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Abstract—The use of bicycles is regaining popularity, especially
in city centers where they can be used as quickly as cars
and reduce carbon footprint. However, in these dense urban
environments, navigation methods based on GNSS technologies
do not provide sufficient accuracy for cyclist navigation and
safety. To mitigate the challenges of indoor-like surroundings,
a new positioning algorithm: BIKES (Bicycle Itinerancy Kalman
filter with Embedded Sensors) was developed. This extended
Kalman filter processes deeply degraded GNSS data to update
velocity and position estimates with differential computation ap-
proaches working even in degraded environments. GNSS signals
are combined with inertial and magnetic data to continuously
estimate the trajectory when GNSS is unavailable. BIKES’
performance was tested in real-life conditions on a 3 km long
path in the city center downtown Nantes and compared to Google
Fused Location Provider estimates. A mean positioning error
below 1 m with a 0.5 m standard deviation is achieved. These
results are 4 times better than the Google solution. This algorithm
allows also distinguishing if the cyclist is riding on a bike path,
the sidewalk, or the road, which is critical for guidance systems.

Index Terms—Bicycle localization, GNSS, inertial navigation,
Dead reckoning, TDCP

I. INTRODUCTION

The bicycle is enjoying renewed popularity. Indeed, the
advantages of this mode of transport are multiple. First of all,
in terms of space-saving, the bicycle does not take up much
space, especially with the multiplication of folding models that
make it accessible to public transport (bus, tramway, metro,
etc.). At the ecological level, and in a context where the
use of motorized vehicles such as cars is showing its limits,
sustainable mobility is becoming essential and the bicycle is
particularly attractive. Another advantage of using a bicycle
for mobility is the physical and sporting aspect of its use:
with an increasing number of professions where the employee
remains seated for long periods, the practice of sports is an
essential element to stay healthy. The bicycle allows meeting
this need while traveling. Finally, it is also important to note
a growing number of professions related to the practice of
cycling, such as the many home meal delivery services. In
this context, the need for solutions for the cyclist’s navigation
is more and more present. Whether it is to calculate an

appropriate route to work, to monitor performance in sports,
or to inform the customer of his meal order’s location in
real-time, the use of location data is essential. GNSS (Global
Navigation Satellite System) data are generally used for cyclist
localization, in the same way as they are used for automobiles.
However, the accuracy obtained by absolute GNSS positioning
is not sufficient. Indeed, most urban environments are close to
indoor environments in terms of GNSS signal quality, so map-
matching methods are usually used to match the position to
the road layout. Although some mapping platforms distinguish
between bike and car routes, as is the case with Google maps,
the bike user does not always follow these predefined routes,
which makes map-matching methods difficult to implement.
Thus, the GNSS positioning solution, strongly degraded in
urban areas, is no longer sufficient and other strategies must
be implemented. The topic is widely studied by the scientific
community. The main objective is not only navigation and
itinerary proposal, but also cyclist safety. Indeed, the bicycle is
a transportation mode that is perceived as dangerous by users,
that is why many works are interested in cyclist localization
and in the exchange of information between road users [1]–
[3]. The accuracy required for the location of the cyclist is
about one meter in order to be able to distinguish a user riding
on the road, on a sidewalk or on a bike path. This paper
proposes a new algorithm for cyclist localization in indoor-
like environments based on a fusion of inertial, magnetic and
GNSS data.

Section ??, we introduce ways to benefits from GNSS
measurement even in a degraded environment. For this, meth-
ods allowing to estimates velocity from time differenced
carrier phase measurement (TDCP) and position from between
satellites pseudo-ranges differences (BSPD) are presented. The
new bicycle localization algorithm, BIKES, is then detailed
in section IV and the performance of the overall algorithm
is experimentally assessed with 3 kilometers experiments in
challenging urban areas in section V.stateofart starts with a
state of the art on bicycle localization and presents the different
methods implemented to compensate for the imprecision of
GNSS data in dense urban environments. In section III, we
introduce ways to benefits from GNSS measurement even



in a degraded environment. For this, methods allowing to
estimates velocity from time differenced carrier phase mea-
surement (TDCP) and position from between satellites pseudo-
ranges differences (BSPD) are presented. The new bicycle
localization algorithm, BIKES, is then detailed in section IV
and the performance of the overall algorithm is experimentally
assessed with 3 kilometers experiments in challenging urban
areas in section V.

