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Abstract
This article proposes to use an RNA graph similarity metric, based on the MCES resolution problem,
to compare the occurrences of specific complex motifs in RNA graphs, according to their context
represented as subgraph. We rely on a new modeling by graphs of these contexts, at two different
levels of granularity, and obtain a classification of these graphs, which is consistent with the RNA
3D structure.

RNA many non-translational functions, as a ribozyme, riboswitch, or ribosome, require complex
structures. Those are composed of a rigid skeleton, a set of canonical interactions called the secondary
structure. Decades of experimental and theoretical work have produced precise thermodynamic
parameters and efficient algorithms to predict, from sequence, the secondary structure of RNA
molecules. On top of the skeleton, the nucleotides form an intricate network of interactions that
are not captured by present thermodynamic models. This network has been shown to be composed
of modular motifs, that are linked to function, and have been leveraged for better prediction and
design. A peculiar subclass of complex structural motifs are those connecting RNA regions far away
in the secondary structure. They are crucial to predict since they determine the global shape of the
molecule, therefore important for the function.

In this paper, we show by using our graph approach that the context is important for the
formation of conserved complex structural motifs. We furthermore show that a natural classification
of structural variants of the motifs emerges from their context. We explore the cases of three known
motif families and we exhibit their experimentally emerging classification.
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1 Introduction

RNA molecules are some of the major actors of the cell: many families of so-called non-
coding RNAs intervene, along with proteins, in all major cellular processes. An RNA
molecule is composed of a sequence of nucleotides (A, C, G, U) which folds in space into
a three-dimensional structure. The function of an RNA molecule is strongly related to its
three-dimensional structure. This is why many works since the 1970s have been dedicated

© Coline Gianfrotta, Vladimir Reinharz, Dominique Barth, and Alain Denise;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:coline.gianfrotta@ens.uvsq.fr
https://orcid.org/0000-0001-5792-4966
mailto:reinharz.vladimir@uqam.ca
https://orcid.org/0000-0001-8481-1094
mailto:dominique.barth@uvsq.fr
mailto:alain.denise@universite-paris-saclay.fr
https://orcid.org/0000-0003-4484-4996
https://doi.org/10.4230/LIPIcs.SEA.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

to predict the structure of any RNA molecule from its sequence. The folding depends
on interactions between the nucleotides. Strong interactions, called canonical interactions,
first form what is called helices, stacks of canonical base pairs. They connect loops, and
form the skeleton of the structure. Those loops are composed of weaker interactions, called
non-canonical interactions and give the molecule its final structure [14].

It has been observed that specific loop geometries are conserved and found through various
RNAs with different functions, with varying sequence [12, 17]. This conservation has been
leveraged by graph and other geometric methods to predict structure from sequence [18, 25].
Yet all those methods only focus on interactions networks within one loop, which have been
extensively studied [21, 5]. While specific complex joining loops together are well known,
as the A-minor [13], only recent algorithmic progress, using a graph representation of the
RNA, have allowed to extend this automatic classification to combinations of loops connected
between themselves through additional non-canonical interactions [23]. A major challenge
in the field is the prediction of the location of those interconnected pairs of loops, a crucial
determinant for the structure, and therefore the function of the RNA.

To tackle this challenge, we propose that the structural context of a motif [10] such as a
A-minor in a molecule can be used as a discriminant for peculiar complex geometries, as those
joining pairs of loops. It is a matter of determining whether two structurally similar contexts
induce identical geometry and function. Considering a modeling of molecules by graphs [8]
or hypergraphs, several definitions and similarity approaches between molecules have already
been studied [22], mainly due to the principle stating that structurally similar molecules are
expected to display similar properties [26, 9, 16, 24]. To measure the similarity of structures of
molecules, one main approach considers the resolution of the problem of finding a Maximum
Common Edge Subgraph [22] (MCES) between two graphs. This NP-complete problem is
initially seen as a generalization of graph isomorphism, with different metrics evaluating the
size of this subgraph compared to those of the two graphs to be compared, in particular
some specific to a molecular context [26, 6, 1, 2].

When consider solving the MCES problem to measure the structural similarity of molecular
graphs, two limitations could occur. First, the required computation time is exponential
with respect to the number of vertices of the two graphs, which is a major limitation when
considering comparing one molecule with all molecules in a database. Second, considering
molecular graphs could provide a similarity measure not sufficiently focused on structural
similarity, especially if two molecular structures are similar, but the associated graphs differ
slightly in number and nature of vertices and links. This is why we introduce here a new
graph representation of the molecular structures of RNA at a level of granularity lower
than that of the nucleotides, allowing in particular a reduction in the size of the graphs to
be processed. We then solve MCES problem on these graphs, based on specific subgraph
isomorphism definition, to study the targeted structural similarity.

We show that the similarity in our new graph representation correlates with the geometric
distance between the 3D models, while reducing by 75% the computation time. We validate
our approach by applying it to three specific known and complex RNA structural motifs. We
observe that the clustering induced by the similarity measure segregates well the different
structural contexts. This study shows that the structural context matters for those complex
motifs and could be leveraged for the prediction of their location.
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2 Representation of the Context of RNA Structural Motifs

2.1 Prior Definitions

Our study will focus on a peculiar kind of interactions between nucleotides that contribute
to the 3D shape of an RNA molecule: the canonical and non canonical interactions. These
interactions belong to 12 pairing families, according to their geometry, defined in the
Leontis–Westhof nomenclature [11]. Three faces on each nucleotide can interact with another
nucleotide. The pairing family depends on the face of the two interacting nucleotides
(Watson-Crick (W), Hoogsteen (H), or Sugar (S)) and on the orientation of the interaction
(cis (C) or trans (T)). In the Leontis–Westhof nomenclature, these families are represented
by a three-letter code indicating the orientation of the interaction and the faces of the two
nucleotides (for example, CSS for cis Sugar-Sugar), or by a symbol (see examples in Figure
1 and all the symbols in appendix A.1 Table 3). The canonical interactions belong to the
CWW family.

We will now give some prior definitions, useful for the construction of our representation.
After defining an RNA graph, we will describe particular RNA graphs that we will focus on
in this work. We will then define what an occurrence of one of this particular RNA graphs is.
To finish, we will define a particular subgraph of RNA graph we will use in Section 2.2 to
represent structural contexts.

▶ Definition 1. RNA graph
An RNA graph is a connected mixed graph G = (V, A, E), with A a set of directed
edges, also called arcs, and E a set of undirected edges. This graph represents all or
part of an RNA tertiary structure. Vertices of V correspond to nucleotides, edges of A

to the bonds of the primary sequence, and edges of E to canonical and non-canonical
interactions between nucleotides.

The set A of directed edges constitutes one or several path(s) forming the primary
sequence of molecules, oriented from the 5’ end to the 3’ end.
For each edge [x, y] ∈ E, we define a type t([x, y]). This type corresponds
to the pairing family to which the undirected edge belongs, according to the
Leontis-Westhof nomenclature [11]. In particular, undirected edges corresponding
to canonical bonds are annotated as such (CAN). Not all non canonical bonds are
symmetrical, which is why t([x, y]) can be different from t([y, x]).
For each vertex x ∈ V , we also define a type τ(x) according to its direct neighbor-
hood. This type will be taken into account in the search for graph isomorphisms
(see Section 3.1).

τ(x) = 0 if x has no incident edge (belonging to E)
τ(x) = C if x has just one incident edge [x, y] ∈ E and if t([x, y]) = CAN .
τ(x) = N if x has at least one incident edge [x, y

′] ∈ E such as t([x, y
′]) ≠ CAN

and no incident edge [x, y] ∈ E such as t[x, y] = CAN .
τ(x) = M if x has an incident edge [x, y] ∈ E such as t([x, y]) = CAN and at
least another incident edge [x, y

′] ∈ E such as t([x, y
′]) ≠ CAN .

For each vertex x ∈ V such as τ(x) = C, we define the canonical neighbor of x

as the neighbor y ∈ V of x such as [x, y] ∈ E and t([x, y]) = CAN . By definition
of vertex types τ , this neighbor exists and it is unique because a nucleotide cannot
form more than one canonical bond.

SEA 2021



19:4 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

G

N
N

C

C
C

N

C C

M C

M M

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

A-minor motif

1
N

2
M

3
N

4
M

5
M

Non canonical edges

CSS
TSS
TWW
CHS

Figure 1 Two examples of RNA graphs : a typical graph G and the A-minor motif. The arcs
are in green, the undirected edges of the canonical type are in blue and the undirected edges of
the other types are in black, annotated by the Leontis–Westhof nomenclature [11]. Each vertex is
annotated by its type.

Examples of RNA graphs are presented in Figure 1.
Note that, since we focus on the structural context only in this study, we do not consider

the sequence (i.e. the types of nucleotides) in the RNA graph.
This work is focusing on particular RNA graphs, we called motifs, that represent

substructures frequently found in RNA tertiary structures as explained in the introduction
(see Figure 1 for the example of A-minor motif).

▶ Definition 2. Motif occurrence
Given an RNA graph G, a motif occurrence is a partial subgraph of G, denoted as
O = (V O

, E
O

, A
O), which is isomorphic to a motif M = (VM , AM , EM), with respect

to the types of edges and vertices.

A motif occurrence is then a subgraph induced by the arcs and the edges of the motif
M . The vertices of V

O will be noted like the vertices of VM in M , for ease of writing. For
example, for an A-minor motif, vertices of V

O will be noted 1,2,3,4,5 (Figure 1). In the
motif occurrence O, the types of the vertices of V

O become specific to each vertex (for each
x ∈ V

O
, τ(x) = x). An example of A-minor occurrence in an RNA graph G is shown in

Figure 2a.

▶ Definition 3. Specific subgraph of an RNA graph and a motif occurrence
Given an RNA graph G and a motif occurrence O, the graph GO,A−

= (V, A \ AO)
is the spanning subgraph of G having no edge of E and having all the arcs of A except
those of the motif occurrence O.

The graph G
O,A− is composed of chains, each of which containing at least one vertex of

the motif occurrence O. There is an example of a graph G
O,A− in Figure 2b. This subgraph

will help us to define the structural context of a motif occurrence (see Section 2.2).

2.2 Definition of a k-extension
As seen in introduction, we are interested in comparing the structural contexts of motif
occurrences in RNA graphs. This context consists in a special subgraph which contains
and surrounds the motif. As the bounds in the primary sequence play an important role in
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Figure 2 In (a), the RNA graph G with an A-minor occurrence in red, and in (b), the subgraph
G

O,A− of G. Every vertex is annotated by its type.

the tertiary structure, the graph G
O,A

−

, which contains only this kind of bounds, plays a
fundamental role in the definition of the context of a motif. We give below the definition of
the structural context, that we call k-extension of a motif occurrence.

▶ Definition 4. k-extension of a motif occurrence O

Given a motif occurrence O, a subset S of its vertices and an integer k, the k-
extension of a motif occurrence O according to S is the subgraph
GO = (VO, AO, EO) of an RNA graph G, induced by three sets of vertices (which
may be non-disjoint):

the set V
O of the vertices of the occurrence O (see definition 2)

the set of vertices V
O

k being at a distance strictly lower than k in the graph G
O,A

−

(see definition 3), from one of the vertices of S.
the set of vertices V

O+
k neighbors by an edge of a vertex of V

O
k in G.

The set S is the subset of vertices of the motif occurrence, from which we want to extend
it. This choice will be explained in Section 5. For example, in the A-minor motif, we consider
the first four vertices, i.e. the subset {1, 2, 3, 4} (see the black arrows in Figure 3a).

In the example of RNA graph in Figure 3, the set of vertices V
O is represented in blue,

the set V
O

k in orange and the set V
O+

k in green (Figure 3b).
The vertices of VO are grouped into several subsets (not necessarily disjoint). In G

O,A−,
we consider each path having for extremity one of the vertices of the motif occurrence O.
The vertices of V

O
k belonging to each of these paths constitute a subset of vertices. The

vertices of V
O+

k belong to the same subset(s) as their neighbor(s) in V
O

k . When we extend
around an A-minor motif, we have in general four subsets of vertices, as shown in Figure 3b
(framed in purple).

2.3 Definition of a Contracted k-extension
RNA structures are subject to modifications, due to evolution. Slight local changes in
structures, like adding or deleting one nucleotide in a loop or an helix, may not change
noticeably the 3D structure of the molecule, and thus may not change its function. This
is why we present below a contracted representation of the context, allowing to represent
similar but different contexts in an almost identical way. As will be seen in the Results
section (Section 5), this new representation not only allows to better take the evolution
into account, but also significantly decreases the computation time when comparing motif
contexts.

SEA 2021
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Figure 3 Construction of a k-extension for k=4. The vertices belonging to the k-extension are
colored in blue, orange and green in both graphs G

O,A (a) and G (b). In (b) the four subsets of
vertices (V1, V2, V3 and V4) are framed in purple.

We define a second graph G̃O, derived from GO, in which some edges and some vertices
are contracted.

To do so, we have to define first the notion of contractable path, that will determine the
vertices and the edges to contract. We define it in the graph G

O,A−
O which is the spanning

subgraph of the k-extension GO that contains no edge of GO and all the arcs of GO except
those of the motif occurrence O (see definition 3).

▶ Definition 5. Contractable paths in G
O,A−
O

A contractable path is a maximal path, in the graph G
O,A−
O in which:

the vertices are all of type C or all of type 0 and all belong to the same subset
V

O
k or all to the same subset V

O+
k

and if the vertices are all of type C, the canonical neighbors of these vertices (see
definition 1) also induce a contractable path in G

O,A−
O .

These paths connect vertices that are not involve in any edges (type 0) or vertices that
are only involve in canonical edges (type C). It allows us to represent secondary structure
elements, such as helices and loops, as blocs. Examples are presented in Figure 4.

▶ Definition 6. Contracted k-extension of a motif occurrence O

A contracted k-extension, denoted as G̃O, is a graph derived from a k-extension
GO, in which the vertices of each contractable path in G

O,A−
O are contracted in one

single vertex. If these vertices are of type C, their canonical neighbors also induce a
contractable path in G

O,A−
O (according to the definition 5), and will thus be contracted.

In this case, an edge of canonical type connects the two contracted vertices.

