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A second-order well-balanced Lagrange-projection scheme for
Shallow Water Exner equations in 1D and 2D

C. Chalons∗and A. Del Grosso†

June 7, 2021

Abstract. The present work is devoted to the numerical approximation of the Shallow water Exner system in both one
and two dimensions, where the Exner equation expresses the evolution in time of the bed sediment. In particular the Grass
formula is taken into account to model the solid transport discharge contributions. The numerical scheme is based on the
Lagrange-projection formalism which consists in splitting the mathematical model into the acoustic and transport system.
In particular, the Exner equation is taken into account only at the transport level; both a decoupled and weakly coupled
formulation are proposed. The method is designed in such a way to satisfy the well-balanced property as well. Details to
reach the second-order of accuracy are given; numerical results are shown to validate the numerical schemes.

1 Introduction and governing equations
This work deals with the design and implementation of a second-order well-balanced Lagrange-projection scheme ap-

plied to the 1D and 2D shallow water system with bed sediment not-constant in time. Lagrange-projection approach consists
in splitting the acoustic and transport waves of the model, leading to the possibility of approximating the two resulting sys-
tems with di�erent approaches. This reveals itself to be useful for instance in subsonic regimes, where the acoustic waves
are the reason of the restrictive CFL condition one has to employ in order to have a stable numerical scheme. Indeed,
the Lagrange-projection decomposition makes possible to implicitly approximate only the acoustic system and, thus, to
circumnavigate the problem of restrictive time-steps.

Nowadays, the Lagrange-projection approach have been studied in order to satisfy di�erent properties and as applied
to several models. Giving few examples, we refer for instance to the work [21], where all-regime �rst-order explicit and
semi-implicit Lagrange-projection schemes have been applied to the gas dynamics model in several dimensions, or to [20],
where the scheme was extended to the 2D two-phase �ows model. Another possible reference is [8] with the numerical
approximation of low Mach number �ows of the barotropic Euler equations where the asymptotic-preserving property is
satis�ed as well. On the other hand, when it comes to the modeling of the shallow water system in the Lagrange-projection
formalism, we can refer to [22] for an implicit well-balanced �rst-order scheme, to [15] for a fully well-balanced �rst-
order explicit method, and �nally to [40] for high-order fully well-balanced schemes. Last but not least, and without being
exhaustive, we refer for instance to [27, 37, 35, 13, 43] for other interesting studies in this framework.

While details for the Lagrange-projection splitting are given in the following section, let us present now the mathematical
model we are interested in. It is composed of two di�erent ones, the hydrodynamic and the morphodynamic model. The
former is simply given by the well-known shallow water system, which is derived from the Navier-Stokes system under the
hypothesis that the vertical scale is much smaller than the horizontal dimension. As such, it is composed of the continuity
and momentum equations, which are expressed as in the following{

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + gh2

2 ) = −gh∂xz
(1.1)
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where h(x, t) > 0 is the water depth, u(x, t) the averaged velocity and z(x, t) the bed level. In particular, H = h+ z is the
free surface elevation. Finally, g is the gravitational acceleration, t > 0 represents the time and x the axial coordinate. Let
us brie�y recall that this system is strictly hyperbolic with real eigenvalues given by u± c with the sound speed c =

√
gh.

Then, we aim to simulate the interaction between the sediments and the �ow, thus we consider the topography z not
constant in time and we make use of the so-called Exner equation, which reads

∂tz + ζ∂xqb = 0. (1.2)

Here qb = qb(h, u) is the solid transport discharge, ζ = 1
1−ρ0 and ρ0 is the porosity of the sediment layer. The coupling of

(1.1) and (1.2) leads to the �nal system, 
∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu2 + gh2

2 ) + gh∂xz = 0

∂tz + ζ∂xqb = 0,

(1.3)

which in compact form reads
∂tQ + ∂xF(Q) + A(Q)∂xQ = O

where

Q =

 h
hu
z

 , F(Q) =

 hu
hu2 + p
ζqb

 , A(Q) =

0 0 0
0 0 gh
0 0 0


with the pressure term p = gh2

2 . For details about shallow-water equations with and without not-constant in time bed
sediment, we refer for instance to [2, 9, 10, 7] and [47, 3, 12, 15, 41].

It is known that there exist di�erent formulations to express the solid transport discharge qb, depending on the charac-
teristics of the sediment and the �ow, for instance the Froude number, the slope of the bottom or the grain size. One of the
easiest and most frequently used formulation is the well-known Grass model, which expresses the instantaneous sediment
transport as a power law of the averaged velocity u, namely

qb = Agu|u|mg−1, 1 ≤ mg ≤ 4, (1.4)

refer to [42, 5]. This deterministic Grass formulation is suitable to model non-cohesive granular sediment. HereAg ∈ [0, 1] is
a dimensional calibration constant which is usually measured experimentally and expresses the kind of interaction between
the �uid and the sediment, whose strength increases as Ag approaches to 1. In particular, the value of the constant Ag is
related to factors as the grain size and the kinematic viscosity. Finally, we set mg = 3.

In this work we will take into account only the Grass model, but for details about other possible formulations for the
solid transport discharge, refer to [42]. It is important to stress that, depending on the formulation used for qb, system (1.3)
may be hyperbolic or not. In particular, in [10] it has been con�rmed that considering the Grass formula leads to a strictly
hyperbolic system with all real eigenvalues. Indeed, de�ning the quantities

a1 = −2u, a2 = u2 − c2(1 + ζ∂huqb) and a3 = −ζc2∂hqb,

one can easily see that the eigenvalues are given by the solution of the following equation

λ3 + a1λ
2 + a2λ+ a3 = 0.

Hence, the three eigenvalues read

λk = 2
√
−p cos(

θ + 2kπ

3
)− a1

3
with k = 0, 1, 2. (1.5)

where
p =

3a2 − a2
1

9
, r =

9a1a2 − 27a3 + 2a3
1

54
and θ = arccos(

r√
−p3

).
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We remark that, in order to have real eigenvalues, we need p3 + r2 ≤ 0, which can be proved in the case of the Grass model.

As mentioned at the very beginning of this work, we are also looking for a well-balanced numerical scheme, namely
able to preserve the smooth stationary solutions of the system, that is to say the steady states which satisfy the ordinary
di�erential equations

∂x(hu) = 0, ∂x(hu2 +
gh2

2
) + gh∂xz = 0 and ∂xqb = 0,

and obey to

q = hu = constant = q0,
q2
0

2h2
+ g(h+ z) = constant and qb = constant.

Note that if we use the Grass formula for qb, then the only non trivial stationary solutions are given by

u = 0 and h+ z = constant, (1.6)

which is called "lake at rest" equilibrium. For well-balanced schemes for the shallow-water equations, see for instance to
[3, 12, 38, 39], while for well-balanced methods in the Lagrange-projection formalism we refer to [22, 15, 40]. As far as the
evolution in time of the bed sediment is considered as well, for general well-balanced schemes we refer for instance to [5, 36].

Outline of the paper. For the sake of clarity, let us brie�y give the paper structure. In the next section 2, the Lagrange-
projection splitting is presented considering both Eulerian and Lagrangian variables. A brief summary of the approximate
Riemann solver for the acoustic system is outlined as well. In section 3, both �rst and second-order numerical schemes are
described, distinguishing between acoustic and transport step. Then, the two-dimensional extension of the mathematical
model and numerical method is illustrated in section 4. Finally, section 5 is exploited to present the numerical results and
validate our numerical schemes. Concluding, �nal remarks are drawn in section 6.