II. STATE OF THE ART

1) measurements by radio wave propagation: In order to
replace GNSS signals, too degraded in urban canyons, some
solutions propose to use other available signals such as Wi-
Fi or Bluetooth. Indeed, many access points are available
and allow to apply classical localization solutions by radio
transmission. These methods are generally based on the mea-
surement of wave travel time or on the received signal strength.
For the study of the travel time, we distinguish TOA (Time
Of Arrival) [4] and TDOA (Time Difference Of Arrival [5])
methods. The TOA method consists of using a minimum of
three access points with known coordinates to carry out the
localization by trilateration. For this, the different distances
are determined by the difference between the transmission and
arrival times of the signal multiplied by the speed of light. The
TDOA method is based on the same principle but proceeds by
a difference of TOA on several access points. The advantage
of this method is that it eliminates a possible time error due
to the bad synchronization of the different beacons deployed
in the infrastructure that can appear in the TOA method. The
methods based on the signal strength (RSSI: Receiver Signal
Strength Intensity) on the other hand, rely on the use of the
amount of energy transmitted and measured by a receiver. The
measurement of this amount of energy is used to calculate the
distance between the receiver and the transmitting source from
a power attenuation model. However, many external factors
disturb the propagation of signals (interference, obstacles,
etc.). These disturbances are particularly complex to model
and integrate into the calculations. An example of the use of
radio wave propagation for bicycle localization is the BikeLoc
project [6]. The method emulates a Wi-Fi antenna array from
only three antennas ideally placed on the wheel. The circular
movement of the wheel then allows to simulate the antenna
array and to use the SAR (Synthetic Aperture Radar) process
to determine the angle of arrival of the signals by RSSI mea-
surement. The accuracy obtained under ideal conditions (i.e.
with a sufficient number of beacons in the proximity) by this
method coupled with the use of an inertial and magnetic unit,
is less than 50 cm. However, the process requires particular
and expensive instrumentation of the bicycle and is thus not
accessible to a classical user. Moreover, this method is highly
dependent on the environment and on the presence of nearby
known access points.

2) Use of inertial measurements: In order to avoid de-
pendence on an external infrastructure, GNSS technology is
regularly coupled with the use of inertial sensors. Indeed,
when the sensors are fixed to the object under study, here

the bicycle, it is possible to determine its position by double
integration of the inertial measurements. This method is based
on the use of Newton’s laws: the angular velocities coming
from the gyrometer are integrated over a period dt in order to
estimate the attitude angles of the gravity center with respect
to the navigation frame. These angles are used to project
the accelerations from the accelerometer into the navigation
reference frame. Double integration of these data allows us
to obtain the variation in position over the interval dt. This
process is illustrated in Fig. 1.

Fig. 1: Principle of inertial navigation

The main limitation of this method comes from the presence
of errors in the measurement of the inertial sensors. In such a
model, the measurement error on the accelerometer will indeed
be propagated proportionally to the square of the integration
time considered and that of the gyrometer to the cube of this
time. A study of bicycle trajectory estimation performances
by integration of MEMS data is carried out in [3]. It is shown
that this solution alone is insufficient (the value of the angular
estimate drifts by 13.3 %) and needs to be completed by the
use of filtering, modeling or assumptions.

Another approach based on the use of inertial sensors is
classically used. It is the CDR (Cycling Dead-Reckoning)
method [7]. This method consists in estimating the position
at a time t from the position at a previous time t − 1 by the
projection of a displacement vector

−→
D :

−→
P t =

−→
P t−1 +

−→
D

With
−→
D =

−→
V t.∆t.