Each contracted vertex in G̃O is of the same type τ as the vertices from which it is derived
in GO. The number of vertices of GO grouped in G̃O in one single vertex x ∈ VO is noted
p(x). An example of graph G̃O is presented in Figure 4.
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Figure 4 On the left, the graph GO with 3 contractable paths circled in red. The path between
the vertices u and v is not a contractable path because the vertex u belongs to the subset V

k
O and

the vertex v does not. In the same way, there is no contractable path between w and z because they
are not of the same type (M for w and C for z). Because of that, their canonical neighbors do not
induce a contractable path either. On the right, the graph G̃O obtained by contraction, with the
contracted vertices, framed in red and annotated by their weight p. The types of the vertices of
V

O+
k become None.

As defined in definition 5, the contractable paths are maximal paths, i.e. a set of
contractable vertices cannot belong to a larger set of contractable vertices. Thus, the
resulting graph G̃O is unique. Moreover, the same vertex cannot belong to two different
contractable paths. Consequently, the graph G̃O does not depend on the order of treatment
of the contractable paths.

In this model, the vertices of V
O+

k in G̃O take the type None to differentiate them from
the vertices of V

O
k .

The notations we defined in this section are summarized in the Table 1.

Table 1 Summary of the graphs we define.

G RNA graph
O motif occurrence in G (subgraph of G, isomorphic to a motif)
G

O,A− spanning subgraph of G containing no edge of G and all the arcs of G

(except those belonging to the motif occurrence O)
GO k-extension of a motif occurrence O in G (subgraph of G)
G

O,A−
O spanning subgraph of GO containing no edge of GO and all the arcs of GO

(except those belonging to the motif occurrence O)
G̃O contracted k-extension of a motif occurrence O in G

(obtained from the contraction of vertices, arcs and edges in GO)

3 Similarity between Contracted k-extensions

We aim to compare the structural contexts of motif occurrences in RNA structures. For this
purpose, we compare the contracted k-extensions of motif occurrences (noted G̃O in Section
2.3), in order to obtain, for each pair of contracted k-extensions, a common subgraph that
maximizes a similarity metric we will define below in Section 3.2.

SEA 2021
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3.1 Maximum Common Subgraph : Variant of the MCES Problem
We will start by defining the maximum common subgraph on which we will calculate a
similarity metric. To do so, we rely on the MCES problem.

The MCES problem aims to find a subgraph, common to any two graphs G and H,
maximizing the number of edges.

In our study, we search for a common subgraph as such, with supplementary constraints
on the vertices and the edges, that we detail in the next paragraph.

Let G̃O1 = (ṼO1 , ẼO1 , ÃO1) and G̃O2 = (ṼO2 , ẼO2 , ÃO2) be two graphs of contracted
k-extensions obtained from two motif occurrences O1 and O2 (Section 2.3).

We define G̃′
O1 = (Ṽ ′

O1 , Ẽ ′
O1 , Ã′

O1) a subgraph of G̃O1 such that G̃′
O1 contains the

vertices of the motif occurrence O1, and G̃′
O2 = (Ṽ ′

O2 , Ẽ ′
O2 , Ã′

O2) a subgraph of G̃O2 such
that G̃′

O2 contains the vertices of the motif occurrence O2.
We seek to find a subgraph G̃′

O1 , isomorphic to G̃′
O2 , and such that :

each vertex u ∈ Ṽ ′
O1 is mapped to a vertex v ∈ Ṽ ′

O2 of the same type and belonging to
a same subset of vertices (see 2.2),
and such that each edge [u1, u2] ∈ Ẽ ′

O1 is mapped to an edge [v1, v2] ∈ Ẽ ′
O2 of the

same type

Moreover, the subgraph G̃′
O1 is not necessarily connected, but for all pairs of vertices

{u, v} ∈ Ṽ ′2
O1 in G̃′

O1 , if there is a path containing only arcs in G̃O1 between u and v, there
has to be a path containing only arcs in G̃O2 between the vertex mapped with u in G̃′

O1 and
the vertex mapped with v in G̃′

O2 . It means that the subgraph G̃′
O1 must take into account

the order of the vertices in these paths in the contracted k-extensions G̃O1 and G̃O2 .
The subgraph G̃′

O1 is thus a common subgraph to G̃O1 and G̃O2 .
It has been shown that the decision problem associated with the calculation of a MCES

between any two graphs is NP-complete [7]. Algorithms have been developed, able to solve
the MCES problem for small instances, in particular for graphs representing molecules, such
as the RASCAL algorithm [22]. This algorithm is an exact resolution of the problem. To
find the MCES between two graphs G and H, it constructs the modular graph product P
between the line graphs of G and H, and searches for a maximum clique in this graph P with
a branch and bound method. We relied on this method to obtain the maximum common
subgraph between our contracted k-extensions. We also developed a heuristic that builds the
best common subgraph step by step, starting with the vertices with the highest degree.

3.2 Definition of the Similarity Metric to Maximize : the Contextual
Graph Similarity

We will now explain how to evaluate the common subgraph we found, by defining a similarity
measure, we call contextual graph similarity.

Although we have based ourselves on the RASCAL algorithm, the metric we want to
maximize is slightly different. In the RASCAL algorithm, the similarity measure computes
the number of edges and vertices in the common subgraph relative to the number of edges
and vertices in the two initial graphs. Our contextual graph similarity takes into account
only the number of edges, and not the number of vertices, in a common subgraph between
two contracted k-extensions, because the interactions within an RNA molecule contribute
the most to its tertiary structure. We do not consider arcs either, because we want to focus
on the importance of canonical and non canonical interactions in RNA 3D structures.
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▶ Definition 7. Contextual graph similarity
The contextual graph similarity between the two contracted k-extensions G̃O1

and G̃O2 is calculated as follows :

sim(G̃′
O1 , G̃O1 , G̃O2) =

∑
[u,v]∈Ẽ ′

O1\EO1

min(p(u), p(u′))

max( ∑
[u,v]∈ẼO1\EO1

p(u), ∑
[u,v]∈ẼO2\EO2

p(u))

with u
′
∈ Ṽ ′

O2 the vertex in G̃′
O2 (subgraph of G̃O2 isomorphic to G̃′

O1 , see Section
3.1), that is mapped with u ∈ Ṽ ′

O1 in G̃′
O1

We count the proportion of edges in the common subgraph G̃′
O1 compared to the maximum

number of edges between G̃O1 and G̃O2 . We do not take into account the edges of E
O1 ,

i.e. the edges of the occurrence O1 of the motif (or O2 as the occurrences are isomorphic).
Indeed, by definition, these edges are present in all contracted k-extensions.

The vertices incident to the same edge have necessarily the same weight, noted p (see
Section 2.3). Each edge in G̃′

O1 is weighted by the minimum weight of its incident vertices
in G̃′

O1 and their mapped vertices in G̃′
O2 . Each edge in G̃O1 or G̃O2 is weighted by the

weight of its incident vertices. This number corresponds to the number of nucleotides that
the vertex represents (see Section 2.3). In this definition of the metric,the weights of the
vertices are thus taken into account, which means that small differences in the structure will
be counted. However, thanks to the contracted graphs, it is possible to parameterize the
metric to take into account the weights of the vertices in a less restrictive way.

To illustrate the behaviour of our metric, examples of common subgraphs with high and
low contextual similarities are shown in Figure 5.

We can note that we are interested in the maximum contextual graph similarity value
between two contracted k-extensions, that can be obtained from several different common
subgraphs.

4 Classification of k-extensions and Search for a Maximum Common
Graph to a Class

We seek to establish a classification of contracted k-extensions of motif occurrences (noted
G̃O in Section 2.3).

For this purpose, we define a graph Gs = (Vs, Es, ω), called similarity graph, in which
each vertex represents a contracted k-extension of motif occurrence and there is an edge
between all pairs of vertices, weighted by the contextual similarity value. This weighting is
noted by the function ω ∶ Es → [0, 1]. In this similarity graph, we remove the edges weighted
by a value inferior to a threshold s. This threshold s is set so that contracted k-extensions
with contextual similarity less than s are considered as not similar.

Then we define a classification as a set of subsets of vertices W = {Vs1, Vs2, ..., Vsn},
such that Vs = ⋃n

i=1 Vsi. The subsets of vertices in W are not necessarily two by two disjoint,
which means that a vertex can belong to two different classes. Our classification is therefore
a coverage of Gs and not a partition. It allows us to take into account the case where one
contracted k-extension is close to two other contracted k-extensions, which are, for their part,
very different.
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Figure 5 Contextual graph similarities between four contracted 4-extensions. As seen before, arcs
are represented in green, canonical edges in blue and non canonical edges in black, with the symbols
of the Leontis–Westhof nomenclature. Each node is annotated by a doublet (type, weight). The
3D structure alignment of the 4-extensions (a) and (b) (resp. (b) and (c)) is presented at the top
(resp. on the right). In the 3D structures, each type of nucleotides (A,C,G,U) is colored with the
same colour. The two contracted 4-extensions above are the most similar (similarity of 0.93), and
their corresponding 3D structures are very close too, as shown in the alignment. The 4-extension
(c) has the smallest number of edges. However, it is still relatively similar to the 4-extensions (a)
and (b) (similarity of 0.64). On the contrary, the 4-extension (d) is very different from the three
others (similarity of 0.20), because it has many non canonical edges (represented in black) that do
not appear in the other 4-extensions. The 3D alignment between (b) and (d) also highlights the
differences.

We evaluate our classification according to cluster density and average similarity within
clusters. Those two criteria allow us to obtain classes of similar contracted k-extensions, and
so where the motif occurrences corresponding share close structural contexts. We thus apply
a clustering method, developed in [20], that seeks to maximize those two criteria and also,
that authorizes to obtain a coverage of the similarity graph and not a partition.
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Figure 6 The three motifs we studied. The pink nodes constitute the subset of nodes from which
we extend the motif to obtain the k-extensions (see Section 2.2).

We then characterize each of our classes by a representative. To do that, for each class of
size n, we consider a maximum common subgraph to every contracted k-extensions of the
class, defined in the same way as the maximum common subgraph for two graphs (Section
3.1), but for n graphs. The quality of a class is notably linked to the size of this maximum
common subgraph. The larger the size of the common subgraph, the more similar the
contracted k-extensions of the class will be.

In Results section, we will analyze this classification in order to evaluate its relevance in
a biological point of view.

5 Experimental Results

This section illustrates the relevance of our approach on three complex RNA motifs (Figure
6) : The A-minor motif, the Trans WC/Hoogsteen motif and a third motif which we call the
G motif. These motifs are among those connecting RNA regions far away in the secondary
structure. The A-minor motif frequently occurs in the RNA 3D structures, and has been
proved to be involved in crucial cellular mechanisms [13]. The other two motifs come from
the database of recurrent 3D motifs CaRNAval [23].

These three motifs are not predictable by current computational methods, to the best
of our knowledge. That is why we choose to apply our method on those motifs. The
fundamental question is: in terms of graphs, can the context of a motif help us to predict
its presence in the molecule? The experiments shown in this section are intended to make
progress towards answering this question. We first show that there is a clear correlation
between our graph similarity and the geometrical similarity in 3D structures. Then we show
that the automatic classification of RNA motif occurrences, based on our graph similarity, is
consistent with RNA 3D structures. And finally, we show some advantages of the contracted
graph representation, notably in terms of running time.

We applied our method on a dataset of non-redundant occurrences of those motifs from
the PDB: 89 occurrences of the Trans WC/H motif, 391 of the A-minor motif, and 159
of the G motif. To choose the vertices from which we extend the motif (the subset S in
Definition 4), we considered vertices that are involved in non canonical edges and only one
of the two incident vertices to a canonical edge (see the pink vertices in Figure 6).

We chose an extension size k of 4 because this size gives us the most discriminating
results.

5.1 Correlation between Graph Similarity and 3D Similarity
Firstly, we compare our contextual similarity measure to a measure of similarity on the
3D structures. To do so, we consider, for each contracted k-extension in our dataset, the
3D structure of the RNA graph induced by the contracted k-extension. We then use the
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(a) Distribution of the RMSD values according to the
contextual graph similarity values. The linear regression
line of the distribution is presented in red, and the
correlation coefficient R

2 is indicated. The histograms
in the margin of the diagram show the distribution of
values of contextual similarity (above) and RMSD (on
the right).

(b) Distribution of the inter-cluster and intra-
cluster RMSD values, with a clustering ob-
tained with a contextual similarity threshold
of 0.46 (black line in (a)).

Figure 7 Two representations of the distribution of RMSD values in relation to the contextual
graph similarity values, for the Trans WC/H motif occurrences.

RMSD (Root Mean Square Deviation) [3] as a quantitative measure of similarity between
3D structures. We align each pair of 3D structures nucleotide by nucleotide and calculate
the RMSD by considering each nucleotide by its carbon 3’, as it is usually done ([15], [4]).
Then we compare the RMSD values to our contextual graph similarity values. The lower the
RMSD, the more similar the two considered structures are. On the contrary, a contextual
graph similarity value near to 0 (resp. 1) indicates that the k-extensions are very different
(resp. very similar).

We present the distribution of the RMSD values according to the contextual graph
similarity values, for the occurrences of the Trans WC/H motif (Figure 7a). The correlation
coefficient R

2 associated with this distribution is very high (0.74). This is confirmed by the
diagram where two main sets of dots can be observed, corresponding to the occurrences with
a very high RMSD (superior to 7.5Å) and a very low contextual similarity (inferior to 0.25),
and to the occurrences with a low RMSD (inferior to 4Å) and with a contextual similarity
superior to 0.3.

For the other two motifs (results shown in appendix A.2.1, Figure 9), the correlation
coefficient is equal to 0.33 for the A-minor motif and to 0.56 for the G motif. Those two
motifs have thus a correlation coefficient, not as high as the Trans WC/H motif. They seem
to be less dependent on their local environment.

5.2 Motif Classification

We also classified the contracted k-extensions, according to the contextual graph similarity.
We aim to determine whether grouping motif occurrences by similar environment leads to
different classes, and whether these classes are consistent with the RMSD. To do so, we used
the clustering method detailed in Section 4. This method requires to choose a similarity
threshold, below which the contracted k-extensions cannot be placed in the same cluster.



C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:13

(a)

(b)

Figure 8 Clustering and 3D alignments. In the middle, the similarity graph of the Trans WC/H
motif occurrences. A node corresponds to an occurrence and there is an edge between two nodes
if the contextual graph similarity between the contracted k-extensions is greater than 0.46. The
clustering is indicated in red circles. On both sides, the 3D alignment of the contracted k-extensions
of the two clusters. There is one color for each type of nucleotide. In (a), is presented the alignment
of the 3D structures corresponding to a subset of contracted k-extensions of the largest cluster, and
in (b), the alignment of the 3D structures corresponding to all of the contracted k-extensions of the
smaller cluster.

We chose this threshold in an effort to have the better consistency between the contextual
similarity values and the RMSD values. It means that the pairs of contracted k-extensions
that have a contextual similarity value above (resp. below) the threshold must have similar
(resp. not similar) 3D structures according to the RMSD. For the Trans WC/H motif, we
choose a threshold of 0.46 because all the pairs of contracted k-extensions with a contextual
similarity value above this threshold, correspond to 3D structures with a RMSD inferior to
5Å (Figure 7a). On the other hand, with this threshold, we lose some pairs with an RMSD
value inferior to 3Å.

However, the Figure 7b shows a very clear consistency between the contextual similarity
values and the RMSD values. Indeed, the RMSD of pairs of contracted k-extensions within
a cluster does not generally exceed a value of 4.5Å and the RMSD of pairs of contracted
k-extensions of two different clusters is generally superior to 4.5Å. This result thus also shows
the relevance of our contextual graph similarity measure in relation to the RMSD.

Similar results hold for the two other motifs (see appendix A.2.1 Figure 10). The
thresholds we have to choose to have a better consistency with RMSD values are higher
(0.75 for the A-minor motif, and 0.65 for the G motif), and the maximum RMSD within
clusters is higher for these two motifs, in particular for the A-minor motif where the RMSD
values within clusters can reach 7Å for a few pairs of contracted k-extensions (appendix A.2.1
Figure 10).

We are now interested in the relevance of the classification itself. The classification we
obtained for the Trans WC/H motif is composed of a large cluster of more than 60 occurrences,
and four smaller clusters of respectively, 9, 3, 2 and 2 occurrences. The similarity graph (see
Section 4) associated with this threshold is presented in Figure 8. It is a sufficiently dense
graph for the classification to make sense, and to justify the use of a clustering method.

The cluster with 9 occurrences is composed of occurrences (and their contexts) sharing
very close 3D structures (Figure 8, alignment (b)), and the maximum common subgraph
(defined in Section 5.2) of the contracted k-extensions of this cluster is quite large. It is
indeed composed of 6 edges (including 4 non canonical edges) which corresponds to one third

SEA 2021



19:14 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

of the number of edges in the smallest contracted k-extension of the cluster. These motif
occurrences are found in RNA molecules of the same family, which explains their high 3D
similarity. The largest cluster is composed of occurrences (and their contexts) sharing less
close 3D structure. Indeed, the 3D alignment for a subset of occurrences of this cluster in
Figure 8 (alignment (a)) is quite good for the right parts of the structure, but differences
appear for the top left part. These motif occurrences are found in RNA molecules of different
but close families. The classification obtained with the two other motifs, available in appendix
A.2.2 Figure 11, also groups together motif occurrences sharing close 3D structures. These
results show that the classification based on the contextual graph similarity measure, is able
to group together motif occurrences in relevant clusters that share very similar environments
in 3D.

5.3 Advantage of the Contracted Representation
The contracted graph representation presents two main advantages. The first one is the
running time: the time needed to execute the search for a maximum common subgraph
is largely reduced for the contracted k-extensions, even though it stays exponential with
the exact method. The results obtained with the exact method, on the three motifs, are
presented in Table 2. For the A-minor motif occurrences, for example, which corresponds
to our larger dataset (391 occurrences), the contracted representation makes it possible to
divide the execution time by 4.

Perhaps more importantly, contrarily to other approaches based also on graph isomorphism
(e.g. [19, 23]), our metrics allows us to consider slight changes in the number of vertices and
edges in the graphs as identical (see Section 2.3). This allows to group together contexts
which are different at the graph level, but very similar in terms of 3D structure.

6 Conclusion and Perspectives

In this study, we wanted to determine if the structural context of complex motifs in RNA
structures can give useful information about the 3D structure of this context and thus help
to predict the presence and the position of the motif in RNA 3D structures.

To find out, we represented the structural contexts of motif occurrences by specific graphs,
at two granularity levels, and developed a method, based on solving a MCES problem, to
compare them using a dedicated similarity metric. The MCES problem is used in many
approaches looking for similarities between molecules [26, 6, 1, 2], but here we have some
additional constraints on the graphs and a different metric. The granularity of the graphs we
defined allows us to consider two structural contexts as similar even if slight differences occur

Table 2 Execution time of the search for maximum common subgraph for each pair of k-extensions
(contracted or non contracted) for the three datasets, on a PC Intel Core i5-7440HQ 4x2.80GHzCPU.

Motif Execution time (in hours) for Execution time (in hours) for
contracted k-extensions non contracted k-extensions

A-minor motif 4 16
(391 occurrences)

G motif 0,8 2,2
(159 occurrences)
Trans W/H motif 0,22 0,45
(89 occurrences)
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in terms of nucleotides and bonds, since they have little impact in the 3D configurations.
Our results show that there is a clear correlation between our contextual graph similarity

measure and the RMSD, which is a measure of similarity on the 3D structures (Section 5.1).
Moreover, the reduced size of our graphs compared to graphs representing each nucleotide
and each interaction separately, allows a considerable saving in computing time, especially
when searching in databases. We also established an automatic and exhaustive classification
of the three motifs we studied (Section 5.2). This classification is consistent with the 3D
structures, which means that it groups together motif occurrences that share both close
structural contexts and close local 3D structures.

Regarding perspectives, we now have to study further the motif classifications. Notably,
it will be worth considering the A-minor motif, which is ubiquitous in RNA structures and
for which there is no available prediction method. We believe that a method which combines
both our graph approach and sequence considerations could lead to useful results. Many
other motifs have also to be studied, notably from the CaRNAval database [23].

From a more theoretical point of view, we plan to refine our similarity measure by devising
weights for different classes of modifications in the RNA graphs. For example, nucleotide
insertions and deletions could give different costs according to these parameters. Then,
computing parameter values would need a thorough study of motifs in databases.
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A Appendix

A.1 Representation of the Context

Table 3 Symbols of the Leontis–Westhof nomenclature for the non canonical interactions.

Orientation Interacting Edges Symbol
Cis Watson–Crick / Watson–Crick (cWW) -●-

Trans Watson–Crick / Watson–Crick (tWW) -○-
Cis Watson–Crick / Hoogsteen (cWH) ●-■

Trans Watson–Crick / Hoogsteen (tWH) ○-□
Cis Watson–Crick / Sugar Edge (cWS) ●- ▶

Trans Watson–Crick / Sugar Edge (tWS) ○-▷
Cis Hoogsteen / Hoogsteen (cHH) -■-

Trans Hoogsteen / Hoogsteen (tHH) -□-
Cis Hoogsteen / Sugar Edge (cHS) ■- ▶

Trans Hoogsteen / Sugar Edge (tHS) □- ▷
Cis Sugar Edge / Sugar Edge (cSS) -▶-

Trans Sugar Edge / Sugar Edge (tSS) -▷-

A.2 Experimental Results
A.2.1 Correlation between Graph Similarity and 3D Similarity

(a) A-minor motif.
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(b) G motif.

Figure 9 Distribution of the RMSD values according to the contextual graph similarity values
for the A-minor and the G motif. The linear regression line of the distribution is in red, and the
correlation coefficient R

2 is indicated. The univariate distributions of RMSD and contextual graph
similarity are presented in the margin of the diagram (above for the contextual graph similarity and
on the right for the RMSD). The chosen contextual similarity threshold for the clustering for each
motif is in black.
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(a) A-minor motif
(contextual similarity threshold = 0.75).
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(b) G motif
(contextual similarity threshold = 0.65).

Figure 10 Distribution of the RMSD values intercluster and intracluster, for the two other motifs,
with a clustering obtained with the contextual graph similarity thresholds indicated for each case.

A.2.2 Motif Classification

(a) A-minor motif
(contextual similarity threshold = 0.75).

(b) G motif
(contextual similarity threshold = 0.65).

Figure 11 Similarity graphs for the two other motifs, with the similarity threshold indicated in
each case. A node corresponds to a motif occurrence, and there is an edge between two nodes if the
contextual graph similarity is greater than the indicated threshold. Examples of clusters are circled
in red in both graphs. Nodes of the same color correspond to motif occurrences found in the same
RNA family.


	1 Introduction
	2 Representation of the Context of RNA Structural Motifs
	2.1 Prior Definitions
	2.2 Definition of a k-extension
	2.3 Definition of a Contracted k-extension

	3 Similarity between Contracted k-extensions
	3.1 Maximum Common Subgraph : Variant of the MCES Problem
	3.2 Definition of the Similarity Metric to Maximize : the Contextual Graph Similarity

	4 Classification of k-extensions and Search for a Maximum Common Graph to a Class
	5 Experimental Results
	5.1 Correlation between Graph Similarity and 3D Similarity
	5.2 Motif Classification
	5.3 Advantage of the Contracted Representation

	6 Conclusion and Perspectives
	A Appendix
	A.1 Representation of the Context
	A.2 Experimental Results
	A.2.1 Correlation between Graph Similarity and 3D Similarity
	A.2.2 Motif Classification



