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Abstract

A natural way to model the evolution of an object
(growth of a leaf for instance) is to estimate a plausible
deforming path between two observations. This interpo-
lation process can generate deceiving results when the set
of considered deformations is not relevant to the observed
data. To overcome this issue, the framework of deforma-
tion modules allows to incorporate in the model structured
deformation patterns coming from prior knowledge on the
data. The goal of this article is twofold. First defining new
deformation modules incorporating structures coming from
the elastic properties of the objects. Second, presenting the
IMODAL library allowing to perform registration through
structured deformations. This library is modular: adapted
priors can be easily defined by the user, several priors can
be combined into a global one and various types of data can
be considered such as curves, meshes or images. It can be
downloaded at https://github.com/imodal.

1. Introduction
The last decade have witnessed important progress in

shape analysis fuelled by the increasing availability of data
sets produced by a wide range of imaging devices. How-
ever, biological and medical shape analysis stand at a par-
ticular place where a range of constraints are limiting the
size of available databases and usually further down-scaled
to few tens when filtered under specific conditions. Visual
inspection by experts is still playing an important role in
nowadays analysis especially when dealing with shape evo-
lution. This is for different reasons: difficulty to separate the
target objects from background, difficulty to define popula-
tion models when dealing with geometrical object (cross-
sectional aspect) and to aggregate them into longitudinal
profiles [11]. The computational anatomy and large defor-
mation setting [12, 24, 3, 20, 18, 17] have helped a lot to

build principle ways to generate digital atlases from data
sets, perform registrations, compute deformation paths us-
ing paths of diffeomorphisms transporting wide range a ge-
ometrical features. However, the ubiquity of the all-purpose
approaches is often limited in two ways: first the reliance of
weakly structured deformation models preventing the intro-
duction of high level prior knowledge (as deformation prop-
erties and constraints attached to the objects) in the analysis
and second, their inability to provide the user with an auto-
matic separation of the different non-linear superposition of
biologically relevant dynamic components.

The paper is devoted to the exposition of a mathemati-
cal and computational framework IMODAL built upon the
modular approach pioneered in [14] and answering the two
previous limitations. We present in Figure 2 two results of
registration between the initial and final states of a basipetal
leaf growth (i.e. growth from the base) extracted from Fig-
ure 1a. We used unstructured deformations (LDDMM) [4]
and modular ones computed with IMODAL with the prior
knowledge that the deformation should be basipetal. The
basipetal growth is well recovered by IMODAL (see Sec-
tion 3.1 for more detail) while unstructured deformations
fail modelling this growth.

2. Modelling evolution through constrained de-
formations

2.1. Large deformations

We recall here the notion of large deformations as de-
fined in [2]. Let d, ` ≥ 1 be two integers and C`0(Rd) be the
space of vector fields of class C` of Rd whose derivatives
k ≤ ` tend to zero at infinity. For v ∈ C`0(Rd), ‖v‖`,∞
denotes the supremum norm: ‖v‖`,∞ =

∑
|β|≤` ‖Dβv‖∞.

Proposition 1 Let v. in L1([0, 1], C`0(Rd)), i.e. a time-
dependent vector field such that

∫ 1

0
‖vt‖`,∞dt < ∞. Then

there exists a unique absolutely continuous solution ϕv. ,



called the flow of v., such that ϕv0 = Id and ϕ̇vt = vt ◦ ϕvt .
In addition, for any t in [0, 1], ϕvt is a C` diffeomorphism.

