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Multi-shape registration with constrained
deformations

Rosa Kowalewski1[0000−0003−1939−222X]? and Barbara Gris2[0000−0001−9440−3879]

1 University of Bath, BA2 7AY, UK
2 Laboratoire Jacques-Louis Lions, Sorbonne Université, 75005 Paris, France

Abstract. Based on a Sub-Riemannian framework, deformation mod-
ules provide a way of building large diffeomorphic deformations satisfying
a given geometrical structure. This allows to incorporate prior knowledge
about object deformations into the model as a means of regularisation
[10]. However, diffeomorphic deformations can lead to deceiving results
if the deformed object is composed of several shapes which are close to
each other but require drastically different deformations. For the related
Large Deformation Diffemorphic Metric Mapping, which yields unstruc-
tured deformations, this issue was addressed in [2] introducing object
boundary constraints. We develop a new registration problem, marrying
the two frameworks to allow for different constrained deformations in
different coupled shapes.

Keywords: Shape registration · Large deformations · Sub-Riemannian
geometry.

1 Introduction

The improvement of medical imaging techniques increase the need for automati-
cal tools to analyse the generated data. Matching two shapes (curves, images) in
order to understand the differences or the evolution between two observations is
often a key step. Large deformations, defined as flows of time-dependent vector
fields [9, 5], allow to perform efficient shape registration [4, 6, 12]. In some cases,
in order to analyse the estimated deformation, it is required to only consider
a subset of suitable deformations [10, 14–16]. In addition, the regularity of such
deformations often prevents the simultaneous registration of several shapes close
to each other, but requiring different types of motions, as it appears in medical
imaging (with several organs for instance, see [13]). We present in this article a
modular multi-shape registration framework, combining the deformation module
framework [10] with multi-shape registration [2].

? Rosa Kowalewski is supported by a scholarship from the EPSRC Centre for Doctoral
Training in Statistical Applied Mathematics at Bath (SAMBa), under the project
EP/S022945/1.
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t = 0 t = 0.3 t = 0.7 t = 1.0

Fig. 1: Registration of unparametrized curves using LDDMM (top) and deformation
modules (bottom). The red dotted curve is the target, the black curve the evolving
shape. The two points are the centers of the local scaling.

2 Background

2.1 Structured large deformations

A strategy to restrict large deformations to an appropriate subset is to incorpo-
rate a structure in the deformation model via chosen field generators [10, 14, 16,
17] or constraints [1]. We will use here a simplified version of the deformation
module framework [10] which allows to build an appropriate vocabulary of inter-
pretable fields. A deformation module is defined as a quadruple (O, H, ζ, c). The
field generator ζ : O×H 7→ Cl

0(Ω,Rd), allows to parameterise structured vector
fields such as local scaling, or physically motivated deformations. The geometrical
descriptor q ∈ O contains the ’geometrical information’ of the generated vector
field, such as its location. In this article we will assume O is a space of land-
marks of Rd, which includes the case of discretised curves. The control h ∈ H
selects a particular field amongst the allowed ones. Finally, the cost function
c : O ×H 7→ R+ associates a cost to each couple in O ×H. Under some condi-
tions (see section 3), the trajectory ζqt(ht) can be integrated via the flow equation
ϕ̇t = ζqt(ht) ◦ ϕt, ϕt=0 = Id, so that the structure imposed on vector fields can
be transferred to a structure imposed on large deformations [10]. The evolution
of q is then given by q̇t = ζqt(ht)(qt), where v(q) = (v(x1), . . . , v(xp)) if q consists
of the points xi ∈ Rd. The framework comes with the possibility to combine sev-
eral deformation modules Mi = (Oi, Hi, ζi, ci), 1 ≤ i ≤ N , into the compound
module C(M1, . . . ,MN ) = (O, H, ζ, c) defined by O =

∏
iOi, H =

∏
iH

i,
ζ : (q, h) 7→

∑
i ζ

i
qi(h

i) and c : (q, h) 7→
∑

i c
i
qi(h

i) with q = (q1, . . . , qN ) and

h = (h1, . . . , hN ). This combination enables to define a complex deformation
structure as the superimposition of simple ones. Note that in modular large
deformations generated by a compound module, each component qi of the geo-
metrical descriptor is transported by

∑
i ζ

i
qi(h

i).

