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We compute mean waiting times between thermally-activated magnetization reversals in a nan-
odisk with parameters similar to a free CoFeB layer used in magnetic random access memories.
By combining Langer’s theory and forward flux sampling simulations, we show that the Arrhenius
prefactor can take values up to 10?* Hz, orders of magnitude beyond the value of 10° Hz typically
assumed, and varies drastically as a function of material parameters. We show that the prefactor
behaves like an exponential of the activation energy, which highlights a case of the Meyer-Neldel com-
pensation rule. This suggests that modeling information retention times with a barrier-independent
prefactor in such magnetic storage elements is not justified.

The Meyer-Neldel (MN) rule, also known as entropy-
enthalpy compensation or the isokinetic rule, has been
known empirically to chemists since the 1920s [1] and
to physicists since 1937 [2]. It describes many processes
across the natural sciences [3], such as biological death
rates [4], transport in semiconductors [2, 5], chemical re-
action rates [6], and geological diffusion profiles [7]. For
thermally activated processes whose rate k follows an
Arrhenius-type law [8],

k= foe_ﬁAE7 (1)

in which AF is the internal energy barrier, 3 = (kgT) ™!
is Boltzmann’s factor, and fj is the Arrhenius prefactor,
then if the Meyer-Neldel rule applies [3, 9, 10],

AE
In fo = In foo + — + b, (2)
Eo

where Ej is a characteristic energy of the family of tran-
sitions, foo is a positive factor and b is a constant. A gen-
eral result is that processes described by Eq. (2) should
possess a large activation energy compared to the ther-
mal energy and the fundamental excitations in the sys-
tem. The quanta of excitation of the heat bath are typi-
cally bosons, such as phonons in solid state physics, pho-
tons in the case of electronic transitions, or magnons in
magnetism. Since AF = AE — TAS, where AF is the
Helmholtz free energy, Eq. (1) may be reformulated as

k = fooe PAF = fogetS/kee=BAE, (3)

and compensation follows if AS/kp = AE/Ey + b. This
type of relation seems to naturally arise in the case of
large activation energies, by counting the number of ways
the heat bath can furnish the energy needed to overcome
the barrier [11]. Refs. 9 and 10 find that compensation
should be associated to multi-excitation processes.
Within the magnetism community, it is common prac-
tice to consider the attempt frequency as a characteris-
tic timescale of the dynamics, i.e., fo ~ 1 GHz. The

knowledge of the internal energy barrier then naturally
leads to a direct estimation of the rate of thermally ac-
tivated magnetic transitions via Eq. (1) [12-15]. In par-
ticular, this is the case for the mean waiting time be-
tween magnetization reversals in nanostructures, such
as nm-thick disks used in magnetoresistive random ac-
cess memories (MRAM). Their stability can be evaluated
as A = B300AFE, where B399 is Boltzmann’s factor at
T =300 K [16]. A typical metric for information storage
is a 10-year retention time, which requires a minimum
of A ~ 50. Recently, efforts to estimate the thermal
stability of magnetic skyrmions have hinted that such
an approach does not hold. In systems with a multidi-
mensional phase space, the Arrhenius prefactor cannot
be interpreted as a literal “attempt frequency”, because
it also carries an important activation entropy [17-21].
Nevertheless, this effect has often been attributed to the
nontrivial topology of magnetic skyrmions, rather than a
general result [17, 20]. Meanwhile, more recent develop-
ments in MRAM have focused on storage elements with
perpendicular magnetic anisotropy (PMA). The intro-
duction, in the free layer, of elements with a strong spin
orbit coupling, in order to enhance the PMA, has been
shown to also induce a large interfacial Dzyaloshinkii-
Moriya interaction (DMI) [22]. The typical configuration
at the saddle point (SP) for the switching of the magne-
tization in such systems is two oppositely magnetized do-
mains separated by a domain wall [23]. The DMI selects
a preferred chirality of the wall and lowers its energy,
thus leading to lower activation energies and, from the
assumption fy ~ 1 GHz, dramatically reduced retention
times [23, 24].

In this Letter, we show by applying Langer’s the-
ory [25] and forward flux sampling (FFS) [26, 27] that the
prefactor for magnetization reversals in nm-thick disks
can take extreme, seemingly non-physical values and vary
drastically as a function of material parameters. We find
that it behaves like an exponential of the activation en-



D (mJ/m?) K (MJ/m?) 3
15 2 25 3 35 0.18 0.22 0.26 K(MJ/I‘T‘I)
| ] 0.12 0.16 0.2 0.24
40 40 40
(b) s (c) (d) T
30 30
w 30
<
I3
BagoAE 20

|

0 0.5 10 05 1 05 1 15 2
Reaction coordinate D (mJ/m?)

