand models of comp fi{P). Then n iEI M i is a Herbrand mode/ of compfi{P). Thus, since B � is a Herbrand model of compJ,(P), the intersection M p of ail Herbrand models of compJ,(P) is still a model of compJ,(P). It is the least Herbrand model of compJ,(P). Unfortunately, it is not true that: M p = {AeB � : Ais a valid consequence of compJ,(P)}. As a mauer offact, if P = {A�B(x),B(f(x)"µ-B(x)} then the least Herbrand model of compfi{P) is M p = {A}u{B(a), B(f(a)), ... } but Ais not a valid consequence ofCETu{A � VxB(x). Vy(B(y) � Vx(B(x'µ-y=f(x)))}. To the procedural notion of a computed answer of finiteness is associated the semantical notion of a correct answer. Let P be a normal program, G the normal goal �L 1 , ... ,L n and 8 a substitution of the variables of G. We say that 8 is a co"ect answer for compF(P)u{G} if Y((L J *A ••• Al../)8) is a valid consequence of compf{P). Theorem 3.5 will give a füst relation between computed answers of finiteness and correct answers. Now we define a mapping T p 1 on the lattice of interpreta (based on some pre interpretation J of the language) to itself. If J is a pre-int.erpretation of � and / is an intei:pretation based on J then T p 1 (l)={B: for every variable as.�ignment V with respect to J and for every clause A�L J ,.,.,L n in P. if A 1, v=B then L 1 * A ... Al.. n * is true with respect to / and V}. Whcn J is the Herbrand pre-interpretation of �, we will write T p instead of T p 1 . The mapping T p 1 possesses the usual properties. proposition 3.2 For every pre-intei:pretation J of � and for every normal program P, the mapping T p 1 is monotonie.

The mapping T p 1 is not always continuous. Nevertheless its pre-fixpoints are models of the completion of finiteness of the program considered.

Introduction

When does it stop? This question is common to many fields in computer science. To ask it in a logic programming setting does not make it easier:, the restriction of first order predicate calculus to definite Horn clauses has the full power of recursion theory. Thus, because of the indecidability of the halting problem, there is no procedure to decide whether a computation will end or not. Non-termination is one of the most inefficient behaviour of programs. To force termination, programmers sometimes decide to insert control informations in their programs. This leads to imperative programs: from the point of view of logic programming, this is not an ideal option. Another way to limit the number of non-terminating execution is to allow the interpreter to cut some derivations [START_REF] Apt | On the power of subsomption and context checks[END_REF] or to forbide multiple use of some clauses. Other methods consist in the analysis of the stream of informations between clauses and in the resolution of a linear system of equations [START_REF] Plümer | Termination proofs for logic programs[END_REF]. For some classes of programs, these methods provide decision procedures for termination [START_REF] Apt | Acyclic programs[END_REF][START_REF] Apt | On the power of subsomption and context checks[END_REF][START_REF] Bezem | Characterizing tennination of logic programs with level mapping[END_REF][START_REF] Plümer | Termination proofs for logic programs[END_REF][START_REF] Ullman | Efficient tests for top-down termination of logical rules[END_REF].

We do not propose here another method to decide teanination in logic programming.

We rather propose a semantical characterization of finite and infinite SLDNF computations.

To every program is firstly associated a fwst order classical formnla-the completion of finiteness. As Clark's formula [START_REF] Clark | Negation as failure[END_REF] offered a characterization of SLDNF finite fgflure, the ground valid consequences of this completion formula of finiteness will be the fmiteness set of the logic program considered, that is to say: the set of ground atoms from which there cannot be any infinite SLDNF computation. Secondly, a completion formula of infiniteness is def'med. This formula will belong to

. ,fs n]) ➔ [f(s J ,••••s n)]•

of v'(l* l"'•••"'l* m >•

Thus the empty substitution is not a correct answer for co m pp(P)u{G}

The following theorem states the point of view of the fixpoint operator about the completeness of the finiteness of SWNF derivation. theorem 3.10 Let P be a nonnal program and G the nonnal goal f-L J, ... J., m • If u j =l .. m lL j * 8} g p tn then 8 is a computed answer of fuuteness of rank n of Pu{G}.

proof By induction on the integer n.