Figure 1 shows the result of the registrations of two unparametrized curves3

(modelled as varifolds [8]) with unstructured large deformations (with the Large
Deformation Diffeomorphic Metric Mapping framework [5]) and modular ones.
The deformation module is a compound module generating two scalings (one for

3 Data courtesy of Alain Trouvé
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Fig. 2: Examples of vector fields generated by the scaling (left and middle) and trans-
lation (right) deformation modules.

t = 0 t = 0.3 t = 0.7 t = 1.0

Fig. 3: Simultaneous registration using compound modules with single-shape (top) and
multi-shape (bottom) frameworks. The evolving shape is in black, the target in red.

each lobe) and a large scale local translation (translating the whole curve)4. Fig-
ure 2 shows examples of vector fields generated by these modules. Even though
they both give good curve registration, the prior in the structure ensures that
the modular deformation is composed of uniform scalings. In addition, each com-
ponent of the global deformation can be studied separately [7, 18].

2.2 Multi-Shape Registration

Deformation modules generate smooth deformations, modelling shapes as one
homogeneous medium. Studying multiple shapes using one diffeomorphism leads
to huge interactions between the shapes as they are moving close. Performing a
simultaneous registration using a compound module leads to unsatisfying results
due to the close location of shapes, as in figure 3.

To solve this problem, it would be desirable to have the deformation mod-
ule for each shape only deform the inside of the curve, without influencing the
deformation outside, while maintaining consistency between deformations. The
multi-shape registration framework introduced in [2] addresses this problem for
the LDDMM framework [5], by considering deformations for each subshape and
linking them at the boundaries. In general, N source and corresponding target
shapes qiS and qiT , i = 1, . . . , N are considered. Each shape qi is associated with
an open set U i of Rd such that qi ⊂ U i, ∪Ū i = Rd and U i ∩ U j = ∅ if i 6= j.
For curves, for example, the shape qi represents the boundary of U i. The total
deformation is defined by ϕ : x ∈ Rd 7→ ϕi(x) if x ∈ U i.

In order to ensure the consistency at boundaries ∂U i, such as continuity
or prevention of overlapping deformations, authors introduce a continuous con-

4 For a more detailed description of how these modules are built, we refer to [10].
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straints operator C : O → L(V, Y ) where V =
∏

i Vi, Vi is a space of vector
fields for each i, Y is a Banach space and L(V, Y ) is the set of continuous lin-
ear operators between V and Y . Furthermore, consider a continuous function
D : (

∏
iOi)2 → R+, measuring the similarity of shapes. The multi-shape regis-

tration problem [2] reads

min
v∈L2([0,1],V )

1

2

N∑
i=1

∫ 1

0

‖vit‖22dt+D(qi1, q
i
T )

s.t. q̇it = vit(q
i
t), q0 = qS , and Cqtvt = 0.

Two different types of constraints Cq have been introduced in [2]: identity con-
straints (modelling shapes ’stitched’ to each other at the boundaries), and sliding
constraints (allowing slidings between shapes tangential to the boundary).

3 Modular Multi-Shape Registration Problem

In order to address the case where the shapes under study are composed of several
subshapes whose deformations should satisfy a certain structures, we design here
a modular multi-shape registration framework. Let us consider N shapes and N
deformation modules. Following [2], each of these shapes will be displaced by
a modular large deformation generated by the associated module. We impose
boundary constraints to ensure consistent combination of the deformations. The
modular multi-shape registration problem is stated as follows.

Problem 1. Let Mi = (Oi, Hi, ζi, ci), i = 1, ..., N , be N deformation modules
and C :

∏
iOi 7→ L(V, Y ) be a continuous constraints operator with V =

∏
i Vi,

Vi RKHS of vector fields and Y a finite dimensional vector space. Let qS and qT
in

∏
iOi and let D : (

∏
iOi)2 → R+ be continuous. Minimise the functional

J (q, h) =
1

2

N∑
i=1

∫ 1

0

ciqit
(hit)dt+D(qt=1, qT ) (1)

with respect to q = (q1, . . . , qN ) and h = (h1, . . . , hN ), with, qt=0 = qS , for
almost every t in [0, 1], Cqtζqt(ht) = 0 and for all i, q̇it = ζi

qit
(hit)(q

i
t).

To formalize it, we introduce the external combination of deformation modules.

Definition 1 (External Combination of Deformation Modules). LetMi =
(Oi, Hi, ζi, ci), i = 1, ..., N be Ck-deformation modules on Rd of order l. Then
their external combination M(M1, . . . ,MN ) is the quintuplet (O, H,F,X, c)
where O =

∏
iOi, H =

∏
iH

i, F: (q, h) ∈ O×H 7→ (ζ1(q1, h1), ..., ζN (qN , hN )) ∈∏
i C

li

0 (Rdi ,Rdi), X: (q, v) ∈
∏

iCli
0 (Rdi ,Rdi )×O→(v1(q1),...,vN (qN ))∈

∏
i TOi and cost

cq(h) =
∑

i c
i
qi(h

i) : O×H → cq(h) ∈ R+ where q = (q1, . . . , qN ), h = (h1, . . . , hN )

and v = (v1, . . . , vN ).
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Remark 1. Unlike the compound module presented in section 2, the external
combination does not result in a deformation module.