FIG. 1. (a) Minimum energy path for the magnetization re-
versal in the disk from the ‘A’ (“up”) to the ‘B’ (“down”)
state through the saddle point ‘S’. (b, ¢) Energy profile along
the reaction coordinate as a function of (b) DMI, D, and (c)
anisotropy, K, with B30 = (kBT300)71 at T = 300 K. (d)
Internal energy barriers as a function of D and K.

ergy, which stems from a linear variation of the activa-
tion entropy with the energy barrier, and thereby demon-
strates a case of the Meyer-Neldel compensation rule.

To illustrate these compensation effects for magnetic
memory elements, we follow the example in Ref. 23
and study a perpendicularly-magnetized CoFeB ultrathin
film in a nanopillar within the micromagnetic approxima-
tion. The geometry comprises a disk of 32 nm in diameter
with a thickness of d = 1 nm, which we model using fi-
nite difference cells 1 x 1 x 1 nm? in size. We take an
exchange constant of A =10 pJ/m, a saturation magne-
tization of My = 1.03 MA/m, and a variable interfacial
DMI constant D > 0. Dipolar interactions are treated in
the local approximation through the use of an effective
perpendicular anisotropy, K = K, — (N, — N)uoM?2/2,
where N; are the demagnetizing factors of the disk [28]
and K, = 0.77 MJ/m?3 is the base value. Below a critical
DMI strength of D, = 47 'v/AK, the ground state is
degenerate between uniformly-magnetized ferromagnetic
(FM) states along the +z (“up”) and —z (“down”) direc-
tions. Above D., noncollinear states are favored, and the
domain wall energy, o, = 4V AK — wD, becomes lower
than that of the FM state. Our goal here is to directly
calculate the information retention time of the disk —i.e.,
the mean waiting time, 7 = k!, between magnetization
reversals.

We begin with the search for minimum energy paths
(MEPs) connecting the two stable FM states — ‘A’ and
‘B’ — through the energy surface, and the precise identifi-
cation of the first-order saddle point, ‘S’, along the MEP.
This is carried out with the geodesic nudged elastic band
method [29]. The MEP is shown in Fig. la. The re-
versal takes place via the nucleation of a domain wall at
the boundary, which then propagates through the disk.

The SP is found as the domain wall reaches the center of
the disk, in agreement with previous studies [16, 23, 30].
Note that because of the staircase boundary resulting
from the discretization, the wall at the SP is not free
to rotate around the z-axis, and the lowest energy real-
izations at ‘S’ exist as two perpendicular orientations of
the wall, along the z- or the y-axis. In the absence of
dipolar interactions or DMI, there is however a degener-
acy between Bloch and Néel walls, which manifests in the
appearance of a Goldstone eigenmode of zero-energy fluc-
tuations. In reality, dipolar couplings favor Bloch walls
in perpendicularly magnetized thin films, and this Gold-
stone mode has no physical relevance. Therefore, we con-
sistently apply a minimum DMI of 0.25 mJ/m?3, which
naturally selects Néel walls [31, 32], in agreement with
Ref. [23]. We set the effective anisotropy at K = 187
kJ/m? [23] and we vary D up to 3.5 mJ/m?. Fig. 1b
shows the energy profile along the reaction coordinate
for different values of D. For D = 2.5 mJ/m?, the con-
figuration with the domain wall in the center becomes
metastable. In Fig. 1d, we show the internal energy bar-
rier as a function of D. As one can expect, the energy of
the wall varies linearly with D [23, 24, 30]. We then set
D = 0.25 mJ/m? and vary K from 0.1 to 0.26 MJ/m3.
Below this lower bound, the characteristic wall width,
0w = \V/A/K, becomes comparable with the size of the
disk and the behavior of the system begins to change.
The energy profiles are shown in Fig. 1c, and the cor-
responding energy barriers are shown in Fig. 1d. Once
more, the result matches analytical predictions, as the
energy of the wall varies like VK.

Next, retention times are calculated as a function of
D and K through two distinct approaches. The first
relies on the Kramers method [8] following Langer’s ap-
proach [25] for which the rate constant is expressed as

k= A——FQOe*BAE = /\i I )\z e BAE, (4)
2m 2m [ T, (A3
A4 carries the dynamical contribution and corresponds to
the rate of growth of the instability at the saddle point.
We provide details on its derivation in the Supplemental
Material (SM) [33]. The A*S are the curvatures of the
energy surface at ‘A’ and ‘S’. ) therefore depends on the
details of the fluctuations in the initial state and at the
SP and carries the entropic contribution. The theory con-
stitutes the most complete extension of Kramers’ method
to a multidimensional energy surface, but it is in princi-
ple restricted to intermediate to high dampings. In that
limit, it can be applied to magnetic spin systems [34, 35]
and has been successfully used to calculate the lifetime
of magnetic skyrmions [19, 21, 36]. At low damping,
the density of states deviates more significantly from the
equilibrium Maxwell-Boltzmann distribution, so the as-
sumptions of the theory become less valid. Since the typ-
ical damping factor for CoFeB thin films is « = 0.01 [37],