2 Operator splitting and Lagrangian coordinates
In this section we brie�y explain the decomposition which entails the splitting of system (1.3) into two di�erent ones,

the so-called acoustic and transport systems. The former takes into account the acoustic e�ects of the model and the source
term related to the topography, while the latter the transport phenomena. We will see further on that this splitting can
be interpreted as a Lagrange-projection one, as we �rst formulate the shallow-water system in Lagrangian coordinates
(acoustic step) and then we project the solution into Eulerian coordinates (transport step). For more the details about this
decomposition, the reader can refer to [15, 22, 40].

Considering �rst only the shallow water system, it can be reformulated as{
∂th+ h∂xu+ u∂xh = 0

∂t(hu) + hu∂xu+ u∂x(hu) + ∂x( gh
2

2 ) = −gh∂xz,

where we used the chain rule for space derivatives. Therefore, the acoustic and transport system are respectively given by{
∂th+ h∂xu = 0

∂t(hu) + hu∂xu+ ∂x( gh
2

2 ) = −gh∂xz,
(2.1)

and
∂tX + u∂xX = 0 (2.2)

with X = h and X = hu. We also observe that the acoustic system (2.1) can be expressed as{
∂tτ − ∂mu = 0

∂tu+ ∂mp = − g
τ ∂mz

(2.3)
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where we have introduced the unknown τ = 1
h and the mass variable m such that 1

h∂x = ∂m, see [15, 23, 20, 21, 22].
Moreover, it is easy to �nd that the eigenvalues of system (2.3) are ±h

√
gh = ±hc.

About the Exner equation. Let us now consider the Exner equation as well, for which one could imagine at least three
possibilities for numerical treatment. The �rst one would account for it at the acoustic level, the second one directly inside
the transport step, and the third one by splitting it inside both steps. However, the issue of coupling the Exner equation
and the shallow water system has been vastly studied in the literature. In particular, it is known that a fully decoupled
scheme can lead to a numerical method which produces spurious oscillations inside the numerical solutions; this issue has
been clearly presented in [26]. However, it is not even necessary to consider a fully coupled scheme in order to avoid this
problem; indeed a weakly coupling of the equations at the numerical level can lead to satisfying results, see for instance [5].
In this work we mainly focus on weakly coupled numerical approach. Moreover, in the following we completely take into
account the Exner equation in the projection step.

Finally, in this �rst part of this work, the acoustic and transport systems respectively read
∂tτ − ∂mu = 0

∂tu+ ∂mp = − g
τ ∂mz

∂tz = 0

(2.4)

and 
∂th+ u∂xh = 0

∂t(hu) + u∂x(hu) = 0

∂tz + ζ∂xqb = 0.

(2.5)

Hence, the numerical strategy will be composed of two steps:

1. Take into account the acoustic e�ects of the model by solving system (2.4);

2. Consider and solve the transport system (2.5);

System (1.1) in Lagrangian coordinates. In order to interpret the strategy as a Lagrange-Projection one, we �rst de�ne
the �uid particle ξ and the characteristic curves{

∂x
∂t (ξ, t) = u(x(ξ, t), t)

x(ξ, 0) = ξ
(2.6)

which de�ne the trajectory : t → x(ξ, t), of ξ as the time goes on. Therefore, any function : (x, t) → ϕ(x, t) in Eulerian
coordinates can be written in Lagrangian coordinates,

ϕ̄(ξ, t) = ϕ(x(ξ, t), t).

Let us now introduce the volume ratio
L(ξ, t) =

∂x

∂ξ
(ξ, t) (2.7)

such that {
∂L
∂t (ξ, t) = ∂ξu(x(ξ, t), t)

L(ξ, 0) = 1.
(2.8)

Consequently, we note that
∂tL(ξ, t) = ∂ξu(x(ξ, t), t) = ∂ξū(ξ, t),

and thus
∂ξϕ̄(ξ, t) = L(ξ, t)∂xϕ(x, t) and ∂tϕ̄(ξ, t) = ∂tϕ(x, t) + u(x, t)∂xϕ(x, t).
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We have now all the ingredients to write (1.1) in Lagrangian coordinates. More precisely, observing that smooth solutions
of (1.1) satisfy {

L(∂th+ u∂xh+ h∂xu) = 0

L(∂t(hu) + u∂x(hu) + hu∂xu+ ∂xp+ gh∂xz) = 0

and {
L∂th̄+ h̄∂tL = 0

L∂thu+ hu∂tL+ ∂ξp̄+ gh̄∂ξ z̄ = 0

we get {
∂t(Lh) = 0

∂t(Lhu) + ∂ξp̄ = −gh̄∂ξ z̄.
(2.9)

Notice that in the following sections, we shall omit the bar over the Lagrangian functions when there can be no confusion.
This new formulation of system (1.1) exploiting the Lagrangian coordinates makes the above numerical strategy based on
an acoustic-transport splitting strictly equivalent to a Lagrangian-projection splitting, that can be summarized as in the
following,

1. Solve the system (2.9) in Lagrangian coordinates;

2. Project the solution in Eulerian coordinates solving the transport system (2.5).

To conclude this section, we derive from (2.9) an evolution equation for Lu that will be useful in the next sections.
Removing the bars and using the discharge equation on Lu, we have in particular

h∂t(Lu) + Lu∂th+ ∂ξp+ gh∂ξz = 0

and, since 0 = ∂t(Lh) = h∂tL+ L∂th = h∂ξu+ L∂th, we get

h∂t(Lu)− hu∂ξu+ ∂ξp+ gh∂ξz = 0

and �nally

∂t(Lu)− ∂ξ
u2

2
= −g∂ξ(h+ z). (2.10)

Note that the source term now involves the quantity h+ z which is constant for stationary solutions.

2.1 A well-balanced approximate Riemann solver for the acoustic system
In this section we brie�y recall the de�nition of a well-balanced approximate Riemann solver proposed in [22] for the

acoustic system (2.4) and that will be useful in the following. It is based on the Gallice theory [28, 29] which is an extension
to balance laws of the Harten, Lax and van Leer formalism [32] for conservation laws. For more details about this Riemann
solver, the reader can refer to [22]. Then, suppose that we want to solve (2.4) with the following Riemann initial data

U(m, t = 0) =

{
UL if m < 0

UR if m ≥ 0

where we have set

UL =

τLuL
zL

 and UR =

τRuR
zR

 .

The proposed approximate solution has the following form

Û(
m

t
;UL,UR) =


UL if m

t < −a
U∗
L if − a < m

t < 0

U∗
R if 0 < m

t < a

UR if m
t > a
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where a is a constant and where the intermediate states

U∗
L =

τ∗Lu∗L
zL

 , U∗
R =

τ∗Ru∗R
zR

 (2.11)

are de�ned thanks to 

τ∗L = τL +
1

a
(u∗ − uL)

τ∗R = τR −
1

a
(u∗ − uR)

u∗L = u∗R = u∗

u∗ =
1

2
(uL + uR)− 1

2a
(ΠR −ΠL)− M

2a

Π∗ =
1

2
(ΠL + ΠR)− a

2
(uR − uL)

with
M =

g

2
(

1

τL
+

1

τR
)(zR − zL).

Observe that Π is a new variable introduced to be able to de�ne the approximate Riemann solver. In particular, Π can be
interpreted as a linearization of the pressure term p and its initial data are well-prepared in the sense that Π = p.

Then, it is clear thatM = 0 if zL = zR so that the classical form of an approximate Riemann solver for a system of
conservation law is recovered, while X∗

L = XL and X∗
R = XR with X = τ, u, when the "lake at rest" stationary conditions

are satis�ed, namely
uL = uR = 0, hL + zL = hR + zR.

In that sense, the proposed approximate Riemann solver is said to be well-balanced. Note that this is true whatever the def-
inition of the constant a is. In practice, we will choose a = max((hc)L, (hc)R) according the well-known subcharacteristic
stability condition. For more details, we refer again to [22].