In the following, we will assume that all the deformation modules (O, H, ζ, c)
satisfy the Uniform Embedding Condition for a RKHS V continuously embedded
in C1

0 (Rd) (UEC [10]) i.e. that there exists β > 0 such that for all (q, h) ∈ O×H,
ζq(h) is in V and |ζq(h)|2V ≤ βcq(h). An easy way to ensure it is to choose
cq(h) = (1/β)|ζq(h)|2V + f(q, h) (with f : O ×H −→ R+ smooth), which is the
case in the numerical examples in Section 4. In order to minimize equation (1),
we first need to specify the trajectories (q, h) that will be considered.

Definition 2 (Constrained controlled path of finite energy).
Let M(M1, . . . ,MN ) = (O, H,F,X, c) be an external combination of the modules
Mi and let C :

∏
iOi 7→ L(V, Y ) be a continuous constraints operator with

V =
∏

i Vi, Vi RKHS of vector fields and Y a finite dimensional vector space.
We denote by Ω the set of measurable curves t 7→ (qt, ht) ∈ O × H where q
is absolutely continuous such that for almost every t ∈ [0, 1], q̇t = Fqt(ht)(qt),

Cqtζqt(ht) = 0 and E(q, h) :=
∫ 1

0
cqt(ht)dt <∞.

Remark 2. If t 7→ (qt, ht) is a constrained controlled path of finite energy of
M(M1, . . . ,Mn), each component qi is displaced by the action of ζiqi(h

i) only,

instead of the sum of all vector fields like in the compound module (section 2).

If (q, h) is in Ω, for each (qi, hi) a modular large deformation ϕi of Rd as the flow
of ζiqi(h

i) can be built [10, 11]. Then (see [3] and section 2.2), we can combine all

ϕi into one deformation ϕ. If the constraints operator C prevents overlapping
between sets ϕi(U i) and ϕj(U j), such as the aforementioned identity or sliding
constraints, then ϕ defines a bijective deformation which respects the topology
and the desired deformation structure within each set U i. We show now that
equation (1) has a minimiser on Ω.

Proposition 1. Let V1, . . . , VN be a N RKHS continuously embedded in C2
0 (Rd),

and let for i = 1. . . . , N , Mi = (Oi, Hi, ζi, ξi, ci) be deformation modules sat-
isfying the UEC for Vi. Let D : O × O 7→ R+ be continuous. Let qS and
qT ∈ O :=

∏
iOi and C : O × V 7→ Y be a a constraints operator with Y

a finite dimensional vector space. Then the minimiser of the energy J(q, h) =∫ 1

0
cqt(ht)dt+D(qt=1, qT ) on {(q, h) ∈ Ω | qt=0 = qS} exists.

We sketch the proof here and refer to [11] for a detailed version.

Proof. Let (qj , hj)j = ((q(i,j), h(i,j))1≤i≤N )j be a minimising sequence in Ω.
Up to successive extractions, we can suppose that for each i, Ei((q(i,j), h(i,j)) =∫ 1

0
ciqi(h

i) converges to Ei,∞. It can be shown similarly to [10] that h(i,j) ⇀ h(i,∞)

in L2([0, 1], Hi) and q(i,j) −→ q(i,∞) uniformly on [0, 1] with (q(i,∞), h(i,∞)) abso-
lutely continuous such that for almost every t, q̇it = ζi

qit
(ht)(q

i
t) and Ei(q(i,∞), h(i,∞)) ≤

Ei,∞. Then with (q∞, h∞) = (q(i,∞), h(i,∞))1≤j≤N ∈ Ω, inf{J(q, h) | (q, h) ∈
Ω} = lim J(qj , hj) = J(q∞, h∞). In addition, it is shown in [10] that Fqj (hj)
converges weakly to Fq∞(h∞), so (see [3]), Cq∞t

◦Fq∞t
(h∞t ) = 0 for almost every

t in [0, 1] which concludes the proof.
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Let us define the Hamiltonian function H : O × TqO∗ ×H × Y → R by

H(q, p, h, λ) := (p|Fq(h)(q))T∗qO,TqO −
1

2
(Zqh|h)H∗,H − (λ|CqFq(h))Y ∗,Y ,

where Zq : H → H∗ is the invertible symmetric operator such that cq(h) =
(Zqh|h)H∗,H ( [10]). Similarly to [3], it can be shown that minimising trajectories
(q, h) are such that there exist absolutely continuous p : t ∈ [0, 1] 7→ T ∗qtO and
λ : t 7→ F such that

q̇ =
∂

∂p
H(q, p, h, λ) ṗ = − ∂

∂q
H(q, p, h, λ)

∂

∂h
H(q, p, h, λ) = 0

∂

∂λ
H(q, p, h, λ) = 0 .