we compute rates in a range of a from 0.5 to 0.01,
while bearing in mind that their accuracy decreases as
« decreases. Another important assumption in Kramers’
framework is sink boundary conditions past the barrier,
i.e., barrier recrossings are not considered. In that sense,
the theory should be limited to metastable states decay-
ing to a lower energy minimum. In practice, it can be
applied to a symmetric potential [38], but yields only a
forward rate and neglects the recrossings that will neces-
sarily take place. Therefore, the waiting times between
reversals are under-evaluated.

Our second approach to rate calculations is forward
flux sampling (FFS). This path sampling method, ini-
tially developed in the field of biochemistry [26, 27] for
simulating rare events and computing activation rates,
has also been successfully adapted to magnetic systems
to treat problems such as reversal rates in graded me-
dia grains [39, 40] or collapse rates of skyrmions [21]. In
the latter, it yields good agreement with Langer’s the-
ory. The method consists in sampling the stochastic
magnetization dynamics at finite temperature [41] but
is significantly more efficient than direct Langevin simu-
lations [39] and, as opposed to Langer’s theory, does not
require any additional assumptions to hold. It is there-
fore a convenient way to check whether the rate of a par-
ticular transition can reasonably fall within the frame-
work of Langer’s theory. It relies on a set of interfaces
in configuration space, {Aa, Ag, ... A, = A}, defined as
iso-surfaces of a monotonically varying order parameter,
¢. A flux of trajectories of the system through each inter-
face is computed by Langevin trial runs, which involves
integrating the stochastic Landau-Lifshitz equation [42].
The rate constant of the transition can be decomposed
into a product of the partial fluxes as

n—1

k=®a0 [ P(AiralA), (5)
=0

where @, ¢ is the rate at which trajectories starting from
region ‘A’ cross the first interface Ag, and the conditional
probabilities, P(A;11]A;), correspond to the probability
that a trajectory coming from ‘A’ that crossed A; for
the first time will cross A;;1 before returning to ‘A’. For
best efficiency, FFS requires a pertinent choice of the
order parameter. Here we choose the z component of the
magnetization averaged over all sites, ¢ =V~ [dV m,.

In Fig. 2, we show the mean waiting time between
reversals at 7 = 300 K as a function of DMI [Fig.
2a | and anisotropy [Fig. 2b] calculated with a finite-
difference implementation of Langer’s theory, and FFS
simulations performed with a homemade code [21] and
MuMax3 [43, 44]. With the latter, we performed a single
run with full dipole-dipole interactions, which is labeled
in Fig. 2(a) as ‘DDI’. We find a good qualitative agree-
ment between Langer’s method and FFS. As expected,
FFS yields larger values of 7 than those of Langer’s the-
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FIG. 2. Mean waiting time between reversals at 300 K, 7, as
a function of the (a) DMI, D, and (b) anisotropy, K, com-
puted with Langer’s theory and FFS for different values of the
Gilbert damping, . The insets give a comparison between
Langer’s theory and the estimate based on fo = 1 GHz. In
(a), a single run with full dipole-dipole interactions (DDI) is
also shown.

ory, because barrier recrossings are quite frequent. As
a result, the flux of trajectories past the SP does not
quickly approach unity, like it would if recrossings were
negligible. When we decrease the damping in FFS, devi-
ations from Langer’s theory increase as the assumptions
of Langer’s become less valid. Micromagnetics simula-
tions are also performed with full dipolar interactions
and o = 0.01. This case is closer to physical systems and
is the furthest one from Langer’s framework, but the life-
times are still comparable with Langer’s theory. Fig. 2a
shows that a D of 1 mJ/m? leads to a reduction of T by
about one or two orders of magnitude, and not five-six
orders of magnitude like previously anticipated from the
constant fo approximation [23]. In both cases, the largest
stability factors of 32 and 40 [Fig. 1d] respectively yield
a retention time of the order of 107! — 1072s, and a few
seconds.

We now examine the variation in the Arrhenius pref-
actor, which we show in Figs. 3a and 3b as a function
of D and K, respectively. We find values up to 10'7 Hz,
which is orders of magnitude greater than the value of
10° Hz typically used for estimating thermal stability.
These may appear unphysical, but the dynamical contri-
bution, Ay, does fall in the GHz range, as we show in the
SM [33]. The large values of fo stem from the entropic
contribution. Following previous works [8, 19, 21, 45], we
define the change in configurational entropy as

asses | B [TLA?
. \/;’/H;Af’ ©)

where H/ is defined for positive energy curvatures corre-
sponding to stable modes of fluctuations. It follows that
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FIG. 3. Arrhenius prefactor, fo, as a function of the (a) DMI,
D, and (b) anisotropy, K, computed with Langer’s theory and
FFS for different values of the Gilbert damping, «. Points
involving full dipole-dipole interactions (DDI) were obtained
with energy barriers from Ref. 23.

Eq. (4) can be expressed as

At eAS/kBe—ﬁAE’ (7)

V2mBAT |

in which A\{ is the negative curvature at the barrier top
and is associated with the unstable mode. The system
overcomes the barrier by following this mode — in our
case, it corresponds to the translation of the wall. If AS
exhibits a linear dependence on AFE, we have a case of
compensation.

In Fig. 4 we plot AS/kp, as defined in Eq. (6), as
a function of AF for different values of D and K. The
inset shows the corresponding behavior of the prefactor
on a logarithmic scale. We present values of K up to 1
MJ/m?, for which fy reaches 10?! Hz. We reiterate that
such values include large entropic contributions, while re-
laxation processes captured in A; remain governed by the
Landau-Lifshitz equation and lie in the GHz range. In
both cases, we find a linear relation between them. The
inverse slope is Ey [Eq. (2)], the characteristic Meyer-
Neldel energy of the family of transitions. Note that
8 does not impact the slope of the graph, and we find
compensation regardless of the temperature, as long as
Langer’s framework remains valid (BAFE > 5 [34]). When
varying D, we find Ey = 0.92Ad, while when varying K,
we have Fy = 2.06Ad, in which Ad sets the energy scale
of magnons. Ultimately, the activation entropy is found
to be more detrimental to the retention time than the
DMI.

We offer two ways to interpret this result. First, con-
figurational entropy characterizes the change of volume
available to thermal fluctuations on the energy surface
induced when the system reaches the SP. Compensation
implies that the volume at the saddle point is greater
than that of the stable state, i.e., there are more acces-
sible states around the SP, which makes it more likely
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<2 40t
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FIG. 4. Activation entropy at T=300 K, AS300/kp, com-
puted with Eq. (6), as a function of the activation energy
normalized by the characteristic exchange energy, AF/(Ad),
for variations in D and K. Solid lines represent linear fits to
the data. The inset shows the corresponding variation of fo
for a = 0.5 with the same horizontal scale.

to be visited. This change of volume increases with the
barrier height. This explains the frequent recrossings ob-
served in FFS simulations, and the fact that the system
seems to spend a long time in the vicinity of the SP. The
magnon dispersion relation in the long wavelength limit
behaves like (M,/27)w™(q) = A¢? + K in the FM state,
where ¢* = ¢3 + ¢, and 7 is the gyromagnetic constant.
For magnons propagating parallel to the wall at the SP,
i.e, along x, gapless modes appear with the dispersion
(M, /27)wS(q.) = Aq? [46, 47]. The presence of these
gapless, low energy modes at the SP is in line with a
largest entropy at the barrier top. In the SM [33], we
show that the logarithm of the ratio of products of these
eigenfrequencies along , i.e., InJ], w? / wis, can be linked
back to €y in Eq. (4) and tends to behave like AE if
AE > Ad.

A second interpretation lies in the dynamics of the
transition. With increasing barrier height, a larger num-
ber of small excitations is required to overcome the bar-
rier, and the number of ways to combine these excita-
tions increases [3, 9-11]. Compensation therefore results
from a multi-excitation process, akin to a “dynamical en-
tropy” of the bath [11]. The two interpretations are not
incompatible, because a large volume around the SP also
implies that there must be many pathways on the energy
surface that lead to it. Besides the MEP which involves
the reaction coordinate, the other paths must necessar-
ily mix the eigencoordinates, which results in the exci-
tation of many magnon modes. It has been suggested
that compensation should occur for magnon-driven tran-
sitions [11], with a characteristic energy determined by
the exchange (A) and the energy dependence of the den-
sity of states of magnons (p(E) ~ v/E). When varying
A at constant D and K, we do not find compensation,
which seems to confirm this idea. The difference by a
factor of two in the slope between D- and K-driven com-



pensation may stem from the lifting of the degeneracy
between counter-propagating azimuthal modes in con-
fined structures with D [48]. The authors of Ref. 11
suggest that compensation should appear for ensembles
of transitions for which AFE varies between members, but
the effective coupling to the heat bath, remains the same.
Compensation may therefore be a general feature of mag-
netic systems with large activation energies.
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