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Fig. 1. Application of our method to pose change and shape completion on the Prince Paris statue. Through skeleton regression on statues, we identify their
pose and anatomy. If the input statue has missing data, we propose to adapt parts from other statues and use them to complete the input. Once the statue is
complete, we can also change its pose: here we bring it to the pose of The Thinker by Auguste Rodin.

The digitization of archaeological artefacts has become an essential part of
cultural heritage research be it for purposes of preservation or restoration.
Statues, in particular, have been at the center of many projects. In this
paper, we introduce a way to improve the understanding of acquired statues
by registering a simple and pliable anatomical model to the raw point set
data. Our method performs a Forward And bacKward Iterative Registration
(FAKIR) which proceeds joint by joint, needing only a few iterations to
converge. Furthermore, we introduce a simple detail-preserving skinning
approach working directly on the point cloud, without needing a mesh. By
combining FAKIR with our skinning method we are able to detect the pose
and the elementary anatomy of a sculpture and modify it, paving the way for
pose-independent style comparison and statue restoration by combination
of parts belonging to statues with different poses.

CCS Concepts: •Computingmethodologies→ Shapemodeling; Point-
based models.

Additional Key Words and Phrases: Skeleton registration, point set analysis,
anatomy detection, shape editing

1 INTRODUCTION
With the progress of 3d scanning techniques, it is now common
to create digital replicas of artworks, which will remain forever
intact, while the real-world counterparts will slowly decay due to
time damage or human activity. However when the digitization
is performed, the statues are often already degraded. Restorations
being costly, invasive and sometimes even risky, museums are often
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reluctant to carry out such processes. Hopefully, digitization offers
another huge advantage: the possibility to build and test restoration
hypotheses, whether or not they are applied to the real model af-
terwards. In the statue’s case, one of the first steps towards virtual
restoration is to be able to identify anatomical parts, in order to
guide the restoration. While this task can be performed manually,
it is often long and tedious. In this paper, we are thus interested
in recovering the anatomy of a statue, using a simple anatomical
model, while keeping user interventions to a minimum. We focus
on human statues with no or few garments, since those will benefit
directly from a registered anatomical model. Many Roman or Gallo-
Roman statues fall within this scope. Furthermore, we consider that
the digitized statues are provided as point sets.

Our objective is to identify the elementary anatomy of a statue al-
lowing in turn to change the statue’s pose. To do so, we first propose
a method for calibrating and registering a simple anatomical model
to a point set. This step is achieved directly on the point cloud, avoid-
ing thus the tedious meshing step and preserving the accuracy of
the initial sampling. To perform the calibration and registration, we
introduce the Forward And bacKward Iterative Registration (FAKIR)
algorithm, inspired by recent inverse kinematics approaches. FAKIR
permits to efficiently register the anatomical model in only a few
iterations. Once the model is registered, the point set surface is
locally represented as a residual heightfield above the registered
anatomical model. It is then possible to change the pose of the statue
and combine parts of different statues after they are brought to a
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common pose. To do this, we propose a skinning approach that is
applied directly to the point cloud, without using a mesh.
To summarize, our contributions are the following:
• A simple anatomical model efficiently representing a statue
pose.

• An efficient calibration and registration process based on
inverse kinematics.

• A point set skinning process permitting to modify the point
set following an anatomy and/or pose change.

2 RELATED WORK
AnatomicalModel. Designing anatomicalmodels for human shapes

has raised a lot of interest. The most common representation con-
sists in a more or less detailed graph of bones such as the ones used
in the MakeHuman framework [5]. While some methods go beyond
the human skeleton representation and model every single muscle
to increase realism [21], we will focus here on skeletons, which
are simple and efficient enough for our purpose. Among skeleton-
based models, the sphere-mesh model [30], a variant of convolution
surfaces [6], has been introduced for representing mesh models by
packing sphere into it and encoding its structure. Conceptually, the
sphere-mesh model can be seen as a piecewise linear simplification
of the computational geometry skeleton [29]. Although the original
sphere-mesh construction proposed to discover entirely the shape
structure from an input mesh, the sphere-mesh model can be used
to represent an anatomical model by imposing constraints on it. As
such, it has been used successfully for representing hand skeletons
[28, 31]. This model is light and pliable and we will also rely on it.

Skeleton rigging and skinning. Once a skeleton model is chosen,
the next problem for animation purposes is to position it inside an
inputmesh and to attach surface points to it, processes that are called
rigging and skinning respectively. Skeleton rigging can be performed
manually, but a few methods have investigated automatic processes.
In particular, the Pinocchio algorithm [4] adapts a skeleton to a
static mesh by defining an objective function and maximizing it. It
works by packing spheres into the mesh and by considering their
centers, gathered in a graph, as the admissible joint positions. This
pre-computation makes the skeleton pose estimation tractable. If the
input data is dynamic, it is possible to infer, or track, a skeleton from
it. Most tracking approaches focus on the direct independent and
simultaneous capture of the positions of the joints, using a temporal
sequence and prior constraints. The pose parameters (angles) and
intrinsic parameters (e.g. bone lengths) are then inferred from it.
Many of such tracking methods work with depth streams or videos
starting from a previously calibrated skeleton but the calibration
itself can be performed from a depth video and a set of known
admissible poses [28, 31]. Suchmethods require a dynamic scene and
cannot apply to the static mesh rigging problem. It is also possible
to rely on a whole database of people scans to learn the pose and
deformation of human bodies [2, 14, 15, 23]. Finally, some methods
[13, 35] aim at finding a person’s pose despite its sometimes loose
clothing, but this is outside the scope of our paper. For the sake of
completeness it is also important to mention that many methods
perform human tracking without requiring a model using multiple
view acquisitions with or without markers. These methods are only

remotely linked to our problem and we refer the reader to [7] for
an excellent overview.

Once the skeleton is correctly positioned, skinning methods aim
at attaching the surface model to it by using weights that define the
influence of the bones on the position of surface points. Then, when
changing the pose of the skeleton, the attached surface should de-
form accordingly. Setting the right weights is an important question:
while the profile of the weights is generally sketched by graphic
designers [25], there exist automatic weighting techniques that, for
example, use heat diffusion [4]. As far as skinning techniques are
concerned, Linear Blend Skinning [24] is one of the most popular
ones. A mesh surface point is transformed by a linearly weighted
combination of the motion of the bones it is attached to. Several
methods attempt to fix the well-known collapsing problem of Linear
Blend Skinning, such as Pose Space Deformation [22], Multi-Weight
Enveloping [34], spherical Skinning [19] and Dual-Quaternions
Skinning [18]. A recent skinning method [20] corrects artefacts of
linear blend skinning by locally estimating the rigid transformation
that best restores the relative position of a vertex with respect to
its neighbors using Laplacian differential coordinates. This method,
designed for meshes, involves a definition of details in terms of
Laplacian differences. In our approach, we rather define the detail
as the residual over our anatomical model. Taking a different per-
spective on the problem, Implicit skinning [32] uses an implicit
formulation of the surface that better supports pose changes and
reprojects skinned vertices on the implicit model after each pose
change. In this paper, we also use a proxy model but it is explicit.

Pose change. When a model is rigged and skinned, it is possible
to change its pose manually by interacting with some joints of the
skeleton. Through the skinning weights, the mesh surface should
deform accordingly. However, it is often tedious to design every
single motion of each joint for each frame of an animation. As a
consequence, research has focused on inferring the motion from
some key joints and frames with given skeleton positions. In this
inverse kinematics context, the Fabrik [3] and CCD [33] algorithms
define kinematic chains and aim at transforming each chain from
its input pose to its target pose by updating pose parameters one
after the other alternatively forward and backward along the chain.
Our registration method will also use kinematic chains in a forward
and backward approach, but the similarity ends here, since our
goal is to estimate not only the pose but also length and width
of the model limbs using data-attachment constraints in a static
framework. Quite differently, some approaches transfer the volume
delimited by a mesh to the interior of another mesh by minimizing
some harmonic energy [1]. To do this, a deformation field is set up
between the two meshes, using the correspondence with the nearest
point in the current iteration [12].