This notion of large deformation can be used to model
the evolution of a shape between two observations. Here,
we use the concept of shapes as defined in [1], which cov-
ers point clouds, curves, meshes and any other geometrical
object that can be transformed by sufficiently smooth dif-
feomorphisms and vector fields. A space of shapes O is in
particular defined through its infinitesimal action (q, v) ∈
O × C`0(Rd) −→ v · q ∈ TO which specifies how vec-
tor fields (and then diffeomorphisms via time integration)
act on its elements. Given two observations a and b of a
shape at two different times, the idea is to reconstruct the
time evolution between them via the registration of the first
one a (called the source) into the second one b (called the
target) using large deformations [4]. It amounts to minimiz-
ing: J : v ∈ L2([0, 1], V ) 7→

∫ 1

0
|v(t)|2V dt+D(ϕt=1 · a, b)

where V is a space of smooth vector fields continuously em-
bedded in C`0(Rd) (V ↪→ C`0(Rd)) andD a distance between
shapes measuring how close the deformation of a is from
b. In the example presented in Figure 2, the registration is
performed between unparametrized curves (without point
correspondence) and we use the varifold framework [8] to
define the distanceD. The result of this registration is satis-
fying from a fitting point of view but from a modelling point
of view, this result raises two questions.

First, the path t 7→ ϕt · a does not correspond to
a basipetal growth and then does not help modelling the
growth. It would be necessary to impose, as a prior, the fact
that the growth is basipetal and then search, amongst all the
possible basipetal growths, the one fitting the observed data.
A first attempt to address this issue would be to enrich the
RKHS V [10, 21, 25] so that more complex deformation
patterns can be generated. However, it would not be possi-
ble allow to impose shape-dependent priors since the space
of allowed vector fields is not shape-dependent. A natural
way to incorporate such prior is to constrain, at each time t,
the vector field to be of a certain type, formulated as a func-
tion of the shape at t and corresponding to a basipetal in-
finitesimal growth. The second question that arises is about
the interpretability of the result of the registration: how can
it be used to understand the growth ? Here this result is
given as a dense vector field, parametrized in large dimen-
sion, which cannot be directly interpreted. Several frame-
works allow to build particular deformations adapted to spe-
cific priors [22, 23] and their evolution [13, 16, 26]. How-
ever building and analyzing complex structured deforma-
tion models evolving naturally with the deformed object is
still a challenge.

2.2. Framework of deformation modules

The notion of deformation module, introduced in [14],
makes possible to incorporate structural priors in the vec-

(a) Basipetal (b) Acropetal

Figure 1: Growth from the base 1a and from the tip 1b of the
leaf. Data from [15] of leaves before (left) and after (right)
growth. Black dots were drawn before growth.
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Figure 2: Basipetal growth: curves registration using
IMODAL and LDDMM (unstructured large deformation).
The source is blue, target is green and the deformed source
is red.

tor fields, while leaving some parameters free to enable to
fit the data. In the leaf growth’s example, if we first assume
that it follows a basipetal growth pattern (i.e. that a certain
growth at the tip necessary comes with a larger growth at
the base), this knowledge can be incorporated in the defor-
mation framework via a generator of vector fields encoding
structural relations between local growth factors. This gen-
erator takes as input the current geometrical descriptors of
the leaf (in order to locate the base for instance) as well as
a growth intensity, and returns an adapted vector field. The
growth intensity acts here as a control parameter that can be
adjusted at each time of the growth trajectory to fit the data.
The “geometrical descriptors” of the leaf can be seen as a
special case of the general notion of shape introduced in
[1]. It gathers all the geometric parameters that are relevant
to model the growth trajectory and are flown by the defor-
mation of the ambient space (i.e. at each time, their speeds
are given by the generated vector field). We give here a



slightly simplified definition of deformation modules:

Definition 1 We say that M = (O, H, ζ, c) is a deforma-
tion module with geometrical descriptors in O, controls in
H , field generator ζ and cost c, if

• O is a shape space of Rd, H = RdimH ,

• ζ : (q, h) ∈ O×H → ζq(h) ∈ C3
0 (Rd) is continuous,

linear with respect to h and C2 with respect to q,

• c : (q, h) ∈ O × H → cq(h) ∈ R+ is a continuous
mapping such that q 7→ cq is smooth and for all q ∈ O,
h 7→ cq(h) is a positive quadratic form on H .

Note that considering a parameter being part of the geo-
metrical descriptor is a modeling choice: one could define
another deformation module, generating similar fields but
built upon a different space of geometrical descriptors. In
this case, the generated modular large deformations (see
Section 2.4) would be different. The cost function deter-
mines how “desirable” a particular choice is with respect
to the prior. In the following, we will always assume that
the cost satisfies the Uniform Embedding Condition (UEC):
|ζq(h)|2V ≤ Mcq(h) with V a Reproducing Kernel Hilbert
Space (RKHS) of vector fields continuously embedded in
C30(Rd) (V ↪→ C30(Rd)) and M > 0 independent from
(q, h). This condition is necessary to build large deforma-
tions from a deformation module (see Section 2.5). An im-
portant feature of this framework is the possibility to com-
bine several deformation modules into a more complex one.

Definition 2 (Combination) Let M i = (Oi, Hi, ζi, ci),
i = 1, . . . , N be N deformation module, the compound
module M = C(M1, . . . ,MN ) is defined by M =

(O, H, ζ, c) where O =
∏N
i=1Oi, H =

∏N
i=1H

i, ζ :
(q, h) ∈ O × H 7→

∑
i ζ
i
qih

i and c : (q, h) ∈ O × H 7→∑
i c
i
qih

i with q = (q1, . . . , qN ), h = (h1, . . . , hN ).

This compound deformation module generates vector fields
that sums of vector fields generated by the initial defor-
mation modules: the field generator combines the different
prior of each module into a new, compound, prior.

2.3. Examples

We present here several examples of deformation mod-
ules. We denote by Vσ the scalar Gaussian RKHS of scale
σ > 0 and Kσ its kernel.

2.3.1 Unstructured deformation module

A first simple example of deformation module allows to
build sums of N ∈ N local translations in Rd similarly
to [6, 9]. We setO = (Rd)N (space of points), H = (Rd)N

(space of vectors) and ζq(h) =
∑N
i=1Kσ(xi, ·)hi with σ >

Figure 3: Local scaling (left) and local rotation (right) vec-
tor fields approximated by constrained translations gener-
ated by 3 control points each.

0, q = (x1, . . . , , xn) ∈ O and h = (h1, . . . , hN ) ∈ H .
This module is said to be unstructured as any speed for the
points (x1, . . . , , xn) can be retrieved as the application of
a field of the type ζq(h). It is used to correct the model of
deformation in order to better fit the data.

2.3.2 Constrained translations

By imposing some links between the different points and
vectors of the translations, one can produce more con-
strained fields, as illustrated in Figure 3.

2.3.3 Implicit deformation modules

The deformation prior may not be given in the form of an
explicit type of vector field that one wants to use, but more
in some properties that the vector fields should satisfy. In
order to address this problem, we define implicit deforma-
tion modules, where the field generator ζ is defined as the
solution of a minimization problem:

ζq(h) = argmin{|v|2V +
1

ν
|Sq(v)−Aq(h)|2} (1)

with V a RKHS of vector field, Sq : V → Y a linear surjec-
tive constraint operator on vector fields that takes values in
the space of constraints Y (vector space of finite dimension)
and Aq : H → Y a linear operator which defines the value
that one wants to observe. The spaces of geometrical de-
scriptors O and controls H will be specific to each type of
implicit deformation module. The cost of the deformation
module is defined by cq(h) = |ζq(h)|2V + 1

ν |Sq(ζq(h)) −
Aq(h)|2. From equation (1), one can compute the explicit
expression of the field generator ζq as detailed in the Ap-
pendix. Note that if V = Vσ , with σ > 0, a consequence
of Equation (1), is that the field ζq(h) is located around the
points on which depends Sq(v), in an area depending on σ.
Then, the support of the generated field follows naturally
the evolution of q.

Order 0 As a first example we set σ > 0, O = (Rd)N ,
H = (Rd)N , Sq(v) = (v(x1), . . . , v(xN )) and Aq(h) =



(Kq + νId)h where q = (x1, . . . , xN ) and Kq is the ma-
trix (Kσ(xi, xj)Id)i,j . We call the corresponding mod-
ule implicit deformation module of order 0 as it is defined
from constraints on the values of the field (evaluation of
order 0). It can be shown easily (see Appendix) that the
field generator is given by ζq(h) =

∑N
i=1Kσ(xi, ·)hi with

h = (h1, . . . , hN ). The cost is cq(h) = hT (Kq + νId)h
and, as we need to invert the cost operator to perform reg-
istration (see Section 2.5), this module is a regularized ver-
sion of the one presented in Section 2.3.1.

Order 1 We give now a second example of implicit de-
formation modules allowing to incorporate objects-related
elastic properties in the deformation model. More specifi-
cally, we constrain the local changes of lengths induced by
the action of the vector field at some specified locations xi
and along some specified directions attached to the object.
This amounts to constraining the infinitesimal strain tensor

εxi
(v)

.
=
Dv(xi) +Dv∗(xi)

2
(2)

which is a symmetric tensor capturing the local metric
changes (expansion or dilation along given directions). A
natural way is to introduce a family q = ((xi, Ri))i∈I of
affine orthonormal frames (here coded by its origin xi and
an associated rotation Ri) and to ask εxi

(v) to be diagonal-
izable into the orthonormal basis given by Ri. This means
that there exists a diagonal matrix Di such that εxi

(v) =
RiDiR

T
i . Structural relations among the different Di’s can

be captured saying that Di = Di(h) where h is a control
parameter h ∈ H . The value (RiDi(h)RTi )i imposed on
the infinitesimal strain tensor is designed by growth fac-
tor and the operator h 7→ (Di(h))i (defining the model) is
called the growth model operator. We present in Figures 4,
5, 6 three examples of growth factors ((RiDiR

T
i )i). They

are represented by ellipsoids whose axes are |Di,j |Ri,j ,
1 ≤ j ≤ d where Di,j is the j − th diagonal coefficient
of Di and Ri,j is the j − th column of Ri.

Figure 4: Horizontal uniform elongation. Left: the blue
(degenerate) ellipses represent the growth factor RiDiR

T
i

with Di = diag(1, 0) and Ri = Id for each xi (red points).
Middle: generated vector field in green. Right: infinitesimal
deformation of the rectangle induced by this field.

The formal derivation of module of order 1 is straight-
forwardly described choosing

O = {q = ((xi, Ri))i∈I ∈ (Rd × SOd(R))I} (3)

Figure 5: Vertical uniform elongation. Left: the blue (de-
generate) ellipses represent the growth factor RiDiR

T
i with

Di = diag(0, 1) and Ri = Id for each xi (red points). Mid-
dle: generated vector field in green. Right: infinitesimal
deformation of the rectangle induced by this field.

where I is the indexing set, Sq(v) = (εxi
(v))i∈I , Aq(h) =

(RiDi(h)RTi )i∈I with εx(v) given by (2) and for each i,
Di(h) is a diagonal matrix that depends linearly on the
control h. The growth model operator h 7→ (Di(h))i∈I
specifies the prior on the changes of lengths. Note that
Sq : V 7→ (S(Rd))I (with S(Rd) the space of symmet-
ric matrices in Rd) is surjective if xi 6= xj for i 6= j. The
space of control is H = Rp with p an integer which is in
general small (between 1 and 4 in the examples). Since the
constraints are now on the derivative of v, we coin the name
of module of order 1.

Remark 1 The space of O given by equation (3) is not
strictly speaking a shape space as defined in [1] where
objects can be deformed under the action of diffeomor-
phisms Diff1(Rd). However, it is a generalized shape
space defined as a set of objects that can be deformed
under the action of G = Diff1(Rd) × C0

Id(Rd, SOd(R))
(the subscript Id is to enforce the convergence to Id at
infinity). Let (x,R) be an affine orthonormal frame and
(φ, ψ) ∈ G, then (φ, ψ) · (x,R) = (φ(x), ψ(x)R). The
tangent space of G at eG = (Id, x ∈ Rd 7→ Id) is
W = C1(Rd,Rd) × C0

0 (Rd,Skewd(R)) (with Skewd(R)
the space of skew-symmetric matrices of Rd) and then, by
differentiating (φ, ψ)·(x,R) with respect to (φ, ψ) at eG, we
can define the action of an element (v,A) ∈ W on (x,R)
by (v,A) · (x,R) = (v(x), A(x)R).

2.3.4 Silent module

A last example of deformation module is the one that gener-
ates a null vector field: O is a given shape space, H = {0},
ζq(h) = 0 and cq(h) = 0. We call it the silent deformation
module induced byO. When it is combined with other ones
(see Definition 2), it does not contribute to the generated
vector field but its geometrical descriptors are deformed by
it. Silent deformation modules are particularly interesting
for registration problems where the deformation modules
used to generate the large deformation have geometrical de-
scriptors different from the shape data (see Remark 4).



Figure 6: Uniform shearing. Left: the blue ellipses repre-
sent the growth factor RiDiR

T
i with Di = diag(2, 1) and

Ri =
(

cosπ/4 − sinπ/4
sinπ/4 cosπ/4

)
. Middle: generated vector field

in green. Right: infinitesimal deformation of the rectangle
induced by this field.

t = 0 t = 0.3 t = 0.7 t = 1

Figure 7: Example of large deformation generated by the
combination of an implicit module M1 of order 1 and a
module M2 generating a local translation. The red points
are the point-component of the geometrical descriptor of
M1, the blue (flat) ellipses represent the growth factor . The
green point is the geometrical descriptor of M2 and the
green vector is its control.

2.4. Modular large deformations

We will now see how priors on vector fields can be trans-
ferred to large deformations. We consider controlled path of
finite energy where the integrated vector fields (see Propo-
sition 1) are generated by the deformation module with ge-
ometrical descriptors following the deformation:

Definition 3 Let M = (O, H, ζ, c) be a deformation mod-
ule and let a, b ∈ O. We denote by Ωa,b the set of measur-
able curves t 7→ (qt, ht) ∈ O × H where q is absolutely
continuous, satisfying qt=0 = a, qt=1 = b, q̇t = vt · qt for
almost every t ∈ [0, 1] with vt = ζqt(ht), and E(q, h) =∫ 1

0
cqt(ht)dt <∞, it is called the energy of (q, h).

From trajectories of Ωa,b, we can now build modular
large deformations:

Proposition 2 Let M = (O, H, ζ, c) be a deformation
module satisfying the UEC. Let a, b ∈ O and (q, h) ∈ Ωa,b.
We define for each t ∈ [0, 1], vt = ζqt(ht). Then, the flow
ϕv exists and for each t ∈ [0, 1], qt = ϕt · a. The final dif-
feomorphism ϕvt=1 is called a modular large deformation.

We present in Figure 7 the example of a rectangle de-
formed by a large deformations obtained via the combina-

tion (see Definition 2) of a implicit deformation moduleM1

of order 1 (see Section 2.3.3) and a deformation moduleM2

generating a local translation (see 2.3.1). The growth model
operator of M1 is defined for each i by h ∈ R 7→

(
0 0
0 ui

)
and the rotation matrices of the geometrical descriptor are
initialized at Ri(t = 0) = Id.It generates a bending de-
formation because of the non uniform vertical elongation.
Simultaneously, the local translation deforms the upper part
of the rectangle. This example illustrates two important fea-
tures of the framework. First, the geometrical descriptors
naturally follow the deformation of the object and then the
structure incorporated via the choice of deformation mod-
ule is updated at each time according to the current geo-
metrical descriptors. In particular the rotation matrices Ri
(components of the geometrical descriptor of M1) rotate so
that the ’vertical elongation’ remains coherent with the new
geometrical descriptors of the ’rectangle’. Second, at each
time the vector field is a sum of two vector fields, generated
respectively by M1 and M2 so that the total deformation is
a natural combination of the two priors.

Remark 2 In order to define the evolution vt · q in Def-
inition 3 when q is an affine frame, we need to asso-
ciate, to each vector field v ∈ C10(Rd,Rd), an element of
C00(Rd,Skewd(R)) (see Remark 1). We defined it as dv−dv∗

2
which corresponds to the ’infinitesimal rotation’ created by
v at each point (its coefficients are given by the curl of v).

2.5. Registration

In order to reconstruct the evolution between two obser-
vations the idea is to estimate a large deformations trans-
porting the initial observation (source) as close as possible
to the final observation (target) and with the lowest energy
possible. It can be shown [14] that the minimizing trajecto-
ries (q, h) are such that there exists p : t ∈ [0, 1] 7→ T ∗qtO
so that for each time:

q̇t = ∂H
∂p (qt, pt, ht) = ζqt(ht) · qt

ṗt = −∂H∂q (qt, pt, ht)

h = Z−1q ρ∗qp

(4)

where H : (q, p, h) ∈ T ∗O ×H 7→ (p|ζq(h) · q)− 1
2cq(h)

is the Hamiltonian, ρq(h) = ζq(h) · q and Zq : H → H∗

is an invertible operator so that for each h in H , cq(h) =
(Zqh|h). The variable p is called the momentum.

Remark 3 Given (q0, p0) ∈ T ∗O, there exists a unique
solution to equations (4) starting at (q0, p0, Z

−1
q0 ρ

∗
q0p0).

Registering a source shape a into a target shape b
amounts then to minimizing the following functional:

Ja,b : p0 ∈ T ∗aO 7→
∫ 1

0

cqt(ht)dt+D(ϕt=1 · a, b) (5)

with qt=0 = a, pt=0 = p0 and (q, p, h) satisfying (4).



Remark 4 In practice, the shapes qs ∈ Os that will be
registered do not contain directly the specific geometrical
information that is necessary to express the prior on defor-
mation. We then consider an augmented shape q̃ = (qs, q)
where q contains the relevant geometrical information. This
practical case of registration can also be studied by mini-
mizing Equation (5) with the module M̃ = C(M,Ms) with
M the deformation module corresponding to the prior and
Ms the silent deformation module induced by the shape
space Os (see Section 2.3.4). The non silent part of the
initial geometrical descriptor can also be optimized if nec-
essary as it is in general not observed.

3. Examples
This framework is implemented in IMODAL1 (Implicit

Modular Object Deformation Analysis Library), in Python,
using the librairies PyTorch [19] for automatic differentia-
tion and KeOps [7] to avoid memory overflow if compu-
tations are done on GPU. It is a modular implementation
in the sense that it relies on several abstract classes that
one can combine in order to design a deformation model
adapted to the observed data. Several deformation mod-
ules are implemented so that the user only needs to specify
their parameters. They can be fixed, estimated or defined as
functions of meta-parameters that can themselves be esti-
mated (see examples of Section 3.1). All the optimizations
are performed using the L-BFGS optimizer of the librairy
PyTorch [19]. A more detailed presentation is given in the
Appendix. A key parameter in our examples is the growth
model operator for implicit modules of order 1. This op-
erator h 7→ (Di(h))i∈I , is implemented as a tensor C of
size N × d × p with N the number of points xi on which
the field has to be constrained, d the dimension of the am-
bient space and p the dimension of the control space so that
Di(h) = diag(C[i]h) for 1 ≤ i ≤ N . We detail in each
situation how it can be built in order to model the observed
evolutions.

3.1. Growth modelling

We first present how the framework of deformation mod-
ules can help modelling the growths of the leaf presented in
Figure 1a. As explained previously, we extract the bound-
aries of the leaves so that it amounts in registering two un-
parametrized curves (represented by varifolds [8]). Per-
forming this registration with unstructured large deforma-
tion (LDDMM [4]) enables to obtain a good fit of these
curves but the grid deformation does not correspond to a
basipetal growth (see Figure 2). Even when we register
simultaneously theses curves and the dots black dots ex-
tracted from Figure1a (which were drawn on the leaves be-
fore their growth), the grid deformations is not satisfying
(see Figure 8 second row).

1https://github.com/imodal

We present here how IMODAL allows to model this
growth. We use an implicit module of order 1 (see Sec-
tion 2.3.3) and we first need to set its parameters. The initial
geometrical descriptors are geometrical frames (see Sec-
tion 2.3.3): their origins (dots) are set automatically, given
a chosen point density and the source shape, using the tools
implemented in IMODAL (see Figure 9b). We initialized
the rotation matrices attached to these points to identity i.e.
we assume here that the initial principle axes of local met-
ric change are the horizontal and vertical ones. These initial
parameters are not optimized but they evolve during the in-
tegration of the flow. We also set the scale of the scalar
Gaussian RKHS of vector fields, see Equation (1), to 30.
The last parameter to determine here is the growth model
operator, and, as we do not know it, we need to estimate
it from the observed data. We choose the dimension of the
control space P equal to 1 as we do not search to decom-
pose the growth in several sub-growth models. In addition,
instead of estimating independently the components C[i]
of the growth model tensor, we suppose that they depend
smoothly on the xi’s. We assume that this dependence can
be modelled with a polynomial function of degree 3 depend-
ing only on the y-axis (so that the point-correspondence of
the left-part between the observed ink dots influences C ev-
erywhere). The parameters of the polynomial can be es-
timated by using a callback function which is triggered at
each evaluation. The output of the registrations is then in
three parts: (i) this polynomial, defining the growth model
tensor, (ii) the matching of the leaves using the estimated
growth model tensor, (iii) trajectories of controls t 7→ h(t)
quantifying how each module is used at each time.

In order to obtain a better fit, we combine this implicit
deformation module of order one with a module generating
a global translation and an implicit module of order 0 (see
Section 2.3.3) which will produce small corrections of the
deformation model produced by the implicit module of or-
der 1. Its geometrical descriptors are initialized by points
on the boundary of the leaf (see Figure 9b).

We present in Figures 8 (first row) the result of these
registrations. The initialized and estimated growth factor
are represented by ellipses in Figures 9c and 9d. In the esti-
mated one, the ellipses are larger at the base of the leaf: the
estimated growth model is basipetal.

If we use this estimated growth model tensor, we can
also register only the curves (boundaries of the leaves)
and reconstruct a basipetal growth even without the point-
correspondence of the ink dots as shown in Figure 2 first
row. We follow the same strategy to register the curves
extracted from Figure 1b with unstructured deformations
(Figure 10b) and with IMODAL (Figure 10c): the acropetal
growth pattern is only recovered with IMODAL.
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Figure 8: Basipetal growth: registration of curves and dots
using IMODAL or unstructured large deformations. The
source is blue, target is green and deformed source is red.

(a) (b) (c) (d)

Figure 9: (a) Data extracted from Figure 1a ; (b) Initial ge-
ometrical descriptors: black (order 1) and green (order 0) ;
Initialization (c) and estimation (d) of the growth factor.

(a) (b) LDDMM (c) IMODAL

Figure 10: Modelling acropetal growth through curves reg-
istration (extracted from Figure 1b). Source in blue, target
in green, deformed source in red.

Figure 11: Estimated controls
for the registration of Fig-
ure 13. Red (horizontal) and
orange (vertical) for the trunk
elongations, blue (horizontal)
and green (vertical) for the
crown ones.

3.2. Analyzing differences in images

In a second example, we present how our framework al-
lows to analyse the differences between two images, focus-
ing on particular, user-chosen, aspects. The interpolation
of images used in the algorithm is based on the code de-
veloped in Deformetrica [6]. Let us consider the two im-
ages presented in Figure 12 (from the MPEG-7 Core Ex-
periment CE-Shape-1 database [5]): they show two pine
trees that differ in the height and width of their trunks and
crowns, and as well on the shape of the crown. In addi-
tion, the source image is segmented so that the trunk and
the crown are localized. We consider the case where we are
interested in the variation of these widths and heights, and
then we design an adapted implicit deformation module of
order 1 (see Section 2.3.3). The geometrical descriptor is
initialized using the segmentation: points are uniformly po-
sitioned around the trunk and the crown (see Figure 12), we
emphasize again here that they are automatically positioned
given the segmentation and a point density. The rotation
matrices attached to these points (defining local frames, see
Section 2.3.3) are initialized to identity. In order to study
the variation of width and height within the trunk and the
crown, we define the growth model tensor C in the follow-
ing manner: equal to C[i] = ( 1 0 0 0

0 1 0 0 ) if the i-th point is in
the trunk and C[i] = ( 0 0 1 0

0 0 0 1 ) if it is in the crown. This
means that the control variable h is of dimension 4 at each
time, the first two components control the growth factor at
the trunk (horizontal and vertical stretching), and the last
two control it at the crown. In the trunk and crown areas,
vertical and horizontal stretching can be used independently
but uniformly in the two areas. The result of the registra-
tion is presented in Figure 13 (first row). Here the goal is not
to obtain the best fit as possible, but to obtain the best one
using only the allowed vocabulary imposed by the choice
of deformation module and then to analyse it by studying
the values of the controls. They are presented in Figure 11,
positive controls correspond to an elongation while negative
ones correspond to shrinking. By analysing them one can
deduce that the width of the trunk is almost constant, the
crown becomes larger and the whole tree becomes taller.

An interesting feature of IMODAL is the possibility to
follow the action of each part of the total deformation, we
present in Figure 13 (last two rows) the deformation ob-
tained by following the action of the vertical elongation of



(a) Source (b) Target (c) Modules

Figure 12: Image analysis. Points in 12c are the implicit
module’s geometrical descriptors (trunk in orange, crown
in green).

t = 0 t = 0.3 t = 0.7 t = 1

Figure 13: First row: registration; Second row: Following
trunk elongation; Third row: Following crown shrinking.

the trunk and the horizontal shrinking of the crown.

3.3. Learning the intrinsic local frames

In all the previous examples, the local frames attached
to the object to define the principal directions of the growth
factor are supposed to be known. However, this is not al-
ways the case and we show here that this parameter can
be estimated. We consider the registration of the Stanford
bunny and a ’sheared’ version of it (see Figure 14). These
surfaces have no point-correspondence and then we use the
varifold [8] setting to compute the data attachment term.
We use an implicit deformation module of order one, and
initialize the point-components of the geometrical descrip-
tor in a convex envelop of the source shape (this is done
automatically given a point density). The rotation matrices
attached to these points and coding for the local orientation
of the object are initialized to the identity matrix. We esti-
mate them while performing the registration by using a call-
back function. Given the data, we assume that the growth
model tensor, is the same at each point (it is then of di-
mension 3), and we estimate it. We combine this implicit
module with a module generating a global translation, one

Figure 14: (left) Source ; (middle) Target ; (right) Match

Figure 15: Local frames at t = 0: initialisation (left) and
optimisation (right).

generating a global rotation because the data are not rigidly
registered and an implicit module of order 0 (with a high
cost penalization). We present in Figure 14 the result of the
registration. We also present in Figure 15 the initialization
and optimisation of the local frames defining the initial ge-
ometrical descriptor of the implicit module. One can see
that they align themselves with the ’stretching’ directions.
The estimated growth factor, is (3.2,−2.4, 0.3): there is an
elongation in the ’updated’ x-axis (in red) and a shrinking
in the ’updated’ y-axis (in yellow). Here the shearing is
built as an elongation along an axis, a contraction along an
orthogonal one and a global rotation.

4. Discussion
As we have seen, the implicit deformation module ap-

proach implemented in the IMODAL library offers a ver-
satile environment for the user to incorporate prior knowl-
edge for shape and image analysis through large deforma-
tions, and provides tools to disentangle the variability be-
tween objects. The implementation scales from 2D to 3D
shapes and we illustrated how some parameters of the de-
formation model can be easily learnt when unknown paving
the way, beyond to above proofs of concept, to a more in-
depth exploitation in biological and medical contexts.
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