[
cos(θt)
sin(θt)

] (1)

where:
•
−→
P t is the estimated position at instant t,

•
−→
V t is the estimated velocity at instant t,

• θt is the estimated heading at instant t,
• ∆t = t− t−1

An example of the use of inertial sensors coupled to a GNSS
system using the CDR approach is presented in [8]. In this
approach based on a Kalman filter, the velocity is obtained
from the GNSS data. When these data are no longer available,
the velocity is estimated from the wheel rotation frequency
according to the relation vk = 2.π.r.fkω with r the wheel radius
and fkω the instantaneous rotation frequency of the wheel at
time k. To estimate the rotation frequency of the wheel, the



pedaling frequency is used. Indeed, these two frequencies can
be linked if we know the selected speed plate at this time. The
pedaling frequency is estimated from inertial sensors present
in the pocket, by studying the leg movement. The selected
speed plateau is set during the phases when GNSS signals
are present. However, this method is only effective when the
person is pedaling. To overcome this problem, during the
non-pedaling phases, the rotation frequency of the wheel is
estimated from a magnetic sensor placed on the shoe. The
frequency can then be extracted from the Fourier transform of
the magnetic field variations [8]. This method allows obtaining
an error on the distance covered of about 2% for a trajectory
of about 950 m. However, this method has its limitations: the
direction of travel is estimated from GNSS data only, which
poses a problem if a turn is made during a period when these
data are no longer available. Moreover, the method requires a
sensor placed on the foot, which is a strong constraint and not
feasible for a consumer solution.

3) Multi-sensor fusion: In order to benefit from the ad-
vantages of each solution, it is also possible to implement
multi-sensor fusion algorithms. Thus, in [2], a method using
many sensors is implemented. In addition to a GNSS receiver,
a Hall effect speed sensor is present on the rear wheel to
measure the speed from magnets placed on the spokes. Two
inertial units are used to estimate the heading of the rear wheel
and the roll of the front wheel. Finally, an optical encoder
is used to estimate the pitch angle. This solution makes it
possible to obtain a precision of estimation of the position
lower than the meter with a probability of 90% for trajectories
of the order of the kilometer. However, this kind of approach,
requiring multiple sensors, is once again not exploitable for
the general public for the moment. They aim more at creating
instrumented connected bikes that may be more accessible and
commercialized in the future.

A more affordable solution, based entirely on the use of the
smartphone is proposed by Google. It is the Fused Location
Provider API [9] (named FLP afterward). This solution is
probably the most used solution for smartphone-based bicycle
navigation applications. The API takes advantage of the signals
provided by the various sensors of the device to determine its
location. Thus, the method proposes the use of GNSS, Wi-Fi,
inertial and magnetic signals from the phone and proposes to
merge them in order to find the more efficient combination to
propose the best possible solution at each moment. Thus, the
use of GNSS will be favored outdoors, and Wi-Fi indoors.
The use of higher frequency inertial sensors will allow to
manage the transitions between these methods. It is important
to note that this solution is not dedicated to cycling, but
concerns multimodal localization. However, in this work, this
approach will only be studied in the context of bicycle travel,
as the use in indoor environments for pedestrians requires
the knowledge of Wi-Fi access points, not available in the
experimental environments.

III. VELOCITY AND POSITION ESTIMATION FROM GNSS
MEASUREMENT IN CHALLENGING ENVIRONMENTS

Cycling is mainly done outdoors, which allows the use
of GNSS technology. However, the presence of multipath in
urban areas degrades the estimates traditionally obtained by
absolute positioning. New methods using satellite signals are
therefore implemented.

A. Velocity estimation by Time Differenced Carrier Phases
(TDCP)

The analysis of phase measurements by TDCP allows
obtaining velocity information [10]. This method is based
on differential analysis and has the advantage of providing
indications independently of the absolutes phase values. Thus,
this approach can be used even in a degraded environment with
multipath effects, as long as the error between two consecutive
measurements remains constant. This specificity, coupled with
the accuracy of the phase measurement (millimeter), makes it
particularly effective. The phase is related to the geometric
range between the satellite i and the receiver r according to
the following equation [11] :

λ.φir = ρir+c(dTr−dti)+λ.N i
r−∆ρiono,i+∆ρtropo,i+ε (2)

Where:
• λ.φir is the carrier phase measurement from satellite i,
• λ is the signal wave length,
• ρir is the geometric range between receiver and satellite
i;

• N i
r is the integer ambiguity.