3 Numerical methods
Before getting into the heart of the matter, we give few details about the time and space discretizations we use in the

following sections. Given a constant time step ∆t, we de�ne the intermediate times by tn = n∆t for n ∈ N. Then, the
mesh interfaces are xj+1/2 = j∆x for j ∈ Z, where ∆x is the constant space step, while xj is the center of the cell
[xj−1/2, xj+1/2). Hence, given a variable ϕ, we denote ϕnj its constant average approximation on each cell [xj−1/2, xj+1/2)
at time tn, namely

ϕnj ≈
1

∆x

∫ xj+1/2

xj−1/2

ϕ(x, tn) dx,

with n ∈ N and j ∈ Z. At last, note that, regarding the mass variable m, we use ∆mj = hnj ∆x for all j.
Given the sequence {ϕnj }j , we now look for its approximation at the next time level tn+1, namely {ϕn+1

j }j . At this
stage, we are able to present the numerical schemes, starting with the �rst-order method and proceeding with the second-
order one. For each of them, we will prove the well-balanced condition as well. Let us recall that the numerical schemes
are divided into two di�erent steps. First we have the acoustic step, in which we numerically solve system (2.4). Then, we
exploit its solution as the initial condition for solving system (2.5). We can sum up this procedure in the following way,

1. Acoustic step: solve system (2.4) in order to update Qn to Qn+1−;

2. Transport step: �nd Qn+1 from Qn+1− by the approximation of the solution of system (2.5).

Note that in the �rst step, we implicitly use the change of variable U = U(Q) to �rst de�ne Un from Qn before solving (2.4),
and then the change of variables Q = Q(U) to de�ne Qn+1− from Un+1−.

6



3.1 First-order scheme
Here we give the details for the �rst-order scheme distinguishing between the acoustic and transport steps.

3.1.1 Acoustic step and Lagrangian reformulation

As far as the discretization of (2.4) is concerned, we suggest to use a classical Godunov-type method based on the well-
balanced approximate Riemann solver proposed in section 2.1. As usual, it simply consists in averaging on each cell the
juxtaposition of the approximate Riemann solutions set at each interface. Therefore, it follows after easy calculations that
the numerical discretization of the acoustic relaxation system (2.4) can be formulated as{

τn+1−
j = τnj + ∆t

∆mj
(u∗
j+ 1

2

− u∗
j− 1

2

)

un+1−
j = unj − ∆t

∆mj
(Π∗

j+ 1
2

−Π∗
j− 1

2

)−∆t{ gτ ∂mz}
n
j

(3.1)

where we have set

u∗j+ 1
2

= u∗j+ 1
2
(Qnj ,Q

n
j+1) =

1

2
(unj+1 + unj )− 1

2an
j+ 1

2

(Πn
j+1 −Πn

j )−
Mn

j+1/2

2aj+1/2
,

Π∗
j+ 1

2
= Π∗

j+ 1
2
(Qnj ,Q

n
j+1) =

1

2
(Πn

j+1 + Πn
j )−

an
j+ 1

2

2
(unj+1 − unj ),

(3.2)

an
j+ 1

2

= max((hc)nj , (hc)
n
j+1), while regarding the source term we have

{g
τ
∂mz}nj =

1

2

(∆mj+1/2

∆mj
{g
τ
∂mz}nj+1/2 +

∆mj−1/2

∆mj
{g
τ
∂mz}nj−1/2

)
with {g

τ
∂mz}nj+1/2 =

Mn
j+1/2

∆mj+1/2
∀j (3.3)

where ∆mj+1/2 = (∆mj + ∆mj+1)/2, ∆mj =
τn
j

∆x and

Mj+1/2 =
g

2
(

1

τnj
+

1

τnj+1

)(znj+1 − znj ).

Let us note that z remains constant in this step, thus zn+1−
j = znj for all j.

Lagrangian reformulation of (3.1). Let us observe that (3.1) reveals to be strictly equivalent to{
Ln+1−
j hn+1−

j = Lnj h
n
j

Ln+1−
j (hu)n+1−

j = Lnj (hu)nj − ∆t
∆x (Π∗

j+ 1
2

−Π∗
j− 1

2

) + ∆tsnj
(3.4)

where we have set
Ln+1−
j = Lnj +

∆t

∆x
(u∗j+ 1

2
− u∗j− 1

2
) with Lnj = 1 (3.5)

and
s = −gh∂xz, snj =

1

2

(
snj+1/2 + snj−1/2

)
and snj+1/2 = −

Mn
j+1/2

∆x
∀j.

Considering that the Lagrangian variable ξ is discretized using the same mesh step as the one we used for x, namely
∆ξ = ∆x, and ξj+1/2 = xj+1/2, ξj = xj for all j, it is clear that (3.4) and (3.5) respectively approximate (2.9) and (2.8).
This Lagrangian reformulation turns out to be crucial in order to derive hereafter a second-order extension of the propose
numerical scheme. Note that we still have of course zn+1−

j = znj for all j.
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3.1.2 Projection step

As already mentioned, the aim of this step is to turn into Eulerian coordinates the solution obtained at the end of the
previous step thanks to (3.4) and given in Lagrangian coordinates. This amounts to solve the transport system (2.5) which
also contains the evolution equation for z. Recall indeed that z stayed constant in the �rst step.

In order to project X = h, hu on the Eulerian grid, we use the following identity∫ ξ2

ξ1

L(ξ, t)X(ξ, t)dξ =

∫ x(ξ2,t)

x(ξ1,t)

X(x, t)dx

where we recall that the trajectories t 7→ x(ξ, t) and the volume ratio L(ξ, t) are de�ned by (2.6) and (2.7). Therefore, it is
natural to de�ne ξ̂j+1/2 such that x(ξ̂j+1/2, t

n+1) = xj+1/2 and x(ξ̂j+1/2, t
n) = ξ̂j+1/2 for all j and to write

Xn+1
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

X(x, tn+1)dx =
1

∆x

∫ x(ξ̂
j+1

2
,tn+1)

x(ξ̂
j− 1

2
,tn+1)

X(x, tn+1)dx =
1

∆x

∫ ξ̂
j+1

2

ξ̂
j− 1

2

L(ξ, tn+1−)X(ξ, tn+1−)dξ. (3.6)

Splitting the last integral into three parts, namely

Xn+1
j =

1

∆x

∫ ξ
j− 1

2

ξ̂
j− 1

2

L(ξ, tn+1−)X(ξ, tn+1−)dξ+

+
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

L(ξ, tn+1−)X(ξ, tn+1−)dξ +
1

∆x

∫ ξ̂
j+1

2

ξ
j+1

2

L(ξ, tn+1−)X(ξ, tn+1−)dξ,

(3.7)

and approximating ξ̂j+1/2 by

xj+1/2 = x(ξ̂j+1/2, t
n+1) ' x(ξ̂j+1/2, t

n) + ∆t∂tx(ξ̂j+1/2, t
n) ' ξ̂j+1/2 + ∆tu∗j+1/2,

it is natural to set, using �rst-order approximations of the integrals,

Xn+1
j =

ξj− 1
2
− ξ̂j− 1

2

∆x
(LX)n+1

j−1/2 + (LX)n+1−
j +

ξ̂j+ 1
2
− ξj+ 1

2

∆x
(LX)n+1

j+1/2
(3.8)

where for all j

(LX)n+1
j+1/2 =

{
(LX)n+1−

j if u∗j+1/2 ≥ 0

(LX)n+1−
j+1 if u∗j+1/2 < 0.

After easy manipulations, (3.8) is equivalent to

Xn+1
j = (LX)n+1−

j − ∆t

∆x

(
u∗j+ 1

2
(LX)n+1−

j+ 1
2

− u∗j− 1
2
(LX)n+1−

j− 1
2

)
. (3.9)

Therefore, taking X = h and X = hu concludes the projection on the Eulerian grid.
Let us now consider the Exner equation for which we propose two di�erent strategies. On one hand, we simply update

the topography as in the following

zn+1
j = znj − ζ

∆t

∆x

(
u∗j+ 1

2

(qb
u

)n
j+ 1

2

− u∗j− 1
2

(qb
u

)n
j− 1

2

)
, (3.10)

with

(
qb
u

)nj+1/2 =


(
qb
u

)(unj+1) if u∗
j+ 1

2

≤ 0

(
qb
u

)(unj ) if u∗
j+ 1

2

> 0,

8



where we see that the numerical �uxes are evaluated simply using the solution at time tn, and not the one obtained at the
end of the Lagrangian step. This means in some sense that the evolution of the topography is not coupled with the one
hydrodynamic model from a numerical point of view and this is the reason why this strategy is said to be decoupled. At
last, note that qbu is well-de�ned and actually depends on u only, as we suppose the solid transport discharge to be given by
the Grass formula with mg = 3. On the other hand, we propose a weakly coupled strategy in which we exploit the solution
obtained at time tn+1−, by setting

zn+1
j = znj − ζ

∆t

∆x

(
u∗j+ 1

2

(qb
u

)n+1−

j+ 1
2

− u∗j− 1
2

(qb
u

)n+1−

j− 1
2

)
. (3.11)

At this stage, notice that it would be tempting to de�ne
(qb
u

)n+1−

j+ 1
2

using the velocity un+1− simply de�ned by un+1− =

Lhun+1−

Lhn+1− . However, even if this option results to be natural, dividing by Lh rises di�culties when considering the second-
order extension. For this reason, we prefer to set

(
qb
u

)n+1−
j+1/2 =


(
qb
u

)
(

(Lu)n+1−
j+1

)
if u∗

j+ 1
2

≤ 0

(
qb
u

)
(

(Lu)n+1−
j

)
if u∗

j+ 1
2

> 0,

where a possible discretization of the evolution equation (2.10) for Lu reads

(Lu)n+1−
j = (Lu)nj +

∆t

2∆x
((u∗j+ 1

2
)2 − (u∗j− 1

2
)2) + ∆t

ŝj+ 1
2

+ ŝj− 1
2

2
(3.12)

with
ŝj+ 1

2
= −g

(h+ z)nj+1 − (h+ z)nj
∆x

.

As a last remark we observe that, since we are also interested in a 2D formulation and (2.10) could not be extended in two
dimensions as it is (see hereafter), we will propose an alternative approximation of Lu which reads

(Lu)n+1−
j = (Lu)nj +

unj + unj+1

2

∆t

∆x
(u∗j+ 1

2
− u∗j− 1

2
) + ∆t

ŝj+ 1
2

+ ŝj− 1
2

2
.

Both formulations turn out to give the same results in 1D.

3.1.3 Overall scheme and well-balanced property

Next, we give an equivalent formulation of our �rst-order scheme which takes into account both the acoustic and trans-
port steps. This formulation is interesting in the sense that it clearly shows that the scheme is indeed conservative when
there is no source term. More precisely, considering together (3.4) and (3.9) we easily get

hn+1
j = hnj −

∆t

∆x

(
u∗j+ 1

2
(Lh)n+1−

j+ 1
2

− u∗j− 1
2
(Lh)n+1−

j− 1
2

)
(hu)n+1

j = (hu)nj −
∆t

∆x

(
u∗j+ 1

2
(Lhu)n+1−

j+ 1
2

+ Π∗
j+ 1

2
− u∗j− 1

2
(Lhu)n+1−

j− 1
2

−Π∗
j− 1

2

)
+ ∆tsnj

(3.13)

while the evolution equations (3.10) and (3.11) for z are clearly conservative. Let us now prove the well-balanced property.

Theorem 1. The �rst-order numerical scheme with updating formula (3.13) and (3.10) or (3.11) preserves the "lake at rest"
stationary solution (1.6).

Proof. Assuming to be under the "lake at rest" condition, that is to say unj = 0 and hnj + znj = constant, for all j, it is
straightforward to demonstrate that this stationary solution is preserved. Indeed, few algebraic computations show that
u∗
j+ 1

2

= 0 as unj = unj+1 = 0 and

Πn
j+1 −Πn

j =
g

2
((hnj+1)2 − (hnj )2) =

g

2
(hnj + hnj+1)(hnj+1 − hnj ) = −g

2
(hnj + hnj+1)(znj+1 − znj ).
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Similarly, it can be proved that 1
∆x (Π∗

j+ 1
2

− Π∗
j− 1

2

) = snj and thus (Lhu)n+1−
j = (Lhu)nj = (hu)nj = 0. We can also note

that (Lu)n+1−
j = 0 as (h+ z)nj = (h+ z)nj+1 for all j. Finally, it is easily seen that under the property u∗j+1/2 = 0 for all j,

then the transport step gives hn+1
j = hnj , (hu)n+1

j = 0, and zn+1
j = znj which concludes the proof.

3.2 Second-order scheme
We now explain how to reach the second order of accuracy in both space and time. While increasing the order of accuarcy

is a standard process, the key issue is to preserve the well-balanced property.
In order to construct a high-order approximation in space, we will make use of classical �rst-order polynomial recon-

structions, but applied to the so-called �uctuations which is non-standard and has been introduced in [40] to combine both
the well-balanced property and the higher order property.

Regarding the second-order discretization in time, we simply consider Runge-Kutta TVD scheme at second order [31].
In particular, we apply it to the overall scheme (Lagrangian and remap step together) in order to avoid di�usion due to the
splitting.

3.2.1 Lagrangian step

In order to reach the second order of accuracy in space, we begin by de�ning at time tn and for each cell j a stationary
solution denoted by x 7→ Qn,ej (x) and de�ned for all x by(

hn,ej
)
(x) = hnj + znj − zn(x), un,ej (x) = unj and zn,ej (x) = zn(x), (3.14)

where x 7→ zn(x) is nothing but the piecewise constant approximation of z at time tn, namely such that zn(x) = znj for all
x in [xj−1/2, xj+1/2). Such a reconstructed solution satis�es the in-cell conservativity property

1

∆x

∫ x
j+1

2

x
j− 1

2

Qn,ej (x)dx = Qnj .

Next, we follow [40] and introduce the so-called j-�uctuations de�ned as

Dnk,j = Qnk −
1

∆x

∫ xk+1/2

xk−1/2

Qn,ej (x)dx,

for all k. Observe that Dnj,j = 0 by construction, while Dnk,j = 0 for all k if the approximate solution at time tn satis�es the
"lake at rest" condition (1.6).

At last, for each cell Ij we make use of a reconstructed polynomial vector Pnj (x) de�ned by

Pnj (x) = Qnj + ∆n
j (x− xj),

where ∆n
j = ∆n

j (Dnj−1,j ,Dnj,j ,Dnj+1,j) is the ENO [46] or the MINMOD [45] slope applied to the �uctuations.
The numerical �uxes u∗

j+ 1
2

and Π∗
j+ 1

2

are then de�ned in a very classical way using the interfaces values

Qnj+ 1
2L

= Pnj (xj+ 1
2
) and Qnj+ 1

2R
= Pnj+1(xj+ 1

2
),

and formula (3.2), namely

u∗j+ 1
2

= u∗j+ 1
2
(Qnj+ 1

2L
,Qnj+ 1

2R
) and Π∗

j+ 1
2

= Π∗
j+ 1

2
(Qnj+ 1

2L
,Qnj+ 1

2R
), (3.15)

with
anj+ 1

2
= max

(
hnj+ 1

2 ,L
cnj+ 1

2 ,L
, hnj+ 1

2 ,R
cnj+ 1

2 ,R

)
.

Regarding the source term, once again we exploit formulas (3.3). Let us note that, thanks to formula (3.14), zj+ 1
2L

= zj and
zj+ 1

2R
= zj+1 as the �uctuations related to the topography are null. Finally, the discretization of the Lagrangian system

(2.9) reads as in the �rst-order step, namely{
Ln+1−
j hn+1−

j = Lnj h
n
j

Ln+1−
j (hu)n+1−

j = Lnj (hu)nj − ∆t
∆x (Π∗

j+ 1
2

−Π∗
j− 1

2

) + ∆tsnj .
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3.2.2 Projection step

In this step, we exploit again a reconstructed polynomialLP. However, in order to preserve the second-order of accuracy,
it is crucial to reconstruct the Lagrangian variables (LX), namely as

(LX)n+1−
j (ξ) = (LX)n+1−

j + ∆n+1−
j (ξ − ξj) (3.16)

with the slope ∆n+1−
j = ∆n+1−

j ((LX)n+1−
j−1 , (LX)n+1−

j , (LX)n+1−
j+1 ) and where the variableX denotes h, hu and u. Then,

the updating formula for X = h and X = hu are given by a second-order approximation of the three integrals that appear
in (3.7). This is achieved by using the mid-point rule, thus we get

Xn+1−
j = (LX)n+1−

j − ∆t

∆x

(
u∗j+ 1

2
(LX)n+1−

j+ 1
2

(ξj+ 1
2

+ ξ̂j+ 1
2

2

)
− u∗j− 1

2
(LX)n+1−

j− 1
2

(ξj− 1
2

+ ξ̂j− 1
2

2

))
, (3.17)

where we use the upwind de�nition

(LX)n+1−
j− 1

2

(ξ) =

{
(LX)n+1−

j−1 (ξ) if u∗
j− 1

2

> 0

(LX)n+1−
j (ξ) if u∗

j− 1
2

≤ 0.
(3.18)

As far as the topography is concerned, we consider the weakly coupled scheme (3.11) where we naturally set

(
qb
u

)n+1−
j+1/2 =


(
qb
u

)
(

(Lu)n+1−
j+1 (

ξj+ 1
2

+ ξ̂j+ 1
2

2
)
)

if u∗
j+ 1

2

≤ 0

(
qb
u

)
(

(Lu)n+1−
j (

ξj+ 1
2

+ ξ̂j+ 1
2

2
)
)

if u∗
j+ 1

2

> 0,

and u∗
j± 1

2

is given by (3.15).
Afterwards, for the decoupled scheme, we �rst de�ne the reconstructed polynomial for the water height h and the �ow

hu at time tn,
P (X)nj (x) = Xn

j + ∆n
j (x− xj)

with X = h, hu and ∆n
j the slopes (either ENO or Minmod). Then, we use formula (3.10) where we impose

(
qb
u

)nj+1/2 =


(
qb
u

)
(P (hu)nj+1(xj+ 1

2
)

P (h)nj+1(xj+ 1
2
)

)
if u∗

j+ 1
2

≤ 0

(
qb
u

)
(P (hu)nj (xj+ 1

2
)

P (h)nj (xj+ 1
2
)

)
if u∗

j+ 1
2

> 0.

Theorem 2. The second-order numerical scheme described preserves the "lake at rest" stationary solution (1.6).

Proof. Since we already proved the well-balanced property for the �rst-order scheme, it is straightforward to show it for
the second-order method as well. Indeed, it is enough to observe that the slopes ∆n

j = ∆n
j (Dnj−1,j ,Dnj,j ,Dnj+1,j) are null

under the hypothesis of the "lake at rest condition" thanks to de�nition of the �uctuations. Hence, once again we obtain
u∗
j+ 1

2

= 0 and thus Lhun+1−
j = hunj = 0, Lhn+1−

j = hnj , hu
n+1
j = Lhun+1−

j = hunj = 0, hn+1
j = Lhn+1−

j = hnj and
zn+1
j = znj . Finally, it is only worth to specify that the Runge-Kutta TVD procedure automatically preserves the stationary

solutions.

4 Two-dimensional extension
In this section, we brie�y describe how we extend the proposed approach in two space dimensions using dimensional

splitting. Let us �rst recall that if we denote (x, y) ∈ R2 the space variables and u = (u, v)T the velocity vector, then the
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2D shallow water system reads {
∂th+∇ · (hu) = 0

∂t(hu) +∇ · (hu⊗ u) +∇p = −gh∇z,
(4.1)

while the Exner equation is given by
∂tz + ζ∂xqb,x + ζ∂yqb,y = 0

where qb,x and qb,y are the solid transport discharges in the x and y direction respectively. Exploiting once again the Grass
model, their formula are the following,

qb,x = Agu(u2 + v2) and qb,y = Agv(u2 + v2).

Notice that the "lake at rest" stationary solutions now satisfy

u = 0, v = 0 and ∇(h+ z) = 0.

It is still possible to consider a Lagrangian formulation of these equations. More precisely, let us introduce the Lagrangian
coordinates (ξ1, ξ2) and consider the map : (ξ1, ξ2)→ (x, y), with x = x(ξ1, ξ2, t), y = y(ξ1, ξ2, t) and such that

∂x

∂t
= u(x, y, t) and ∂y

∂t
= v(x, y, t),

x(ξ1, ξ2, 0) = ξ1, y(ξ1, ξ2, 0) = ξ2.

We also assume that for each t > 0, this map is invertible and its Jacobian (determinant of the Jacobian matrix) is given by

L(ξ1, ξ2, t) =

∣∣∣∣∂ξ1x ∂ξ2x
∂ξ1y ∂ξ2y

∣∣∣∣
with L(ξ1, ξ2, 0) = 1 and, after easy calculations,

∂L(ξ1, ξ2, t)

∂t
= L∇ · u = L∂xu+ L∂yv. (4.2)

Then, it can be shown that the Lagrangian formulation of the system writes{
∂t(Lh) = 0

∂t(Lhu) + L∇p = −ghL∇z,
(4.3)

where the gradient is still taken with respect to the Eulerian variables (x, y), while on the other hand we also have

∂t(Lu)− uL∇ · u + gL∇(h+ z) = 0,

which will be useful hereafter. We refer the reader to [35, 37] for more details about Lagrangian coordinates in 2−dimensions.

We now give the basic formulas based on a dimensional splitting and introduce some notations. First of all, the com-
putational domain Ω ⊂ R is divided into Mx ×My rectangular cells with constant space steps ∆x and ∆y in the x and y
directions respectively. Then, the mesh interfaces are given by xi+1/2 for i ∈ {0, . . . ,Mx} and yj+1/2 for j ∈ {0, . . . ,My}.
Thus, ϕni,j denotes the piecewise constant approximation of the variable ϕ in the cell [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2) at
time tn, namely

ϕni,j ≈
1

∆x

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

ϕ(x, y, tn) dx dy.
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Acoustic step
Following the 1D scheme, the numerical approximation of (4.3) is taken to be

(Lh)n+1−
i,j = (Lh)ni,j

(Lhu)n+1−
i,j = (Lhu)ni,j −

∆t

∆x
(Π∗

i+ 1
2 ,j
−Π∗

i− 1
2 ,j

) + ∆ts1,n
i,j

(Lhv)n+1−
i,j = (Lhv)ni,j −

∆t

∆y
(Π∗

i,j+ 1
2
−Π∗

i,j− 1
2
) + ∆ts2,n

i,j

(4.4)

where we have set
Ln+1−
i,j = Lni,j +

∆t

∆x
(u∗i+ 1

2 ,j
− u∗i− 1

2 ,j
) +

∆t

∆y
(v∗i,j+ 1

2
− v∗i,j− 1

2
) (4.5)

with

u∗i+ 1
2 ,j

=
1

2
(uni+1,j + uni,j)−

1

2an
i+ 1

2 ,j

(Πn
i+1,j −Πn

i,j)−
Mn

i+1/2,j

2ai+1/2,j
,

v∗i,j+ 1
2

=
1

2
(vni,j+1 + vni,j)−

1

2an
i,j+ 1

2

(Πn
i,j+1 −Πn

i,j)−
Mn

i,j+1/2

2ai,j+1/2
,

Π∗
i+ 1

2 ,j
=

1

2
(Πn

i+1,j + Πn
i,j)−

an
i+ 1

2 ,j

2
(uni+1,j − uni,j),

Π∗
i,j+ 1

2
=

1

2
(Πn

i,j+1 + Πn
i,j)−

an
i,j+ 1

2

2
(vni,j+1 − vni,j),

(4.6)

with ani+1/2,j = max((hc)ni,j , (hc)
n
i+1,j), ani,j+1/2 = max((hc)ni,j , (hc)

n
i,j+1), while regarding the source term we have for

all j

s1,n
i,j =

1

2

(
sni+1/2,j + sni−1/2,j

)
with sni+1/2,j = −

Mn
i+1/2,j

∆x

s2,n
i,j =

1

2

(
sni,j+1/2 + sni,j−1/2

)
with sni,j+1/2 = −

Mn
i,j+1/2

∆y

with
Mn

i+1/2,j =
g

2
(

1

τni,j
+

1

τni+1,j

)(zni+1,j − zni,j), Mn
i,j+1/2 =

g

2
(

1

τni,j
+

1

τni,j+1

)(zni,j+1 − zni,j).

It is clear that the numerical scheme (4.6) is a natural extension of the one used for the one-dimensional system.

Projection step
As before, the second step of the Lagrange-projection scheme consists in projecting the solution obtained at the end of

the acoustic step onto the Eulerian grid, that is to say in approximating the transport system

∂tϕ+ u · ∇ϕ = 0

or equivalently
∂tϕ+∇ · (ϕu)− ϕ∇ · u = 0,

where we assumed ϕ = h, hu, hv. Here and analogously to the 1D formulation (3.9), we simply set

ϕn+1
i,j =(Lϕ)n+1−

i,j − ∆t

∆x

(
u∗i+ 1

2 ,j
(Lϕ)n+1−

i+ 1
2 ,j
− u∗i− 1

2 ,j
(Lϕ)n+1−

i− 1
2 ,j

)
− ∆t

∆y

(
v∗i,j+ 1

2
(Lϕ)n+1−

i,j+ 1
2

− v∗i,j− 1
2
(Lϕ)n+1−

i,j− 1
2

)
, (4.7)

where

(Lϕ)n+1−
i− 1

2 ,j
=

{
(Lϕ)n+1−

i−1,j if u∗
i− 1

2 ,j
> 0

(Lϕ)n+1−
i,j if u∗

i− 1
2 ,j
≤ 0,

and (Lϕ)n+1−
i,j− 1

2

=

{
(Lϕ)n+1−

i,j−1 if v∗
i,j− 1

2

> 0

(Lϕ)n+1−
i,j if v∗

i,j− 1
2

≤ 0.
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The Exner equation. As a natural extension of (3.11), we set

zn+1
i,j = zni,j − ζ

∆t

∆x

(
u∗i+ 1

2 ,j

(qb,x
u

)n+1−

i+ 1
2 ,j
− u∗i− 1

2 ,j

(qb,x
u

)n+1−

i− 1
2 ,j

)
− ζ ∆t

∆y

(
v∗i,j+ 1

2

(qb,y
v

)n+1−

i,j+ 1
2

− v∗i,j− 1
2

(qb,y
v

)n+1−

i,j− 1
2

)
with

(
qb,x
u

)n+1−
i+1/2,j =


(
qb,x
u

)
(

(Lu)n+1−
i+1,j

)
if u∗i+1/2,j ≤ 0

(
qb,x
u

)
(

(Lu)n+1−
i,j

)
if u∗i+1/2,j > 0,

and (
qb,y
v

)n+1−
i,j+1/2 =


(
qb,y
v

)
(

(Lu)n+1−
i,j+1

)
if v∗i,j+1/2 ≤ 0

(
qb,y
v

)
(

(Lu)n+1−
i,j

)
if v∗i,j+1/2 > 0,

where a possible discretization of the evolution equations for Lu and Lv read

(Lu)n+1−
i,j = (Lu)ni,j + ∆t

ui+1,j + ui,j
2

( 1

∆x
(u∗i+ 1

2 ,j
− u∗i− 1

2 ,j
) +

1

∆y
(v∗i,j+ 1

2
− v∗i,j− 1

2
)
)
−∆t

ŝi+ 1
2 ,j

+ ŝi− 1
2 ,j

2

and

(Lv)n+1−
i,j = (Lv)ni,j + ∆t

vi,j+1 + vi,j
2

( 1

∆x
(u∗i+ 1

2 ,j
− u∗i− 1

2 ,j
) +

1

∆y
(v∗i,j+ 1

2
− v∗i,j− 1

2
)
)
−∆t

ŝi,j+ 1
2

+ ŝi,j− 1
2

2

where ŝi+ 1
2 ,j

= g((h+ z)i+1,j − (h+ z)i,j)/∆x and ŝi,j+ 1
2

= g((h+ z)i,j+1 − (h+ z)i,j)/∆y.

2D extension of the second-order scheme
We now brie�y discuss the extension of the second-order scheme, distinguishing among the Exner equation and the

Lagrangian and projection steps for the shallow water system. Once again we reach the second order of accuracy in time
exploiting the Runge-Kutta procedure, which is applied to the Lagrangian and projection step together. As expected, the
overall strategy is analogous to what we have done for the 1D case.

Regarding the Lagrangian step, we proceed as usual and compute the numerical �uxes u∗
i+ 1

2 ,j
, v∗
i,j+ 1

2

, Π∗
i+ 1

2 ,j
and Π∗

i,j+ 1
2

,
but also the speeds ai+1/2,j and ai,j+1/2 using left and right interfaces values de�ned by means of reconstructed polynomials
as in the 1D case, namely

Vni+1/2L,j = Vni,j + ∆x,t
i,j

∆x

2
, Vni+1/2R,j = Vni+1,j −∆x,t

i+1,j

∆x

2
(4.8)

in the x direction, and
Vni,j+1/2L = Vni,j + ∆y,t

i,j

∆y

2
, Vni,j+1/2R = Vni,j+1 −∆y,t

i,j+1

∆y

2
(4.9)

along the y axis, where we have set V = (h, hu, hv)T . At this stage, we only need to de�ne the slopes ∆x,t
i,j , ∆y,t

i,j which are
computed exactly as in the 1D case thanks to the de�nition of �uctuations in the x, respectively y, direction and considering
that the y = yj , resp. x = xi, is �xed and using reconstructed stationary solutions direction by direction. The details are
left to the reader. In particular, such a strategy guarantees the well-balanced property of the numerical scheme, since the
slopes turn out to be null under the "lake at rest" conditions.

Regarding the transport step, we consider a direct 2D extension of (3.17) namely

Xn+1
i,j =(LX)n+1−

i,j − ∆t

∆x

(
u∗i+ 1

2 ,j
(LX)n+1−

i+ 1
2 ,j

(ξ1,i+ 1
2

+ ξ̂1,i+ 1
2

2

)
− u∗i− 1

2 ,j
(LX)n+1−

i− 1
2 ,j

(ξ1,i− 1
2

+ ξ̂1,i− 1
2

2

))
− ∆t

∆y

(
v∗i,j+ 1

2
(LX)n+1−

i,j+ 1
2

(ξ2,j+ 1
2

+ ξ̂2,j+ 1
2

2

)
− v∗i,j− 1

2
(LX)n+1−

i,j− 1
2

(ξ2,j− 1
2

+ ξ̂2,j− 1
2

2

))
,
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where we have used clear notations which are based on classical �rst-order polynomial reconstructions of the Lagrangian
unknowns (LX) in each direction as in the 1D case, with X = h, hu, hv.

Finally, exploiting also the reconstructed values for Lu and Lv and using again classical notations, we suggest a direct
2D extension of (3.11) namely

zn+1
i,j = zni,j−ζ

∆t

∆x

(
u∗i+1/2,j

(qb,x
u

)n+1−

i+1/2,j
−u∗i−1/2,j

(qb,x
u

)n+1−

i−1/2,j

)
−ζ ∆t

∆y

(
v∗i,j+1/2,

(qb,y
v

)n+1−

i,j+1/2
−u∗i,j−1/2

(qb,y
v

)n+1−

i,j−1/2

)
with a natural de�nition for the numerical �uxes qb,x

u and qb,y
v . Again, the details are left to the reader since there is no

ambiguity.

To conclude this 2D section, let us mention that both the schemes described here preserve the "lake at rest" stationary
solutions. The proof is analogous to the one seen in 1D.

5 Numerical results
This section is devoted to the presentation of the simulations and outputs of the numerical schemes we described so far.

Regarding the 1D time step value, at each time tn we compute two di�erent time steps, one for the acoustic system and the
other for the transport part, which respectively read

∆t ≤ CFLl
∆x

max
j
{max(τnj , τ

n
j+1)aj+ 1

2
}
,

and
∆t ≤ CFLt

∆x

max
j
{u+

j− 1
2

− u−
j+ 1

2

}
,

where CFLl and CFLt are respectively the CFL number for the Lagrangian and the transport system, and

u+
j− 1

2

= max(u∗j− 1
2
, 0) and u−

j+ 1
2

= min(u∗j+ 1
2
, 0).

Then, the �nal time step is taken as the minimum between the two. If working in 2D, the acoustic time step is automatically
extended, it is enough to consider both directions, while the transport time step reads

∆t ≤ CFLtmin
i,j

{{u+
i− 1

2 ,j
− u−

i+ 1
2 ,j

∆x
+
v+
i,j− 1

2

− v−
i,j+ 1

2

∆y

}−1}
.

Finally, if not otherwise speci�ed, we take ζ = 1, qb = Agu
3 with Ag = 0.005 for the Exner equation, and transmissive

boundary conditions. For the CFL number we use CFLl = 0.45 and CFLl = 0.25 for the �rst and second order schemes
respectively, while CFLt = 1.When the 1D reference solution is inserted, it is computed exploiting the second-order scheme
with decoupled approximation (3.10) for the Exner equation. Then, M = 2000 cells are used, where ∆x = L

M with L the
length of the channel.

5.1 Test of order of accuracy
Here we test the order of accuracy of the numerical schemes described previously. Let us consider a channel of length

L = 20m, Ag = 0.3, m = 3. The initial condition is given by null velocity and{
zIC = 0.1− 0.01e−(x−10)2

hIC = 2− 0.1e−(x−10)2 .

We refer to paper [10] for this test case. The reference solution is computed using M = 4096 cells and second order
decoupled method. In table 1 we inserted the error in norm L1 and the empirical order of accuracy (EOA) for the water
height h, the discharge q and the topography z of both the weakly coupled and decoupled approach. We can see that both
schemes reach the second order of accuracy as expected.

15



Method Mesh M Variable err L1 O(L1) Variable err L1 O(L1) Variable err L1 O(L1)

Decoupled 64 h 0.0268 − hu 0.1175 − z 0.1792× 10−3 −
128 0.0083 1.6953 0.0354 1.7320 0.0544× 10−3 1.7190
256 0.0027 1.6185 0.0115 1.6249 0.0182× 10−3 1.5785
512 0.0007 1.8756 0.0031 1.8782 0.0050× 10−3 1.8761
1024 0.0002 1.9781 0.0008 1.9818 0.0012× 10−3 1.9932

Weakly coupled 64 h 0.0268 − hu 0.1175 − z 0.1824× 10−3 −
128 0.0083 1.6955 0.0354 1.7320 0.0550× 10−3 1.7296
256 0.0027 1.6182 0.0115 1.6248 0.0183× 10−3 1.5890
512 0.0007 1.8755 0.0031 1.8781 0.0050× 10−3 1.8734
1024 0.0002 1.9782 0.0008 1.9818 0.0013× 10−3 1.9792

Table 1: Errors and empirical convergence rates for norm L1. Mesh of size M = (64, 128, 256, 512, 1024, 2048), CFL = 0.25. Second-order decoupled
and weakly coupled numerical schemes.

5.2 1D Riemann problem: dam break on movable bottom
For this Riemann problem we refer to [2]. The length of the channel is L = 10m and the dam is placed in the middle.

The ending time is tend = 1s. The initial condition is given by null velocity, �at topography and water height hL = 2m
if x < L/2, hR = 0.125m if x > L/2. In �gure 1 we insert the numerical results given by the �rst-order weakly coupled
scheme exploiting two di�erent meshes, in particular M = 200 and M = 2000 cells. In the second case, we observe that
the �rst-order solution converges towards the reference one, while for M = 200 the solution is less accurate in the plateau
zone when considering the topography z. On the other hand, no spurious oscillations appear.

Next, in �gure 2, we insert the results for the decoupled and weakly coupled second order numerical methods for di�erent
mesh sizes,M = 100,M = 200 andM = 500 cells . These two schemes give similar results and, in the topography outputs
of both of them, we note some oscillations which decrease as we re�ne the mesh. We also observe that these oscillations are
more accentuated in the decoupled scheme outputs. This is indeed expected as in the decoupled scheme the topography is
not coupled with the hydrodynamic model.

5.3 1D sub-critical and supercritical regions
For the following two numerical tests we refer to paper [26]. As initial condition we consider the sub-critical steady

state 
hu(x, t = 0) = 0.5

z(x, t = 0) = 0.1(1 + e−(x−5)2)
u2

2 + g(h+ z) = 6.386,

while the length of the channel is L = 10.0m. In �gure 3 we insert the results of the �rst and second-order numerical
schemes computed with M = 200. We consider both Ag = 0.005 (top) and Ag = 0.07 (bottom). In both cases, the results
are satisfying. In work [26], the authors noted as a splitting numerical scheme could produce oscillations in the solution of
this numerical test, but to reduce the CFL number could remedy the problem. By splitting numerical scheme, they mean a
method which solves before the shallow water system for a �xed topography, and then update the bed level according to
the Exner equation. For our method it is not necessary to further decrease the CFL due to the Lagrange-projection splitting
whose numerical di�usion is su�cient as coming from both steps. Then, in the same paper [26], the authors presented
another test case in which the oscillations of the numerical solution of the splitting method could not be removed, even
reducing the CFL number. In �gure 4 we show that our solution does not present any oscillation. The decoupled method
outputs are not reported as they are very close to the weakly coupled ones. For this last test case, the coe�cient Ag is kept
null until time t = 15s is reached, then the value Ag = 0.0005 is used. As IC we considered

hu(x, t = 0) = 0.6

z(x, t = 0) = 0.1(1 + e−(x−5)2)

h(x, t = 0) + z(x, t = 0) = 0.4.

Note that in this test case we have both sub-critical and supercritical regions.
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(a) M = 200 cells

(b) M = 2000 cells

Figure 1: RP: dam break on movable bottom; free surface (up) and bed level (bottom). Reference solution (red) and �rst-order weakly coupled solution
(blue). M = 200 cells (up) and M = 2000 cells (bottom).

