
HAL Id: hal-03251738
https://hal.science/hal-03251738v1

Preprint submitted on 7 Jun 2021 (v1), last revised 16 Sep 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Precision Low Rank Approximations and their
Application to Block Low Rank LU Factorization

Patrick Amestoy, Olivier Boiteau, Alfredo Buttari, Matthieu Gerest, Fabienne
Jézéquel, Jean-Yves L’Excellent, Théo Mary

To cite this version:
Patrick Amestoy, Olivier Boiteau, Alfredo Buttari, Matthieu Gerest, Fabienne Jézéquel, et al.. Mixed
Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization.
2021. �hal-03251738v1�

https://hal.science/hal-03251738v1
https://hal.archives-ouvertes.fr

MIXED PRECISION LOW RANK APPROXIMATIONS AND THEIR
APPLICATION TO BLOCK LOW RANK MATRIX FACTORIZATION∗

PATRICK AMESTOY† , OLIVIER BOITEAU‡ , ALFREDO BUTTARI§ , MATTHIEU

GEREST‡ , FABIENNE JÉZÉQUEL¶, JEAN-YVES L’EXCELLENT† , AND THEO MARY‖

Abstract. We introduce a novel approach to exploit mixed precision arithmetic for low rank
approximations. Our approach is based on the observation that singular vectors associated with
small singular values can be stored in lower precisions while preserving high accuracy overall. We
provide an explicit criterion to determine which level of precision is needed for each singular vector.
We apply this approach to block low-rank (BLR) matrices, most of whose off-diagonal blocks have
low rank. We propose a new BLR LU factorization algorithm that exploits the mixed precision
representation of the blocks. We carry out the rounding error analysis of this algorithm and prove
that the use of mixed precision arithmetic does not compromise the numerical stability of BLR LU
factorization. Moreover our analysis determines which level of precision is needed for each floating-
point operation (flop), and therefore guides us towards an implementation that is both robust and
efficient. We evaluate the potential of this new algorithm on a range of matrices coming from real-life
problems in industrial and academic applications. We show that a large fraction of the entries in the
LU factors and flops to perform the BLR LU factorization can be safely switched to lower precisions,
leading to significant reductions of the storage and flop costs, of up to a factor three using fp64, fp32,
and bfloat16 arithmetics.

Key words. numerical linear algebra, rounding error analysis, floating-point arithmetic, mixed
precision algorithms, multiprecision algorithms, block low-rank matrices, data sparse matrices, LU
factorization, linear systems, low-rank approximations, singular value decomposition

AMS subject classifications. 65G50, 65F05, 65F08, 65F10, 65F50

1. Introduction. The emergence of low precision arithmetics on modern hard-
ware, such as the half precision floating-point formats fp16 and bfloat16, has generated
a renewed interest in mixed precision algorithms. These algorithms combine low pre-
cisions with higher ones in order to improve the performance of the computations
(speed, memory and energy consumption) without compromising their accuracy or
stability. New mixed precision variants of numerical linear algebra algorithms have
been recently proposed, for example, for matrix multiplication [11, 12, 27, 29, 4], it-
erative refinement [13, 14, 21, 6], LU [11, 26] and QR [34, 35] matrix factorizations,
Krylov solvers [19, 3], least squares problems [15], and many others [1].

In this article, we investigate the use of mixed precision arithmetic in a new class
of algorithms: low-rank approximations, in particular those obtained with a singular
value decomposition or a rank-revealing decomposition (such as QR with column

pivoting). Let A ∈ Rm×n and let XΣY T =
∑min(m,n)

i=1 xiσiy
T
i be its singular value

decomposition (SVD)1. Given a target accuracy ε, a low-rank approximation T of A
satisfying ‖T − A‖ ≤ ε‖A‖ can be built from the truncated SVD T =

∑r
i=1 xiσiy

T
i ,

where r is the rank of T .

∗Version of June 8, 2021.
†Mumps Technologies, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France

(patrick.amestoy@mumps-tech.com; jean-yves.l.excellent@mumps-tech.com)
‡EDF R&D (olivier.boiteau@edf.fr; matthieu.gerest@edf.fr)
§CNRS, IRIT, 2 Rue Charles Camichel, F-31071 Toulouse, France (alfredo.buttari@irit.fr)
¶Sorbonne Université, CNRS, LIP6, and Université Panthéon-Assas, Paris, F-75005, France (fa-

bienne.jezequel@lip6.fr)
‖Sorbonne Université, CNRS, LIP6, Paris, F-75005, France (theo.mary@lip6.fr)
1We write XΣY T rather than the usual UΣV T to avoid any confusion between the left singular

vectors, the unit roundoffs ui (see (2.4)), and the upper factor from LU factorization.

1

mailto:patrick.amestoy@mumps-tech.com
mailto:jean-yves.l.excellent@mumps-tech.com
mailto:olivier.boiteau@edf.fr
mailto:matthieu.gerest@edf.fr
mailto:alfredo.buttari@irit.fr
mailto:fabienne.jezequel@lip6.fr
mailto:fabienne.jezequel@lip6.fr
mailto:theo.mary@lip6.fr

Our starting idea for this work is to ask what precision should be used to store
T and to operate on it. In the literature, the truncated SVD (or indeed any other
form of low-rank decomposition) is stored in the lowest possible precision with unit
roundoff safely smaller than ε; for example, if ε = 10−12 and we have access to the
floating-point arithmetics defined by the IEEE standard, existing algorithms would
use double precision (for which the unit roundoff is ud ≈ 1×10−16), because the next
lower precision, single precision, has a unit roundoff us ≈ 6× 10−8 much larger than
the prescribed ε.

However, in this article we explain why and how we can actually exploit much
lower precisions, with almost no loss of accuracy. We show that singular vectors
associated with sufficiently small singular values can be stored at precisions with unit
roundoff larger than ε‖A‖ while maintaining an overall approximation accuracy of
order ε‖A‖. For example, with ε = 10−12, any singular vector xi whose associated
singular value σi is smaller than ε‖A‖/us ≈ 2 × 10−5‖A‖ can be stored in single
precision. Indeed, the single precision vector x̂i satisfies ‖x̂i−xi‖ ≤ us, but the overall
error introduced by replacing xi by x̂i is bounded by ‖(x̂i−xi)σiyTi ‖ ≤ (ε‖A‖/us)us =
ε‖A‖. As can be seen from this example, the reason we can afford to convert some
singular vectors to lower precision is because the error introduced by this conversion
is demagnified by the singular value; hence the error may be safely bounded if σi is
small enough.

In the following we formalize this intuition with an error analysis considering
an arbitrary number of precisions. Moreover our analysis applies to any low-rank
decomposition of the form T = XY T where X has orthonormal columns. Indeed the
mixed-precision approach presented here is general and can be used for several other
low-rank approximations, in particular rank-revealing QR decompositions.

Clearly, the potential of the proposed approach depends on whether the singular
values of the matrices to be approximated decay rapidly. In the second part of this
article, we apply this approach to an important class of matrices: data sparse, rank-
structured matrices, whose off-diagonal blocks have low numerical rank [10]. We focus
in particular on the block low-rank (BLR) format [5, 7], although the approach is also
applicable to hierarchical formats. Our numerical experiments demonstrate that the
proposed mixed precision low-rank representation presents a very high potential in
this context: a large fraction of both the entries needed to represent BLR matrices
and the floating-point operations (flops) needed to compute their LU factorization
can be switched to lower precisions.

The rest of this article is organized as follows. In section 2, we describe the
proposed mixed precision low-rank representation and show that the loss of accuracy
introduced by the use of lower precisions can be rigorously bounded. We then apply
this representation to BLR matrices in section 3. In section 4, we analyze how to
compute the LU factorization of a BLR matrix using mixed precision arithmetic. We
present numerical experiments on a range of real-life matrices in section 5, before
concluding in section 6.

Throughout the article, the unsubscripted norm ‖ · ‖ denotes the Frobenius norm

‖A‖ =

(m∑
i=1

n∑
j=1

a2ij

)1/2

=

(min(m,n)∑
i=1

σ2
i

)1/2

. (1.1)

We also define γ
(`)
k = ku`/(1− ku`) for any k > 0 and for any unit roundoff u`.

2

2. Mixed precision low-rank approximations. Let A ∈ Rm×n and let T be
a low-rank approximation of A satisfying

‖A− T‖ ≤ εβ, (2.1)

where ε > 0 is the target accuracy and where β is a scaling parameter chosen by the
user: a natural choice is β = ‖A‖, which leads to an accuracy of ε relative to ‖A‖, but
other choices are possible and will be explored in the next sections on BLR matrices.

Hereinafter, we refer to the precision that T is stored in as the working precision,
and we assume that its unit roundoff u1 is safely smaller than ε, that is, u1 � ε.

Given the SVD A =
∑n

i=1 xiσiy
T
i , it is well known that the approximation of A

of lowest rank is given by the truncated SVD

T = XΣY T =

r∑
i=1

xiσiy
T
i , X ∈ Rm×r, Y ∈ Rn×r, (2.2)

where the rank r is the smallest integer such that (2.1) is satisfied. Neglecting any
noise associated with the working precision, r is given by

r = min

{
k :

(n∑
i=k+1

σ2
i

)1/2

≤ εβ

}
. (2.3)

The goal of this section is to prove that depending on the singular values of T , we
can use lower precisions than the working precision (with unit roundoff larger than
ε) and still preserve an overall approximation error of order ε. We first carry out our
analysis for the SVD, but also provide at the end of this section its extension to other
types of low-rank approximation methods, such as rank-revealing QR.