• dti is the satellite clock offset from GPS time for satellite
i;

• dTr is the receiver clock offset from GPS time;
• ∆ρiono,i is the ionospheric delay;
• ∆ρtropo,i is the tropospheric delay;
• ε is the receiver noise term.
The carrier phase difference between time k and k − 1 is

expressed:

λ.
∆φir,k

∆t
= λ.

φir,k − φir,k−1

tk − tk−1
(3)

Since the time interval between two measurements is very
small (5Hz frequency for this project), the variations of
atmospheric delays, ambiguity and clock offset are considered
negligible. The equation becomes:

λ.
∆φir,k

∆t
=

∆ρir,k + c.∆dTrk,k−1

∆t
(4)

∆ρir,k can be developed as follow:

∆ρir,k = ∆S−∆G−~eir,k∆~xr,k (5)

with:

∆S = ~eir,k~x
i,k −~eir,k−1~x

i,k−1

and ∆G = ~eir,k~xr,k −~e
i
r,k−1~xr,k−1

(6)



Where:
• ~eir,k is the unit vector along the line of sight:
• ~xi,k is the ith satellite position at time k,
• ~xr,k is the receiver position at time k.
Finally, the TDCP measurement can be related to the

receiver velocity ~vr between times k and k − 1:

λ.
∆φir,k

∆t
=

∆S−∆G + c.∆dTrk,k−1

∆t
−~eir,k.~vr (7)

B. Between Satellites Pseudo-Range difference (BSPD)

Pseudo-ranges are generally used to estimate the receiver
position according to the principle of multilateration. In order
to remove some biases and temporal delays, it is possible to
use methods based on the measurement difference. A tradi-
tional method is to use two receivers and perform a pseudo-
range double-difference (PDD) from the pseudo-ranges ob-
tained by each receiver [12]. In the case of a single receiver,
it can be done by using as a new observation the difference in
pseudo-ranges between 2 different satellites (BSPD: Between
Satellites Pseudo-Range difference). Indeed, if we consider
the pseudo-range measurements received from n satellites at
time k, it is possible to choose a reference satellite s in
order to subtract the pseudo-range ρ̃sr from the other available
observable. We thus obtain a set of new observations defined
by :

5ρ̃i,s = ρ̃ir − ρ̃sr , i ∈ {1, .., n ; \{s}} (8)

This method has the advantage of eliminating the receiver
clock error term. Indeed, at a time k this term remains
constant, for each measurement from the n satellites. The
ionospheric and tropospheric delays are also attenuated and
can be neglected if a sufficient elevation mask is set up.
However, the impact of the receiver noise term is amplified
and a correlation of this term between the different satellites
appears. Therefore, the use of this method does not always
guarantee a more accurate positioning solution, but it has some
advantages during the implementation. In a Kalman filter, it
allows to reduce the number of unknowns parameters and
increase the number of observations. Moreover, in challeng-
ing environments, it is possible to use different satellites as
reference in order to increase the number of observable and
possibly reject some of them and detect multi-path.

IV. BIKES ALGORITHM

BIKES (Bicycle Itinerancy Kalman filter with Embedded
Sensors) is a new algorithm for cyclist navigation.

A. Overview

BIKES is an algorithm for estimating the position of the
connected bicycle traveler, based on the use of GNSS mea-
surements and inertial and magnetic signals. It is based on an
extended Kalman filter whose architecture is presented Fig. 2.
The state vector is composed of four elements:
• the position P (Px, Py, Pz),

Fig. 2: Algorithm architecture

• the velocity V (Vx, Vy, Vz),
• the heading θ,
• the time difference of the receiver clock delay c.∆dt.