17



(a) 2nd order weakly coupled scheme

(b) 2nd order decoupled scheme

Figure 2: RP: dam break on movable bottom; free surface (up) and bed level (bottom). "Decoupled" (bottom) and "weakly coupled" (up) solutions. Mesh of
size M = 100 (blue line), M = 200 (magenta line) and M = 500 (green line) cells. Red line for reference solution.
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(a) Ag = 0.005

(b) Ag = 0.07

Figure 3: Flow over a movable bump; bed level z and free surface z+ h. First (blue) and second-order (magenta) weakly coupled solutions with M = 200
cells. Reference solution in red.
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(a) tend = 16.2s

(b) tend = 30s

Figure 4: Free surface and bed level, M = 200 cells. Reference solution (red) and �rst-order weakly coupled solution (blue).
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Figure 5: Propagation of perturbation; bed level z and free surface z + h (top), velocity (bottom). First (blue) and second-order (magenta) weakly coupled
solutions with M = 200 cells. Reference solution in red.

5.4 1D "lake at rest" solution and perturbation
This numerical test is useful to check the well-balanced property of the numerical scheme as we start considering a

stationary solution and then we insert some perturbations. For the numerical tests of this section, see [22]. Thus, let us
consider as initial condition null velocity, h(x, t = 0) + z(x, t = 0) = 3m and

z(x, t = 0) =

{
2 + 0.25(cos(10π(x− 0.5)) + 1) if 1.4 < x < 1.6

2 otherwise.

The length of the channel is L = 2.0m. Both �rst and second-order schemes maintain the steady state up to an error of
order 10−15.

As a second step, let us introduce small perturbations, namely we impose

h(x, t = 0) =

{
3− z(x, t = 0) + 0.001 if 1.1 < x < 1.2

3− z(x, t = 0) otherwise.

In �gure 5 we compare the results of �rst and second order numerical schemes against the reference solution. We observe
that the outputs are satisfying and in agreement with the ones showed in work [22], no spurious oscillations appear. Clearly,
the second order results are less di�usive than the �rst-order one.

5.5 Circular dam break on wet bed
Let us now consider test problems in 2 dimensions. In this �rst simple test, the Exner equation is not taken into account,

refer to [44]. The domain is a L × L square with L = 50m. Here as initial condition we consider a �at topography, null
velocities in both the x and y directions and water height

h(x, y, t = 0) =

{
10 if r ≤ 11m
1 if r > 11m,
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Figure 6: 2D circular dam break on wet bed; water height (left) and its contour plot (right). 2D extension of �rst-order scheme solution. M = 100 cells,
tEnd = 0.69s and CFL= 0.45.

with r =
√

(x− 25)2 + (y − 25)2. Thus, we are considering a cylindrical dam that instantaneously breaks at the beginning
time t = 0s. The ending time tEnd = 0.69s. Satisfying results of the �rst order scheme are reported in �gure 6.

5.6 Water drop in a basin
For this numerical test, see [4]. Here we simulate a water drop in a basin and consequently re�ective boundary conditions

are used. A L-side square domain with L = 20m is considered. The topography is still taken �at and constant in time. At
initial time we assume u = (0, 0)t and

h(x, y, t = 0) = 2.4(1 + e−0.25((x−10.05)2+(y−10.05)2))

The outputs are shown in �gure 7 at time t = 1s, t = 2s, t = 3s and t = 4s respectively. The results agree with the ones
reported in [4]. In particular, in the same picture 7, we compare the results at time t = 4s obtained using the 2D extensions
of the �rst-order and second-order schemes. We can clearly see that the latter scheme gives less di�usive solutions under
the same mesh M = 100 cells.

5.7 2D squared dam break
Once again we assume �at topography constant in time. The domain is a square of side L = 200m. The dam position is

represented in �gure 8. We note a breach of length 75m which is instantaneously opened at time t = 0. At initial time we
also have null velocities and

h(x, y, t = 0) =

{
10 if x ≤ 100m
5 if x > 100m.

For more details refer to paper [44]. The results for the water height and the velocity �eld are shown in �gure 9 and they
appear to be in agreement with the reference outputs given in [44].

5.8 2D �ow over a smooth bump
The following test problem is useful to check the well-balanced property of the scheme, see [44]. The domain is a square

of side L = 1m and we consider the Grass formulation for the Exner equation with Ag = 1 and ζ = 1. At initial time we
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(a) t = 0s, 2D extension of 2nd-order scheme (b) t = 1s, 2D extension of 2nd-order scheme

(c) t = 2s, 2D extension of 2nd-order scheme (d) t = 3s, 2D extension of 2nd-order scheme

(e) t = 4s, 2D extension of 2nd-order scheme (f) t = 4s, �rst order scheme

Figure 7: Water drop in a basin; water height at time t = 0s, t = 1s, t = 2s, t = 3s and t = 4s. M = 100 cells, CFL= 0.25 and CFL= 0.45 for the 2D
extension of second and �rst order scheme respectively.
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Figure 8: Geometry of the dam in the squared dam break test problem.

assume null velocities,

z(x, y, t = 0) = max(0, 0.25− 5((x− 0.5)2 + (y − 0.5)2)) and h(x, y, t = 0) = 0.5− z(x, y).

Thus, the initial solution satis�es the "lake at rest" condition. Indeed, our 2D numerical schemes are able to preserve this
kind of stationary solutions up to an error of order 10−15.

5.9 Conical dune of sand
This test case has been vastly used to validate numerical schemes for shallow water Exner system, here we do refer for

instance to [6, 33]. When considering the Grass formulation for the sediment discharge, we take porosity ρ0 = 0.4, where
we recall that ζ = 1

1−ρ0 . The domain is a L× L square with L = 1000m. At time t = 0, we impose

z(x, y, t = 0) =

{
0.1 + (sin(π(x−300)

200 ))2(sin(π(y−400)
200 ))2 if 300 ≤ x ≤ 500 and 400 ≤ y ≤ 600

0.1 otherwise,

h(x, y, t = 0) = 10− z(x, y, t = 0),

u(x, y, t = 0) =
10

h(x, y, 0)
and v(x, y, t = 0) = 0.

Here, as boundary conditions, we assume that at the upstream we impose u(x, y, t) = 10
h(x,y,t) while the other boundaries

are usual transmissive conditions.
Then, we consider two di�erent cases: in the �rst one we take Ag = 1 and ending time tEnd = 500s, thus we are

assuming a fast interaction between the �ow and the sediments. As second case, we diminish the value of Ag , namely we
impose Ag = 0.1, thus the strength of the interaction decreases. The outputs for these two test cases can be found in
pictures 10 and 11 respectively. The result are in agreement with the ones reported in [6] even if more di�usive due to a
coarser mesh size (M = 100 cells).
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(a) t = 3.6s (b) t = 3.6s

(c) t = 7.2s (d) t = 7.2s

(e) t = 10.8s (f) t = 10.8s

Figure 9: Squared dam break; water height (left) and contour plot and velocity �eld (right) at time t = 3.6s, t = 7.2s and t = 10.8s. Dam in black. 2D
extension of second order scheme with M = 100 cells and CFL= 0.25.
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Figure 10: Conical dune of sand; fast interaction Ag = 1. Bed level (left) and contour plot (right) at time t = 500s. 2D extension of second order scheme
with M = 100 cells and CFL= 0.25.

Figure 11: Conical dune of sand; fast interaction Ag = 1. Bed level (left) and contour plot (right) at time t = 500s. 2D extension of second order scheme
with M = 100 cells and CFL= 0.25.
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6 Concluding remarks
In this work a second-order well-balanced Lagrange-projection scheme for the shallow water Exner system has been

presented in 1D. Two-dimensional extension is proposed as well. Numerical results proved the validity of the scheme.
Generally, no oscillations are present in the numerical outputs, with the exception of one test case, in which it is shown
that to slightly re�ne the mesh solve the mentioned problem. Further work to solve implicitly the acoustic step is required.
Other strategies to take into account the Exner equation in the Lagrange-projection formalism are being explored and will
be shortly submitted.
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