As a corollary we have: corollary 3.11// P isallowed then the set offiniteness of P isequal to T p t@.

Infinite Derivations

Connectors used so far were truth{unctÜJnal: the truth value of every fonnula fonned by them only depends on the truth values of its subfonnulas. Now, our language will include a pair of intensional connectors (the m odal connectors D and ◊) which will be no more truth-fwictional. Our language conlains the following rule: if Fis a formula then so is □F. The connector ◊ is defined by: ◊F=de I' □,F. We could give to D and ◊ a variety of interprelations. Historically, modal logic is the logic of possibility and necessity: DF and ◊F are usualy read "F is necessary" and "F is possible". For us, □ will be used to denote the temporal relationship between bodies and heads of definite clauses. For example, we will formally represent through the modal fonnula □(Af---□B) the procedural role of the clauseAf---B.

A pre-inJerpretation of our fust order modal language is made of: a non-empty set D, the domain; to each constant in X. the assignment of an element in D; to each fonction symbol of arity n, the assignment of a fonction from vn to D; a non-empty set M. the universe or set of possible worlds of the pre-interprelation; a binary relation R on M, the accessibility relation between possible worlds. We will require that this accessibility relation is transitive and reverse well-founded. note This condition of well-foundedness is of fondamental importance for us. As a matter of fact, we will have to prove the equivalence between "□A is a valid consequence of compj(P)" and "there is an SWNF computation of Pu{f.--A) involving an infinite number of goals", compj(P) being some modal completion of infiniteness of P. On one hand, we will prove by induction on the longest SWNF derivation of Pu{rA) that □Ais not a valid consequence of compj(P). On the other band, we will prove by induction on lhe model of compfP).J[,QA) that there is no infinite SWNF computation of Pu{f---A} . This last induction holds because the accessibility relation between the possible worlds of a model of comp/ P)u{ ,□A) is well-founded.

An interpretation I of a first order modal language X. over a pre-interprelation J with domain D and universe M is made of: for every predicate symbol of arity n, the assignment of a fonction from MxD n to {true,false}. We thus say that/ is based on J. Let J be a pre-interpretation with domain D and uni verse M. Let I be an interpretation based on J and V a variable assignmenL To every possible world and fonnula can be attributed a truth value, true or /aise, (with respect to I and V) as follows: if the fonnula is of the fonn □F (◊F) then its truth value in w is true if and only if, in every (some) possible world accessible from w using R, the truth value of Fis true. The Herbrand pre-interpretation is a pre-interpretation whose do main is U x,. A H erbrand interpretalion of � is an interpretation based on the Herbrand pre-interpretaon.

A formula is satisjiable (valùl) if it is true in some (every) po�ible world of some (every) interpretation. Il is a va/id consequence of some set of formulas if it is true in every possible world (of every interpretation) satisfying every formula of this set. Let us consider the set of valid formulas. It is not recursively enwnerable. As a matter of fact, validity (in the transitive and reverse well-founded interpretations we are considering) is highly indecidable: it is II/-complete in the analytical hierarchy [START_REF] Boolos | Provability: the emergence of a mathematical modality[END_REF]. If the language is restticted toits propositional part then one gets Pr, the (decidable) propositiona! modal logic of provability. Its axiom schemata and inference rules are those of the cJassical propositional calculus plus:

(a) (DAf-□B)f-□(Af-B). (b) □Af-□(Af-□A). (c) if 1-p r A then 1-p r □A.
This modal logic is of importance because of its relationship with provability in arithmetic. For further informations, we suggest the reader consull the book by Boolos [START_REF] Boolos | The unprovability of inconsistency[END_REF]. As far as we know, the following results together with the previous ones presented in [START_REF] Balbiani | A modal semantics for the negation as failure and the closed world asswnption rules[END_REF] and [START_REF] Balbiani | A modal semantics of negation in logic programming[END_REF] are the first use of this modal logic for the semantical characterization of a programming language.