Shape Synthesis. Shape synthesis is a very active research area. It
is often done by reusing parts of existing models. [11] proposed an
example-based modeling system, where new models are generated
by stitching together statue parts from a database constructed by
segmenting a set of input models. For completing a 3D model, a
general idea is to retrieve suitable models from the database and
warp the retrieved models to conform with the incomplete model [9,
27]. More recently, a probabilistic representation for the components
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of a shape has been developed to suggest relevant components
during an interactive assembly-based modeling session [8, 17]. We
will propose an application to statue synthesis by part combination,
but the choice of the parts is donemanuallywhile the part adaptation
is automatic.

3 ANATOMY AND POSE ESTIMATION

3.1 Human model
Our work focuses on artworks representing human beings without
or with only a few garments. A challenge of artistic data compared
to human scans lies in the difference in aesthetic perception. Indeed
many sculptors favored the perceived beauty of their work over the
realism of human proportions [16, 26]. Figure 2 shows examples
of such unrealistic statues of the Roman and Gallo-Roman eras.
In this context, it is necessary to devise a human model with few
constraints, allowing to fit a sculpture which does not follow the
human proportion beauty canons. The existing fully detailed human
templates modeling every single limb in a very realistic way are too
constrained for our purpose. In particular, in our model we avoid
modeling muscles. After we have registered our simplified human
model to the statue point cloud, a further step could be to add new
flexible muscle models, but this goes beyond the scope of this paper
and is unnecessary for statues where the sculptor uses muscles as
stylistic elements, in the same way that he could use arabesques,
yielding a possibly unrealistic result (Figure 2b).

(a) A Gallo-Roman statue of a Gallic
warrior (Avignon, France, picture: F.
Philibert-Caillat )

(b) Statue of Heracles and Cacus
(1530-1534) by Baccio Bandinelli,
(Florence, Italy, picture: Cyberuly)

Fig. 2. Examples of statues with unrealistic anatomies.

We introduce an anatomical model inspired by the sphere-mesh
model [30], already successfully used for hand tracking [28, 31],
using only one-dimensional elements. In this model, each bone is
represented by a sphere-mesh B corresponding to the envelope of
the union of a set of spheres centered on a segment and with a
linearly varying radius (Figure 3b). Each bone is defined by two end
sphere centers c1 and c2 with associated radii r1 and r2 respectively.
The segment [c1c2] is the medial axis of the bone. For each point c ∈

[c1c2], the radius of the sphere centered at c is r (c) = (1− τ )r1 + τr2,
with τ = ∥c1c ∥

∥c1c2 ∥ .
The sphere-mesh model is controlled by the length l = ∥c1c2∥

and the pair of sphere radii r = {r1, r2}. Consequently, we denote
the sphere-mesh model for one bone as B(l , r). We also denote by α
the angle of the conic part of the bone, as illustrated on Figure 3a.
Importantly enough, the bones we are defining do not correspond
to anatomical bones, but more to limbs (i.e. it includes a coarse
description of the flesh volume around the anatomical bone). By
analogy to inverse kinematics, we keep the word bone instead of
limb.

c1 c c2

r(c)r1

r2

l

(a) Cross-section of a bone (b) Sphere-mesh of a 3D bone.

Fig. 3. The sphere-mesh of a bone is the union of the spheres centered on
segment [c1c2], with radius varying linearly between the two extremities.

With this type of bone element, we construct a simple human
body template with a very coarse respect of human proportions as
an initial body shape (Figure 4). Our human body template contains
22 bones {Bk }k=1..22. Three of those correspond to the pelvis and
have no relative motion: their length is fixed up to a common scale
parameter that will be determined during the registration, along
with the orientation of the triplet. Additionally, a special bone is
used to connect the spine bone to the neck, and its length and
orientation directly depend on the adjacent spine bone. The other
bones have no constraint on their relative proportions. The bones
are organized into 5 chains, depicted in different colors in figure 4a:
the spine chain, the right arm chain, the left arm chain, the right
leg chain and the left leg chain. These chains are independent with
the only constraint that some extremities must remain anchored
to the spine. The chain organization is used to define the notion of
predecessor and successor for one bone in a chain, and this ordering
will be extensively used in our kinematic registration. In particular,
we will reverse the ordering of the chain to process it forward and
backward several times along the process. Each bone is thus fully
defined by its intrinsic parameters (length and two radii) and by
its extrinsic parameter (rotation with respect to its predecessor).
Furthermore, two successive bones share a common radius. Because
of the simplicity of the sphere-mesh bone model, the distance from a
point to the model can be easily computed. In contrast, using a mesh
model would make these computations much more demanding.

3.2 Distance between the model and a point set
To capture the anatomy and the pose of a statue, we need a distance
function to measure how the sphere-mesh model fits a point set P ,
even if the points are far from the limbs they should be attached to.
We assume that the coordinates of the points are provided with a
coarse approximation of the normal so that we can locally distin-
guish the inside from the outside of the sampled surface. If normals
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(a) Control skeleton (b) Sphere-mesh model

Fig. 4. Our anatomical human model: the bones are organized into 5 chains
shown in different colors. 4 additional bones are drawn in black: the pelvis
which is a constrained triplet of bones, and the connection bone between
the spine and the neck.

are unavailable, in most cases, they can be roughly estimated and
orientated using viewing directions from the 3D sensor for example.

Distance from a point to a one-bone model. We start by defining the
normal-constrained projection of a sampled point p on a single bone
B by using the normal vector np to disambiguate the choice between
several orthogonal projection possibilities. The sphere-mesh model
calibration and registration strives to reduce the distance between
the sampled points and their corresponding points on the sphere-
mesh and using the normal orientation helps this process. Given a
point p in the ambient space with oriented normal np , we consider
the lines passing throughp and orthogonally intersecting the sphere-
mesh surface (possibly crossing its interior) at some points. We
abusively call these intersection points orthogonal projections (see
appendix A for the detailed cases). From all these possibilities, we
select the projection p̃ whose normal np̃ has positive scalar product
with np . Considering this normal-constrained orthogonal projection
allows to better handle the case where the bone is not initialized
close to the point set. Since each point p has a normal-constrained
projection on several bones, we refer to its normal-constrained
projection on bone Bk as p̃k . If no subscript is provided, p̃ refers
to the normal-constrained projection of p on the associated closest
bone.

