
HAL Id: hal-03252269
https://hal.science/hal-03252269v1

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Failure Analysis in Model Checking based
on Data Mining

Ning Ge, Marc Pantel, Xavier Crégut

To cite this version:
Ning Ge, Marc Pantel, Xavier Crégut. Automated Failure Analysis in Model Checking based on Data
Mining. 4th International Conference On Model and Data Engineering, Sep 2014, Larnaca, Cyprus.
pp.13-28, �10.1007/978-3-319-11587-0_4�. �hal-03252269�

https://hal.science/hal-03252269v1
https://hal.archives-ouvertes.fr

Automated Failure Analysis in Model Checking

Based on Data Mining⋆

Ning Ge1, Marc Pantel2, and Xavier Crégut2

1 LAAS-CNRS, France
Ning.Ge@laas.fr

2 University of Toulouse, IRIT-INPT, France
{Marc.Pantel,Xavier.Cregut}@enseeiht.fr

Abstract. This paper presents an automated failure analysis approach
based on data mining. It aims to ease and accelerate the debugging work
in formal verification based on model checking if a safety property is not
satisfied. Inspired by the Kullback-Leibler Divergence theory and the
TF-IDF (Term Frequency - Inverse Document Frequency) measure, we
propose a suspiciousness factor to rank potentially faulty transitions on
the error traces in time Petri net models. This approach is illustrated
using a best case execution time property case study, and then further
assessed for its efficiency and effectiveness on an automated deadlock
property test bed.

Keywords: Model checking, Failure analysis, Data mining, Time Petri
net.

1 Introduction

Generating counterexamples in case a logic formula is violated is a key service
provided by model checkers. Counterexamples are expected to display some un-
wanted but possible behaviors of the system and to help the user(s) in correcting
the faulty design. Counterexamples often stand for error traces, which represent
sequences of states and transitions and are therefore usually lengthy and difficult
to understand. It is usually an exhausting work to understand the origin of failure
and to extract useful debugging information using counterexamples. The origin
of failure might be anywhere along these traces, thus requiring a lengthy anal-
ysis by designers. Based on the above understanding, we conclude that feeding
back counterexamples in model checking provides limited help in understanding
the origin of errors and in improving the model design. Our ultimate goal is to
provide the designer with the suspicious ranked faulty elements by analyzing the
error traces in the model checking results. The fact is, although model checking
has been developed as a mature and heavily used formal verification technique,
the automated failure analysis relying on model checking results is still mostly
an open challenge.

⋆ This work was funded by the French ministries of Industry and Research and the
Midi-Pyrénées regional authorities through the FUI P and openETCS projects.

Failure analysis in model checking is difficult due to the use of abstractions.
At the time of writing, the conflict between model precision and verification cost
is a key issue in model checking. The abstraction is a must for model checking
to reduce the size of state space. It eliminates property-irrelevant semantics
and may also combine property-relevant semantics. But this semantics may help
failure analysis.

According to the survey from [1], existing automated fault localization tech-
niques in model checking usually produce a set of suspicious statements without
any particular ranking. [2] proposed to analyze fault localization using one sin-
gle counterexample that violated the expected properties in a particular case.
Whenever a counterexample was found, the approach compared the error trace
derived from the counterexample to all the correct traces that conformed to the
requirement. On the observed error and correct traces, the transitions that led
to the deviation from correct traces are marked as suspicious transitions. [3] pro-
posed to rely on multiple counterexamples. It defined the concepts of positive
trace and negative trace. The negative traces start from initial states and ended
with error states. The transitions in positive traces are not prefix to any neg-
ative traces. It distinguished the transitions that existed in all positive traces;
the transitions that appeared in all negative traces; the transitions that existed
in one of positive traces but not in any negative traces; and the transitions that
appeared in one of negative traces, but not in any positive traces. The algorithm
then used the above marked transitions to identify the origin of failure. [4] pro-
posed to define a distance between the error trace and the successful traces. The
distance was then used to find the closest successful trace to the counterexample.
The causes of error were then derived from the comparison results between the
closest successful trace and the counterexample.

In this paper, we will improve the effectiveness of failure analysis in model
checking by providing a suspiciousness factor, when a safety property is not
satisfied. The safety property asserts that nothing bad happens [5]. Examples
of safety properties include mutual exclusion, deadlock freedom, partial correct-
ness, and first-come-first-serve [6]. They can be satisfied when no reachable error
states (erroneous behavior) or deadlock states (no outgoing transitions) exist in
the reachability graph. Otherwise, some unwanted states are detected, called vi-
olation states. Inspired by the Kullback-Leibler Divergence theory and the
TF-IDF (Term Frequency - Inverse Document Frequency) measure in data mining,
the suspiciousness factor is proposed to rank the suspicious faulty transitions.
We construct error traces in the reachability graph using all the violation states.
The suspiciousness factor is defined as the fault contribution of each transition
on all the error traces. It is computed using the entropy and differential entropy
of transition. We apply this approach to Time Petri net (TPN) model relying on
observers to provide all the faulty execution traces and the violation states in
the reachability graph preserving markings. This verification approach was stud-
ied in our previous work [7]. The proposed failure analysis method is illustrated
using a TPN case study where the BCET (Best Case Execution Time) property

is verified, and then further assessed for its efficiency and effectiveness on an
automated test bed where the deadlock property is verified.

This paper is organized as follows: Section 2 gives some preliminaries; Sec-
tion 3 introduces the core idea of the proposed approach; Section 4 details the
proposed automated failure analysis approach using a BCET case study; Experi-
mental results derived from a set of test cases are presented in Section 5 to assess
the effectiveness and efficiency; Section 6 summarizes the contributions of this
work.

2 Preliminaries

2.1 Time Petri Net

Time Petri nets [8] extend Petri nets with timing constraints on the firing of
transitions. Time Petri nets are widely used to capture the temporal behavior
of concurrent real-time system in a formal way. Our work relies on TINA (TIme
petri Net Analyzer)1 as the verification toolset.

Definition 1 (Time Petri Net). A Time Petri Net (TPN) T is a tuple
〈P, T, •(.), (.)•,M0, (α, β)〉, where:

– P = {p1, p2, ..., pm} is a finite set of places;
– T = {t1, t2, ..., tn} is a finite set of transitions;
– •(.) ∈ (NP)T is the backward incidence mapping;
– (.)• ∈ (NP)T is the forward incidence mapping;
– M0 ∈ NP is the initial marking;
– α ∈ (Q≥0)

T and β ∈ (Q≥0 ∪ ∞)T are respectively the earliest and latest
firing time constraints for transitions.

Following the definition of enabledness in [9], a transition ti is enabled in a
marking M iff M ≥ •(ti) and α(ti) ≤ vi ≤ β(ti) (vi is the elapsed time since
ti was last enabled). There exists a global synchronized clock in the whole TPN,
and α(ti) and β(ti) correspond to the local clock of ti. The local clock of each
transition is reset to zero once the transition becomes enabled. The predicate
↑ Enabled(tk,M, ti) is satisfied if tk is enabled by the firing of transition ti from
marking M , and false otherwise.

↑ Enabled(tk,M, ti) = (M−
•(ti)+(ti)

•

≥
•(tk))∧((M−

•(ti) <
•(tk))∨(tk = ti)) (1)

We use an example (see Ex. 1) to explain the syntax and semantics of time
Petri nets.

Example 1 (TPN Example). The example in Fig. 1 models the concurrent execu-
tion of a process. The whole net shares a common synchronized clock. Pinit is
the place holding the initial token. When the fork transition is fired, concurrent
task1 and task2 start at the same time within respective execution time [11,15]

1 http://projects.laas.fr/tina/

and [19,27] associated to the transitions. Each transition uses a local clock which
starts once the transition becomes enabled. When the control flow reaches the
join place, the system will exit or restart the whole execution according to the
running time.

[0,0] [3,10]

2

[11,15]

[19,27]Pinit Tfork

Task2_running

Task1_running

Task2_ends

Task1_ends

Pjoin Texit Pexit

(10, ∞]

2

Trestart

Fig. 1. Time Petri Net Example

2.2 Kullback-Leibler Divergence Applied to Textual Documents

The Kullback-Leibler Divergence (KL-Divergence) is also called informa-
tion divergence, information gain, or relative entropy [10]. It is a fundamental
equation of information theory that qualifies the proximity of two probability
distributions. Many statistical procedures for inference use KL-Divergence in-
formation either directly or indirectly. It is also the theory basis of the TF-IDF
measure.

Definition 2 (KL-Divergence). The KL-Divergence is a measure in statistics
that quantifies how close a probability distribution P = {pi} is to a model (or
candidate) distribution Q = {qi}. The KL-divergence of Q from P over a discrete
random variable is defined as

DKL(P ‖ Q) =
∑

i

P (i) ln
P (i)

Q(i)
(2)

Note: In the definition above, 0 ln 0

0
= 0, 0 ln 0

q
= 0, and p ln p

0
= ∞.

Many successful applications are based on Kullback-Leibler Divergence.
We give an example about the text classification problem [11]. A textual docu-
ment d is a discrete distribution of |d| random variables, where |d| is the number
of terms in the document. Let d1 and d2 be two documents whose similarity we
want to compute. This is done using DKL(d1 ‖ d2) and DKL(d2 ‖ d1).

2.3 Term Frequency – Inverse Document Frequency

Another major application of KL-Divergence is the TF-IDF (Term Frequency
- Inverse Document Frequency) algorithm [12]. TF-IDF is a numerical statistic

which reflects how important a term is for a given document in a corpus (collec-
tion) of documents. It is often used as a weighting factor in information retrieval
and text data mining. Variations of the TF-IDF weighting scheme are often used
by search engines as a central tool in scoring and ranking a document’s rele-
vance to a given user query. TF-IDF is the product of two statistics, TF and IDF.
Suppose we have a collection of English textual documents and aim to deter-
mine which documents are most relevant to the query "the model checking".
We might start by eliminating documents that do not contain the three words
"the", "model", and "checking", but this still leaves many documents. To fur-
ther distinguish them, we might count the number of times each term occurs in
each document and sum them all together; the number of times a term occurs
in a document is called TF. It stands for the frequency of a term in a document,
and it reflects how important a term is in this document. However, because the
term "the" is so common, this might incorrectly emphasize documents which
happen to use the word "the" more frequently, without giving enough weight
to the more meaningful terms "model" and "checking". The term "the" is not
a good keyword to distinguish relevant and non-relevant documents and terms,
unlike the less common words "model" and "checking". Hence IDF factor is in-
corporated which diminishes the weight of terms that occur very frequently in
the document set and increases the weight of terms that occur rarely.

3 Core Idea

In the TF-IDF algorithm, each term in the documents will contribute to the key-
word semantics. Some terms are considered as significant if they are more rele-
vant to the keyword semantics. This is similar to the fault contribution caused
by a given transition in an error trace in model checking. Fig. 2 compares the
similarity between semantic contribution of terms in documents and fault con-
tribution of transitions in error traces. Some terms in documents have closer
semantic relation to the keywords, the occurrence of these terms provide more
semantic contributions to the occurrence of keywords. Similarly, the fault propa-
gation depends on the topology of error traces, the occurrence of some transitions
will provide more fault contributions to the occurrence of violation states.

Documents

Error Traces Violation States

Keyword SemanticsTerms

Transitions

Semantic
Contribution

Fault
Contribution

Fig. 2. Comparison to TF-IDF

The semantic contribution of a term in documents is measured by TF-IDF,
where TF is the contribution of a term in single document, and IDF is the con-
tribution of a term in a collection of documents. The fault contribution to the

violation states caused by a transition on error traces can also be evaluated by
a similar measure defined as Fault Contribution.

Definition 3 (Fault Contribution). Fault Contribution (CF) is a suspicious-
ness factor to evaluate a transition’s suspicion level. It is used to rank the sus-
piciousness of transitions.

4 Ranking Suspicious Faulty Transitions

Inspired by the TF-IDF algorithm, we propose a probabilistic failure analysis
approach based on data mining. The relevance weight CF (t) is computed to
assess the fault contribution of each transition t in error traces.

4.1 BCET Property Case Study

Before presenting the failure analysis algorithm, a BCET case study (see Ex. 2)
is provided to help illustration.

Example 2 (Failure Analysis Example). Fig. 3 is a TPN model with 10 transitions
{t0, t1, ..., t9}. It has two main execution paths (respectively through t1 and t2),
both have a loop with a bound of 2. The expected time property is: system’s
BCET is bounded within a given time T , i.e. BCET > T . We aim to automatically
identify the potentially faulty transitions, and to rank them according to their
fault contributions to the violation states. We first analyze the case when T = 10,
then give the analysis results for 5 ≤ T ≤ 50.

22 t0

[2,8]
t5

[3,5]

t1[0,0] t2 [0,0] t7
[4,8]

t6

[1,7]

t3
[2,6]

t9
[1,4]

t4
[3,7]

t8
[2,6]

p0

Fig. 3. Failure Analysis Case Study

4.2 Reachability Graph and Violation States

Reachability graphs are used to solve reachability problems in model checking.
They contain all the states in the execution of a system and all the transitions
between these states. In the TINA toolset, depending on the selected options,
tina builds reachability graphs of different abstractions, expressed as Kripke
transition systems (ktz). When a safety property is not satisfied, violation states
can be found in the reachability graph.

According to the observer-based model checking approach for TPN presented in
our work [7], we use the state class graph preserving markings as the reachability
graph and turn the quantitative problem into a reachability problem. A TPN

state can be seen as a pair (M,D), in which M is a marking, and D is a set of
vectors called the firing domain. The reachability assertions are used to check
the marking existence, such as (MP = 1) or (MP = 0), where MP is the marking
in the observation place P . Once the given reachability assertion is violated, the
set of violation states in the reachability graph is built.

22 t0

[2,8]
t5

[3,5]

t1[0,0] t2[0,0] t7
[4,8]

t6

[1,7]

t3
[2,6]

t9
[1,4]

t4
[3,7]

t8
[2,6]

[T,T]

[0,0] [0,0]

[0,0]

Observer

p1
p2

p
init

p0

2 2

t10 t11

t12 t13

Fig. 4. Failure Analysis Case Study with BCET Observer

A BCET observer structure in Fig. 4 (in dotted line box) is thus associated with
the end transition of the whole system t9. The observer is linked from t9. This
connection ensures that the observer works in a read-only manner, thus cannot
impact system’s original behavior. We observe the tokens in places P1 and P2.
The place Pinit ensures that the observer structure starts at the same time with
the observed system.

To explain how to check BCET property, we provide an erroneous scenario in
Fig. 5. When the running time is less than T , t10 is not yet enabled, the place P1

is empty. Meanwhile, if t9 is already fired, P2 has a token. In this scenario, the
execution time of the system is less than T , then the BCET must be less than T .
Therefore, the property BCET > T is not satisfied. This property can be formally
expressed by the formula ¬(¬p1 ∧ p2). Then the assertion N(¬(¬p1 ∧ p2)) = NA

is used to check this property, where N(¬(¬p1 ∧ p2)) is the number of states
satisfying ¬(¬p1 ∧ p2), NA is the total number of states in system execution.

t9
[1,4]

[T,T]

[0,0] [0,0]

[0,0]

Observer

p1
p2

p
init

p0

2 2

t10 t11

t12 t13

Observed System

Fig. 5. Failure Scenario

When T = 10, we generate the reachability graph (Fig. 6) for TPN model
with associated observer. The state number in this reachability graph (NA) is
39. All the states are labeled with a number from 0 to 38. The checking result
for N(¬(¬p1 ∧ p2)) = NA is False, because N(¬(¬p1 ∧ p2)) is 37. Therefore,
there exist two violation states in the reachability graph. The violation states
are those satisfying the formula ¬p1 ∧ p2. They are directly found by the muse

model checker in the TINA toolset, i.e. violation states are s11 and s23.

4.3 Error Traces

We aim to compute the fault contribution of each transition in the error traces.
The error traces are constructed using the violation states in the reachability
graph.

Definition 4 (Error Trace). For all the states {si} on each path from the
initial state s0 to a violation state sv in the reachability graph, all the outgoing
transitions of si are gathered in a sequence called error trace π.

We consider not only the transitions on the path that leads from s0 to sv but
also the direct outgoing transitions of all the states in the execution traces that
lead to correct states. Indeed, in TPN, the transitions outgoing from the same
place can mutually influence each other. A correct transition can impact the
firing of a faulty transition if they are both outgoings from the same place. The
correct transition will diminish the CF of the faulty transition.

Example 3 (Error Trace Example). In Fig. 7, s0 is the initial state, and sv is
a violation state. In the execution trace from s0 to sv, there exist four states
{s0, s1, s2, s3} (apart from sv). The states s5, s6, s7, s8, s9 do not lead to the

t1

2

t2

3

t10

4

{t4}t3

5

t10

7

t7

8

{t4}t10
t3

9

t10 t5

10

t9

11

t10t7

13

t8

14

t10
t9

15

t10
t6

16

t3

17

t5

18

t10t8

19

t11

20

t10
t3

21

t10
t5

22

t9

23

t6

24

{t4}

25

t7

26

t10t9

27

t9

29

t8

30

t11

31

t11

33

t9

35

t11

37

{t4}

34

t9

36

t11

38

t0

10

t5

6

t6

12

t10 t6

28

t3

32

Fig. 6. Reachability Graph of Case Study (T=10)

violation state sv. They are in the correct traces. When the system is in state
s2, it is possible to transit to s7 or to s3. If s7 (t4) is removed from the graph,
s3 (t2) will have higher probability (fault contribution) for the occurrence of sv.
Therefore, transition t4 should be included in the error trace, although it does
not lead to sv. Similarly, the transitions leading to other correct states should
also be included in the error trace. The outgoing transitions of these four states
are considered as error traces π, i.e., π = {t0, t1, t2, t1, t5, t4, t2, t3, t4}.

0 41 2 3
Svt1t0 t2

t3S0

5

8

7

9

t2 t4

t5 t4
6

t1

Fig. 7. Error Trace Example

The algorithm for enumerating all the error traces in the reachability graph is
trivial, but the impact of state cycles in error traces needs to be discussed. The

reachability graph in Fig. 8 contains a state cycle Cs (s1
t1−→ s3

t4−→ s4
t3−→ s1).

0 6

1

2

3

4

5

Sv

t1

t4t3

t0

t2 t7

t5
t6

t9

t8

SI

Fig. 8. Error Trace Example

The error traces passing through s1 may loop in Cs. Take one error trace as
an example, the trace passing through states s0, s1, s3, s4, s6 is

s0
t0−→ {s1

t1−→ s3
t4−→ s4

t3−→ s1}n
t8−→ s6

where n represents the times that the cycle repeats. The repetition of a cycle will
not increase the fault contribution of the transitions in the cycle, because the
system behavior is restricted to these states. Therefore, the cycle can be treated
as a point with a chain of transitions (here t1, t4, t3). In other words, n is taken
to be 1.

In the BCET case study, we construct error traces using the reachability graph
in Fig. 6 and violation states s11 and s23. The error traces are as follows:

π1 : {t0, t1, t2, t5, t10, t3, t9, t10}
π2 : {t0, t1, t2, t4, t10, t7, t9, t10}

π3 : {t0, t1, t2, t5, t10, t3, t6, t10, t5, t10, t3, t10, t9}

4.4 TC-ITC Algorithm

Fault contribution of the transition in error traces is measured by two factors,
transition contribution and inverse trace contribution.

Definition 5 (Transition Contribution (TC)). TC is a measure of the occur-
rence frequency of a transition t in an error trace π. It reflects a transition’s
contribution to violation state sv in π. It is defined to be

TC(t) =
1

M

M
∑

i=1

Qi

Li

(3)

where Qi is number of occurrences of t in error trace πi, Li is the number of
states from the initial state to the state before sv, and M is the total number of
error traces.

Definition 6 (Inverse Trace Contribution (ITC)). ITC is a measure of
whether a transition t is common or rare among all the error traces to all the
violation states. It is defined to be

ITC(t) = log2
M

M
∑

i=1

Xi

, (4)

where Xi =

{

1 if t occurs at least one time in an error trace
0 otherwise

and M is the

total number of error traces.

The weight TC-ITC is the product of the above two measures. In some cases,
this product is 0, which does not mean it cannot be the fault source but only
implies that the elements make the least contributions to the violation states
and have the least probability comparing to the others. These elements usually
should be checked at last.

It is expected that the ranking of fault contributions computed by the algo-
rithm corresponds to manual analysis and human intuition. We use the BCET

case study to illustrate how they are matched. The analysis results are provided
in Fig. 9. The results show the fault contributions (normalized for comparing
the trend) of each transition when T varies from 5 to 50. The explanation is
provided as follows:

Fig. 9. Feedback of Fault Localization Example

– 1 ≤ T < 5: since the BCET of the system is 5, there will not be any violated
state and accordingly no failure analysis will be launched.

– T ≥ 47: since the WCET (Worst Case Execution Time) of the system is 47, the
reachability graph will not have any change after this threshold, therefore the
fault contribution of each transition will preserve the same value as T = 47.

– 5 ≤ T < 47: since T represents the expected BCET of the system, all execution
with time inferior to T will be considered as violation. Without any other
information, a reasonable heuristics can then be derived from this assertion:
for BCET property, the less execution time a transition can contribute/has
contributed to the violation of BCET, the higher risk it will be the failure
cause. Another intuition-valid rule is: when an element holds a more complex
function, it has a higher risk to cause design errors. To heuristically quantify
the coefficient of these two different types of fault contribution is a subjective
measure often context-dependent. In order to avoid this indecisive discussion,
each time we encounter this situation in the case study, we will just explain
the two aspects without trying to combine them into one score for matching
the ranking. The statistical trends are then explained as follows:
• Topologically symmetric pair (t3, t4) has a higher risk to be the

failure cause than (t5, t7) and (t6, t8). This matches the heuristic
rule because in whichever execution, t3 and t4 will only contribute once
to the global execution time (i.e. [2,6] and [3,7] respectively), while t5,
t6, t7 and t8 can at most execute twice and will contribute more (i.e
[6,10], [2, 14], [8, 16] and [4, 12] respectively).

• In each symmetric pair of above, t3 ≥ t4, t5 ≥ t7 and t6 ≥ t8.
This demonstrates that it is always the one with the smallest execution
time that get more risk to be the faulty one.

• t0, t1, t2 and t9 are equally the least suspicious elements. (To
emphasize the other transitions, they are not shown in Fig. 9.) This
conforms to the intuition because in all execution paths, whether is good
or bad, t0 and t9 will always be executed therefore no information added
for assessing their faulty risk. For t1 and t2 it is the similar situation,
because a design fault will either be on the left side or the right side,
and in all execution paths of the left (resp. the right) side, t1 (resp. t2)
will always be executed.

• Pair (t5, t7) has a higher risk than (t6, t8). Generally since t6/t8
has smaller execution time than t5/t7, it shall be more possible according
to the first heuristic rule. However, since t5 and t7 play a role that not
only postpone the execution (like t6/t8), but also branch the execution
path (t6/t8 do not have this function), their risk to be the failure cause
will be re-distributed and raised as the second rule is engaged.

5 Experiments

To assess the success of a fault localization algorithm, many important criteria
should be measured, such as effectiveness, precision, informativeness, efficiency,

performance, scalability and information usefulness. In our work, we assess our
approach by using two significant criteria: effectiveness and efficiency.

Efficiency. The fault localization techniques in model checking, like other tech-
niques, should terminate in a timely manner, limited by some resource con-
straints. The efficiency can be assessed by the scalability and the performance.

Effectiveness. An effective fault localization method should point out the
origin of failure. The effectiveness can be evaluated by the precision. According
to the survey [13], the effectiveness can be assessed by a score called EXAM in
terms of the percentage of statements that have to be examined until the first
statement containing the fault is reached. In this work, the EXAM score measures
the percentage of transitions that have to be examined until the first faulty
transition is found.

In order to assess the effectiveness and efficiency of the proposed method, we
have designed an automated deadlock property test bed.

5.1 Automated Deadlock Property Test Bed

The test bed will randomly generate systems that might have deadlocks, then
apply the proposed analysis algorithm to detect the introduced deadlocks. The
main reason to use the deadlock as test property is because it is relatively easy
to create a scalable system with deadlock heuristically. As the analysis in our
method is based on the error traces and violation states in the reachability graph,
it does not distinguish the property types in the model level. Although the test
bed contains only one property, the effectiveness and efficiency evaluations will
be meaningful for other safety properties.

For a given TPN system S(P,R,M), P are processes which run infinitely and
need a resource before the next task (a task is represented by a transition); R
are resources shared by processes, but only accessible in an exclusive way; M
is a matrix to decide whether process Pi needs to access resource Rj . We rely
on the Coffman conditions [14] to build the deadlock test cases. Each process is
designed to be moderately consuming the resource, i.e. it will use its resources
consequently, always release one before locking another. The order in which a
resource is accessed by processes is however random, which establishes the neces-
sary condition of deadlock. In practice, the above conditions can be constructed
statically when building test cases, while the circular wait condition (each pro-
cess in a circular list or chain is waiting for a resource held by the next process
in the list) can only be checked dynamically during the system execution. There-
fore, the generated TPN will not systematically guarantee that a "real" deadlock
will occur. To improve the success of creating deadlocks, we introduce another
mechanism to enforce deadlocks: randomly let some processes during some tasks
forget to release a used resource. These tasks are then considered as the failure
cause of deadlocks. With a generated system and its already known faulty tran-
sitions (release-forgot tasks), the test bed will apply our method to compute the
fault contribution of each task.

5.2 Evaluation of Efficiency

We have generated thousands of test cases by assigning P and R values from
5 to 20, creating 1 to 8 faulty transitions, with all the other parameters totally
random. To create systems with deadlocks, we generate 10,000 cases for each
fault number from 1 to 8. After examining the circular wait condition, most of
these cases are deadlock-free, therefore the number of deadlock system is in fact
much smaller than 10,000. The exact number of deadlock test cases is shown as
the second column in Table 1.

The tests are performed on a 2,4 GHz Intel Core 2 Duo processor running
Mac OS X 10.6.8. The average time for analyzing the deadlock cases is given in
the evaluation column of the table. It shows that the approach is efficient.

Table 1. Efficiency Evaluation

System Evaluation
Fault Num. Test Num. Average State/Transition Average Time (s)

1 400 4949 / 15440 2.9092
2 517 2428 / 7130 1.1244
3 500 9884 / 31237 3.3533
4 402 8811 / 26663 2.5998
5 303 6756 / 18247 1.2196
6 504 27094 / 75808 5.064
7 757 104857 / 304741 15.0072
8 100 112306 / 283004 15.0289

5.3 Evaluation of Effectiveness

To evaluate the effectiveness, the EXAM score is calculated. Its value is the per-
centage of transitions that have to be examined until the first transition causing
the deadlock fault is reached. The EXAM score measures the improvement of ef-
fectiveness with the help of ranking factor. Without ranking factors, in the worst
case, the user needs to check the transitions one by one, until finally find the
one with error.

We use an example to illustrated the evaluation method in Fig. 10. In a test
case, assume there are 20 transitions in the system, and the transition t2 is the
only cause of failure. After applying the proposed failure analysis approach, the
value of CF ranking factor for each transition is calculated. As the transitions t2,
t3 and t4 have equal CF values, the t2 will be ranked either as the second position
or the fourth position in the whole ranking list. The EXAM score is different in
these two cases, respectively 10% and 20% We thus distinguish them by defining
Fig. 10 (a) as a best case, and Fig. 10 (b) as a worst case.

The effectiveness evaluation is shown in Table 2. For each fault number (from
1 to 8) test cases, we give out EXAM score, EXAM score variance, rank, and rank
variance for the best cases and worst cases, and then show the average EXAM score
and average rank. The EXAM score varies from 2% to 13% for best cases, and varies
from 4% to 18% for worst cases. In average, EXAM varies from 3% to 16% which

transition CF

t1 95%

t2 90%

t3 90%

t4 90%

t5 80%

... ...

transition CF

t1 95%

t4 90%

t3 90%

t2 90%

t5 80%

... ...

(a) best case (b) worst case

Fig. 10. Illustration of Effectiveness Evaluation

Table 2. Effectiveness Evaluation

F. N.
Best Case Worst Case Average

EXAM EXAM Var Rank Rank Var EXAM EXAM Var Rank Rank Var EXAM Rank

1 0,13335 0,00134 3,25 1,79 0,18603 0,00244 4,33 1,63 0,15969 3,79
2 0,04229 0,00219 1,1 1,75 0,09574 0,00213 2,11 1,75 0,069015 1,605
3 0,02108 0,00106 0,75 1,52 0,05892 0,0009 1,75 1,52 0,04 1,25
4 0,00722 0,0004 0,26 0,49 0,039 0,00042 1,26 0,49 0,02311 0,76
5 0,02044 0,0017 0,83 2,95 0,0478 0,00162 1,83 2,95 0,03412 1,33
6 0,05369 0,00336 2,46 7,36 0,0766 0,0033 3,46 7,36 0,065145 2,96
7 0,08857 0,00372 4,61 10,9 0,10822 0,0037 5,61 10,9 0,098395 5,11
8 0,13091 0,00099 7,3 3,95 0,14905 0,001 8,3 3,95 0,13998 7,8

corresponds to ranking results from 1 to 8. The stability is represented by the
variance result. These experimental results shows our approach is effective.

6 Conclusion

Automated failure analysis in model checking is difficult to be computed exactly,
due to semantics reduction caused by model abstraction. Yet, it is a key issue, as
providing counterexamples is not enough to help designers in debugging faulty
designs. It may require a great deal of human effort to locate faulty elements.
Some works have provided good results by producing a set of suspicious faulty
elements without particular ranking factor.

In our work, inspired by the theory of Kullback-Leibler Divergence and
its successful application TF-IDF in text data mining, we start with comparing
the similarity between information retrieval problem for documents and failure
analysis problem for model checking, and propose an algorithm to compute the
fault contribution of transitions on error traces. The fault contribution is the
product of transition contribution (TC) and inverse trace contribution (ITC).
The approach is illustrated using a BCET property case study, and then further
assessed for its efficiency and effectiveness on a designed deadlock property test
bed. The effectiveness is measured by the EXAM score.

The automated failure analysis relies on the reachability graph and violations
states, thus can be applied to different verification models (TPN, timed automata,

etc.) to provide helpful feedback for the assessment of safety properties. The
liveness property asserts that something good eventually happens [5]. Examples
of liveness properties include starvation freedom, termination and guaranteed
service [6]. It will be interesting to study how to apply similar statistical methods
to the failure analysis of liveness properties in the future work.

References

1. Alipour, M.A.: Automated fault localization techniques; a survey. Technical report,
Technical report, Oregon State University (2012)

2. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. ACM SIGPLAN Notices 38(1), 97–105 (2003)

3. Groce, A., Visser, W.: What went wrong: Explaining counterexamples.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135.
Springer, Heidelberg (2003)

4. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004)

5. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering (2), 125–143 (1977)

6. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

7. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE safety
critical real-time systems. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 352–367. Springer, Hei-
delberg (2012)

8. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a
theoretical study. IEEE Transactions on Communications 24(9), 1036–1043 (1976)

9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

10. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathe-
matical Statistics 22(1), 79–86 (1951)

11. Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classifi-
cation. In: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 96–103. ACM (1998)

12. Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28(1), 11–21 (1972)

13. Wong, W.E., Debroy, V.: A survey of software fault localization. University of
Texas at Dallas, Tech. Rep. UTDCS-45-09 (2009)

14. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing
Surveys (CSUR) 3(2), 67–78 (1971)