In [START_REF] Balbiani | A modal semantics for the negation as failure and the closed world asswnption rules[END_REF] was defined a modal completion formula compcw A (P) of any definite logic program P. It was proved that there was no SW refutation of Pu{f-A} if and only if DA is a valid consequence of compcw A (P) in transitive and reverse well-founded interpretations. In [START_REF] Balbiani | A modal semantics of negation in logic programming[END_REF] was defined a modal completion formula comp D (P) of any normal logic program P. It was proved that if the program is stratified then A belongs to its natural interpretation as il bas been defined in [START_REF] Apt | Towards a theory of declarative knowledge[END_REF] if and only if □A is a valid consequence of compD(P) in transitive and reverse well-founded interpretations.

We would like to define a modal completion formula comp,IP) of any normal logic program P such that there is an infinite SWNF computation of Pu{f-A} if and only if □A is a valid consequence of compf P) in transitive and reverse well-founded Furthemore we add the following modal equational theory: proof The following induction on n proves that if u j= J .. rr/.L j * 8 J s;; B ;e, \T p J.n then 8

is a computed answer of finiteness of rank n of Pu{G}. Suppose it is ttue for a-J. Let proof If A fi!: T pJ.ro then, for some integer n, A fi!: T pJ.n. The proof is straightforward and can be done by induction on n.

{A(s(x))t-A(x)} andG = t-A(y) then u j =l . . rrlL /J = {A(s"(O)): n 0) and

S Recursive Computation Rules

We have just characterized in provability modal logic a property of infmiteness of

Conclusion

We have given a semantical characterization of finite and infinite SLDNP derivations. The completion formulas we have defined were both sound and complete for the finiteness and infineteness of SWNF resolution: if P is allowed then there is no (an) infinite SLDNP computation of Pu{'<-A} if and only if A (CA) is a valid consequence of compp(P) (compf P)) in classical first order predicate calculas (in transitive and reverse well-founded modal interpretations). The characterization of infinite SLDNP computations that was presented in theorems 4.3 and 4.8 constitutes a first step towards a better understanding of the modal semantics of perpetual processes.

However, the result stated in theorem 5.1 is not very encouraging from the point of view of using PROLOG for concurrent applications. As a matter of fact, what is asked to a perpetual processes is to carry a computation which never ends. lbis computation has to be defined with the help of a recursive rule. As we have proved, such a rule cannot exist Consequently, we have to circumscribe classes of definite logic programs for which recursive rules maximal for the infiniteness of SLD resolution exist The notion of a perpetual processes makes sense for these classes of programs only. Now the question is the nature of these classes of programs.

Notes

(1) 58 avenue de la république, 93110 Rosny-sous-bois, France [START_REF] Apt | Towards a theory of declarative knowledge[END_REF] Including the binary predicate symbol of equality.

(3) This is a direct consequence of Kônig' s lemma

Let P be a normal program. A consequence of corollary 3 . 6 corollary 3 . 8

 3638 is the inclusion of the set of finiteness of Pin the least Herbrand model of compp(P). However, it is not always equal to this least Herbrand model. Let us consider the program P = {At-B(x), B(f(x))t-B(x)}. The least Herbrand model of compp(P) is M p = {A}u{B(a), B(f(a)), ... } but there is an infinite SWNF computation of Pu{t-A}. For that program, Tptro = {B(a), B(f(a)), ... } and Mp = Tptro+ l . In other respects, if AeB �, if Pu{t-A} is allowed and if there is no SWNF computation of Pu{ t-A} involving n or more than n goals then AeTptro. If Ais an atom, we define [AJ={A'eB�: A'=Aa, for some substitution a}. Then,[AJ is the set of ground instances of A. theorem 3. 7 Let P be a normal program and G the normal goal t-L 1 ••••.L m • If Pu{G} is allowed and if 8 is a computed answer of finiteness of rank n of Pu{G} then * u j = l . . m lL j 8J9'ptoe.proor The proof is a straightforward induction on the rank of the computed answer.As a corollary, we have: The set of finiteness of Pis included in T p toe.The set of computed answer of finiteness of Pu{G} is not always finite Oust consider the program containing one clause: A(f(x))t-A(x)). The possibility of itsfiniteness will not be studied here. Now we give the fll'St completeness result of the finiteness of SWNF resolution. Its proof is similar to the completeness proof of the negation as failure rule given by Lassez, Maher and Wolfram [13]. theorem 3.9 Let P be a normal program and G a normal goal. Every correct answer for co m p p(P)u{G} is a computed answer of finiteness of Pv{G}. proof Suppose there is an infinite SWNF computation of Pu{G}. We show the empty substitution is not a correct answer for co m pp(P)u{G}. Let G o =G=t-l 1 , ... ,l m , G1, ... be the infiniteSWNF computation of Pu{G}. Let 8 1 , 82, ..• be the m gu and C1, C2, ... the input clauses of this derivation. Let O be the relation defined on terms by s 0 t if and only if there is an integer n such that sa 1 ..• 8 n =ta1 .•• a n . Of course, 0 is an equivalence relation on the set of terms of the language. For every term t, we note [t J its class modulo 0 • Let D be the set of equivalence classes modulo 0 • Let J be the pre interpretation of :;f,, with domain D assigning to each constant c its class [c] and assigning to each fonction symbol / of arity n the function from D" to D defined by:([s1J, ..