The last two equations can be solved, so that for minimising trajectories h =
Z−1q (ρ∗qp − (CqFq)∗λ) and λ = (CqFqZ

−1
q (CqFq)∗)−1CqFqZ

−1
q ρ∗qp with ρq : h ∈

H 7→ Fq(h)(q) and assuming CqFqZ
−1
q (CqFq)∗ is invertible. The previous sys-

tem of equations has then a unique solution associated to each initial condition
(q0, p0). In order to minimise equation (1), we optimise it with respect to the
initial momentum p0.

Proposition 2 ([11, 3]). Let Cqζq : H → Y be surjective. Then the operator
CqFqZ

−1
q (CqFq)∗ is invertible.

Remark 3. The surjectivity of CqFq is in general not guaranteed but is easily
obtained in practice (see section 4).

Remark 4. Compared to the frameworks of (single-shape) structured deforma-
tions [7, 10] and multi-shape (unstructured) large deformations [2], it is necessary
to inverse the operator CqFqZ

−1
q (CqFq)∗ at each time to compute the final de-

formation. This increases drastically the time-complexity and the memory print.

4 Numerical Results

In the practical study of multi-shapes, we encounter two main cases where a
multi-shape setting is needed. For example, to study the motion of lungs and
abdominal organs during the breath cycle, it is natural to model the organs as
separate shapes embedded in a background which represents the surrounding
tissue. On the other hand, if two organs are in contact, they can be modelled
as several subshapes sharing a boundary. Here the boundary constraints are ex-
pressed only on the discretisation points (the convergence of this approximation
is studied in the case of unstructured deformations in [2]). All the results here
were generated using the library IMODAL [7].

Shapes in a background. We consider again the simultaneous registration of two
peanut-shaped curves. They define three open sets (two bounded ones delimited
by the curves, and the background) so we need to define three deformation



Multi-shape registration with constrained deformations

modules. For each curve qi, i = 1, 2, we choose deformation modules modelling
scalings of the left and right half, and a translation of the whole shape.We define
the background shape as q3 = (q31, q32), where q31 = q1 and q32 = q2, and the
third deformation module is chosen to generate a sum of local translations carried
by q3. We impose identity constraints on corresponding boundary points of each
qi and q3i, with the constraints operator Cq(v) = (v1(q1) − v3(q31), v2(q2) −
v3(q32)) with v = (v1, v2, v3). The unstructured background deformation module
ensures that the operator CqFq is surjective. Figure 3 shows the result of the
multi-shape registration. The two curves move closely, without influencing each
other. Unlike the compound module, the deformations inside the curves resemble
the deformation we obtain from the registration of a single shape, see figure 1.

Subshapes with shared boundary. We consider two tree-shaped curves, modelled
as varifolds [8], where the trunk of the source is thinner than the target’s while the
crown of the source is larger (see Figure 4). Such differences require a multi-shape
registration where a sliding is allowed at the boundary between the trunk and
the crown. We place ourselves in the typical use case, registration of a synthetic
segmented template to a new unsegmented subject. For each subshape (trunk
and crown) we define a compound deformation module as the combination of 4
modules generating respectively a uniform horizontal scaling, a uniform vertical
scaling, a global translation and a sum of local translations centered at the
curve and boundary points (with a high penalty so that the deformation prior
is only changed slightly). The last one ensures the surjectivity of the operator
CqFq. Figure 4 shows the registration using the modular multi-shape framework.
The interest of the sliding constraints can be seen in the grid deformation. In
addition, similar to [7, 18] the trajectory of the controls can then be analysed to
understand the difference between the two shapes.

t = 0 t = 0.3 t = 0.7 t = 1

Fig. 4: registration of unparametrized curves with the modular multi-shape frameworks.
The deformed (segmented) source is in black, the (unsegmented) target in red.

5 Conclusion

We have provided a framework and synthetic examples for using a vocabulary
of structured deformations for multiple shape registration. In future work we
will optimise our use of the IMODAL tools to improve the computation time
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and memory print. There are promising perspectives for the application on, e.g.,
medical images with a known segmentation, in order to incorporate physical
properties in different tissues and analyse the resulting registration.
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