X =


P (3 dimensions)
V (3 dimensions)
θ (1 dimension)

c.∆dt (1 dimension)

 (9)

It is important to note that for the following and in order
to simplify, the time difference of the receiver clock delay
c.∆dt is considered as a unique value. In reality, this value
is specific to each constellation. Thus, in this project, three
values are estimated, corresponding to the GPS, GLONASS
and Galileo constellations. Three updates are performed on
the position, velocity and heading, named respectively BSPD,
TDCP and MAGYQ on the figure. These updates are detailed
below.

B. Prediction step
The two dimensions position evolution model in the hor-

izontal plane of the navigation frame is based on a CDR
mechanization:

Pxyt = Pxyt−1
+ (||Vxyt−1

||.∆t).
[
sin(θt−1)
cos(θt−1)

]
(10)

With Pxy =

[
Px
Py

]
and Vxy =

[
Vx
Vy

]
.

The length of the motion vector is here represented by
||Vxyt−1

||.∆t, where ∆t represents the time interval between
two iterations. The filter works here at the frequency of the
GNSS receiver. In order to be able to work with GNSS data
and to perform transformations from the navigation frame
to the ECEF frame, 3-dimensional coordinates are required.
Thus, the third component of the position vector is considered
constant in time.

The frequency is high (5Hz, i.e. a measurement every 0.2
seconds) compared to the dynamics of the bicycle movement
whose speed variations in time are mechanically constrained
by the bicycle, and physically by the user. Thus, the velocity
is considered constant between two consecutive instants, as
well as the temporal differences of the receiver clock delay
associated with each constellation:

Vi = Vi−1 (11)
c.∆dti = c.∆dti−1 (12)



Finally, the heading is predicted from the previous velocity
vector:

θi = arctan(
VY i−1

VXi−1

) (13)

The state propagation equations are not linear. Therefore,
the state vector is in reality X ′ = [δP, δV, δθ, δc.∆dt].
Finally, the evolution model F (8x8 dimension matrix, cor-
responding to the 8 elements of the state vector) allowing
to propagate the variance-covariance matrix associated to the
state vector is obtained by first order partial derivation of the
equations (10) to (13):

F =



100 Vx.∆t.sin(θ)
||Vxy||

Vy.∆t.sin(θ)
||Vxy|| 0 ||Vxy||.∆t.cos(θ) 0

010 Vx.∆t.cos(θ)
||Vxy||

Vy.∆t.cos(θ)
||Vxy|| 0− ||Vxy||.∆t.sin(θ) 0

001 0 0 0 0 0
000 1 0 0 0 0
000 0 1 0 0 0
000 0 0 1 0 0

000 − Vy

||Vxy||
Vx

||Vxy|| 0 0 0

000 0 0 0 0 1


(14)

The system noise covariance matrix Q is constructed in-
tuitively to add uncertainty to the model on the last two
parameters of the state vector (heading and time difference
of the receiver clock delay) at each iteration.

C. State update

1) Position update with BSPD measurements: The use of
GNSS pseudo-ranges measurements by BSPD allows to cor-
rect the position vector. The innovation is calculated according
to the relation:

inoi,rBSPD = 5ρ̃i,r −5ρ̂i,r(x̂) (15)

with:
• 5ρ̃i,r the pseudo-range difference computed from satel-

lite i,
• 5ρ̂i,r(x̂) the pseudo-range difference estimated

from state vector at this instant: ρ̂ir =√
(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2.

The observation model HBSPD for n satellites is defined
by:

HBSPD =

h
1
x − hrx h1

y − hry h1
z − hrz 0 0 0 0 0

...
...

...
...

...
...

...
...

hnx − hrx hny − hry hnz − hrz 0 0 0 0 0


(16)

with:
• hix = x̂−xi

||ρ̂i|| ,

• hiy = ŷ−yi
||ρ̂i|| ,

• hiz = ẑ−zi
||ρ̂i|| .

2) Velocity update with TDCP measurements: The use of
GNSS phase measurements by TDCP allows to correct the
velocity vector. The innovation is calculated according to the
relation:

inoTDCP = λ.
∆φir,k

∆t
− λ.

∆φ̂ir,k
∆t

= δ
c.∆dTrk,k−1

∆t
−~eir,k.δ~vr

(17)

The observation model HTDCP (nx8 dimensions matrix)
for n satellites is defined by:

HTDCP =


~e

1
r,k
...