 interpretations. Let p(t J ,••••' n)f-L 1 , ... ,L m be a clause of a normal program P. The first step is to transfonn it into the formula p(xl , ... ,x n)f-((DL 1 v ... vDL,n)A(XJ =t 1)A .. .A(x n =I n>J where the variables x1, .•• , X n do not appear in P. If y 1, ••• , y d are the variables of the original clause then we transform this formula into the formula p{x1,•••,x n)f-3y J••.3y d ((DL J * v ... vDL m *)A(x1=t1)A . .. A(X n =t n)). Now suppose this transfonnation bas becn made for every clause in the definition of p. Tuen we have k transformed clauses of the form p(xJ, ••• .X n �E J , ..• , p(xJ, • ••.X n �E k where each E i is of the fonn 3y 1 .. 3yd * * ((□L i v .. . v □Lm)A(x1=t1)A . . . A(X n =t n))• Then, the co mpl e te d de f i n i ti on of i nfinite ne ss of p is the formula 'tfx1 ... 'v x,, D(p(xl , ... ,x n)�E 1 v ... vE k).

7 .

 7 □((x1=Y J)A ... l\(X n =Y n Hf(x1 ,x n)=f(y J , ... , y n)), for every fonction symbolf.8. □((x1=Y1)A.. A(X n =Y n)➔(p(x1, ... ,x n)➔p(y J , •••• Y n))), for every predicate symbol p (and for the predicate symbol of equality too).Let P be a normal program. The comple tio n of infinite ne ss of P, compfP), is the collection of all the completed definitions of infiniteness of the predicate symbols of � together with the modal equational theory. Let G be the nonnal goal �L 1 , ... ,L n and a a substitution of the variables of G. We will say that a is a corr e ct answe r for compj(P)u{G} if 3((□L/v ... v□L/)a) is a valid consequence of compj(P). This notion of correct answer is the semantical counterpart of the procedural notion of a computed answer of infmiteness.Now we define a mapping T p 1 on the lattice of interpretations (based on some pre interpretation J of the language) to itself. If J is a classical pre-interpretation of � and ifI is a classical interpretation based on J then T p 1 (I) = {B: for some variable assignment V with respect to J, there is a clause A�L 1 , ... ,Ln in P such that A 1, v=B and L 1 * v ... v L / is true with respect to / and V}. When J is the classical Herbrand preinterpretation, we will write T p instead of T p J , The mapping T p 1 possesses some properties .