In this article, we only consider the use of arithmetics with less significant bits.
We assume that the use of lower precision arithmetics with less exponent bits than
the working precision does not lead to any overflow or underflow. To ensure that this
assumption is satisfied, in our experiments, we focus on the use of bfloat16 arithmetic
(which has the same range as fp32), rather than fp16 (which has a much narrower
range).

Let us assume that p different floating-point arithmetics are available (including
the working precision u1), and that their unit roundoffs satisfy

u1 � ε < u2 < . . . < up. (2.4)

Let us consider a partition of matrix T into p groups

T = XΣY T =
[
X1 . . . Xp

] Σ1

. . .

Σp

[Y1 . . . Yp]T , (2.5)

where Tk = XkΣkY
T
k is formed of a subset of the singular values and vectors of T .

We denote by rk the rank of Tk, which is the number of singular values assigned to
group k.

We now analyze the effect of converting Tk to precision uk. We assume that only
the singular vectors Xk and Yk are converted, whereas the singular values Σk are kept
in precision u1. This is because the storage for Σk is negligible compared with that of

3

Xk and Yk. We however note that adapting the analysis to the case where Σk is also
converted to precision uk is straightforward and only slightly increases the constants
in the error bounds. We write X̂k and Ŷk the converted vectors, and T̂k = X̂kΣkŶk
(note that since T1 is already in precision u1, T̂1 = T1). The following lemma bounds

‖T̂k − Tk‖ for k ≥ 2.

Lemma 2.1. Let Tk = XkΣkY
T
k where Xk and Yk have orthonormal columns,

and let T̂k = X̂kΣkŶk be obtained by converting Xk and Yk to precision uk. Then

‖T̂k − Tk‖ ≤ (2 +
√
rkuk)uk‖Σk‖. (2.6)

Proof. The converted X̂k and Ŷk satisfy, for k ≥ 2,

X̂k = Xk + Ek, |Ek| ≤ uk|Xk|, (2.7)

Ŷk = Yk + Fk, |Fk| ≤ uk|Yk|. (2.8)

Therefore we have

‖Tk − T̂k‖ ≤ ‖EkΣkY
T
k ‖+ ‖XkΣkF

T
k ‖+ ‖EkΣkF

T
k ‖. (2.9)

For the first term, we observe that

‖EkΣkY
T
k ‖2 = ‖EkΣk‖2 (2.10)

=
∑
j

σ2
j

∑
i

e2ij (2.11)

≤
∑
j

σ2
j

∑
i

u2kx
2
ij (2.12)

= u2k
∑
j

σ2
j = u2k‖Σk‖2, (2.13)

where we have used the fact that the columns of Xk have a norm of 1. Therefore

‖EkΣkY
T
k ‖ ≤ uk‖Σk‖. (2.14)

Similarly, we also have
‖XkΣkF

T
k ‖ ≤ uk‖Σk‖. (2.15)

Finally, for the third term, we have ‖EkΣkF
T
k ‖ ≤ ‖EkΣk‖‖Fk‖ and so

‖EkΣkF
T
k ‖ ≤

√
rku

2
k‖Σk‖. (2.16)

Reinjecting (2.14), (2.15), and (2.16) into (2.9) yields the result.

Lemma 2.1 shows that converting Tk to precision uk introduces an error of order
uk‖Σk‖, which is thus proportional to the size of the singular values in Σk. This
fundamental observation is at the foundation of the mixed precision representation
that we propose in this article. Indeed, Lemma 2.1 suggests that we can preserve an
overall accuracy of order εβ by partitioning the singular values in such a way that
‖Σk‖ ≈ εβ/uk.

In order to build such a partitioning where the size of the groups stored in lower
precision is as large as possible, it is easy to see that we should start by including the
smallest singular values in the last group first, until its norm exceeds εβ/up; at this

4

point, we can start building group p − 1 with the remaining singular values, and so
on. Therefore, the Σk are formed of consecutive singular values:

Σk = diag(σi), i = ik : ik+1 − 1, (2.17)

where the indices ik and ik+1 define which singular values are part of Σk, and can be
easily computed by the recursive formula:

ik = min

i :
(ik+1−1∑

j=i

σ2
j

)1/2

≤ εβ/uk

 , k ∈ [2 : p], (2.18)

starting with ip+1 = r+1 and ending with i1 = 1. We thus end up with a partitioning
of the SVD as defined by (2.17)–(2.18). We note that this partitioning is similar to
the Method 3 proposed in [30]. Our analysis justifies the use of this partitioning and
gives a precise rule to define the p groups depending on the singular values and on
the precisions.

This partitioning guarantees that ‖Σk‖ ≤ εβ/uk for all k ≥ 2 and so, by Lemma 2.1,
converting Tk to precision uk introduces an error bounded by

‖Tk − T̂k‖ ≤ (2 +
√
rkuk)εβ. (2.19)

By combining (2.19) over k = 2: p, we readily obtain a bound on the overall error
introduced by converting each Tk to precision uk.

Theorem 2.2. Let T be a low-rank approximation of A satisfying ‖A−T‖ ≤ εβ.
If T is partitioned into p groups Tk = XkΣkY

T
k as defined by (2.17)–(2.18), and

the Xk and Yk are converted to precision uk, the resulting matrix T̂ =
∑p

k=1 T̂k =∑p
k=1 X̂kΣkŶk satisfies

‖A− T̂‖ ≤
(

2p− 1 +

p∑
k=2

√
rkuk

)
εβ. (2.20)

Proof. The triangle inequality ‖A − T̂‖ ≤ ‖A − T‖ +
∑p

k=2 ‖Tk − T̂k‖ together
with (2.19) readily yields the result.

Theorem 2.2 shows that the mixed precision low-rank matrix T̂ approximates A with
an accuracy of order ε. To first order, the constant in this error bound is 2p − 1,
instead of 1 for the uniform precision matrix T : the introduction of lower precisions
therefore only increases the overall error by a very modest quantity. Moreover, we
note that by means of a more sophisticated proof that avoids the use of the triangle
inequality, this constant can be reduced to 2

√
p− 1. However, we will not use such

proofs for the sake of readability, and because the precise value of the constants in
the error bounds is unimportant, as long as they are not too large.

From a practical point of view, the SVD is expensive to compute and for this
reason other low-rank decompositions are often preferred, such as rank-revealing QR
decompositions. Theorem 2.2 can be easily extended to more general low-rank matrix
decompositions. For example, with a decomposition of the form XBY T , where X
and Y have orthonormal columns (the difference with the SVD being that B is not
diagonal), bound (2.20) holds with a slightly larger constant; one example of this form
is the UTV decomposition [18]. Our analysis can also be adapted to decompositions
of the form XY T , where X has orthonormal columns (but Y does not). This second
form is particularly of interest because it applies to rank-revealing QR decompositions.
We state the analogue to Lemma 2.1 for XY T decompositions below.

5

Lemma 2.3. Let Tk = XkY
T
k where Xk has orthonormal columns, and let T̂k =

X̂kŶk be obtained by converting Xk and Yk to precision uk. Then

‖Tk − T̂k‖ ≤ (2 +
√
rkuk)uk‖Yk‖. (2.21)

Thus, the error introduced by converting group k now depends on ‖Yk‖, and this
means that the XΣY T partitioning (2.17)–(2.18) should be adapted by replacing
‖Σk‖ by ‖Yk‖. Then, it is easy to show that Theorem 2.2 still holds. In the rest of
this article, we will focus on low-rank decompositions of the form XY T , computed by
means of a truncated QR factorization with column pivoting.

An important question is under what condition the low-rank compression is ben-
eficial, that is, when does the low-rank approximation T require less storage than the
original matrix A ∈ Rm×n. In the standard uniform precision case, T = XY T can be
represented with r(m+ n) entries, and so the condition is

r(m+ n) ≤ mn. (2.22)

With a mixed precision representation, this condition changes due to the fact that
entries belonging to groups k ≥ 2 are stored in lower precision. The condition becomes

(m+ n)

p∑
k=1

ckrk ≤ mn, (2.23)

where ck ponderates the cost of storing a floating-point number in precision uk instead
of u1. For example, if we use three precisions, fp64, fp32, and bfloat16, (2.23) takes
the form (m + n)(r1 + 0.5r2 + 0.25r3) ≤ mn. Interestingly, the difference between
conditions (2.22) and (2.23) means that a matrix that is not “low-rank enough” in
uniform precision can become so when using mixed precision arithmetic.

Crucially, the size rk of each group depends on the singular values. Indeed, group
k must satisfy ‖Σk‖ ≤ εβ/uk, so if A possesses many small singular values, the
low precision groups will be much larger than the first group stored in the working
precision u1. Conversely, if the singular values decay slowly, most of them must be
kept in the first group. Therefore, the potential gains achieved by the proposed mixed
precision representation completely depend on the spectrum of the matrix. In the rest
of this article, we focus on an important class of matrices that exhibit off-diagonal
blocks with rapidly decaying singular values, and therefore present a high potential
for mixed precision arithmetic.

3. Mixed precision BLR compression. Data sparse matrices are rank-structured
matrices most of whose off-diagonal blocks have low numerical rank. In this section,
we show how this property can be exploited to represent these matrices in mixed pre-
cision. We focus on a specific class of data sparse matrices, called the block low-rank
(BLR) format [5, 7, 9]. The approach described here could easily be extended to other
formats, such as hierarchical [20] or multilevel [8] ones.

3.1. Background on BLR matrices. A block low-rank (BLR) representation
T of a dense square matrix A ∈ Rn×n has the block q × q form

T =


T11 T12 · · · T1q

T21 · · · · · ·
...