~enr,k

 .Recefn .(0 0 0 1 1 1 0 ) − 1

 (18)

with Recefn the transition matrix from navigation frame to
ECEF frame (3x3 dimensions matrix).

3) Heading update from MAGYQ algorithm estimates: The
use of GNSS measurements to correct velocity and position
estimation provides an accurate solution for the location of
the cyclist. However, in urban areas and especially in urban
canyons, the presence of GNSS observations is not always
guaranteed. If a change of direction is made during a period
when no update is taking place, the trajectory estimated by
the filter will be a straight line, the velocity evolution model
being constant. These undetected changes in direction quickly
degrade the position estimate. In order to overcome this
problem, it is possible to use the outputs of the MAGYQ
algorithm.

MAGYQ (Magnetic, Acceleration Fields and Gyroscope
Quaternion) is an attitude estimation filter based on the use of
inertial and magnetic data. It is based on an extended Kalman
filter with gyroscope data modeled as quaternions and on the
application of opportunistic updates during quasi-static field
phases [13]. This algorithm has been completed in this work
with a disturbed magnetic field periods detection by empirical
mode decomposition as presented in [14].

This method allows to obtain a good estimate of the attitude
angles of the inertial and magnetic unit. These angles are
deduced from the attitude quaternion qnb (q1,q2,q3,q4) at
each instant according to the following equation:φθ

ψ

 =

 arctan( 2.(q1q2+q3q4)
1−2.(q22+q23)

)

arcsin(2.(q1q3 − q4q2)

arctan( 2.(q1q4+q2q3)
1−2.(q23+q24)

)

 (19)

In the case of a bicycle trajectory with the device fixed on
the handlebars and aligned with the latter, the heading deter-
mined by MAGYQ corresponds to the displacement direction.
Thus, it is possible to correct the estimate heading using the
heading output from the MAGYQ algorithm:

inoheading = θMAGYQ − θ̃ (20)



Where:
• θMAGYQ is MAGYQ algorithm heading estimation,
• θ̃ is BIKES algorithm heading estimation.
The MAGYQ algorithm is applied at the frequency of the

inertial unit (200Hz for this work). The BIKES algorithm, on
the other hand, is performed at the GNSS receiver frequency
(5Hz). Thus, between two BIKES heading estimates, about
40 MAGYQ heading estimates are available. The value of
θMAGYQ is thus a value averaged over 40 samples. Moreover,
if the sensor support is not perfectly fixed to the perpendicular
of the handlebar, an angular bias is present. However, this
bias remains constant over time and can be easily estimated
during the TDCP update phases by comparing the direction of
the velocity vector and the heading estimate by the MAGYQ
algorithm.

Finally the innovation is obtained with:

inoheading = θ̄MAGYQ − (θ̃ + bθ) (21)

With:
• θ̄MAGYQ the MAGYQ algorithm’s estimated heading,

averaged over the last 40 estimates,
• θ̃ the BIKES heading estimation,
• b̃θ the angular bias estimating during TDCP updates.
The observation model Hcap is defined by:

Hheading =
[
0 0 0 0 0 0 1 0

]
(22)

The quality of the velocity estimation by TDCP measure-
ments is superior to the attitude angle estimation by the
MAGYQ algorithm, especially during long acquisitions. This
is why the heading update is only performed when there are
no GNSS measurements. In addition, the covariance matrices
estimated by MAGYQ are used to weight the corresponding
heading updates in the BIKES algorithm.

D. Analysis of the filter design: transition to polar coordinates

The BIKES filter design is based on the use of GNSS phase
data to accurately estimate the velocity and thus the variation
in position. The unknown θ is added to the state vector to
be able to correct the direction of motion from the heading
estimation of the MAGYQ algorithm when GNSS data are no
longer available. However, the addition of this unknown leads
to a redundancy in the state with θ which depends on the
velocity vector. A method to remove θ from the state vector
and thus remove this redundancy in the filter is to convert
the velocity vector (Vx,Vy) to polar coordinates (θ,r) when
GNSS data are no longer available. This conversion allows to
show the θ parameter necessary to apply the update from the
MAGYQ heading. In this process, a linearization is necessary
to transform the state covariance matrix. This step leads to an
approximation at each polar-to-Cartesian or Cartesian-to-polar
conversion which is potentially a source of error propagated in
the filter over time. This design has the advantage of reducing
the state vector and removing the redundancy that can lead to
consistency problems in the uncertainties associated with the

state vector and updates. It is planned to test and compare this
design in future work.

V. EXPERIMENTAL ASSESSMENT

A. Scenarios

Two experiments were carried out in a dense urban envi-
ronment, on the island of Nantes. The environment is chosen
to be very complex in terms of satellite signal reception.
It includes open areas but is mainly composed of wooded
areas and areas hidden by big buildings. The variety of the
environment is illustrated Fig. 3. We can see for example on
the first image a metallic bridge source of many multipaths
strongly degrading the solutions based on the use of pseudo
ranges. Similarly, the third image illustrates an environment
with high buildings and a lot of vegetation that masks most of
the signals. These environments are particularly challenging
for GNSS navigation.

Fig. 3: Visualization of the experimental environment diversity.

The distance covered is about 3 km for each trajectory.
As the position estimation method is not user-dependent, the
experiments were conducted by the same subject, varying the
speeds during the acquisition.

B. Hardware setup

During the experiments, the bike is equipped with the
ULISS V2 sensor on the handlebars. The ULISS v2 device,
developed in the Geoloc laboratory, is dedicated to studies on
the connected traveler’s navigation at the multimodal scale. It
is a real-time demonstrator composed of the following sensors:
• A GNSS receiver Ublox ZED-F9P.
• An inertial and magnetic unit Xsens MTi-7, composed

of an accelerometer; a gyrometer and a magnetometer
tri-axes.

• A pressure and temperature sensor BMP280.
A Xiaomi Mi 8 dual-frequency GNSS smartphone is also

set up nearby to compare the proposed solution to the Google
Fused Location Provider solution. The reference trajectory
is determined using the PPK (Post-Processing Kinematic)
differential method from GNSS data from a 100Hz frequency
Septentrio AsteRx21 receiver. The antenna is placed on the
user’s head in order to avoid any masking by the user.
The trajectory is then obtained by post-processing from a
reference antenna with the RTKlib software. This method
offers a positioning solution with an accuracy of about 2 to
5 centimeters under ideal conditions. However, as soon as the



TABLE I: Analysis of BIKES performances

BIKES Google FLP
Track µ(m) σ(m) final

error (m)
µ(m) σ(m) final

error (m)
1 1.0 0.5 0.3 3.5 2.6 1.2
2 0.8 0.4 2.5 3.5 2.2 3.0
Mean 0.9 0.5 1.4 3.7 2.3 2.2

satellites are no longer visible, the position can no longer be
estimated. These portions of reference trajectories are therefore
not used for accuracy estimation.

The equipment set up is illustrated Fig.4.

Fig. 4: Equipment set up.

C. Results analysis

The performance of the BIKES algorithm is presented
TABLE I. The table also shows the performance of Google’s
FLP solution under similar conditions.

We notice that the average position error obtained on the
two tracks is lower with the BIKES algorithm (0.9m against
3.7m for the FLP solution). This precision allows to guarantee
the correct location of the cyclist on a bike path for example
and to distinguish if the user is riding on the road, the
bike path that runs alongside it or the sidewalk. The final
position is also lower with the BIKES algorithm and is less
than 1.5m. We also observe a big difference in the standard
deviation of the position error. Indeed, this one is clearly
lower for the BIKES algorithm and perfectly stable on the
two experiments and close to 0.5m. This demonstrates the
robustness and reliability of the algorithm which outperforms
the Google method based on more sensors and technologies.
The representation of the error in the form of a boxplot, visible
in the Fig.5, demonstrates the presence of larger outliers
with the FLP method. As a reminder, the center mark, in
red, indicates the median of the angular error. The lower
and upper edges of the blue box indicate the 25th and 75th

percentiles. The whiskers extend to the extreme points that are
not considered outliers. Outliers are represented by the red ”+”
symbol. This last observation is explained by the use of the
MAGYQ misalignment-corrected heading estimation, which
provides a smoother solution when the GNSS measurements
are not optimal.

The difference between the performance of the FLP solution
and the BIKES algorithm is actually minimized in these results

Track 1 Track 2
Fig. 5: Boxplot position errors representation

because the reference trajectory is determined using the PPK
differential method from a high-resolution GNSS receiver. In
a degraded environment, the quality of the reference is not
always guaranteed. Thus, the error in position is estimated
only when the quality of the reference solution is considered
acceptable. For this, the quality indicator Q from the RTKlib
calculation is used. This indicator can take three values. The
value 1 for ”fixed solution” is obtained when the solution
uses a relative positioning based on the phase measurement
with a correctly resolved integer ambiguity. The value 2 for
”floating solution” is obtained when the integer ambiguity is
not correctly resolved. Finally, the value 5 for ”single position”
is obtained when the solution is calculated by ”single point
positioning”, i.e. by least squares from the pseudo-distances
without using the phase measurements. The calculation of
positional error is thus only performed when the quality
indicator is equal to 1 or 2. However, it is in the areas where
the reference is not calculated that the FLP method has the
largest errors. During these periods, the performance of the
BIKES algorithm in contrast remains similar. Thus, the results
proposed here are achieved when the FLP method has the best
performance. This is illustrated in Fig. 6, Fig. 7 and Fig. 8.

Reference trajectory Estimated trajectories

Fig. 6: Reference and estimated trajectories for environment
1: metallic bridge



Reference trajectory Estimated trajectories

Fig. 7: Reference and estimated trajectories for environment
2: open sky

Reference trajectory Estimated trajectories

Fig. 8: Reference and estimated trajectories for environment
3: High buildings and vegetaion masks

VI. CONCLUSION

Bicycles are currently gaining interest in the city for en-
vironmental and practical reasons, but also boosted by in-
novations. In this context, more accurate and reliable cyclist
positioning and navigation assistance are needed. Although
some approaches target high-tech bikes equipped with multiple
sensors, they are still too expensive for the general public.
Most users still own classic bikes, not instrumented for local-
ization purposes. In this situation, smartphones seems to be
the ideal tool to assist cyclist’s mobility. The Fused Location
Provider provided by Google is the most popular solution
today. It is used in most smartphone navigation applications.
But the performance in dense urban environments and indoor-
like surroundings (car parks, tunnels, downtown, ...) where
GNSS signals are degraded, remains not sufficient, especially
to separate bicycle paths from sidewalks for navigation instruc-
tions. Safety-related services exchanging data between users
(automobile, bicycle, pedestrian) require a precision below 1
m. In this paper, a new bicycle positioning algorithm based on
an extended Kalman filter, BIKES, is proposed. It processes
GNSS career phase measurements by time differences (TDCP)
to estimate accurately the velocity variation of the smart device
and derive the variation of positions in a relative way. The use
of pseudo-distances by differences between satellites further
improves the accuracy of absolute positioning when possible.

Finally, the problem of drift and degradation of the estimate
in the absence of good GNSS data is addressed by an angular
correction based on the heading estimate from the MAGYQ
attitude algorithm. Since the sensor is rigidly fixed to the
handlebars, the misalignment between its pointing direction
and the direction of movement is fixed. It is calibrated with
the velocity vector estimated when TDCP measurements are
available. Tests in the dense urban center of the French
city Nantes were conducted to assess the performance. They
involve open sky, downtown-like and indoor-like surroundings.
An average positioning error below one meter is achieved
for the 3 km trajectories. Moreover, the positioning standard
deviation is considerably reduced with the BIKES approach
and remains particularly stable (about 0.5 m). Globally, BIKES
solution is found to be 4 times better than the Google FLP.
However, these results must be mitigated: the google solution
works in real-time from low-quality smartphone’s sensors. It is
planned to implement the BIKES algorithm on a smartphone
in order to confirm its interest and performance.
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