proposition 4 . 1 theorem 4 . 2 3 (1 , 1 =

 4142311 For every pre-intcrpretation J of ;f, and for every nonnal program P, the mapping T p 1 is continuous. Note that, for every program P, lfp(T p 1) = 0. In other respects, it is not always true that gfp(T p) = T pJ.ID. If P = {A<.-B(x), B (f (x)) <.-B(x) } , then gfp(T p) = 0 and T pJ.ID = {A). A first important result is that the domain of interpretation of the terms of the language is not essential. LetP be a normal program and G the normal goal <.-L J ••••J., k • Let 8 be a substitution of the variables in G. Thefollowing assertions are equivalent: (a) 8 is a correct answer for compf P)u{G}, that is to say: 3(DL 1 * 8v ... v□L k * 8) is true in every mode/ of compf P). (b) 3(DL 1 * 8v ... v□L k * 8) istrue in everyHerbrand model of compf P). The proof of theorem 4.2 is not essential for our purpose. It could be done by induction on the model of compfPJu{-.3(DL 1 * ev ... v□L k *a)}. See [6] for the exact details. The result of theorem 4.2 will gready simplified the presentation of future proofs. Especially the soundness proof of the infiniteness of SWNF resolution we present now. theorem 4.3 Let P be a normal program and G the normal goal <.-L J , ... ,L k . Every computed answer of inftniteness of Pu{G} is a correct answer for comp f P)u{G}. proor Let 8 be a substitution of the variables of G which is not a correct answer for comp 1 (P)u { G) . Theorem 4.2 says there is a Herbrand model of compf P)u{-.3(□L 1 * 8v ... v□Lk * 8)}. Let/ be a Herbrand interpretation with universe □L 1 *ev ... v□Lk *e)}. Let w be a possible world of M where compf P)u{-.3(□L 1 *ev ... v□Lk *e)} is true and such that, for every possible world w' accessible from w using R, for every normal goal<.-/ 1 , ... ,l q and for every substitution a of the variables of that goal, if compfPµ{-.3(□1 1 *av ... v□l q *o)} is true in w' then a is not a computed answer of infiniteness of Pu{<.-1 1 , ... ,lql. Now for every j =l, ... , k and for every variable assignment V with respect to the Herbrand pre-interpretation, there is a possible world w j, V accessible from w and where compj(P)v[-.L j *a} ufrlx1 •••V X,, (p / x 1 , ---.X n >t-E 1 v ... vE k)} is true with respect to V, Pj being the predicate symbol of the atom L j *. Let L j *a = Pit' t' 1)A .. . A(t n = t' n >) is false in w j, V with respect to V. Let o be an mgu of P/'J•••••' n) andpjf t' 1 , ... , t' n). compj(P)v{-.3(□1 1 * ov ... v □l/ o)} is true in w j , V and, by induction hypothesis. oi s not a computed answer of infiniteness of Pu{t-1 1 ,lql--Consequently, 8 is not a computed answer of infiniteness of Pu{ t-L 1 , . .. J.,k }. corollary 4.4 If there is a n i n fin ite SLDNF compu tatio n of Pv[G} then compfP)v{+-3(DL 1 *v ... vDL/)J isinsatisfaisable.corollary 4.5 T he infinite n ess set of P is contained in the set {AeB ;t : DA is a valid conse q u e n ce ofcompf(P)}. Now we give the point of view of the fixpoint operator.

theorem 4 . 6

 46 Let P be a nonnal program and G the nonnal goal t-L J , ... J., m • If 8 is a compu ted answer of infiniteness ofran k n of Pv{G} the n v j = J .. JL/ 8JnT p ./,n � 0.

n=a.. If ujj 8 inao then l 1 *

 81 =J . .ml L/aJ s;;;; B ;e_, \T p J.n then, for every L Ge and for every substitution es such that L j ao is ground, L/eo rE T p J.n , that is to say: for every variable assignment V with respect to the Herbrand pre-interpretation and for v ... vl q * is false with respect to T p +a-1 and V. Thus, for every clause Bt-l J , •• •• l q in P and for every substitution o, if o = mgu(B , B j e) then u k = J .. ql l k * o J s;;;; B � \T p+a.-1 and, by induction hypothesis, a is a computed answer of finiteness of rank a-J of Pu{t-l 1 , ... , l ql , Consequently, e is a computed answer of finiteness of rank n of Pu{G}. note Theorem 4.6 does not imply that if there is an infinite SLDNF computation of Pu{t-L 1 , ... ,L,nJ then u j =J..mfL/JriTpJ.ro et 0. As a matter of fact, if P =