Distance from a point set to a sphere-mesh model. Given a point set
P and a sphere-mesh model ofK bones, we first need to approximate
the subset of corresponding points for each bone. In the following,
we define the point set Pk as the subset of points p ∈ P which are
closest to bone Bk using the distance dk = ∥p − p̃k ∥,k = 1 · · ·K .
However, we try to favor the assignation to the conical part of a bone.
Therefore, if p projects on the spherical part of the closest bone and
if it also projects on the conical part of another bone with a similar
distance, we assign it to this second bone. Once the assignment is
computed, the one-bone distance function Ek is defined as the sum

of squared distances from points of Pk to bone Bk :

Ek (Pk ,Bk (lk ,rk ),θk ) =
∑
p∈Pk

∥p − p̃k ∥2 (1)

Importantly enough, the subset Pk and the one-bone energy Ek
depend on the position of the initial extremity of the chain of bones
involving Bk , as well as the parameters of the previous bones in the
chain.
In the following, the sum of one-bone distance functions is con-

sidered as an energy that we aim to minimize in order to capture
the anatomy and the pose of the sphere-mesh that best correspond
to our point set:

E =
K∑
k=1

∑
p∈Pk

∥p − p̃k ∥2. (2)

In the next sections, we will also be interested in the distance
restricted to two adjacent bones Bk and Bk+1, which we call two-
bones distance:

Ek,k+1 =
∑
p∈Pk

∥p − p̃k ∥2 +
∑

p∈Pk+1
∥p − p̃k+1∥2. (3)

3.3 FAKIR : Forward And bacKward Iterative Registration
To register our anatomical model to the acquired static point cloud,
we propose a kinematic approach taking into account the articulated
property of the skeleton. Contrarily to many tracking methods that
exploit the redundancy of information between several frames or
several views [28, 31], our method requires only one joint of the
skeleton to be close to its optimal position, the rest of the skeleton
pose being arbitrary, except for a mild assumption that in practice
means using oversized initial lengths for the bones. It is one more
assumption than the Pinocchio algorithm [4], which also works in
the static case and starts with no prerequisite and we will compare
our algorithm to it. Inspired by the FABRIK [3] and CCD [33] algo-
rithms, our registration algorithm successively loops forward and
backward through the chains of bones so as to rotate and rescale
them to match the data, refining the parameters while temporarily
fixing the extremities of some bones. Hence our algorithm is named
Forward And bacKward Iterative Registration (FAKIR). An origi-
nality of our method is that bones are not only considered one by
one but also by consecutive pairs, which allows for a more robust
estimation of the pose and skeleton parameters along a chain.

Registration process for a chain of bones. If the bone Bk is close to
the points to which it should be associated, the estimation of the one-
bone energy function becomes meaningful and the minimization of
this energy can be used to coarsely optimize the position and radii of
that bone with respect to the data. Therefore, our approach amounts
to iteratively updating the rotation and intrinsic parameters of Bk
until we catch a coarse estimation of Pk and Bk , one extremity of Bk
being kept fixed. Our algorithm gradually rotates the current bone
Bk with respect to its predecessor, updating Pk after each rotation, so
that Pk gradually contains more relevant points. Once the position
of Bk has been approximately found, the algorithm turns to the
coarse estimation of the position of Bk+1. All these computations
are driven by the minimization of the one-bone energy. However,
the one-bone energy alone might be inefficient to approximate the
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full length of a bone accurately and we use this energy only to
obtain a first approximation of the registration for one bone. In
an intertwined manner, a finer local registration procedure of our
algorithm is performed each time two consecutive bones Bk and
Bk+1 have been processed. Its goal is to optimize the common joint
position and radius while fixing the two other joint extremities.
This optimization is performed by minimizing a two-bones energy
function, defined above. Once a chain ofK bones has been positioned
and scaled over its entire length, we repeat the process forward and
backward in the chain in order to further refine the joints positions
and radii between pairs of consecutive bones, only using two-bones
energies. Finally, the position of the last extremity of a chain is
also optimized between each forward and backward step of the
loop by optimizing the one-bone energy function. Each parameter
optimization is thus made by minimizing an energy related to either
one or two bones. The full process is summarized in Algorithm 1
and illustrated with a chain of three bones in Figure 5.
Note that during the process, two consecutive bones should not

be enclosed in a same limb of the model point set, otherwise a joint
might remain enclosed inside this limb, trapping the optimization in
a local minimum. This can be avoided by introducing a condition on
the initial bone lengths ensuring that the sum of the initial lengths
of two consecutive bones is below the optimal length of each of the
limbs they are close to. A practical trick is to slightly oversize the
bones before starting the registration process.

Optimization of a single bone. As stated above, the optimization
of the one-bone energy is only used for estimating the parameters
of the extremities of a chain, or for the very first forward pass in
Algorithm 1). After this step, the optimization of the position of
a joint using a bone pair should be preferred because it is more
precise.
In the single-bone case, the aim is to estimate the 3D rotation

of the bone, its length and the radius of its free extremity by mini-
mizing the one-bone energy function Ek (Pk ,Bk (lk , rk ),θk ), where
θk are the angles of rotation with respect to the predecessor bone.
This optimization is performed using the Levenberg-Marquardt
algorithm for each parameter. In particular, the rotation can be de-
composed into two rotations around two axes that are orthogonal
to c1c2, indeed the rotation around c1c2 is not considered since it
leaves the bone unchanged. In the case of the minimization with
respect to the vector of rotation angles θk , we iteratively try to re-
place the current angles θk with an update θk +δθk . At a minimum,
∇δθk Ek (Pk ,Bk (lr ,rk ),θk +δθk ) = 0, and the value for δθk follows.
The details for the damped least-squares estimation are provided in
Appendix B.

Optimization for the joint between two consecutive bones. The op-
timization of the position and radius of the joint between two con-
secutive bones (Bk ,Bk+1) is performed by optimizing a set of four
parameters in a loop (an angle, two lengths and a radius) minimiz-
ing the two-bones energy function. The two end-sphere centers
being fixed (ck and ck+2 in Figure 6), we first compute the optimal
rotation of the two bones around axis ckck+2, all other parameters
being fixed. We then optimize the bone lengths l̂k = lk + δlk and
l̂k+1 = lk+1 + δlk+1 and, finally, the radius of the common joint is

Algorithm 1 Forward and backward iterative registration
Input: A point set P and a sphere-mesh chain of K bones with one

chain extremity close to its optimal position
Output: The registered sphere-mesh chain.
1: Initialization:
2: Fix the center of the first extremity of the chain. Rotate the first

bone and adjust its radii and length by minimizing the one-bone
energy function;

3: for k := 1 to K − 1 do
4: Consider the pair of bones Bk ,Bk+1 :
5: Fix the position of the joint common to Bk and Bk+1;
6: Alternate between the optimization of Bk+1’s rotation w.r.t

Bk , optimization of Bk+1’s intrinsic parameters and update
of Pk+1;

7: Fix the positions of the 2 joints that Bk and Bk+1 do not share,
and free their common joint;

8: Compute the position and the radius of the common joint by
using the two-bones energy function.

9: end for
10: Compute the length of the last bone and the radius of the last

sphere.
11: Forward and Backward registration loop:
12: repeat
13: Reverse the order of the bones in the chain;
14: for k := 1 to K − 1 do
15: Consider the pair of bones Bk ,Bk+1 :
16: Fix the positions of the 2 joints that Bk and Bk+1 do not

share;
17: Compute the position and the radius of the common joint

by using the two-bones energy function.
18: end for
19: Compute the length of the last bone and the radius of the last

sphere with the one-bone energy function.
20: until convergence

computed as r̂k+1 = rk+1 + δr . The parameters optimization alter-
nates with a recomputation of point sets Pk and Pk+1, which refines
the point-to-bone assignment. Similarly to the single-bone case,
the optimization is also performed using the Levenberg-Marquardt
algorithm whose details are provided in Appendix C.

Full Skeleton Registration. Our anatomical model is composed of
5 chains, one of which is of particular importance: the spine chain
which connects all other chains (the arms, and the legs through
the pelvis block). We assume that the pelvis part of our model
is initialized near the corresponding part of the point set, which
requires a very limited user interaction - basically only one point and
click. Each chain is then registered in turn using FAKIR yielding a
registered skeleton both in terms of intrinsic parameters and pose in
only a couple of iterations. The position of the pelvis is then revised
during the registration of the spine chain. The registration order is
the following: first the spine chain is registered, followed by each of
the two leg chains and each of the two arm chains. When registering
the arms and legs chains, the position for the joint attached to the
spine or the pelvis remains fixed.



6 • Tong Fu, Raphaëlle Chaine, and Julie Digne

c1 c2 c3 c4

B1 B2
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(f)

c1

c3

c4B1 B3B2c2

(g)

Fig. 5. Overview of the forward and backward iterative registration for a 3-bone chain. From an initial position (a), the chain extremity c1 is fixed and the first
bone B1 is rotated and scaled to roughly calibrate its dimensions and pose through the optimization of a one-bone energy function (b); the bone B1 is fixed
and the parameters of the second bone B2 are roughly calibrated in turn (c); joint c2 which is common to the first two bones is scaled and its position is
optimized, by using a two-bones energy function, the other joints being fixed (d); The position and length of the third bone B3 are then coarsely calibrated
through one-bone optimization and the process continues by alternating single bone optimization and two-bones optimization, until the last bone of the chain
(e). After this first coarse calibration forward pass finishes, a backward pass using only two-bone optimizations is performed (f) permitting to refine the pose
and skeleton parameters and solve for the chain extremity position. With few forward and backward pass involving two-bone optimization only, the model is
registered (g).

(a) Rotate Bk and Bk+1 (b) Refine length lk of Bk

(c) Refine length lk+1 of Bk+1 (d) Refine radius rk+1

Fig. 6. PairwiseOptimization.With fixed extremities ck and ck+2, the pair of
bones Bk and Bk+1 is first rotated around axis ckck+2 in order to minimize
the two-bones energy. Then the lengths of the bones Bk and Bk+1 and their
common radius rk+1 are optimized successively. After these updates, the
point-to-bone assignment is recomputed. As the process is repeated the
distances are more accurate since the point-to-bone assignment becomes
more meaningful.

4 POINT SET SKINNING AND APPLICATION TO STATUE
POSE AND ANATOMY MODIFICATION

Once the anatomical model is registered to the statue point set, it
is possible to exploit the assignment between the model and the
point set to change the pose and the elementary anatomy of a
statue by modifying the extrinsic and intrinsic parameters of the
bones respectively. To do so we attach the point set to its registered
anatomical model so that deforming the model will deform the point
set adequately. This process, well known in the animation research
community, is called Skinning. It allows to deform the skin following
an underlying skeletal animation, a widespread method to animate
3D models. In most skinning methods, the skin is a 3D mesh and the
skeleton is a tree whose nodes represent joints of the skeleton and
edges represent bones. An originality of our approach is to avoid
using a mesh with fixed connectivity whose triangles quality may
be altered by deformations related to pose and anatomy changes,

possibly creating triangle slivers and self-intersections. We rather
propose to develop a point set skinning process.
In our case, since after applying FAKIR, the anatomical model

is registered to the point set, it can serve as the skeleton of usual
animation methods. We introduce a skinning method working on
point sets and taking a better account of the twisting and bending
rotations, alleviating known artefacts of Linear Blend Skinning and
Dual Quaternions. We further propose to consider the skin of the
model as a set of details, encoded as a heightfield on top of our
elementary anatomical and transfered back on the model after pose
or intrinsic parameters changes.

Local heightfield over the sphere-mesh model. From now on, let us
assume that the sphere-meshmodel is registered to the point set. The
heightfield value h of a point p is defined as a signed distance from
p to its projection on the sphere-mesh base point p̃: p = p̃ + h(p)np̃ ,
where np̃ is the normal to the sphere-mesh surface at p̃. Importantly
enough, p̃ is the regular orthogonal projection on the bone p is
assigned to, in opposition to the normal-constrained projection
defined in section 3.2 and appendix A. Hence the surface point
set is decomposed into the set of base points on the sphere-mesh
and the residual orthogonal heightfield. The pose and anatomy
changes modify, through skinning, the position of the base point
on the sphere-mesh model. Then the heightfield is added back to
the modified projection yielding the final point set, as described in
algorithm 2.

Under pose change, a point p remains affected to the same bone
but its evolution depends on both the evolution of its base point
p̃, the normal at p̃ and the possible scaling of its the heightfield
value h(p). The evolution of the base point p̃ is driven by the bone
p is assigned to and its adjacent bones in the chain. The motion
induced by our skinning model is continuous. Indeed, the position
of a base point p̃ continuously depends on a set of one to three
consecutive bones. Although the point-to-bone assignation is fixed
during deformation, the base point can slide along the bone and
move from the conic part to the sphere part of the bone and con-
versely. Since the conic part is tangent to the sphere, both the base
point and its normal evolve continuously even in case of cone to
sphere or sphere to cone base point motion. Since the heightfield
of a point is either preserved or continuously scaled, the whole
motion is continuous throughout the deformation. Naturally, some
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points may become hidden because of self-intersections between
bones caused by the rotation. In this work, we choose to keep the
self-intersections, since the resulting outer envelop of the model is
visually satisfying. Compared to other heightfield decomposition
methods, the heightfield is carried by the points themselves and
not by the base surface. Hence it can encode folded surface sheets
over the sphere-mesh model (see the Dancer with Crotales example
on Figure 21). In the following we describe our proposed point set
skinning method to be applied to the base point sets before lifting
them with the heightfields (Algorithm 2). Since the skinning can be
applied independently of the heightfield decomposition, we describe
the method in a generic point set context for notation simplicity.
Note however that heightfield skinning should be preferred to di-
rect point set skinning, since it provides a much better result as
illustrated on Figure 7.

Fig. 7. Heightfield skinning. From left to right: original point set; pose
changewith direct point set skinning; pose changewith heightfield skinning.

Algorithm 2 Height-field skinning
Input: Sphere-mesh model registered to the input point set P .

Target pose and anatomy.
Output: Point set P ′ corresponding to the target changes.
1: Compute base point set P̃ corresponding to P on the registered

sphere-mesh and compute the set of height values h(P)
2: Apply point set skinning on the base points P̃
3: Deform P̃ to the target pose and anatomy, yielding P̃sk
4: Re-project points of P̃sk on the sphere-mesh yielding P̃ ′
5: Lift points P̃ ′ to the skin surface using the - possibly scaled -

initial height of each point, yielding P ′.

4.1 Point Set Skinning
The general idea of skinning is to attach each point to one or more
bones with weights measuring the influence of each bone on it.
The position of the point after a deformation is a weighted linear
combination of the positions relative to its influencing bones. Lin-
ear Blend Skinning [24], one of the most popular skinning method,
causes some well-known collapsing problems at joints, in particu-
lar for large rotations. For example, the volume at the joint is not
preserved when it is bent around the axis orthogonal to the two
adjacent bones (Figure 8). Similarly, if we apply a twist around the

axis of a bone while keeping its predecessor fixed, Linear Blend Skin-
ning produces a folding of the joint around a singular point (Figure
12a). These flaws are avoided by Dual Quaternions Skinning [18]
which interprets a combination of rigid transformations as a rigid
transformation, however artefacts still appear in the concavities
(Figures 11 and 14).

We propose to deal with the pose change in a different way that
breaks down the movement into its natural components. We con-
sider that themotion between two bones at a joint is the combination
of a twisting rotation around the axis of one of the bones and a bend-
ing rotation around an axis perpendicular to both bones’ axes. We
also introduce motion-dependent skinning weights: the weight of a
point is not the same for twisting and bending rotations. The impact
of bending on the base point set should be limited to an area loosely
enclosing the rotating sphere joint, while the impact of twisting
obviously extends to the length of the bones adjacent to the twisted
articulation. This is more coherent with the fact that underlying
muscles are arranged along the bones and attached to the joints. In
our approach, a point p ∈ Pk can only be influenced by the bones
adjacent to Bk so that it has at least one and at most three weights.

p

p1 p2

(a)

p

(b)

Fig. 8. Linear Blending artefacts: joint collapse (a); (b) trace of the evolution
of a point through iterated re-skinning with direct linear blend skinning
after splitting the rotation into smaller ones. Through Linear Blend Skinning,
a point p located opposite to the bending is moved inside the joint along
a line p1p2 where p1 and p2 are the initial positions of p with respect to
bones B1 and B2 respectively.

Bending rotation with anisotropic weights. We decompose the
bending rotation into a sequence of small bending rotations and
update both the position through Linear Blend Skinning and the
corresponding weights of the points after each rotation (Figure 8b).
At each step, the bone is slightly rotated by θr around the joint
bending axis and the points are moved following adapted Linear
Blend Skinning weights. The weights of a point p during a bending
rotation follow a Gaussian profile of the distances from p to each of
the bones that influence it. It is driven by a parameter εr controlling
the size of the influence area. In our experiments, we set εr larger
than the average distance between the point set and our model. The
weight ωj (p), relative to one of p’s influencing bones Bj writes:

ωj (p) =
1
c
exp−

∥pp̃j ∥2

2(εr /3)2
(4)

where c is a normalizing factor ensuring that the weights sum to 1,
and p̃j is the regular orthogonal projection of p onto Bj , Hence if p
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is on bone Bj (as is the case for base points), p̃j = p. Figure 9 shows
the weights profile along two bones.

(a) (b)

Fig. 9. Skinning weights for the bending rotation around a joint. (a) the
red curve represents the influence weights of the left bone Bk and the blue
curve represents the influence of the right bone Bk+1. The influence area of
each bone is controlled by εr . (b): values of anisotropic εr on a bone. Points
such that εr = 0 are shown in white. From yellow to red, the value of εr
increases linearly.

This discretization yields similar results as Dual Quaternion skin-
ning. However, it is possible to further improve the method, by
noticing that if εr is large, the convex part behaves well, it is pop-
ulated by points sliding from the conic parts of both bones to the
joint sphere, while an artefact is created in the concave part. On
the contrary, if εr is close to 0, which corresponds to no skinning at
all, a hole appears in the convex part, but a self-intersection is cre-
ated in the concave part (Figure 10). Quite counter-intuitively, this
self-intersection is much more visually satisfying than the thinning
artefact which can be observed otherwise. Indeed, only the outer en-
velop is visible and, when allowing self-intersection, this envelop is
similar to the one obtained if a contact area was computed between
the two bones [32]. To get the most of the two possibilities, we
propose to adapt εr so that it is close to 0 for points in the concave
part and it is larger for points on the convex parts. More precisely,
εr varies continuously with respect to an anisotropy angle.

close-up

(a)
(b) (c) (d)

Fig. 10. Influence of εr on the skinning resulting from a bending rotation.
In figure 10a, εr = 0. The value εr increases from (b) to (d).

We define the anisotropy angle αb at p as the angle between the
plane defined by Bk and Bk+1 axes and the plane defined by Bk ’s
axis and p. This angle serves to transition continuously over the
skinned surface between points with no skinning, favoring local
self-intersections (αb ≤ π/2), and points with skinning, favoring
the diffusion of points over the spherical joint surface (αb ≥ π/2).
Here, εr is deduced from the anisotropy angle as εr = cosαbε ′r , with
ε ′r controlling the influence area size. Therefore, the weight ωj (p)

associated to point p and one of its influencing bone Bj is:

ωj (p) =


1
c exp− ∥pp̃j ∥2

2(cosαb
ε′r
3 )2

if cosαb < 0

1 if cosαb ≥ 0 and p ∈ Pj

0 if cosαb ≥ 0 and p < Pj

(5)

(a) Linear blend skin-
ning

(b) Dual Quaternions
skinning

(c) Our anisotropic skin-
ning

Fig. 11. Comparison of our anisotropic skinning method with Linear Blend
Skinning and DualQuaternions for a bending rotation. For a fair comparison,
the two first methods use the Gaussian weight of Equation 4 which is made
anisotropic in our case. Dual Quaternions fix the volume collapse of Linar
Blend Skinning near the convexity, but artefacts remain in the concave part,
while our skinning method does not suffer from any of these flaws.

Twisting rotation. Let us consider a bone Bk+1 twisted around
its axis by an angle β , with its predecessor Bk kept fixed. Such a
rotation impacts points attached to bones Bk and Bk+1. To handle
this twist, we drop the skinning framework by linear combinations
of bone motions and replace it with rotations adapted to the points.
More precisely, each point is rotated around Bk ’s (resp. Bk+1) axis by
an angle that depends on its distance to Bk (resp. Bk+1). For p ∈ Pk
rotating around the axis of Bk , this angle writes β(p) = ω(p)β with

ω(p) = ∥vk+1 − p⋆∥
∥vk+1 − ck+1∥ + ∥ck+1 −wk+1∥

(6)

p⋆ is the projection of p on Bk ’s axis, and vk+1 (resp. wk+1) is a
point on Bk ’s axis (resp. Bk+1) delimiting the impacted areas (Figure
13). By default vk+1 = ck andwk+1 = ck+2, but different impacted
areas can be designed by choosing different vk+1 andwk+1. Here,
the expression for ω(p) corresponds to a linear evolution of the
rotation angle along the bone, but other types of influences could
be designed. On Figures 12 and 13, we compare our method with
Linear Blend Skinning and Dual Quaternions for a twisting rotation,
the trace of the points initially aligned is much smoother with our
approach.

(a) Linear blend skinning (b) Dual-quaternions skinning

Fig. 12. Linear blend skinning and dual-quaternions skinning to be com-
pared with our approach in figure 13 that uses twist specific weights. Green
dots show points that were aligned before the twisting rotation.
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Fig. 13. The blue curve represents the value of ωβ . Points vk+1 and wk+1
define the range of the twisting effect. p⋆ is the projection of p on the
skeleton line.

Combination of twist and bend. Twist and bend specific skinning
are combined to get the skinning result for any rotation around a
joint. We perform first the twisting rotation and then the bending
rotation. The positions and the weights of the points relative to each
bone are updated between these two specific rotations. Figure 14
shows a comparison of our approachwith Linear Blend Skinning and
Dual Quaternions on synthetic data with a two-bones sphere-mesh
model. As was expected, Linear Blend Skinning yields the well-
known collapse at the joint. To alleviate this effect, bending with
Dual Quaternions and our bending approach without anisotropy
get a similar result, with a region of influence restricted to the
neighborhood of the joint. However, the twist is handled differently
in our approach and its effect is distributed over the length of the
bone, yielding a more natural result.

Fig. 14. Comparison of skinning approaches on a sphere-mesh model with
combined twist and bend rotation movements. Left to right: Linear Blend
Skinning, skinning with Dual Quaternions, Ours

5 RESULTS
In this section, we show the performance of FAKIR both on syn-
thetic data and on point sets resulting from statue digitization. We
developed our algorithm in C++, using OpenMP for distance update
parallelization. All experiments are run on an Intel Core i7-4790K
CPU @ 4.00GHz.

5.1 Experiments on synthetic data
Wefirst test our algorithm on synthetic data to provide a quantitative
evaluation of the FAKIR performances. We consider a point set of
5k points sampled on a sphere-mesh of a 4-bone chain in a specific
pose. We start from a generic 4-bone chain that we try to register to
the point set. Although the point set and the initial chain are quite
distant from each other, a user-given initial approximate position
of a single anchor point (one of the extremity) is enough to register

accurately the chain. The accuracy of the registration is evaluated
as the average distance between the point set and the model:

dist =
1

Npoints

∑
p∈P

∥p − p̃∥. (7)

For 5k points, without any additional noise, our algorithm takes
5.2s to converge to dist = 0 in 7 iterations for this synthetic model
of K = 4 bones, including 3.2s for the initialization. The distance of
the point set to the model with respect to the iterations for larger
point sets and increasing noise is shown on Figure 15: the number
of points has only a moderate impact on the number of iterations
needed to converge (around 7). When there is noise in the data, the
distance also converges in a few iterations independently of the
noise. However the distance at convergence is directly correlated to
the variance of the noise. In fact, FAKIR is rather resilient to even
relatively high levels of Gaussian noise (Figure 16). Figure 17 shows
how FAKIR handles an initial position of the anchor point that is
not in the vicinity of its optimal position in the point set. FAKIR
is rather robust, but in some cases (last column), when the initial
chain position is such that the points corresponding to the first bone
only project in a small area around the joint between the first and
second bones. In this case, the optimization of the one-bone energy
function alone fails to reduce the length of the first bone and the
radius of its free extremity degenerates to 0 instead. This is due to
the fact that no point is projected on the spherical free extremity
of that bone. This problem could be avoided by slightly modifying
the one-bone energy function by adding a bone occupancy term. A
preferential alternative would be to modify the one-bone energy
function of the first and last bones by adding a term corresponding
to the distance of the free caps to the data points. However, with our
working assumptions those cases are avoided. FAKIR is also rather
robust to missing data thanks to the iterated forward and backward
passes (Figure 18). Naturally when the missing parts are on the first
or last bone or when a full bone is missing, the algorithm cannot
predict the right length or angle.

Fig. 15. Evolution of the registration distance with the iterations for different
number of points in the point set (left image) and different levels of noise
(right image).

5.2 Skeleton registration results on statues
We selected some interesting statues from various sources.

(1) Dancer with Crotales: Louvre Museum, Paris, France.
(2) Dancing Faun: Pompei excavations, Italy.
(3) Aphrodite, Museum of Thorvaldsens, Copenhagen, Denmark.
(4) Old man walking: Nye Carlsberg Glyptotek, Copenhagen,

Denmark
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Fig. 16. Evaluation of FAKIR with respect to increasing Gaussian noise after
20 iterations. The first row shows the initial point set and the bottom row
shows the registered bone chain. From left to right: without noise, σ = 0.5,
σ = 1, and σ = 2. The total groundtruth model length is 140.

Fig. 17. Evaluation of FAKIR with respect to a bad initial anchor point
position after 20 iterations. The first row shows the initial point set and the
bottom row shows the registered bone chain. The last column shows that
due to a bad initialization, the points (plotted in red) that are affected to
the first bone do not bring enough information for the one-bone energy
function to move the chain extremity. Then, not enough bones remain to
approximate the whole point set.

Fig. 18. Evaluation of the FAKIR algorithm with respect to missing data
after 20 iterations. The first row shows the initial point set and the bottom
row shows the registered bone chain.

(5) Esquiline Venus: found in 1874 at the Horti Lamiani in Rome.
Capitoline Museums, Rome, Italy

(6) Old Fisherman Vatican-Louvre (or Dying seneca): found in
Rome. Louvre Museum, Paris, France

(7) Venus de Milo: Louvre Museum, Paris, France
(8) Prince Paris: Ny Carlsberg Glyptotek, Copenhagen, Denmark.
While the ’Dancer with crotales’ is a raw point set. The other 7

models are point sets sampled on meshes extracted from the Sketch-
fab website. Figure 21 shows obtained registrations on four stat-
ues. It also compares resulting models after skeleton pose change
and skinning with our method or skinning with Dual Quaternions.
Our skinning method clearly improves the quality of the modified
model near bone joints. The registration algorithm performs well
for statues depicting naked characters: in this case, the registration

is not hindered by additional clothing or accessories, and the simple
sphere-mesh model fits well the data. Even with moderate clothing
(Dancer with Crotales) FAKIR recovers the pose of the statue, and
the skinning process yields a plausible result.
As far as the complexity of FAKIR is concerned, the computa-

tional bottleneck lies in the assignment and re-assignement of each
point several times during the optimization process. This reassign-
ment takes place during the updates of the one-bone and two-bones
energy updates. The number of these updates is related to the geom-
etry of the surface and not to the number of points sampled on that
surface. Therefore the overall complexity is linear with respect to
the number of points. From an experimental point of view, FAKIR is
a reasonably light algorithm: for a point cloud of 10000 points and
the 22-bone model, the first forward pass of FAKIR takes 5s and the
average execution time of one pass of the FAKIR process takes less
than 2s .
We compare FAKIR with Pinocchio [4] in Figure 19. The FAKIR

algorithm yields a better skeleton registration, in particular for
the shoulders and neck bones. As far as computation times are
concerned, the Pinocchio method takes about 35s for a mesh with
138048 vertices, which is roughly the same time as the 10 iterations
of the FAKIR process optimizing not only for the joint positions
but also for the bone radii (38s). Furthermore, a single iteration of
FAKIR takes 9s and already provides a better result with amuchmore
plausible shoulders location. However it is important to note that
the Pinocchio method does not require an initial skeleton position,
while our method requires one of the joint to be not far from its
optimal position (in this experiment we chose the pelvis joint).

Fig. 19. Skeletons for the Aphrodite statue using the Pinocchio rigging
method and comparison with our FAKIR algorithm. From left to right: Pinoc-
chio with the Pinocchio-provided initial skeleton (17 bones); Pinocchio with
our initial skeleton (22 bones); FAKIR with our initial skeleton after a single
forward iteration; FAKIR with our initial skeleton in 10 iterations. Only the
skeleton is displayed since the bone radii are not taken into account by
Pinocchio.
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5.3 Statue restoration by fragment combination
A direct application of statue pose and anatomy modification is
statue restoration, by harmoniously combining parts belonging
to different statues after bringing them to a common pose and
anatomy. This type of statue restoration by part combinations was
quite common in the 18th and 19th centuries 1. Performing this
restoration virtually has two advantages: first, several hypotheses
can be tested, second the pose and anatomy of the statues can
be made similar before the combination, avoiding thus adding an
oversized arm to an undersized body. Examples of statues with
missing parts are shown in Figures 1 and 22. To complete a statue,
we first register our anatomical model to the point set using FAKIR.
In case there is no clue for the size a limb, such as for the missing
arm, forearm and hand of the Esquiline Venus (Figure 22, first row),
we use default human proportions. Then we choose a statue which is
complementary to the incomplete statue and change its elementary
anatomy and pose to match the ones of the incomplete statue. The
last step is to integrate the selected parts into the first statue. We
assume that the selected parts and the statue to complete slightly
overlap, which it necessary to blend harmoniously statue parts.

The two point sets being brought to a common pose and anatomy,
the combination area is defined as the area with two layers of points,
one from each statue. Here we handle the case where there is only a
single layer in each fragment above the sphere-mesh in the combi-
nation area. To prevent layers superposition artefacts, it is necessary
to merge the information in these areas. In a nutshell, the merging
consists in removing the lower layer in the overlap area, creating
a sharp boundary between the point sets, and then blending the
points near the boundary. Recall that our sphere-mesh model is
used as a basis surface to express the residual heightfield informa-
tion h after the registration. We propose to use it to combine the
data points. Let Qp be the subset of points on the two models that
project on p̃, the projection of p on the sphere-mesh model, up to
precision δ . The first step is to keep only the upper layer in the
overlap area. To do so, we consider the subset Hp of the points in
Qp whose heightfield value is larger than hmax − δ , where hmax is
the maximum heightfield value for points in Qp . Then we replace
the heightfield value of p by a Gaussian-weighted average of the
heightfield values in Hp . The resulting heightfield value of p is:

h(p) = 1
S

∑
q∈Hp

e
− ∥p̃−q̃ ∥2

2δ 2 h(q) (8)

with S a weight normalizing factor. This brings the points of the
lower layer in the overlap area to the upper layer, creating a sharp
boundary. Finally, the sharp boundary is smoothed by gaussian-
weighted averaging of the heightfield values across the boundary.

In figure 1, we show the process of completing a statue which
lacks arms and legs. Figure 22 shows the restoration of three other
statues. The Esquiline Venus (first row) and the Venus de Milo (third
row) are both missing arms while The Old Fisherman is missing
legs (second row). The restoration method recovers plausible arms
and legs in all three cases, leading to plausible restored statues.

1https://art.thewalters.org/detail/22879/torso-of-artemis-with-head-of-aphrodite/

Fig. 20. In the left figure, blue points and red points come from different
statues. The right figure shows the result after merging the two parts by
taking the maximum followed by boundary smoothing.

5.4 Limitations
Our FAKIR algorithm works well to estimate the anatomical posi-
tion of statues with or without clothes as long as the anatomical
information remains visible. For example, in the Dancer with Cro-
tales case (first row of Figure 21), the dimension and the pose of
the legs is easy to infer although the legs are partially hidden by
the dress. However if the clothes hide a large part of the statue,
such as in the Venus de Milo case (third row in figure 22), FAKIR
fails at recovering the anatomy and pose of the legs, as they are
covered by the drape. For our point set model, a change in pose
may reveal areas where there is no data. This occurs wherever two
parts are stuck together in the initial pose. For example in Figure
21 (fourth row), there seems to be a veil between the right arm and
the body (see also Figure 22, second row). Finally, combining parts
of different statues for restoration can sometimes look unnatural
because the materials and styles of the combined parts are different,
style transfer would be necessary to alleviate this effect but this is a
whole different research topic.

6 CONCLUSION AND PERSPECTIVES
We introduced a sphere-mesh anatomical model and a combined
calibration and registration algorithm to estimate the anatomy and
the pose of digitized archaeological statues. We also proposed a
point set skinning method to modify the point set when the pose
of a statue is changed. We compared our registration and skinning
approaches with existing approaches to highlight their benefits. We
also illustrated that this framework can be used to combine statue
parts or add missing elements. While our method already gives good
results, a further improvement would be to handle the case of a
clothed statue which would involve modifying the FAKIR algorithm
since anatomy parts may be hidden. Sometimes, the point cloud
from the scan of a statue is incomplete, or some areas, occluded
in the original statue, are revealed by the pose change, creating
thus a hole in the point set. In that case an inpainting process is
necessary and will be the topic for our future work. Finally, our
current approach to combine parts remains very rudimentary and
is similar to a union despite a slight smoothing. As a future work,
we would like to design a more respectful approach to the geometry
and style of different fragments.
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[10]. The other 7 statues data are sampled on meshes from the
Sketchfab website: the Dancing Faun model is courtesy of Moshe
Caine, the Venus de Milo model is courtesy of Sketchfab user "tux",
and the other 5 statues models (Aphrodite, Old Man Walking, Es-
quiline Venus, Old Fisherman and Prince Paris) are courtesy of Geof-
frey Marchal.
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its corresponding point set: the point will then be projected on the
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on an angle α defined in Fig. 23 and which can be expressed as
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Fig. 21. Registration and pose changes of 4 statues: the Dancer with Crotales (first row), the Dancing Faun (second row), Aphrodite (third row) and the Old
Man Walking (fourth row). First column: initial point set, second column: overlay of the registered model and the point cloud, third column: registered model,
fourth column: final point set in a modified pose by our skinning method, fifth column: skinning result with Dual Quaternion. As can be seen in particular in
the areas circled in red in the fifth column, our method suppresses or at least reduces the Dual Quaternion artefacts around the bone joints.
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Fig. 22. Registration and restoration of 3 incomplete statues, Esquiline Venus (first row), Old Fisherman (second row) and Venus de Milo (third row). First
column: initial point set, second column: overlay of the registered model and the point set, third column: registered model alone, fourth column: final
restoration.

α = arctan |r2−r1 |√
∥c1c2 ∥2−(r2−r1)2

. Let us first compute p⋆ the projection

of p on line c1c2, and two translations of these points along this
line: p⋆α at the distance ∥pp⋆∥ tanα of p⋆ and p⋆−α at the distance
−∥pp⋆∥ tanα , as illustrated on Figure 23. Let τα =

p⋆α−c1
c2−c1 , so that

p⋆α can be expressed as ταc1 + (1 − τα )c2. Different cases can occur:

• 0 < τα < 1: the point projects on the cone part of the bone.
Let p̃α be the intersection of segment [p⋆αp]with the cone. p̃α
is the orthogonal projection of p on the bone. If the normal to

p̃α has a positive scalar product with the normal of p, p̃ = p̃α .
Otherwise, normals are deemed inconsistent and p̃ = p̃−α ,
i.e. the intersection of p−αp with the cone that is the farthest
from p.

• τα < 0 (resp. τα > 1): p̃ is the projection of p on the sphere
centered at c1 (resp. c2) with consistent normal direction,
except if this normal-constrained projection falls within the
bone and not on the envelop.
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In any case, the distance between p and its normal-constrained
projection p̃ vanishes when p is located near the surface of one bone,
with a normal oriented consistently. It may happen that the returned
projection does not provide a point belonging to the surface of the
bone: on figure 23, q̃−α is the normal-constrained projection of
point q, but it is not on the surface of the bone. It corresponds to a
case where the point is very far from the part of the bone which is
coherent with its normal. In this situation, we compute the distances
between point q and its projections on the two spheres and choose
the closest projection point for q̃.

p

c1
c2

r1
r2

q

o
h

Fig. 23. Various projection cases. p has two possible projections p̃α and p̃−α
depending on the orientation of the normal at p . Point p⋆ is the projection
of p on line c1c2. If the normal at p is oriented upward p̃ = p̃α . Otherwise,
p̃ = p̃−α . The same strategy is used to project points q and o.

For completeness, let us express unsigned distance d(p) = ∥p− p̃∥
in the various cases since they will be required in the following
Levenberg-Marquardt optimization formulations. If τα < 0 (resp.
τα > 1), d(p) = ∥c1p∥ − r1 (resp. d(p) = ∥c2p∥ − r2). If 0 ≤ τ ≤ 1:

d(p) =
{
∥pp⋆α ∥ − rα (p) if np̃ · np > 0
∥pp⋆−α ∥ + r−α (p) if np̃ · np ≤ 0

(9)

Since the radius of the cone varies linearly along line c1c2:

rα (p) =∥ ˜pαp⋆α ∥ = τα (p)r1 + (1 − τα (p))r2
r−α (p) =∥ ˜p−αp⋆−α ∥ = τ−α (p)r1 + (1 − τ−α (p))r2

(10)

with: τα (p) = c1p⋆α ·c1c2
∥c1c2 ∥2 and τ−α (p) = c1p⋆−α ·c1c2

∥c1c2 ∥2 . Furthermore
∥pp⋆α ∥ = ∥pp⋆−α ∥ = ∥pp⋆∥/cosα . Hence, for each bone, we first
compute the α angle, then, for each point p, we compute its pro-
jection p⋆ on c1c2 and the corresponding τα (p) yielding r±α (p) and
p̃±α .

Appendix B OPTIMIZATION FOR ONE BONE
Let us assume that c1 (Fig. 23) is fixed and let us optimize for the pose
and intrinsic parameters of bone B. In a local reference frame cen-
tered at c1 with x-axis aligned with c1c2, c1 has coordinates (0, 0, 0)
and c2 has initial coordinates (l , 0, 0). The rotation of the bone can be
parameterized by a rotation of angle θ1 around the y-axis followed
by a rotation of angle θ2 around the z-axis. The one-bone energy

is invariant by rotation around the x-axis. After the double rota-
tion, c2 has coordinates (l cosθ2 cosθ1, l sinθ2, l cosθ2 sinθ1). Let
us call (x ,y, z) the coordinates of point p in this local coordinate
system and express d(p) with respect to parameters θ = (θ1,θ2),l
and r = (r1, r2). We have:

tanα =
r2 − r1√

l2 − (r2 − r1)2
, cosα =

√
l2 − (r2 − r1)2

l

∥c1p∥2 = x2 + y2 + z2

∥c1p⋆∥ = x cosθ2 cosθ1 + y sinθ2 + z cosθ2 sinθ1
∥p⋆p∥2 = x2 +y2 + z2 − (x cosθ2 cosθ1 +y sinθ2 + z cosθ2 sinθ1)2

∥p⋆p⋆α ∥ = ∥p⋆p∥ tanα

∥p⋆αp∥ =
∥p⋆p∥
cosα

τ±α (p) =
∥c1p⋆∥ ± ∥p⋆p⋆α ∥

l
∥c2p∥2 = (x − l cosθ2 cosθ1)2 + (y − l sinθ2)2 + (z − l cosθ2 sinθ1)2

The one-bone energy function is (dropping the k subscript for
simplicity):

E(P ,B(l , r),θ ) =
∑
p∈P

d(p)2 (11)

The optimization is performed on three set of parameters in turn:
angles θ , bone length l and bone radii r .

the optimization for bone B with respect to θ writes:

θ̂ ≡ argmin
θ

E(P ,B(l , r),θ ) = argmin
θ

∑
p∈P

d(p,θ )2 (12)

Following the Levenberg-Marquardt algorithm, at each iteration,
parameter θ is replaced by a new estimate θ + δθ , computed as:

argmin
θ

E(P ,B(l , r),θ ) ≈ argmin
δθ

E(P ,B(l , r),θ + δθ ) (13)

which is computed by taking:
∂E(P ,B(l , r),θ + δθ )

∂δθ
= 0

We finally get δθ :

δθ = −[JT J + λdiaд(JT J )]−1 JT g(θ )

where J = [J1, J2], Ji1 = ∂d (pi )
∂θ1

and Ji2 =
∂d (pi ))
∂θ2

and g(θ ) is
a column vector whose entries are d(p,θ ) for each point p. λ is
a damping factor set to 0.01 initially and adapting it throughout
iterations.
In the following, we assume 0 < τα (p) < 1 and np̃ · np > 0. In

this case, p projects on p̃α and d(p) = ∥pp⋆α ∥ − rα (p) with rα (p) =
τα r1 + (1 − τα )r2, and τα = ∥c1p⋆α ∥

l . Hence:

∂d(p)
∂θ1

=
1

cosα
∂∥p⋆αp∥
∂θ1

+ (r1 −r2)
1
l

∂∥c1p⋆∥
∂θ1

+ tanα
∂∥p⋆p∥
∂θ1

(14)

∂d(p)
∂θ2

=
1

cosα
∂∥p⋆αp∥
∂θ2

+ (r1 −r2)
1
l

∂∥c1p⋆∥
∂θ2

+ tanα
∂∥p⋆p∥
∂θ2

(15)

The full expression for the derivatives can be easily derived given
the expressions for ∥p⋆αp∥, ∥c1p⋆∥, ∥p⋆p∥ above. The cases τα (p) <
0, τα (p) > 1 or np̃ · np < 0 can be computed similarly.
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Appendix C OPTIMIZATION FOR A JOINT BETWEEN
TWO CONSECUTIVE BONES

Let us consider the geometric optimization of the center of the
joint between two bones by optimizing the two-bones energy with
respect to the lengths lk and lk+1. Each length is optimized in turn,
with a side-effect on the value of the other length. The two-bones
energy can be expressed as a function of lk :

E(k,k+1)(lk ) =
∑
p∈Pk

∥p̃k − p∥2 +
∑

p∈Pk+1
∥p̃k+1 − p∥2 (16)

Following the Levenberg-Marquardt algorithm, at each iteration,
each parameter lk is replaced by a new estimate lk + δl :

argmin
lk

E(k,k+1)(lk ) ≈ argmin
δ l

E(k,k+1)(lk + δl) (17)

By setting ∂E(k,k+1)(lk+δ l )
∂δ l = 0, we get:

δl = −
∑
p∈Pk dk

∂dk
∂lk
+
∑
p∈Pk+1 dk+1

∂dk+1
∂lk∑

p∈Pk (
∂dk
∂lk

)2 +∑p∈Pk+1 (
∂dk+1
∂lk

)2
(18)

where dk = ∥p − p̃k ∥ and dk+1 = ∥p − p̃k+1∥ are expressed as
functions of lk .
Let us detail the expression of dk with respect to lk : during the

pairwise optimization ck and ck+2 remain fixed (Figure 6). Let ck
be the origin of a local reference frame with the x-axis aligned with
ckck+1. In this frame, the coordinates write ck (0, 0, 0), ck+1(lk , 0, 0)
and ck+2(x2,y2, z2) while a point P has coordinates (x ,y, z). Then
ck+1ck+2 = (x2 − lk ,y2, z2), ck+1p = (x − lk ,y, z).

Let us assume that p projects on p̃α (the case p̃−α can be deduced
with minor changes). Using the same notation as in figure 23 and
appendix B, recall that dk = ∥p − p̃k ∥ = ∥pp⋆α ∥ − rα (p). Since when
optimizing lk the orthogonal projection on ckck+1 does not change,
∥pp⋆∥ remains the same. However both α and rα (p) change. Since
rα (p) = τα (p)rk + (1 − τα (p))rk+1 with τα (p) =

∥ckp⋆α ∥
lk

, we get:

∂dk
∂lk
= − ∥pp⋆∥

cos2 α
∂ cosα
∂lk

− (rk − rk+1)
∂τα (p)
∂lk

(19)

Simple geometric considerations give cosα =
√
1 − (rk+1−rk )2

l 2k
,

τα (p) = ∥ckp⋆ ∥+∥pp⋆ ∥ tanα
lk

and tanα = rk+1−rk√
l 2k−(rk+1−rk )2

, whose dif-

ferentiation with respect to lk is easy.
One must also express distances dk+1 as functions of lk . In that

case, the projection on bone Bk+1 is slightly different, since the po-
sition of point ck+1 changes with lk . The formulas are only slightly
modified by it, but this time ∥pp⋆∥ also depends on lk . We get:

∂lk+1
∂lk

=
1

cosα
∂∥pp⋆∥
∂lk

− ∥pp⋆∥
cos2 α

∂ cosα
∂lk

− (rk+1 − rk+2)
∂τα
∂lk

(20)

The full expression for the derivatives can be easily computed
using the following formulas:

cosα =

√
1 − (rk+1 − rk+1)2

(x2 − lk )2 + y22 + z
2
2

τα (p) =
√

(x − lk )2 + y2 + z2
(x2 − lk )2 + y22 + z

2
2

∥pp⋆∥ = ck+1p · ck+1ck+2
∥ck+1ck+2∥

=
(x − lk )(x2 − lk ) + yy2 + zz2

(x2 − lk )2 + y22 + z
2
2

Plugging all the derivatives in Equation 18 yields δl , and lk can
be updated as l̂k = lk + δl . This impacts the position of ck+1, whose
new position is computed as ĉk+1 = ck + l̂k

ck ck+1
ck ck+1

, and lk+1 is
recomputed as : lk+1 = ∥ĉk+1ck+2∥.
The two-bones energy Ek,k+1 is then optimized with respect to

lk+1. This optimization is symmetric to the lk case above and can be
easily adapted. Finally, the optimization of the radius of the common
joint and rotation angle around axis ckck+2 are done in a similar
manner.
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