... · · · · · ·
...

Tq1 · · · · · · Tqq

 , (3.1)

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3.1: Ranks of the blocks Tij of the BLR approximation of matrix P64 for ε =
10−10. The ranks are given as a percentage of the block size.

where Tii = Aii (the diagonal blocks are not compressed), and where the off-diagonal
blocks Aij of size b× b are approximated by matrices Tij satisfying

‖Aij − Tij‖ ≤ εβij , (3.2)

where βij > 0. The Tij matrices, of rank rij , are given by

Tij =

{
XijY

T
ij , i > j,

YijX
T
ij , i < j,

(3.3)

where Xij and Yij are b × rij matrices, and where Xij has orthornormal columns.
Even though, in general, each block can be of different dimensions, we assume for
simplicity that they are all of the same dimensions b× b, and so n = qb. Representa-
tion (3.3) guarantees the so-called outer orthonormality property [24, 28], which allows
for efficient intermediate recompressions during the factorization of a BLR matrix.

Importantly, the βij parameters in (3.2) are used to distinguish two types of
BLR compression, local and global, depending on whether block Tij approximates
Aij with error ε relative to the local norm βij = ‖Aij‖ or relative to the global norm
βij = ‖A‖. In their error analysis of the BLR factorization, Higham and Mary [24]
show that global compression achieves a better tradeoff between compression and
accuracy, and is therefore to be preferred. Throughout this article, we will thus use
global compression, for which we have the global error bound

‖A− T‖ ≤ qε‖A‖. (3.4)

Matrices amenable to BLR compression arise in a variety of applications, such
as partial differential equations, integral equations, and covariance matrices. In this
article, we focus on a range of dense matrices that are Schur complements of sparse
matrices. Our test matrices are listed in Table 5.1, and we will illustrate some aspects
of our analysis with the matrix P64. Figure 3.1 plots a heatmap of the numerical
ranks of the blocks of this matrix.

3.2. Error analysis of mixed precision BLR compression. We now seek
to combine BLR compression with the mixed precision representation proposed in
section 2. The natural approach is to simply use this mixed precision representation

7

Fig. 3.2: Precisions used for representing each block of a mixed precision BLR matrix
(matrix P64, ε = 10−10).

on every low-rank off-diagonal block of the BLR matrix, leaving the full-rank blocks
in the working precision u1. Then, it is easy to show that (2.20) becomes

‖Aij − T̂ij‖ ≤
(
2p− 1 +

p∑
k=2

√
r
(k)
ij uk

)
εβij , (3.5)

where r
(k)
ij is the rank of the matrix T̂

(k)
ij = X̂

(k)
ij (Ŷ

(k)
ij)T , that is, the number of

columns of Xij and Yij stored in precision uk. The next result bounds the error
introduced by mixed precision BLR compression.

Theorem 3.1 (mixed precision BLR compression). Let T be a BLR approx-
imation of A defined by (3.1)–(3.2) with βij = ‖A‖ (global compression). If the

off-diagonal blocks Tij are represented with the mixed precision representation T̂ij de-

scribed in section 2, the resulting BLR matrix T̂ satisfies

‖A− T̂‖ ≤ q
(

2p− 1 +

p∑
k=2

ckuk

)
ε‖A‖, (3.6)

with ck = maxi,j

√
r
(k)
ij .

Proof. Using

‖A− T̂‖2 =

q∑
i=1

q∑
j=1

‖Aij − T̂ij‖2 (3.7)

and (3.5), we readily obtain the result.

Compared with the uniform precision bound (3.4), the mixed precision bound (3.6)
is thus larger by a modest factor of about 2p− 1. Theorem 3.1 therefore shows that
we can exploit mixed precision arithmetic in the BLR compression while preserving
an accuracy of order ε.

3.3. Types of mixed precision blocks. Figure 3.2 shows an example of a
mixed precision BLR matrix, plotting for each of its blocks the precisions that are
effectively used to represent it. With ε = 10−10 and with three available precisions

8

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(a) Diagonal block in position (15,15).

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(b) Near field block in position (15,16).

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(c) Mid field block in position (15,22).

0 20 40 60 80 100 120 140

10
-20

10
-15

10
-10

10
-5

10
0

(d) Far field block in position (15,27).

Fig. 3.3: Distribution of the singular values of four blocks of different type in Fig-
ure 3.2. The dashed lines indicate the thresholds εβ/us, εβ/uh, and εβ, with β = ‖A‖
and where us and uh denote the unit roundoffs of the fp32 and bfloat16 arithmetics,
respectively.

(fp64, fp32, and bfloat16), we can distinguish four types of blocks. The singular values
of a representative example of each type are plotted in Figure 3.3.

First, the full-rank blocks (type 1, dark blue blocks in Figure 3.2, consisting of
only the diagonal blocks here) are stored in the working precision (fp64). An example
of diagonal block is given in Figure 3.3a, showing that its singular values decay too
slowly to benefit from the use of a mixed precision representation. However, there is
only a small number of such blocks: the majority of the blocks therefore benefits from
the use of lower precisions.

Interestingly, the number of low-rank blocks that effectively use all three precisions
is quite small (type 2, light blue blocks, example given by Figure 3.3b). Most blocks
actually do not need to store any of their entries in fp64. This is a consequence of
using global compression: if βij = ‖A‖ � ‖Aij‖, fp64 is not needed to represent
Aij . In other words, blocks of sufficiently small norm can be stored entirely in lower
precision. Among these blocks, we can further distinguish two types: those that are
represented in mixed precision using both fp32 and bfloat16 (type 3, green blocks,
example given by Figure 3.3c) and those that are stored entirely in bfloat16 (type
4, yellow blocks, example given by Figure 3.3d). The type-4 blocks are those whose
norm is smaller than ε‖A‖/uh, where uh = 2−8 is the unit roundoff of bfloat16. Note

9

that a fifth type of block could arise, those whose norm is smaller than ε‖A‖: these
blocks can simply be dropped, that is, replaced by zero (but no such blocks appear
in the example of Figure 3.2).

The observation that blocks of small norm can be stored entirely in lower precision
is important. It justifies why the simpler approach proposed by [2, 17] can already
achieve significant gains. Their approach consists in storing each block in uniform
precision, but possibly differing from one block to another. For example, for the
matrix in Figure 3.2, all type-2 blocks (light blue) would need to be stored entirely in
double precision, but type-3 blocks (green) could be stored entirely in single precision.
Moreover, our error analysis provides the criterion that should be used to choose each
block’s precision: blocks Aij such that ‖Aij‖ ≤ ε‖A‖/ui can be stored in precision ui.

4. Mixed precision BLR LU factorization. We now present how to exploit
the mixed precision BLR representation described previously in order to accelerate
the LU factorization of BLR matrices. There exists several BLR LU factorization
algorithms, and here we focus on the so-called UCF (a.k.a. UCFS or FCSU) variant
described in Algorithm 4.1. This variant has been successfully used in the literature,
for example in the MUMPS [9] and PaStiX [31] sparse direct solvers, and its rounding
error analysis in the uniform precision case has been carried out in [24, sect. 4.2]. We
note that BLR LU factorization can and usually does incorporate numerical pivoting
for stability, but we describe Algorithm 4.1 without pivoting for simplicity.

Algorithm 4.1 BLR LU factorization.

1: {Input: a q × q block matrix A with blocks Aij of size b× b.}
2: {Output: its BLR LDU factors LDU .}
3: for k = 1 to q do
4: Update:
5: Rkk = Akk −

∑k−1
j=1 LkjDjjUjk.

6: for i = k + 1 to q do
7: Rik = Aik −

∑k−1
j=1 LijDjjUjk and Rki = Aki −

∑k−1
j=1 LkjDjjUji.

8: end for
9: Compress:

10: for i = k + 1 to q do
11: Compute low-rank approximations Tik ≈ Rik and Tki ≈ Rki.
12: end for
13: Factor:
14: Compute the LU factorization LkkDkkUkk = Rkk.
15: for i = k + 1 to q do
16: Solve LikDkkUkk = Tik for Lik and LkkDkkUki = Tki for Uki.
17: end for
18: end for

The error analysis presented in this section has a double purpose. First, it proves
that the numerical stability of the uniform precision BLR LU factorization (proven by
Higham and Mary [24]) is preserved in mixed precision arithmetic. Second, for each
operation required by Algorithm 4.1, it determines which level of precision is needed
to maintain the overall error of order ε. Our analysis therefore guides us towards an
implementation of mixed precision BLR LU that is both robust and efficient.

One technical difficulty of this analysis is the handling of the scaling factors hidden
inside the U factor. To make these details more apparent, we analyze instead the LDU

10

factorization, where L and U are unitriangular matrices (with ones on the diagonal).
For the sake of simplicity, we however do not take into account any rounding errors
incurred by applying D or its inverse. Moreover, we will not always keep track of
lower order error terms; we use the notations ≈ and . to indicate when these terms
(of order at most upε) have been dropped.

We first analyze each kernel separately. Algorithm 4.1 requires computing prod-
ucts of the form LijDjjUjk (on line 7), where Lij and Ujk may be either uni-
form precision full-rank blocks or mixed precision low-rank blocks (analysis of sec-
tions 4.1 and 4.2). We also analyze in section 4.3 the solution of a triangular system
LkkDkkUki = Tki (needed on line 16), where the right-hand side Tki is a mixed pre-
cision low-rank matrix. Finally, we combine the analysis of these kernels to obtain a
backward error bound on the mixed precision BLR LU factorization in section 4.4.

4.1. Low-rank matrix times full-rank matrix. Let us begin with the com-
putation of a product P = BC, where C is a full-rank matrix and B = XY T is
a mixed precision low-rank matrix partitioned into p groups B` = X`Y

T
` satisfying

‖B`‖ ≤ εβ/u` for ` > 1, and where the output P is needed under full-rank form.
In which precision should we compute P = BC? The natural approach is to

compute each product P` = B`C in precision u`. Then, using [24, Lemma 3.2], the

computed P̂` satisfies

P̂` = B`C +∆P`, ‖∆P`‖ ≤ γ(`)c`
‖B`‖‖C‖ (4.1)

with c` = b+ r
3/2
` . For ` > 1, we thus obtain

P̂` = B`C +∆P`, ‖∆P`‖ . c`εβ‖C‖, (4.2)

since γ
(`)
c` /u` = c`(1 + γ

(`)
c`) ≈ c`. This shows that the partial product P` associated

with the part of B stored in precision u` can itself be computed in precision u`, since
the introduced error remains of order ε.

The next question is what precision should be used to combine the partial results
into P =

∑p
`=1 P`. Since for ` > 1 ‖P`‖ ≤ ε/u`β‖C‖, it is easy to see that Pi+Pj must

be computed in precision min(ui, uj) = umin(i,j). Knowing this, in order to maximize
the performance gains associated with the use of lower precisions, the best approach
is to compute

∑p
`=1 P̂` in reverse order. The approach to compute P suggested by

our analysis is summarized in Algorithm 4.2.

Algorithm 4.2 Mixed precision low-rank matrix times full-rank matrix.

1: {Input: a mixed precision low-rank matrix B and a full-rank matrix C.}
2: {Output: P = BC.}
3: Initialize P to zero.
4: for ` = p to 1 do
5: Compute P` = B`C in precision u`.
6: Update P ← P + P` in precision u`.
7: end for

With this algorithm, each component of P̂` is involved in exactly min(`, p − 1)

additions, one in each precision u1, . . . , umin(`,p−1). Therefore the computed P̂ satis-
fies:

P̂ =

p∑
`=1

P̂` ◦ (J +Θ`), |Θ`| . u`, (4.3)

11

where J is the matrix of ones, ◦ denotes the Hadamard product, and the inequality
|Θ`| . u` holds componentwise. Overall, we obtain

P̂ =

p∑
`=1

(B`C +∆P`) ◦ (J +Θ`) (4.4)

= BC +

p∑
`=1

B`C ◦Θ` +∆P` +∆P` ◦Θ` (4.5)

= BC +∆P, ‖∆P‖ .
(
(c1 + 1)u1‖B(1)‖+

p∑
`=2

(c` + 1)εβ
)
‖C‖ (4.6)

= BC +∆P, ‖∆P‖ . (pb+ r3/2 + p) max(u1‖B(1)‖, εβ)‖C‖. (4.7)

We summarize this analysis in the next theorem.

Theorem 4.1. Let B =
∑p

`=1B` ∈ Rb×b be a mixed precision low-rank matrix of
rank r such that ‖B`‖ ≤ εβ/u` for ` > 1, and let C ∈ Rb×b. If P = BC is computed

as described by Algorithm 4.2, then the computed P̂ satisfies

‖P̂ −BC‖ . cmax(u1‖B‖, εβ)‖C‖, (4.8)

with c = pb+ r3/2 + p.

Theorem 4.1 shows that we can perform many of the flops in Algorithm 4.2 in
lower precisions and still maintain an error of order ε. We now prove similar results
for the other kernels.

4.2. Low-rank matrix times low-rank matrix. Next we analyze the product
P = BDC of two mixed precision low-rank matrices B = XBY

T
B and C = YCX

T
C ,

where we also incorporate a diagonal scaling matrix D, which will be useful for the
LU factorization analysis of section 4.4.

The product P , which is needed in full-rank form, can be computed in the fol-
lowing three steps:

1. Compute the inner product M = (YB)TDYC .
2. Compute the middle product W = XBM (or W = MXT

C).
3. Compute the outer product P = WXT

C (or P = XBW).
A trivial extension of [24, Lem. 3.2] to incorporate D shows that if P is computed in

uniform precision u, the computed P̂ satisfies

P̂ = BDC +∆P, ‖∆P‖ . cu‖B‖‖D‖‖C‖, (4.9)

where c = b+ 2r3/2.
We now consider the case where B and C are partitioned into p groups B` =

XB`Y
T
B` and Cm = YCmX

T
Cm, stored in precision u` and um, respectively. We assume

that matrices B and C satisfy ‖B`D‖ ≤ εβB/u` and ‖DCm‖ ≤ εβC/um for `,m > 1.
We analyze each of the three steps separately.

4.2.1. Inner product M = Y T
BDYC . Let us first analyze the computation of

the inner product M . Assume M`m = Y T
B`DYCm is computed in a given precision

denoted as uM`m. The computed M̂`m satisfies M̂`m = M`m +∆M`m, with

|∆M`m| . buM`m|YB`|T |D||YCm|. (4.10)

12

By taking norms, we obtain

‖∆M`m‖ . buM`m min(α1, α2, α3), (4.11)

where

α1 = ‖B`D‖‖Cm‖, α1 ≤ εβB‖Cm‖/u` if ` > 1, (4.12)

α2 = ‖B`‖‖DCm‖, α2 ≤ ε‖B`‖βC/um if m > 1, (4.13)

α3 = ‖B`D‖‖D−1‖‖DCm‖, α3 ≤ ε2βBβC‖D−1‖/(u`um) if `,m > 1. (4.14)

From this we can deduce the optimal choices of precisions uM`m that still guarantee an
error of order ε.

• If ` = m = 1, in general we must take uM11 = u1 since ‖B1‖ and ‖C1‖ are not
bounded in terms of ε. We obtain

‖∆M11‖ . bu1‖B1‖‖D‖‖C1‖. (4.15)

• If ` = 1 and m > 1, α2 ≤ ε/um‖B‖βC , and so taking uM1m = um yields an
error of order ε:

‖∆M1m‖ . bε‖B1‖βC . (4.16)

Similarly, we can take uM`1 = u` and obtain

‖∆M`1‖ . bεβB‖C1‖. (4.17)

• If `,m > 1, we can safely take uM`m = max(u`, um) = umax(`,m). Indeed, if
` ≥ m we can use (4.12) and if ` < m we can use (4.13), and so, in any case,
we have

‖∆M`m‖ . bεmax(βB‖C1‖, ‖B1‖βC). (4.18)

Combining (4.15), (4.16), (4.17), and (4.18), we obtain for `,m ≥ 1

‖∆M`m‖ . bmax(εβB‖C1‖, ε‖B1‖βC , u1‖B1‖‖D‖‖C1‖). (4.19)

In summary, for any value of ` and m, we can compute the product between the part
of B stored in precision u` and the part of C stored in precision um in the lower of
the two precisions. This is a crucial observation that allows us to maximize the use
of lower precision.

Moreover, in some cases we may actually take uM`m > max(u`, um) because of
(4.14). To see why, let us take an example where ‖D−1‖, βB , βC , and ‖A‖ are all
approximately equal to 1. In this case, for `,m > 1, (4.11) reduces to

‖∆M`m‖ . buM`mε
2/(u`um) (4.20)

and so the requirement to obtain an error of order ε is

buM`mε ≤ u`um, (4.21)

which thus depends not only on u` and um, but also on ε. If ε is small enough, (4.21)
may be satisfied even for uM`m > max(u`, um). For example, assume we have three
precisions u1 = ud = 2−53, u2 = us = 2−24, and u3 = uh = 2−8. Then, ignoring the
constant b in (4.21):

• The condition uM22ε ≤ u22 is satisfied for uM22 = u3 if ε ≤ u2s/uh ≈ 9 × 10−13.
Thus, if ε is small enough, M22 need only be computed in half precision.

13

• The condition uM23ε ≤ u2u3 is satisfied for uM23 = 1 if ε ≤ usuh ≈ 2 × 10−10.
The same holds for uM32 . Thus, if ε is small enough, the computation of M23

and M32 may be skipped altogether.
• Finally, the condition uM33ε ≤ u23 is satisfied for uM33 = 1 if ε ≤ u2h ≈ 2× 10−5.

Again, the computation of M33 may be skipped in this case.
Going back to the general case, the precise requirement on uM`m depends on u`, um,
ε, βB , βC , and ‖D−1‖. For global compression (βB = βC = ‖A‖), we obtain

‖∆M`m‖ . buM`mε
2‖A‖2‖D−1‖/(u`um). (4.22)

4.2.2. Middle product W = XBM (or W = MY T
C). We analyze the product

W = XBM , the case of W = MY T
C being analogous. Let Wm =

∑p
`=1XB`M`m, for

m = 1: p. Assume the product W
(`)
m = XB`M`m is computed in precision uW`m, then

the computed Ŵ
(`)
m satisfies

Ŵ (`)
m = XB`M̂`m +∆W (`)

m , (4.23)

‖∆W (`)
m ‖ . r`u

W
`m‖XB`‖‖M̂`m‖ . r

3/2
` uW`m‖B`DCm‖. (4.24)

This bound on ‖∆W (`)
m ‖ is similar to the bound (4.11) on ‖∆M`m‖, and we should

therefore set uW`m = uM`m. Then, similarly to Algorithm 4.2, the partial results W
(`)
m

should be summed in reverse order and in increasing precision, since W
(`)
m + W

(`+1)
m

must be computed in precision uW`m. Overall, with uW`m = uM`m = max(u`, um), the

computed Ŵm satisfies

Ŵm =

p∑
`=1

Ŵ (`)
m ◦ (J +Θ`), |Θ`| . u`, (4.25)

=

p∑
`=1

(XB`M`m +XB`∆M`m +∆W (`)
m) ◦ (J +Θ`), (4.26)

=

p∑
`=1

W (`)
m +∆Ŵ (`)

m = Wm +∆Wm, (4.27)

with

‖∆Ŵ (`)
m ‖ . (b+ r

3/2
` + 1) max(εβB‖C‖, ε‖B‖βC , u1‖B‖‖D‖‖C‖) (4.28)

and so

‖∆Wm‖ . (pb+ r3/2 + p) max(εβB‖C‖, ε‖B‖βC , u1‖B‖‖D‖‖C‖). (4.29)

4.2.3. Outer product P = WXT
C (or P = XBW). It remains to analyze the

final product P = WXT
C (or P = XBW , which is analogous). Let Pm = WmX

T
Cm be

computed in precision uPm. Then the computed P̂m satisfies

P̂m = ŴmX
T
Cm +∆Pm, (4.30)

‖∆Pm‖ . rmu
P
m‖Ŵm‖‖XCm‖ ≤ r3/2m uPm‖Ŵm‖ . r3/2m uPm

p∑
`=1

‖B`DCm‖. (4.31)

14

Since
∑p

`=1 ‖B`DCm‖ is at least as large as ‖B1DCm‖, by (4.13) we must take uPm =
um. Then, (4.31) becomes

‖∆Pm‖ . r3/2m max(ε‖B‖βC , u1‖B‖‖D‖‖C‖). (4.32)

Finally, as previously for Wm, we sum Pm over m in reverse order and in increasing
precision, to obtain a computed P̂ satisfying

P̂ =

p∑
m=1

P̂m ◦ (J +Θm), |Θm| . um, (4.33)

=

p∑
m=1

(Ŵm(XCm)T +∆Pm) ◦ (J +Θm), (4.34)

=

p∑
m=1

Pm + (∆WmX
T
Cm +∆Pm) ◦ (J +Θm), (4.35)

= P +∆P, (4.36)

with

‖∆P‖ . (p2b+ (p+ 1)r3/2 + p2 + p) max(εβB‖C‖, ε‖B‖βC , u1‖B‖‖D‖‖C‖). (4.37)

This concludes the analysis of the product P . We summarize the approach sug-
gested by this analysis in Algorithm 4.3, for which the following theorem holds.

Algorithm 4.3 Mixed precision low-rank matrix times mixed precision low-rank
matrix.

1: {Input: mixed precision low-rank matrices B = XBY
T
B and C = YCX

T
C and a

diagonal matrix D.}
2: {Output: P = BDC.}
3: Initialize P to zero.
4: for m = p to 1 do
5: Initialize Wm to zero.
6: for ` = p to 1 do
7: Compute M`m = YB`DY

T
Cm in precision max(u`, um).

8: Compute W
(`)
m = XB`M`m in precision max(u`, um).

9: Update Wm ←Wm +W
(`)
m in precision max(u`, um).

10: end for
11: Compute Pm = WmX

T
Cm in precision um.

12: Update P ← P + Pm in precision um.
13: end for

Theorem 4.2 (Low-rank times low-rank). Let B =
∑p

`=1B` and C =
∑p

m=1 Cm

be two mixed precision low-rank matrices satisfying

‖B`D‖ ≤ εβB/u` for ` > 1, (4.38)

‖DCm‖ ≤ εβC/um for m > 1, (4.39)

and D a diagonal matrix, and let P = BDC be computed as described in Algo-
rithm 4.3. Then, the computed P̂ satisfies

P̂ = BDC +∆P, ‖∆P‖ . cmax
(
εβB‖C‖, ε‖B‖βC , u1‖B‖‖D‖‖C‖

)
, (4.40)

with c = p2b+ (p+ 1)r3/2 + p2 + p.

15

4.3. Triangular system with low-rank right-hand side. The last kernel
that we need to analyze is the solution of a triangular system LDZ = B, where
L ∈ Rb×b is lower triangular, D is diagonal, and the right-hand side B = Y XT is a
mixed precision low-rank matrix. We analyze the kernel for a lower triangular matrix
L, the upper triangular case (ZDU = B) being analogous. For this kernel, the output
(the solution Z) is needed under low-rank form.

In the uniform precision case, if the system LDZ = B is solved in uniform preci-
sion u, the computed solution Ẑ satisfies [24, Lemma 3.5]

LDẐ = B +∆B, ‖∆B‖ . bu‖L‖‖D‖‖Ẑ‖. (4.41)

Let B` = Y`X
T
` be the part of B that is stored in precision u`, satisfying ‖B`‖ =

‖Y`‖ ≤ εβ/u` for ` > 1. Then, the natural approach to solve LDZ = B in mixed
precision is to solve each system LDV` = Y` in precision u` and to define Z` =
V`X

T
` , which yields the mixed precision low-rank solution Z =

∑p
`=1 Z`. However, a

traditional normwise analysis based on (4.41) does not provide a satisfactory bound

here: if we apply (4.41) to LDV` = Y` and use V̂` ≈ D−1L−1Y`, we obtain the bound

LDV̂` = Y` +∆Y`, ‖∆Y`‖ . bεβκ(L)κ(D). (4.42)

This bound is very weak due to the presence of the normwise condition numbers
κ(L)κ(D) = ‖L‖‖L−1‖‖D‖‖D−1‖.

A stronger bound can be obtained by using a componentwise analysis:

LDV̂` = Y` +∆Y`, |∆Y`| . bu`|L||D||V̂`|. (4.43)

Replacing V̂` by D−1L−1(Y` +∆Y`) in the bound on ∆Y` yields

|∆Y`| . bu`|L||D||D−1L−1Y`| ≤ bu`|L||L−1||Y`|. (4.44)

We can now take norms, obtaining for ` > 1

‖∆Y`‖ . bu` cond(L, Y`)‖Y`‖ ≤ bεβ cond(L, Y`) (4.45)

where cond(L, Y`) is the condition number introduced by Skeel [33], [23, Eq. (7.13)]:

cond(L, Y`) =
‖|L||L−1||Y`|‖

‖Y`‖
. (4.46)

Multiplying both sides of (4.43) by XT
` on the right yields

LDẐ` = B` +∆Y`X
T
` . (4.47)

Summing (4.47) over `, we obtain

LDẐ = B +

p∑
`=1

∆Y`X
T
` = B +∆B, (4.48)

‖∆B‖ . bu1‖L‖‖D‖‖Ẑ1‖+ pbεβ cond(L), (4.49)

where cond(L) = ‖|L−1||L|‖.
The use of intermediate componentwise bounds presents two advantages: first, we

obtain a bound with cond(L), which is potentially much smaller than κ(L); second,

16

we have dropped the matrix D from the term proportional to εβ, which shows that
this term is invariant under scaling. Importantly, in the case of an LDU factorization
with partial pivoting, both L and U are well conditioned, and cond(L) is in practice
a small constant. Therefore, in the context of Algorithm 4.1, the mixed precision
triangular solution analyzed here is backward stable. However, for a general system
LDZ = B, bound (4.49) does not guarantee backward stability, and indeed some
examples can be built where the use of mixed precision arithmetic in the solution of
the system leads to a large increase of the backward error (we note however that such
examples are very hard to find and we were only able to construct one using direct
search optimization [22]).

We summarize the proposed approach to solve LDZ = B in Algorithm 4.4 and
its error analysis in the following theorem.

Algorithm 4.4 Solution to LDZ = B (triangular system with low-rank RHS).

1: {Input: a mixed precision low-rank matrix B = Y XT , a lower triangular matrix
L, and a diagonal matrix D.}

2: {Output: a mixed precision low-rank matrix Z, solution to LDZ = B.}
3: for ` = p to 1 do
4: Solve the triangular system LDV` = Y` in precision u`.
5: Define Z` = V`X

T
` (no computation performed: output is low-rank).

6: end for

Theorem 4.3. Let L ∈ Rb×b be a lower triangular full-rank matrix and let B =∑p
`=1B` be a mixed precision low-rank matrix satisfying ‖B`‖ ≤ βε/u`. If the system

LDZ = B is solved by Algorithm 4.4, the computed solution Ẑ satisfies

LDẐ = B +∆B, ‖∆B‖ . pbεβ cond(L) + bu1‖L‖‖D‖‖Ẑ‖. (4.50)

4.4. Putting everything together: error analysis of mixed precision
BLR LU factorization. Now that we have analyzed all the kernels of Algorithm 4.1,
we are ready to prove the backward stability of the BLR LU factorization in mixed
precision arithmetic. We define

λ1 = max
k=1: q

max
(
‖L−1

kk ‖, ‖U
−1
kk ‖, cond(Lkk), cond(Ukk)

)
. (4.51)

If partial pivoting is performed, λ1 is almost always small in practice and of order a
constant [23, Chapter 8], even though in theory it can only be bounded by 2b− 1 [23,
Lemma 8.6]. We also define

λ2 = max
i≥j

max
(
‖Lij‖, ‖Uji‖

)
. (4.52)

If partial pivoting is performed, λ2 ≤ b.
Let us bound the error incurred in the computation of some (i, k) block of the L

factor, the U factor analysis being similar. For i < k, Lik is obtained by solving

LikDkkUkk = Tik, (4.53)

where Tik is the compressed form of

Rik = Aik −
k−1∑
j=1

L̂ijDjjÛjk, (4.54)

17

where L̂ij and Ûjk are the LU factors computed at the previous steps, and are repre-

sented as mixed precision low-rank matrices, and the product L̂ijDjjÛjk is computed

with Algorithm 4.3. Note that if one of L̂ij or Ûjk is a full-rank matrix, the analysis
is similar and relies on Theorem 4.1; if both are full-rank, the computation is done
in uniform precision u1 � ε and introduces an error term bu1‖L̂ij‖‖Djj‖‖Ûjk‖. The

difficulty is that L̂ij and Ûjk are not directly the result of a compression, and so we

cannot directly control the norms of L̂
(`)
ij and Û

(m)
jk , the parts of L̂ij and Ûjk stored

in precision u` and um, respectively. Instead, they are given by

L̂
(`)
ij ≈ T

(`)
ij Û

−1
jj D

−1
jj , (4.55)

Û
(m)
jk ≈ D−1

jj L̂
−1
jj T

(m)
jk , (4.56)

where Tij and Tjk have been compressed such that

‖T (`)
ij ‖ ≤ εβij/u` for ` > 1, (4.57)

‖T (m)
jk ‖ ≤ εβjk/um for m > 1. (4.58)

Therefore, the norms of L̂
(`)
ij and Û

(m)
jk depend on βij and βjk, respectively, but also on

the scaling factors in Djj . However, one of the two D−1
jj in (4.55)–(4.56) is cancelled

by the Djj in (4.54) and ‖L̂−1
jj ‖ and ‖Û−1

jj ‖ are both bounded by λ1. As a result, we

can rewrite the product Rik,j = L̂ijDjjÛjk as BDC, where

‖B`D‖ . λ1εβij/u` for ` > 1, (4.59)

‖DCm‖ . λ1εβjk/um for m > 1. (4.60)

By Theorem 4.2, the computed R̂ik,j satisfies

R̂ik,j = L̂ijDjjÛjk +∆Rik,j , (4.61)

‖∆Rik,j‖ . cmax(λ1εβij‖Ûjk‖, λ1εβjk‖L̂ij‖, u1‖L̂ij‖‖Djj‖‖Ûjk‖). (4.62)

By (4.54), we obtain a computed R̂ik

R̂ik = Aik ◦ (J +Θk)−
k−1∑
j=1

(
L̂ijDjjÛjk +∆Rik,j

)
◦ (J +Θj), (4.63)

where |Θj | ≤ γ
(1)
j J accounts for the errors in the additions of the products R̂ik,j to

Aik. We thus obtain

R̂ik = Aik −
k−1∑
j=1

L̂ijDjjÛjk +∆Rik, (4.64)

‖∆Rik‖ . ku1‖Aik‖+

k−1∑
j=1

max
(
λ1λ2cεmax(βij , βjk), (λ22c+ j)u1‖Djj‖

)
. (4.65)

R̂ik is then compressed into Tik such that the part of Tik stored in precision u` satisfies

T
(`)
ik = R̂

(`)
ik + E

(`)
ik , ‖E(`)

ik ‖ ≤ εβik/u`, (4.66)

18

and so overall, by Theorem 2.2,

Tik = R̂ik + Eik, ‖Eik‖ . (2p− 1)εβik. (4.67)

Finally, we solve (4.53) for Lik, and by Theorem 4.3, the computed L̂ik satisfies

L̂ikDkkÛkk = Tik + Fik, ‖Fik‖ . pbλ1εβik + bu1λ
2
2‖Dkk‖. (4.68)

Putting together (4.68), (4.67), (4.65), we obtain

L̂ikDkkÛkk = Aik −
k−1∑
j=1

L̂ijDjjÛjk +∆Rik + Eik + Fik, (4.69)

and so

Aik =

k∑
j=1

L̂ijDjjÛjk +∆Aik, (4.70)

‖∆Aik‖ . ku1‖Aik‖+

k∑
j=1

max
(
λ1λ2cεmax(βij , βjk), (λ22c+ j)u1‖Djj‖

)
. (4.71)

With the choice βij = βjk = ‖A‖ for j = 1: k, and since k ≤ q, we obtain

‖∆Aik‖ . λ1λ2cqε‖A‖+ qu1‖Aik‖+ q(λ22c+ q)ρu1‖A‖, (4.72)

where we have used ‖Djj‖ ≤ ρ‖A‖, where ρ denotes the growth factor. This concludes
the case i < k. Bounds analogous to (4.72) hold for i = k and i > k, and so overall
we have

A = L̂DÛ +∆A, ‖∆A‖ . q2
(
λ1λ2cε+ (λ22c+ q)ρu1

)
‖A‖. (4.73)

We summarize this analysis in the next theorem.

Theorem 4.4 (Mixed precision BLR LU factorization). Let A ∈ Rn×n be a
BLR matrix partitioned into q2 blocks of order b. If the BLR LU factorization of A
in p precisions described by Algorithms 4.1–4.4 runs to completion, the computed LU
factors satisfy

A = L̂DÛ +∆A, ‖∆A‖ . q2
(
λ1λ2cε+ (λ22c+ q)ρu1

)
‖A‖. (4.74)

where λ1 and λ2 are defined by (4.51)–(4.52), ρ is the growth factor, and c = p2b +
(p+ 1)r3/2 + p.

Theorem 4.4 therefore proves the backward stability of the mixed precision BLR
LU factorization: the computed LU factors give an exact LU decomposition of a
perturbed matrix, where the norm of the perturbation ‖∆A‖ is of order ε. The precise
value of the constants q2λ1λ2c and q2(λ22c + q)ρ in (4.74) is not of great importance
but, as a check, we compare it against the uniform precision bound [24, Thm. 4.3]

A = L̂Û +∆A, ‖∆A‖ . qε‖A‖+ (b+ 2r3/2 + q)u1‖L̂‖‖Û‖. (4.75)

Since ‖L̂‖‖Û‖ . n2ρ‖A‖ and, with partial pivoting, λ2 ≤ b, we see that both (4.74)
and (4.75) grow as O(n2(b+ q)ρ).

After Theorem 4.4, not much additional effort is needed to prove the backward
stability of the solution of linear systems Ax = v by mixed precision BLR LU fac-
torization. We note that mixed precision arithmetic can also be used in the solution
of the triangular systems with the LU factors, but in the interest of space, we omit
these details.

19

Table 5.1: List of matrices used in our experiments. We use their Schur complement
corresponding to the root separator in their multifrontal factorization, whose order n
is given in the second column.

Matrix n b Application

nd24k 8k 128 2D/3D problem
audikw 1 4k 128 Structural problem
perf009d 2k 64 Elastic computation of a pump with internal pressure
Transport 5k 256 3D finite element flow and transport
P64 4k 128 Poisson equation (3D, mesh size=64)
nlpkkt80 14k 256 3D PDE-constrained optimization problem
Fault 639 8k 128 Contact mechanics for a faulted gas reservoir
Geo 1438 13k 256 Geomechanical model of earth crust
Serena 16k 256 Gas reservoir simulation for CO2 sequestration
Cube Coup dt0 21k 256 3D coupled consolidation problem (3D cube)

5. Experimental results.

5.1. Experimental setting. We have written a MATLAB code that imple-
ments a mixed precision variant of Algorithm 4.1 that uses Algorithms 4.2–4.4. Our
implementation can use any number of arbitrary precisions, where the lower precisions
are simulated using the chop function of Higham and Pranesh [25]. To compress the
blocks, we use a mixed precision truncated QR decomposition with column pivoting—
we omit a detailed description of this algorithm, which we plan to investigate more
in depth in future work. We have made our code publicly available online2.

For our experiments, we use the matrices listed in Table 5.1. These matrices
are all obtained as the Schur complement of larger sparse matrices (specifically, the
root separators of their multifrontal factorization) arising in various applications: P64
comes from the discretization of a Poisson equation, perf009d comes from a structural
mechanics problem from EDF (French electricity supplier), the others come from the
SuiteSparse collection [16].

To confirm experimentally the numerical stability of the algorithms, and to assess
the impact of mixed precision arithmetic on their accuracy, we measure backward
errors. Rather than computing the backward error for the LU factorization, which is
expensive, we use the computed LU factors to solve a linear system Ax = v, where x
is the vector of ones (and v is computed as Ax), and we use the computed solution x̂
to measure the backward error

‖Ax̂− v‖
‖A‖‖x̂‖

(5.1)

given by the Rigal–Gaches theorem [23, Thm 7.1], [32].

5.2. Performance–accuracy tradeoff. The analytical error bounds obtained
in section 4 show that the use of mixed precision arithmetic should only increase the
backward error by a small constant. In this first experiment, we check experimentally
(i) that the error increase is indeed small, and (ii) whether the flops and storage gains
obtained by the use of mixed precision justify this error increase, that is, whether

2https://gitlab.com/mgerest/mixedblr

20

https://gitlab.com/mgerest/mixedblr

10
-15

10
-10

10
-5

0

20

40

60

80

c
o

s
t

(%
 o

f
F

R
)

(a) Storage.

10
-15

10
-10

10
-5

0

10

20

30

40

50

60

70

c
o

s
t

(%
 o

f
F

R
)

(b) Flops.

Fig. 5.1: Storage and flops for three variants of the BLR LU factorization of matrix
perf009d, given as a percentage of the Full-Rank factorization, and as a function of
the backward error.

the mixed precision variant achieves a better performance–accuracy tradeoff than the
uniform precision variant. Indeed, since the mixed precision variant achieves a slightly
larger error, to be completely fair, we should compare it against the uniform precision
variant with a correspondingly larger ε.

To answer this question, we perform the following experiment in Figure 5.1: taking
several values of ε ranging from 10−16 to 10−5, we plot the storage and flop costs as a
function of the error (5.1). We compare three variants of the BLR factorization: the
standard uniform precision variant run entirely with fp64 arithmetic, a two-precision
variant using both fp64 and fp32, and a three-precision variant using bfloat16 as well.
For the flops, we assume that their cost is proportional to the number of bits of each
arithmetic. The figure shows that the two-precision variant achieves a much better
performance–accuracy tradeoff than the uniform precision one, and that the three-
precision variant further improves this tradeoff. Indeed, using lower precisions slightly
increases the error, but the experiment shows that this increase is largely compensated
by the flops and storage gains. Indeed, the closer a variant is to the bottom left corner
of the plots, the better its tradeoff is: for a given accuracy, it requires less flops and
storage than the other variants, or, equivalently, for a given flops or storage cost, it
achieves an improved accuracy.

In light of this experiment, and to avoid hand-tuning ε for every variant and every
matrix, in the remainder of our experiments we directly compare the variants with
the same value of ε.

5.3. Results on real-life matrices. In this section we experiment on the real-
life matrices listed in Table 5.1. Figure 5.2 compares the backward error achieved by
the BLR factorization for three values of ε: 10−12, 10−9, and 10−6. For ε = 10−6,
we compare the uniform fp32 precision BLR factorization with the two-precision one
using fp32 and bfloat16; for ε = 10−9 and 10−12, we compare the uniform fp64
precision factorization with both a two-precision variant (using fp64 and fp32) and
a three-precision one (also using bfloat16). The figure shows that the use of mixed
precision arithmetic does not significantly impact the backward error, leading to an
increase of at most an order of magnitude in the worst case (and very often much less
than that).

21

nd
24

k
au

di
kw

_1
pe

rf0
09

d
Tr

an
sp

or
t

P
64

nl
pk

kt
80

Fa
ul

t_
63

9
G

eo
_1

43
8

S
er

en
a

C
ub

e_
C
ou

p_
dt

0

matrices

10
-12

10
-10

10
-8

10
-6

10
-4

b
a
c
k
w

a
rd

 e
rr

o
r

3-precision BLR

2-precision BLR

uniform precision BLR

eps=1e-6

eps=1e-9

eps=1e-12

Fig. 5.2: Backward error for the uniform and mixed precision BLR factorizations, for
ε = 10−12, 10−9, and 10−6.

Figure 5.3 shows the associated storage and flops gains obtained by the use of
mixed precision arithmetic. For each matrix, each bar corresponds to a different
value of ε. For ε = 10−12 and 10−9, we focus on the gains achieved by the three-
precision variant. The y-axis (height of the bars) indicates the number of entries
(or number of flops) required by the mixed precision variant as a percentage of the
uniform precision variant. For storage, this percentage is at least 100%, but can be
slightly larger because of the difference between conditions (2.22) and (2.23). Indeed,
as explained in section 2, there are some blocks that satisfy (2.23) but do not satisfy
(2.22): that is, we allow the mixed precision variant to store more entries, because we
expect this increase to pay off thanks to the use of lower precisions. As a result, the
percentage for the flops can also differ from 100%, either being larger or smaller.

The colors breakdown in Figure 5.3 shows the proportion of entries that are stored
in each precision, and the proportion of flops that are performed in each precision.
For ε = 10−6, note that the mixed precision algorithm recovers the fact that we
do not need any entries or flops in fp64 arithmetic, since ε > us. For all matrices
there is a significant fraction of the entries that can be stored in lower precision,
even for ε = 10−12. This is a very positive result that confirms that BLR matrices
are amenable to the use of mixed precision arithmetic and that the proposed mixed
precision BLR representation can achieve very significant gains with respect to the
uniform precision one.

The precise gains in storage and flops depend on the relative performance of each
arithmetic. For storage, it is easy to measure this gain since the storage cost of
each arithmetic is proportional to the number of bits it uses: thus, an fp32 number
requires half the storage of an fp64 one, and a bfloat16 number requires a quarter of the
storage. The number on top of each bar in Figure 5.3a indicates the resulting storage
of the three-precision variant, as a percentage of the uniform precision fp64 variant
(for example, “33%” means that we expect the three-precision variant to reduce the
overall storage by a factor three). The figure shows very significant reductions, of up
to a factor 2.8× for ε = 10−9.

As for the flops results of Figure 5.3b, we can use them to estimate the expected

22

nd24k audikw_1 perf009d Transport P64 nlpkkt80 Fault_639 Geo_1438 Serena Cube_Coup_dt0
0

20

40

60

80

100

120

n
b

 o
f

e
n

tr
ie

s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

49%

64%

52% 54%
52% 48%

50%
48% 48%

50%

36%

47%

43%

47% 47%

46% 38% 40% 40%
41%

32%
33%

32% 37% 39% 40% 32% 33% 34% 33%

fp64 fp32 bfloat16

(a) Storage.

nd24k audikw_1 perf009d Transport P64 nlpkkt80 Fault_639 Geo_1438 Serena Cube_Coup_dt0
0

20

40

60

80

100

fl
o

p
s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
) 32%

48%

41% 46% 47% 39%
33% 34% 35% 34%29%

38% 39%

42% 44%
39%

30%

33%
32%

33%30% 33% 30% 34% 37% 37% 31% 31% 32% 31%

fp64 fp32 bfloat16

(b) Flops.

Fig. 5.3: Storage and flops for the mixed precision BLR factorization. For each matrix,
the 3 bars correspond to ε = 10−12, ε = 10−9 and ε = 10−6. The y-axis shows the
number of entries and the number of flops required by the mixed precision variant
with respect to the uniform precision variant in fp64 (which can be slightly different
from 100% because of the different conditions to represent a block under low-rank
form (2.22) and (2.23)). The color breakdown gives the proportion of entries/flops
in each precision, and the number above each bar indicates the resulting expected
performance of the mixed precision variant as a percentage of the uniform precision
variant.

performance gains in execution time. This is a more complex issue because the relative
speed of each arithmetic strongly depends on the hardware, the matrix, and several
other factors. A practical high performance implementation of the mixed precision
BLR factorization is outside our scope but, as a rough indicator, we plot on top of each
bar the expected time (again, as a percentage of the uniform precision fp64 variant)
under the assumption that the speed of each arithmetic is also proportional to the
number of bits. The results are once more very positive, showing expected gains of
up to a factor 3.4× for ε = 10−9.

Finally, in Figure 5.4 we perform a similar experiment as in Figure 5.3 for matri-
ces of increasing size belonging to the same Poisson problem class. This experiment
highlights an important and valuable property of the mixed precision BLR factoriza-
tion: the storage and flops gains increase with the problem size, as a larger and larger
fraction of the entries and flops can be safely switched to lower precisions.

23

P32 P48 P64 P80 P96
0

20

40

60

80

100

n
b

 o
f

e
n

tr
ie

s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

59%
54% 49% 46% 44%

fp64 fp32 bfloat16

(a) Storage.

P32 P48 P64 P80 P96
0

20

40

60

80

100

fl
o

p
s
 (

%
 o

f
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

44%
39% 36% 35% 35%

fp64 fp32 bfloat16

(b) Flops.

Fig. 5.4: Storage and flops for the three-precision BLR factorization for Poisson ma-
trices of increasing size. We have set ε = 10−12 and b = 64.

6. Conclusion. We have introduced a novel approach to exploit mixed precision
arithmetic for low-rank approximations. Given a prescribed accuracy ε, we have
proved in Theorem 2.2 that singular vectors associated with sufficiently small singular
values can be stored in precisions with unit roundoff larger than ε while preserving
an overall accuracy of order ε. This approach is not only applicable to low-rank
matrices built with a singular value decomposition, but also to many other low-rank
decompositions, in particular rank-revealing QR (Lemma 2.3).

We have applied this approach to block low-rank (BLR) matrices, for which
this new mixed precision low-rank approximation presents a high potential. We
have adapted the existing uniform precision BLR LU factorization algorithm (Al-
gorithm 4.1) to exploit the mixed precision representation of the blocks. We carried
out the rounding error analysis of this new algorithm and obtained two keys results.
First, we proved in Theorem 4.4 that the use of mixed precision arithmetic does
not compromise the numerical stability of BLR LU factorization recently proven by
Higham and Mary [24]. Second, our analysis determines which level of precision is
needed for each floating-point operation, and therefore guides us towards a method
that is both robust and efficient. The resulting mixed precision BLR algorithms are
summarized in Algorithms 4.2, 4.3, and 4.4.

We have evaluated the potential of this mixed precision BLR LU factorization
on a range of matrices coming from real-life problems from industrial and academic
applications. We have shown that a large fraction of the entries and flops can be
safely switched to lower precisions. For ε = 10−9, by mixing fp64, fp32, and bfloat16
arithmetics, we obtain reductions in storage of up to 2.8× with respect to uniform
precision BLR. Moreover, assuming fp32 and bfloat16 flops are, respectively, twice
and four times faster than fp64 ones, we estimate the expected time gains, predicting
reductions of up to 3.4× with respect to uniform precision BLR. We emphasize that
these gains are not achieved at the expense of accuracy: for the same accuracy, the
mixed precision variant is less expensive than the uniform precision one, or, equiva-
lently, for a fixed storage or work budget, the mixed precision variant is more accurate
(Figure 5.1).

Given the very promising results obtained with this new mixed precision BLR
approach, we plan as future work to develop its high performance implementation
and integrate it within the sparse direct solver MUMPS [9], which already exploits

24

uniform precision BLR compression.

Acknowledgements. This work was done in the context of the CIFRE PhD
thesis of Matthieu Gerest funded by EDF. We thank Cleve Ashcraft for insightful
discussions that led to the genesis of this work.

REFERENCES

[1] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox,
M. Gates, N. J. Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam,
T. Ribizel, B. F. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai, and U. M.
Yang, A survey of numerical linear algebra methods utilizing mixed-precision arithmetic,
Int. J. High Performance Computing Applications, (2021), p. 109434202110033, https:
//doi.org/10.1177/10943420211003313.

[2] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes, Geostatistical modeling
and prediction using mixed precision tile Cholesky factorization, in 2019 IEEE 26th Inter-
national Conference on High Performance Computing, Data, and Analytics (HiPC), IEEE,
Dec. 2019, https://doi.org/10.1109/hipc.2019.00028.

[3] E. Agullo, F. Cappello, S. Di, L. Giraud, X. Liang, and N. Schenkels, Exploring variable
accuracy storage through lossy compression techniques in numerical linear algebra: a first
application to flexible GMRES, Research Report RR-9342, Inria Bordeaux Sud-Ouest, May
2020, https://hal.inria.fr/hal-02572910.

[4] K. Ahmad, H. Sundar, and M. Hall, Data-driven mixed precision sparse matrix vector
multiplication for GPUs, ACM Trans. Archit. Code Optim., 16 (2019), pp. 51:1–51:24,
https://doi.org/10.1145/3371275.

[5] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-
becker, Improving multifrontal methods by means of block low-rank representations, SIAM
J. Sci. Comput., 37 (2015), pp. A1451–A1474, https://doi.org/10.1137/120903476.

[6] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieublé,
Five-precision GMRES-based iterative refinement, MIMS EPrint 2021.5, Manchester In-
stitute for Mathematical Sciences, The University of Manchester, UK, Apr. 2021, http:
//eprints.maths.manchester.ac.uk/id/eprint/2807.

[7] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, On the Complexity of the
Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 39 (2017), pp. A1710–
A1740, https://doi.org/10.1137/16M1077192.

[8] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Bridging the Gap between
Flat and Hierarchical Low-rank Matrix Formats: the Multilevel Block Low-Rank Format,
SIAM J. Sci. Comput., 41 (2019), pp. A1414–A1442, https://doi.org/10.1137/18M1182760.

[9] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Performance and Scalability
of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Trans.
Math. Software, 45 (2019), pp. 2:1–2:26, https://doi.org/10.1145/3242094.

[10] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, vol. 63 of Lecture Notes in Computational Science and Engineering (LNCSE),
Springer-Verlag, 2008.

[11] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, Mixed precision block
fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J. Sci.
Comput., 42 (2020), pp. C124–C141, https://doi.org/10.1137/19M1289546.

[12] P. Blanchard, N. J. Higham, and T. Mary, A class of fast and accurate summation al-
gorithms, SIAM J. Sci. Comput., 42 (2020), pp. A1541–A1557, https://doi.org/10.1137/
19M1257780.

[13] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39 (2017),
pp. A2834–A2856, https://doi.org/10.1137/17M1122918.

[14] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative re-
finement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847, https:
//doi.org/10.1137/17M1140819.

[15] E. Carson, N. J. Higham, and S. Pranesh, Three-precision GMRES-based iterative refine-
ment for least squares problems, SIAM J. Sci. Comput., 42 (2020), pp. A4063–A4083,
https://doi.org/10.1137/20m1316822.

[16] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), pp. 1:1–1:25, https://doi.org/10.1145/2049662.2049663, http:

25

https://doi.org/10.1177/10943420211003313
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1109/hipc.2019.00028
https://hal.inria.fr/hal-02572910
https://doi.org/10.1145/3371275
https://doi.org/10.1137/120903476
http://eprints.maths.manchester.ac.uk/id/eprint/2807
http://eprints.maths.manchester.ac.uk/id/eprint/2807
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/18M1182760
https://doi.org/10.1145/3242094
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1257780
https://doi.org/10.1137/19M1257780
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1316822
https://doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663

//doi.acm.org/10.1145/2049662.2049663.
[17] N. Doucet, H. Ltaief, D. Gratadour, and D. Keyes, Mixed-precision tomographic re-

constructor computations on hardware accelerators, in 2019 IEEE/ACM 9th Workshop
on Irregular Applications: Architectures and Algorithms (IA3), Nov. 2019, pp. 31–38,
https://doi.org/10.1109/IA349570.2019.00011.

[18] R. D. Fierro and P. C. Hansen, Low-rank revealing utv decompositions, Numerical Algo-
rithms, 15 (1997), pp. 37–55.

[19] S. Gratton, E. Simon, D. Titley-Peloquin, and P. Toint, Exploiting variable precision in
GMRES, ArXiv:1907.10550, July 2019, https://arxiv.org/abs/1907.10550. Revised Febru-
ary 2020.

[20] W. Hackbusch, Hierarchical Matrices : Algorithms and Analysis, vol. 49 of Springer
series in computational mathematics, Springer, Berlin, 2015, https://doi.org/10.1007/
978-3-662-47324-5.

[21] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast
FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC18 (Dallas, TX), Piscataway, NJ, USA, 2018, pp. 47:1–47:11, https://doi.
org/10.1109/SC.2018.00050.

[22] N. J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix Anal.
Appl., 14 (1993), pp. 317–333, https://doi.org/10.1137/0614023.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/
1.9780898718027.

[24] N. J. Higham and T. Mary, Solving block low-rank linear systems by LU factorization is nu-
merically stable, IMA J. Numer. Anal., (2020), pp. 1–30, https://doi.org/10.1093/imanum/
drab020.

[25] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic, SIAM J.
Sci. Comput., 41 (2019), pp. C585–C602, https://doi.org/10.1137/19M1251308.

[26] F. Lopez and T. Mary, Mixed Precision LU Factorization on GPU Tensor Cores: Reduc-
ing Data Movement and Memory Footprint, http://eprints.maths.manchester.ac.uk/2782/.
MIMS EPrint 2020.20, Manchester Institute for Mathematical Sciences, The University of
Manchester, UK, September 2020.

[27] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, Nvidia ten-
sor core programmability, performance precision, in 2018 IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 522–531,
https://doi.org/10.1109/IPDPSW.2018.00091.

[28] T. Mary, Block Low-Rank multifrontal solvers: complexity, performance, and scalability, PhD
thesis, Université de Toulouse, Nov. 2017.

[29] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura, DGEMM using tensor cores, and its
accurate and reproducible versions, in High Performance Computing, Cham, 2020, Springer
International Publishing, pp. 230–248, https://doi.org/10.1007%2F978-3-030-50743-5 12.

[30] R. Ooi, T. Iwashita, T. Fukaya, A. Ida, and R. Yokota, Effect of mixed precision computing
on h-matrix vector multiplication in BEM analysis, in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region, ACM Press, New
York, Jan. 2020, https://doi.org/10.1145/3368474.3368479.

[31] G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman, Sparse supernodal solver
using block low-rank compression: Design, performance and analysis, Journal of Com-
putational Science, 27 (2018), pp. 255–270, https://doi.org/https://doi.org/10.1016/j.jocs.
2018.06.007, http://www.sciencedirect.com/science/article/pii/S1877750317314497.

[32] J. L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear
system, J. Assoc. Comput. Mach., 14 (1967), pp. 543–548, https://doi.org/10.1145/321406.
321416, http://doi.acm.org/10.1145/321406.321416.

[33] R. D. Skeel, Scaling for numerical stability in gaussian elimination, J. Assoc. Comput. Mach.,
26 (1979), pp. 494–526, https://doi.org/10.1145/322139.322148.

[34] I. Yamazaki, S. Tomov, and J. Dongarra, Mixed-precision Cholesky QR factorization and
its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput., 37 (2015),
pp. C307–C330, https://doi.org/10.1137/14M0973773.

[35] L. M. Yang, A. Fox, and G. Sanders, Rounding error analysis of mixed precision block
householder qr algorithms, arXiv preprint arXiv:1912.06217, (2019).

26

http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1109/IA349570.2019.00011
https://arxiv.org/abs/1907.10550
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/0614023
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1137/19M1251308
http://eprints.maths.manchester.ac.uk/2782/
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1007%2F978-3-030-50743-5_12
https://doi.org/10.1145/3368474.3368479
https://doi.org/https://doi.org/10.1016/j.jocs.2018.06.007
https://doi.org/https://doi.org/10.1016/j.jocs.2018.06.007
http://www.sciencedirect.com/science/article/pii/S1877750317314497
https://doi.org/10.1145/321406.321416
https://doi.org/10.1145/321406.321416
http://doi.acm.org/10.1145/321406.321416
https://doi.org/10.1145/322139.322148
https://doi.org/10.1137/14M0973773

	Introduction
	Mixed precision low-rank approximations
	Mixed precision BLR compression
	Background on BLR matrices
	Error analysis of mixed precision BLR compression
	Types of mixed precision blocks

	Mixed precision BLR LU factorization
	Low-rank matrix times full-rank matrix
	Low-rank matrix times low-rank matrix
	Inner product M=YBT D YC
	Middle product W=XB M (or W=MYCT)
	Outer product P=WXCT (or P=XBW)

	Triangular system with low-rank right-hand side
	Putting everything together: error analysis of mixed precision BLR LU factorization

	Experimental results
	Experimental setting
	Performance–accuracy tradeoff
	Results on real-life matrices

	Conclusion
	References