SLDNFtheorem 5 . 1

 51 resolution: if Pis allowed then there is an infmite SLDNF computation of Pu{t-A} if and only if DA is a valid consequence of compi(P) in the class of modal interpretations whose accessibility relation is transitive and reverse well-founded. This characterization does not give us a choice procedure of an atom in a goal such that if there is an infmite SLDNF computation of Pu{G} then there is an infinite SLDNF derivation which uses this procedure: validity in the class of transitive and reverse well founded inteIJ)retations is TI /-complete [9]. Our characterization does not say however that such a procedure cannot exist Now the question is to see whether there could be an algorithrn of selection of atoms in goals always leading into an infinite derivation when such a derivation exists. Such an algorithm is a recursive maximal computation rule for the infiniteness of SLDNF resolution. Considering definite logic programs and SLD resolution, we will show that such a rule cannot exist. A computation rule is maximal for the rejutation of SLD resolution when, for every definite program P and for every definite goal G, if there is an SLD refutation of Pu{G} then there is an SLD refutation of Pu{G} using this rule. An essential result of the theory of logic programming is the independence of the computation rule for the refutation of SLD resolution, that is to say: every computation rule is maximal for the refutation of SLD resolution [14]. A computation rule is maximal/or thefinitefailure of SLD resolution when if there is a finitely failed SLD tree of Pu{G} then the SLD tree of Pu[G} using this rule is finitely failed. An important result is the independence of the computation rule, as far as it is fair, for the finite failure of SLD resolution [12]. Similarly, it is not difficult to prove that every fair computation rule is maximal for the finiteness of SLD resolution. Now we consider the maximality of a computation rule with respect to the infiniteness of SLD resolution. A computation rule is maximal for the infiniteness of SLD resolution when, for every program P and for every goal G, if there is an infinite SLD tree of Pu{G} then the SLD tree of Pu[G} using this rule is infinite. Sorne rules can be maximal for the infiniteness of SLD resolution. A computation rule is recursive if it is an algorilhm for the selection of an atom in a goal. Such rules cannot be maximal for the infiniteness of SLD resolution. There is no recursive computation rule maxi.mal for the infiniteness of SLD resolution.

(1)

 1 IPX p 0 TREN X p :=X p -1 AND GOTO [j'] for X p and similar instructions for Y p , and such that, for every input (X p ,Y p)=(x,0), the program stops if and only if F(x) is defined. Let P F * be the logic program obtained from P p as follows: Replace every instruction of type (a) by the clause P p, IX,Y�P P, i+f s(X),Y). (2) Replace every instruction of type (b) by the clauses P p j s(X),Y)'<-Pp j '(X,Y) and P p j 0,Y)'<-Pp j+/0,Y). Let P p ** and P G ** be the programs obtained from P p * and P G * respectively by the addition of the clauses Pp , dP * (X),X)'<-pp , fX,0) and P G, o(G * (X):X}'<-p G ,J(X,0). Let P be the program P F **uP G **• Let G n be the goal '<-P p, dX,n),P G, O(X,n). If we want to find an infinite SW derivation, we have the choice of the selection of an atom at the frrst step of the computation only. If we choose the frrst atom then there is an infinite SLD derivation if and only if n�A. Otherwise, there is an infinite SLD derivation if and only if n�B. Let R be a recursive computation rule. It corresponds to a recursive set C such thatR selects the frrst atom of G n if and only if ne C. Thus, if Ris maximal for the infiniteness of SLD derivation then A�CN\C and B�C, which is impossible since A and B are recursively inseparable.

proposition 3.3 Let P be a normal program, J a pre-interpretation of � and / an interpretation based on J. Let us suppose that /, together with the identity relation assigned to =, is a model of the equality theo.ry. We have:/, together with the identity relation assigned to =, is a model of comp p(P) iff T p 1 (I)Q. As a corollary, we have: proposition 3.4 The Ieast Herbrand mode/ of comp p(P) is the least fixpoint of T P • Note that, for every program P. gfp(T p)=B � . A first important result is the soundness of our completion formula for SWNF resolution (see theorem 3.5 below). Let P be a normal program and G be a normal goal. We say thatPu{G} is allowed whenever no SWNF computation of Pu{G} flounders. We say that P is allowed whenever, for every ground atomA, no SWNF computation of Pu{t-A} flounders. theorem 3.5 Let P be a normal program and G be a normal goal. If Pu{G} is allowed then every computed answer of finiteness of Pu{G} is a correct answer of compp{P)u{G}. proof Let e be a compute<! answer of finiteness of Pu{G}. Since there is no infinite SLDNF computation of Pu{Ge}, there is an integer max greater than the number of goals involved in any SWNF computation of Pu{Gej< 3 >. The induction on maxis straightforward. As a corollary, we have: corollary 3.6 LetP be a normal program and Ga normal goal.// Pu{G} is allowed and if there is no injinite SWNF computation of Pu{G} then the empty substitution is a correct answer for comp p{P)u{G}.

Let/ be the interpretation based on J defined by: / = {p([t 1 J, ... , [t n]): for every element t' J, ••• , t' n in ft 1 J, ••• , ft n l• the set of proper successors of p(t' 1 , ... , t' n) in the computation is fmite}. We show thatT p 1 (I)Q. If p([t 1 J , ... , [t n])e:.l then there are elements t' 1 , • . • • t' n in l t 1 J, ••• , lt n l such that the set of the proper successors of p(t' 1 , ... ,t' n) in the computation is infinite. Consequently, there is an integer i o such that the goal G iO contains p(t' l •••••t' n > as a subgoal, there is an integer i greater or equal to i o , there is a clause C i + l = p(s 1 , ... ,s n J+-L 1 , •••J., m in P, a substitution a i+l and an integer j in 1 , .•• , m such that a i+l = m gu(p (t ' 1 8 iO+l ••• a i , •• • •'' n a iO+l •••a i), p(s 1 , •• • ,s n)) and the set of proper successors of L j a i +l in the computation is infinite. Consequently, [t 1 J=fs 1 J, ••• , ft n l=fs n l and there is a clause Af-L l ••••L m in P and a variable assignment V with respect to J such that A 1, v=P(ft 1 J, ... , [t n }) and L

* J"'•••AL * m is false with respect to / and V. Consequently,p([t 1 J, ... , [l n])e:.T p 1 (I). Then: T p 1 (l)Q and, according to proposition

3.3, / is a model of compp(P).

In othcrs respects, it is not difficult to show that/ is not a model

TpJ.ro = 0. corollary 4.7 The set of infzniteness of a normal programP is contained in T pJ.OJ. As for the completeness proof of the infiniteness of SLDNF resolution, it bas been done using the fact that SLDNF trees are finitely branching: if Pu{G} is allowed and if there is no infinite SLDNF computation of Pu{G} then every SLDNF tree of Pu{G} is fmite. More precisely: some integer is greater than the depth of SLDNF trees of Pv{GJ. theorem 4.8 Let P be a normal program and G the normal goal

t-L l ••••.L

m • If Pu{G} is allowed and if compi(P)v{+-3(DL / v ... vDL n *)} is insatisfaisable then there is an injinite SLDNF computation of Pu{G}. proof If there is no infmite derivation of Pu{G} then some integer maxis greater than the length of any SLDNF derivation of Pu{G}. The proof is straightforward and can be done by induction on max. proposition 4.9 The set of infiniteness of an allowed normal program P is equal toT pJ.OJ and is equal to the set {AeB :e,: DA is a valid consequence of compi(P)}.

proof As a matter of fact. we prove that. for some definite program P, there can be no recursive computation rule maximal for the infiniteness of SLD resolution in P. The proof is based on an idea developed by Shepherdson [17] who proved that no recursive rule can be maximal for the refutation of SLDNF resolution. Let A and B be two recursively enumerable recursively inseparable disjoint sets

[START_REF] Odifreddi | Classical recursion theory[END_REF]

. Let/ and g be two unary fonctions enumerating A and B. Let F and G be the partial recursive fonctions defined as follows: F

(x) = µy(f(y)=x); G(x) = µy(g(y)=x). F(x), respectively: G(x),

is, when it exists, the least integer y such thatf(y) =

x, respectively: g(y) = x. Now, F(x) is

defined if and only if xeA and G(x) is defined if and only if xeB. Let P p be the imperative program using the variables X F and Y F• and instructions like: